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Abstract 
 

This paper presents a model of an imperfect information coordination game which has 
multiple equilibria if the incentive of players to choose the same action is strong enough. 
It shows how the existence of multiple equilibria in the model and in data from multiple 
independent repetitions of the game can identify the parameters. The model is estimated 
using new data on the timing of commercials by music radio stations in 147 local radio 
markets. Stations may have an incentive to choose the same times for commercials 
because many listeners try to avoid commercials by switching stations. There is evidence 
of multiple equilibria, with commercials clustered at different times indifferent markets, 
during drivetime hours. The estimated incentive to coordinate has a modest effect on 
Nash equilibrium timing strategies but commercials would overlap almost perfectly if 
each station internalized how its timing affects the audience of commercials on other 
stations. Most markets stay in the same equilibrium for the duration of my data and the 
incentive to coordinate is larger in smaller markets and in markets with more 
concentrated station ownership. 
 



1 Introduction

A common aim in applied microeconomics is to identify whether an individual agent’s choice of action

is affected by interactions with other agents making similar choices. For example, Glaeser et al. (1996)

examine whether peer effects affect crime, Ellison and Glaeser (1997) study whether the benefits of

agglomeration affect the geographic distribution of industries and Bresnahan and Reiss (1991) analyze

how the prospect of competition affects market entry. Models where these sorts of interaction are

important frequently have multiple equilibria. For example, if there are large benefits to agglomeration

then a model of firm location decisions may have several equilibria in which firms cluster in different

places. Multiple equilibria are widely perceived to create problems in estimating these models. This

paper shows that it is possible to estimate a model where there are multiple equilibria both in the

model and in the data and, moreover, that the existence of multiple equilibria both in the model and

in the data can identify the parameters of the model including the effect of the interactions. The

intuition is straightforward. Multiple equilibria only arise when interactions are important and the

existence of multiple equilibria in the data allows us to rule out parameters which cannot support all

of the observed equilibria.

These results are developed in the context of a simple two action imperfect information game where

each player may want to choose the same action as other players. The game has multiple equilibria

if this incentive to coordinate is strong enough. The game is used to study whether commercial

music radio stations in a local market have an incentive to choose the same times for commercial

breaks (hereafter I call this “the incentive to coordinate”). The timing of commercial breaks plays a

potentially important role in the economics of the radio industry because many listeners seek to avoid

commercials by switching stations and advertisers’ willingness to pay for commercial time should fall as

more listeners avoid commercials. For example, the average in-car listener switches stations 29 times

per hour primarily to avoid commercials and listens to less than half of the number of commercials

she would hear if she never switched stations (Abernethy (1991), McDowell and Dick (2003)). The

industry’s annual advertising revenues are around $20 billion (Radio Advertising Bureau (2002), p. 4)

and the avoidance of commercials by in-car listeners alone potentially costs the industry several billion
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dollars in revenue.1 Not surprisingly advertisers have suggested that stations should play commercials

at the same time to prevent listeners avoiding commercials.2 A simple model illustrates this logic.

Suppose that time is divided into discrete intervals. While actual time is continuous the scheduling of

music radio programming is a largely discrete problem because it involves ordering songs, commercial

breaks and other programming such as travel updates. There are N symmetric stations and in each

discrete time interval each station decides to play commercials or music. Every listener has a first

choice station (the “P1” in radio jargon) and a second choice station. Each station is the first choice

of one unit of listeners who are equally divided between the other stations for their second choice.

Independent of station tastes, a proportion 1− θ of listeners never switch stations and always listen to

their first choice station. Proportion θ listen to their first choice station unless it has commercials and

their second choice station has music in which case they listen to their second choice. The audience

of a commercial break when n−it other stations have commercials at the same time is 1 − θ + θ n−it
N−1 .

If θ > 0 a station seeking to maximize the audience of its commercials should play them at the same

time as a greater proportion of other stations.3

Figure 1 shows how many stations play commercials each minute for two different hours of the

day based on a large sample of station-hours from 1,094 stations in 147 different local radio markets.

Stations do tend to play commercials at the same time so that there are, for example, over 15 times

as many commercials five minutes before the end of each hour as five minutes after the hour. While

the incentive to coordinate provides one explanation for this pattern it could also be explained by

the existence of “common factors” which make certain times, such as just before the end of the hour,

attractive for all stations to play commercials independent of the times chosen by other stations. Two

common factors consistent with Figure 1 are mentioned by people in the industry: stations “sweep”

1Arbitron Company and Edison Media Research (2003), p. 11 estimate that 34% of radio listening takes place in-car.
2For example, Brydon (1994), an advertising consultant, argues that “for advertisers, the key point is this: if, at the

touch of a button, you can continue to listen to that [music] for which you tuned in, why should you listen to something
which is imposing itself upon you, namely a commercial break.” He suggests that either stations should play very short
breaks which would not make switching worthwhile or stations should “transmit breaks at universally agreed uniform
times. Why tune to other stations if it’s certain that they will be broadcasting commercials as well?”.

3Advertisers would like stations to try to maximize the audience of the commercials for a given price of commercial
time but advertisers and stations are only able to measure the audience of commercials imperfectly. Dick and McDowell
(2003) describe how commercial avoidance on different stations can be estimated from standard Arbitron ratings which
are used by advertisers and advertising agencies. Models of television station timing choices, such as Epstein (1998) and
Zhou (2000), also assume that stations maximize the audience of TV commercials which are also measured imperfectly
(see, for example, Media Daily News (2004)).
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Figure 1: Number of Stations Playing Commercials Each Minute
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(b) 5-6 pm
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Note: based on airplay data described in Section 5.2 from  1,094 contemporary music stations in 147 local markets.  12-1 pm histogram based on 50,664 station-hours and 5-6 
pm histogram based on 50,459 station-hours. 
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(b) 5-6 pm
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Note: based on airplay data described in Section 5.2 from  1,094 contemporary music stations in 147 local markets.  12-1 pm histogram based on 50,664 station-hours and 5-6 
pm histogram based on 50,459 station-hours. 

the quarter-hours with music because of how Arbitron estimates station ratings and they avoid playing

commercials at the start of each hour because many listeners switch on then and listeners are believed

to particularly dislike hearing commercials when they first tune-in.4

This leads to the question of how we can identify whether the incentive to coordinate affects timing

choices. If commercials are clustered (i.e., played at the same time) in the same minutes in every

market then it is clearly very difficult to tell whether the incentive to coordinate matters. On the

other hand, if commercials are clustered in every market but at different times in different markets

and we are willing to assume that common factors which favor particular times are the same across

markets because, for example, Arbitron uses the same methodology in every market, then this may

provide evidence of an incentive to coordinate. It is this clustering of commercials at different times

in different markets which is interpreted as reflecting multiple equilibria in my model. Figure 2 shows

4Arbitron’s methodology counts a listener as listening to a station for a full quarter-hour if she listens to it for five
minutes during the quarter-hour. This means that a listener who can be kept over the quarter-hours points (:00, :15, :30
and :45) is likely to count for two quarter-hours (Warren (2001), p. 23-24). Keith (2000), p. 96 discusses the connection
between the timing of commercials and when listeners tune-in.
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Figure 2: Timing of Commercials in Orlando, FL and Rochester, NY on October 30, 2001 5-6 pm
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(b ) R o c h e ste r ,  N Y
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an example of what clustering at different times in different markets looks like by showing histograms

for 5-6 pm for Orlando, FL and Rochester, NY on October 30, 2001. Each histogram has 3 peaks but

they occur in different minutes.

I use panel data on the timing of commercials in 147 different markets to estimate several speci-

fications of games with multiple equilibria. In the simplest specification I find evidence of multiple

equilibria, which allows the incentive to coordinate to be identified in my framework, during drivetime

but not outside drivetime. This is consistent with a strong incentive to coordinate leading to multiple

equilibria because during drivetime there are more in-car listeners who tend to switch stations more

than those at home or at work (in the model θ should be higher during drivetime).5 However, I

find that the incentive to coordinate has a relatively modest effect on station timing strategies during

drivetime. This is explained by the fact that it can be costly for a station, which has to fit com-

mercials around other programming in a natural way, to play its commercials at the same time as

5MacFarland (1997), p. 89, reports that, based on a 1994 survey, 70% of in-car listeners switch at least once during
a commercial break compared with 41% of at home and 29% of at work listeners. Arbitron estimates that 39.2% of
listening is in-car during drivetime compared with 27.4% 10 am-3 pm and 25.0% 7 pm-midnight (Fall 2001 data from the
Listening Trends section of Arbitron’s website, www.arbitron.com).
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other stations and each station fails to internalize how its timing affects the audience of commercials

on other stations. The estimates imply that commercials would overlap almost perfectly if stations

maximized their expected joint payoffs. I use the panel dimension of the data to show that markets

tend to remain in the same equilibrium over time i.e., commercials are clustered in the same minutes

from day-to-day. The inclusion of market characteristics shows that the incentive to coordinate is

greater in smaller markets and in markets with more concentrated station ownership i.e., clustering is

more pronounced in these markets.

The paper is related to four distinct literatures. The first literature examines whether social

interactions or social learning matter in situations where we observe clustering of agents choices (e.g.,

Glaeser et al. (1996) and Duflo and Saez (2002)). I show how this clustering can be modelled as

representing multiple equilibria and how this multiplicity can help to identify the parameters in a

simple structural model where this kind of interaction may be present. Brock and Durlauf (2001), p.

3331, note the theoretical possibility of using multiple equilibria in the context of a discrete choice,

social interactions model very similar to the one used here. I develop this idea in detail and apply it to

real data. The second literature deals with the estimation of games with multiple equilibria.6 Multiple

equilibria, where a single set of parameters, data and unobservables, lead to more than one equilibrium

outcome potentially create problems for estimation because they complicate the specification of the

likelihood. This has been dealt with in different ways in different contexts. First, some researchers

have structured their models to give unique outcomes (e.g., sequential entry in Berry (1992)) or focused

on a prediction of the model which is unique (e.g., the number of firms in Bresnahan and Reiss

(1991)). Second, some models are identified because, even though some parameters can support

multiple equilibrium strategies, each set of equilibrium strategies is only supported by a unique set

of parameters. The models are estimated under the assumption that there is a single equilibrium

in the data (e.g., Salami (1986), Sargent and Wallace (1987), Moro (2003), Aguirregabiria and Mira

(2004)). Third, Andrews and Berry (2003) and Ciliberto and Tamer (2004) have shown that if

multiple equilibria create inequalities for the likelihood of observed outcomes then these can be used

to identify some features of a model such as ranges of parameters. Fourth, Bjorn and Vuong (1985),

6Cooper (2004) summarizes some of this literature particularly in the context of macroeconomic and labor models.
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Ackerberg and Gowrisankaran (2002) and Bajari et al. (2004) show that it is possible to estimate

models with multiple equilibria by identifying or making assumptions about the mixture of different

equilibria in the data. I also treat the existence of multiple equilibria as a mixture problem but the

current paper has the difference from all of the above papers that the existence of multiple equilibria

in the game and in the data is actually a source of identification. The third literature looks for

evidence of multiple equilibria in the real world. Davis and Weinstein (2004) examine the recovery

of population and industrial structure in Japanese cities after the Second World War and find that

pre-war patterns were largely restored contrary to what might be expected given the existence of

multiple equilibria in models of economic geography. Bajari et al. (2004) find some evidence of

multiple equilibria, including mixed strategy equilibria, being played in a game where golf courses

in the Carolinas choose to develop websites. I find some evidence of multiple equilibria when I

examine station timing choices. The fourth literature examines the timing of commercials on radio

and television. Epstein (1998) and Zhou (2000) provide theoretical models where television stations

placing commercial breaks within well-defined programs choose to have them at the same times in Nash

equilibrium. Epstein provides empirical evidence that the major US networks do tend to have their

commercials at the same time especially at the beginning of programs. Sweeting (2004a) uses the same

data but a very different empirical approach to test whether music radio stations have an incentive to

coordinate. A model where stations have an incentive to coordinate gives predictions about how the

equilibrium overlap of commercials should vary with observable market characteristics. A model where

stations want to choose different times for commercial breaks (justified by some specifications of listener

behavior) gives different predictions. Regressions of measures of how much commercials overlap on

market characteristics provide consistent support for the coordination model with more overlap in

markets with fewer stations, less listening to out-of-market stations, more concentrated ownership and

in markets where stations’ shares of listenership are more asymmetric. These relationships are stronger

during drivetime than during other parts of the day which is consistent with listeners having a greater

propensity to switch stations during drivetime.

Section 2 presents the model of an imperfect information coordination game. Section 3 provides

the identification results. Section 4 describes how I estimate the model and test for multiple equilibria.
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Section 5 analyzes the timing of commercial breaks. Section 6 concludes.

2 An Imperfect Information Coordination Game

This section develops a theoretical model which can have multiple equilibria and explains how it can

be taken to data. I describe the model without explicitly relating it to the timing of radio commercials

which I discuss in detail in Section 5.

2.1 Model

Consider a game where N players simultaneously choose one of two actions t ∈ {0, 1}. Each player i
has the following reduced form payoff function from choosing action t

πit = βt + αP−it + εit (1)

where P−it is the proportion of players other than i choosing action t. The βts allow one action to

have, on average, a higher payoff for reasons not connected with coordination. α reflects the strength

of the incentive to coordinate. If α = 0 each player’s payoff is independent of other players’ choices

but if α > 0 payoffs increase with the proportion of other players choosing the same action. I assume

that α ≥ 0 but discuss in Section 3 what I might see in the data if α < 0 so that players want to choose

different actions. εit is an idiosyncratic term which is private information to player i and which allows

players to have different preferences over actions. It is assumed to be independently and identically

distributed across players and actions with a Type 1 extreme value (“logit”) distribution.

i’s strategy Si consists of a rule for selecting its action as a function of its εs and, if α > 0, the

strategies of the other players (S−i). i’s optimal strategy will be to choose action 1 if and only if

β1 + αE(P−i1|S−i) + εi1 ≥ β0 + αE(P−i0|S−i) + εi0 (2)

This is a threshold crossing model so β1 and β0 cannot be separately identified and I normalize β0 = 0.

The distribution of ε implies that the probability, prior to the realization of the εs, that i chooses
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action 1 when it uses its optimal strategy is

p∗i =
eβ1+αE(P−i1|S−i)

eβ1+αE(P−i1|S−i) + eαE(P−i0|S−i)
(3)

This probability is a convenient way to describe a player’s strategy. It is straightforward to show

that if α ≥ 0 all Bayesian Nash equilibria will involve players using symmetric strategies.7 All players

choose one action so that in equilibrium p∗i = E(P−i1|S−i) = 1−E(P−i0|S−i) = p∗ where

p∗ =
eβ1+αp

∗

eβ1+αp
∗
+ eα(1−p∗)

(4)

For any (β1, α) the game has multiple equilibria if more than one value of p
∗ satisfies (4). As payoffs

depend on the proportion of other players choosing action 1 equilibrium strategies are independent of

N .

Figure 3(a)-(d) shows how player i’s reaction function and the equilibria change with β1 and α. In

each diagram the probability that every player other than i chooses action 1 is shown on the horizontal

axis and i’s probability of choosing action 1 is shown on the vertical axis. There is an equilibrium

at any point where the reaction function crosses the 450 line. In Figure 3(a) α = 0 so i’s optimal

strategy is independent of the strategies of other players and the reaction function is flat. As β1 > 0

p∗ is greater than 1
2 . If α > 0 i’s reaction function slopes upwards and has an S-shape because of the

logit distribution of ε. In Figure 3(b) there is still a single equilibrium but the benefit to coordination

means that p∗ is greater than in Figure 3(a). In Figure 3(c) α is higher and there are three equilibria.

The middle equilibrium (slope of the reaction function is greater than 1) is unstable in the sense that if

there was a small deviation from the equilibrium then the application of iterated best responses would

not return strategies to the same equilibrium. In the rest of the paper, I will assume that only stable

equilibria are played although, as I note below, unstable equilibria in the data could also help with

identification. The S-shape of the reaction function, which has maximum slope at p∗i =
1
2 , implies

that there are a maximum of two stable equilibria and that one of them will involve players choosing

7Suppose that the equilibrium is not symmetric so that a player j chooses action 1 with higher probability than another
player k. This implies that E(P−k1|S−k) − E(P−k0|S−k) > E(P−j1|S−j) − E(P−j0|S−j) which, from (3), implies that
k would actually choose action 1 with higher probability than j, a contradiction. If α < 0 there will be a symmetric
equilibrium but there may also be asymmetric equilibria.
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Figure 3: Station Reaction Functions and the Number of Equilibria for Different Values of β1 and α
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Figure 3: continued
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action 1 with probability greater than 1
2 (I label this equilibrium A, p∗A > 1

2) and that the other will

involve players choosing action 1 with probability less than 1
2 (equilibrium B, p∗B < 1

2). In Figure 3(c)

players choose the same action with higher probability in equilibrium A than in equilibrium B because

β1 > 0. In Figure 3(d) β1 increases, the reaction function shifts upwards and equilibrium B ceases to

exist. The intuition for this result is that if action 1 is, on average, much more attractive than action

0 then an equilibrium involving coordination on action 0 cannot be sustained. Figure 3(e) summarizes

these results by dividing the (β1, α) parameter space into regions which support one equilibrium and

two equilibria.

2.2 Empirical Model and “Equilibrium Selection”

Suppose that the data consists of observations from independent repetitions of the game, indexed

by m, listing the number of players (Nm) and the number choosing action 1 (n1m) with Nm − n1m

choosing action 0. By assumption β1 and α are the same across repetitions. If (β1, α) support a
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single equilibrium p∗(β1, α) then the probability that n1m choose action 1 is the binomial probability

Pr(n1m|β1, α,Nm) =
Nm!

n1m!(Nm − n1m)!
p∗(β1, α)

n1m(1− p∗(β1, α))
Nm−n1m (5)

If (β1, α) support two equilibria, p
∗
A(β1, α) and p

∗
B(β1, α) which satisfy

∂ eβ1+αp
∗

eβ1+αp
∗
+eα(1−p∗)

∂p∗ < 1 (stable

equilibria) and p∗A(β1, α) ≥ p∗B(β1, α), then the probability depends on the equilibrium played. If

ZA
m is an indicator which is 1 if equilibrium A is played in repetition m then the probability that n1m

choose action 1 is

Pr(n1m|β1, α, ZA
m, Nm) =

Nm!

n1m!(Nm − n1m)!

⎛⎜⎝ ZA
mp

∗
A(β1, α)

n1m(1− p∗A(β1, α))
Nm−n1m+

(1− ZA
m)p

∗
B(β1, α)

n1m(1− p∗B(β1, α))
Nm−n1m

⎞⎟⎠ (6)

This is the “complete data” probability of the observation. Of course, the ZAs are not observed so we

have to specify how an equilibrium is selected. The simplest assumption is that in every repetition of

the game equilibrium A is played with probability λ i.e.8,

ZA
m ∼ Bernoulli(λ) (7)

so that the “incomplete data” probability that n1m choose action 1 is

Pr(n1m|β1, α, λ,Nm) =
Nm!

n1m!(Nm − n1m)!

⎛⎜⎝ λp∗A(β1, α)
n1m(1− p∗A(β1, α))

Nm−n1m+

(1− λ)p∗B(β1, α)
n1m(1− p∗B(β1, α))

Nm−n1m

⎞⎟⎠ (8)

This is the probability mass function (pmf) of a binomial mixture model with two components p∗A and

p∗B which are the equilibrium strategies supported by β1 and α. If β1 and α support only a single

equilibrium then (8) is equivalent to (5). Of course, the probability that equilibrium A is played may

not be equal across repetitions.9 For example, there may be factors such as laws, social conventions

or previous play history which are not explicitly modelled that make equilibrium A more likely to

8Bjorn and Vuong (1985), Kooreman (1994), Ackerberg and Gowrisankaran (2002) and Bajari et al. (2004) also
parameterize equilibrium selection using λ. The first two papers assume a value of λ for the purposes of estimation while
the latter two papers estimate λ.

9 Incorrectly assuming that the probability that equilibrium A is played is constant across repetitions can yield incon-
sistent estimates if this probability is different across repetitions with different numbers of players.
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be played in certain repetitions. In Section 5 I estimate a basic model assuming that λ is constant

across radio markets but then use the fact that I have repeated observations from the same market to

estimate a model with market-specific λms.

3 Identification

I now provide the identification results, explaining how multiple equilibria identify the parameters and

how the data identify multiple equilibria.

3.1 Preliminaries

The data generating process is described in Section 2.2. The parameter space is (β1, α, λ) with

−∞ ≤ β1 ≤ ∞, α ≥ 0 and 0 ≤ λ ≤ 1. The sample space is (Nm, n1m) from repetitions of the game

indexed by m = 1, ..., M where Nm ≥ 1 and n1m ≥ 0. I define µN as the proportion of observations

where Nm = N . I use the following definition of identification for a vector of parameters (β1, α).

Definition (Identification of β1 and α). (β1, α) are separately identified in this model if and only

if for any pair (β01, α0),

Pr(n1m|β1, α, λ,Nm) = Pr(n1m|β01, α0, λ0, Nm) ∀Nm, n1m ∃λ, λ0 (9)

implies that (β1, α) = (β
0
1, α

0).

3.2 Identification Results

Parameter vectors (β1, α) which support a single equilibrium are not separately identified.

Proposition 1. All parameter vectors (β1, α) where (β1, α) support only one equilibrium are not

separately identified.

Proof. See Appendix A.

The proof involves showing that for any (β1, α) which support a single equilibrium p∗ we can find a

different (β01, α0) which support the same p∗ so that, from (5), the probability of every observation will
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Figure 4: Identification
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be the same. The intuition can be seen in Figure 4(a) where (β1 = 1.386,α = 0) and (β1 = 0.781,α = 1)

support the same equilibrium p∗ = 0.8. An alternative intuition is that when there is a single

equilibrium we have only one equation (4) with two unknowns, β1 and α. While β1 and α are not

separately identified the single equilibrium strategy p∗ is identified.

If (β1, α) support two stable equilibria then they are separately identified under two additional

conditions.

Condition 1. Some observations are generated from each equilibrium, i.e., 0 < λ < 1.

Condition 2. Some repetitions of the game have at least three players, i.e.,
P∞

j=3 µj > 0.

Proposition 2. Parameter vectors (β1, α) which support two distinct stable equilibria are separately

identified if Conditions 1 and 2 hold.

Proof. See Appendix A.

The intuition for Proposition 2 can also be seen in Figure 4(a). (β1 = 0.006, α = 2.3) and (β1 =

−0.174, α = 2.6) both support p∗A = 0.8 as an equilibrium but they support different p∗Bs. Therefore if
we observe that p∗A = 0.8 and p∗B = 0.20808 then this is consistent with (β1 = 0.006, α = 2.3) and not
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consistent with (β1 = −0.174, α = 2.6), (β1 = 1.386, α = 0) or (β1 = 0.786, α = 1). The proof shows
that any two distinct (β1, α) pairs can support at most one equilibrium which is the same. Therefore

if we can identify p∗A and p∗B, which requires Conditions 1 and 2, then we can identify β1 and α. The

proof also implies that if we can identify a non-stable equilibrium being played together with a stable

equilibrium then this can also provide identification (i.e., my assumption that only stable equilibria are

played is not necessary for identification). In identifying p∗A and p∗B, the components of the binomial

mixture, we can also identify the incidental parameter λ.

Figure 4(b) illustrates how multiple equilibria are identified from the data. Suppose that Nm = 10.

The white bars show the probability mass function (pmf) of n1m for a single equilibrium p∗ = 0.5 and

the black bars show the pmf for p∗A = 0.65, p
∗
B = 0.35 and λ = 0.5. The expectation of n1m is the same

in both cases but with multiple equilibria the variance is greater with high or low values of n1m having

greater probability. As a binomial distribution has a fixed relationship between mean and variance,

excess variance can only be created by a mixture of binomials. It is appropriate to consider what

might be observed if α < 0 so each player wants to choose a different action to the majority of other

players. In this case there is one symmetric equilibrium but there may also be asymmetric equilibria

where some players choose action 1 with relatively high probability and other players choose action 0

with relatively high probability. Asymmetric equilibria would lead to n1m having lower variance (very

low probability that all players choose the same action) than with a single symmetric equilibrium.

3.3 Further Comments on Identification

The identification results describe how the existence of multiple equilibria in data from multiple repe-

titions of a two action game can identify the parameters. It is appropriate to make some additional

comments about these results and how they generalize to more complicated settings.

1. Logit Estimation. Suppose one tried to estimate the parameters using a simple logit specifica-

tion Pr(Iim = 1) = e(β1−α)+2αp−im
1+e(β1−α)+2αp−im

where Iim = 1 if player i in repetition m chooses action 1. This is

a correct specification for estimating β1 and α if and only if ep−im is equal to the equilibrium strategies

of the other players in repetition m (e.g., p∗A in equilibrium A). In this case, if a single equilibrium

is played in every repetition then ep−im is just a constant and β1 and α are not separately identified.
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On the other hand, if there are multiple equilibria then β1 and α are separately identified because

ep−im varies across repetitions. Note that β1 and α cannot be consistently estimated by simply using

the observed proportion of other players choosing action 1 as ep−im because this mismeasures their

strategies.10 Therefore consistent estimation of β1 and α requires estimation of the full model which

combines the data and the model to find what the equilibrium strategies are.

2. More than 2 actions. The results extend to the game with more than two actions. To

be specific, suppose that players choose one of T actions, so that there are T − 1 βt parameters and

one α parameter and player i’s payoff from choosing action t is given by (1) where εit is Type I

extreme value. If the true parameters support only one set of equilibrium choice probabilities then

(β1, .., βT−1, α) are not separately identified but the parameters are separately identified if two or more

sets of equilibrium choice probabilities can be identified: the number of required equilibria does not

increase with the number of actions or parameters.11 The parameters are therefore identified (or

overidentified) if two or more sets of equilibrium choice probabilities can be identified in a T action

game which may have more than 2 stable equilibria. This problem is equivalent to identifying the

components of a multinomial mixture model with a possible ET components where ET is the maximum

number of stable equilibria in the T choice game. A necessary condition is that there are repetitions

of the game with 2ET − 1 players (Kim (1984) and Elmore and Wang (2003)).

3. Interpretation of a single equilibrium. Estimation can give parameters which are in the

region of the parameter space which only supports a single equilibrium.12 An important point to

note is that while α must be sufficiently large to generate multiple equilibria, a single equilibrium is

consistent with any value of α. To be precise a single equilibrium p∗ is consistent with any β1 and α

which satisfy β1 + α(2p∗ − 1)− log
³

p∗
1−p∗

´
= 0 so a single equilibrium places no bound on α.

4. Heterogeneity in β1. An assumption of the model is that β1 is constant across repetitions

10The mismeasurement becomes less of a problem when the number of players is large. Brock and Durlauf (2001)
propose the use of logit models to estimate social interactions in reasonably large populations.
11This reflects, at least in part, the Type I extreme value distribution of the εs. This distribution implies that the

relative choice probabilities of actions t and T (with βT normalized to zero) depend only on the parameters βt and
α. Consequently two sets of equilibrium choice probabilities identify α and all of the βts. The Type I extreme value
assumption is not necessary in the two action model where other continuous distributions, such as the normal distribution,
give the same results. The Type I extreme value assumption is, however, computationally convenient in the two action
model.
12Feng and McCulloch (1996) show that maximum likelihood estimates converge to the non-identified subset of the pa-

rameter space containing the true parameters if the data is generated from a single distribution (here, a single equilibrium)
rather than a true mixture (here, multiple equilibria).
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of the game. Heterogeneity in β1 can also explain why there are more repetitions in which action 1 is

chosen by very many or very few players than predicted by a model with a single equilibrium where

β1 is fixed. Whether one is willing to assume that β1 is constant across repetitions or varies only

with covariates (in Section 5.5 I estimate a model where β1 can vary with a measure of observed traffic

patterns and α varies with covariates and unobserved heterogeneity) will depend on the situation. For

example, a key common factor which affects the timing of radio commercials is Arbitron’s methodology

for estimating station ratings and the same methodology is used in every market. Similarly one would

probably be willing to assume that the decision of people in England to drive on the left and people in

the USA to drive on the right is not explained by country-specific preferences for one side of the road.

In any event, multiple equilibria combined with a strong incentive to coordinate can generate patterns

in the data which cannot be explained by some plausible forms of heterogeneity. This can be seen

in a specific example. Figure 5(a) shows the pmf generated by the model with β1 = 0, α = 2.3 and

λ = 0.5 when each repetition of the game has 10 players. Figure 5(b)-(d) show pmfs of the model with

β1m = ηm, α = 0 and ηm ∼ N(0, σ2) for various values of σ2.13 Increasing σ2 increases the variance of

n1m but it cannot generate the twin-peaked pmf which characterizes the model without heterogeneity

but with multiple equilibria and a strong incentive to coordinate. Of course, the pmf in Figure 5(a)

would be matched by a model where α = 0 and β1 = 1.3621 with probability 0.5 and β1m = −1.3621
with probability 0.5 but in many situations one might regard this kind of two-point heterogeneity as

implausible. In the radio timing data the degree of clustering is modest and I maintain the assumption

that β1 is constant or depends only on a covariate.

4 Estimation and Testing for Multiple Equilibria

This section describes how I estimate the model using maximum likelihood (ML) and how I test for

whether there is statistically significant evidence of multiple equilibria in the data.

13These pmfs are estimated using 10,000 simulation draws of ηm.

17



Figure 5: Multiple Equilibria vs. Heterogeneity in β1
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(a) pm f with multiple equilibria, β1=0, α=2.3, λ=0.5
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(b) pmf with β1=η, η~N(0,σ2), σ2=0, α=0
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(c) pmf with β1=η, η~N(0,σ2), σ2=0.3, α=0
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4.1 Estimation with a Single Equilibrium

It is straightforward to estimate the model if it is assumed that there is a single equilibrium. Ignoring

the binomial coefficient which does not depend on the parameters the log-likelihood is

lnL =
MX

m=1

n1m ln p
∗(β1, α) + (Nm − n1m) ln(1− p∗(β1, α)) (10)

and p∗(β1, α) can be estimated by
³ M

m=1 n1m
M
m=1Nm

´
. As explained in Section 3 β1 and α are not separately

identified but if α is arbitrarily set equal to zero then

cβ1 = ln
Ã PM

m=1 n1mPM
m=1Nm − n1m

!
(11)
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4.2 Estimation with Multiple Equilibria

Ignoring the binomial coefficient the incomplete data log-likelihood is

lnL =
MX

m=1

ln

⎛⎜⎝ λp∗A(β1, α)
n1m(1− p∗A(β1, α))

Nm−n1m

+(1− λ)p∗B(β1, α)
n1m(1− p∗B(β1, α))

Nm−n1m

⎞⎟⎠ (12)

There are two ways to maximize (12). The first method is to maximize (12) directly with respect to

the parameters (β1, α, λ).
14 For each value of (β1, α), p

∗
A and p

∗
B can be found using an iterative fixed

point procedure. Even if there are multiple equilibria in the data the log-likelihood has a set of local

maxima in the region of parameter space which supports a single equilibrium, so to find a maximum

where (β1, α) support multiple equilibria it is necessary to start the estimation procedure using good

starting values. Therefore a coarse grid search over the region of the parameter space which supports

multiple equilibria is used first. Feng and McCulloch (1996) show that ML estimates converge to the

non-identifiable subset of the parameter space containing the true parameters if the data is generated

by a single component (here, a single equilibrium p∗) rather than a true mixture (multiple equilibria

with 0 < λ < 1). A second method involves estimating p∗A, p
∗
B and λ as the parameters of a two

component binomial mixture model and then solving two equations of the form p∗ = eβ1+αp
∗

eβ1+αp
∗
+eα(1−p∗) to

estimate β1 and α. p∗A, p
∗
B and λ can be estimated using the EM Algorithm (Dempster et al. (1977))

which is widely used to estimate mixture models and which uses only analytic formulae. The details

of the EM Algorithm used are given in Appendix B. This method is potentially quicker because it

avoids using the fixed point procedure for each value of the parameters. However it is possible that

the estimated p∗A and p∗B cannot be supported as stable equilibria for any values of β1 and α. If so, it

is necessary to use the first method.15

4.3 Testing for Multiple Equilibria

Identification of β1 and α requires there to be multiple equilibria in the data so it is necessary to

test for whether there is statistically significant evidence of multiple equilibria. This is equivalent
14The likelihood is discontinuous for values of β1 and α on the boundary between the regions where one and two

equilibria are supported. For this reason I use a Nelder-Mead simplex minimization routine (fminsearch in MATLAB)
which does not require the calculation of derivatives.
15For example, if p∗A and p∗B are distinct stable equilibria then it must the case that p

∗
A > 1

2 > p∗B.
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to testing whether a binomial mixture model has one or two components where the economic model

places the additional constraint that if there are two components then they must be supported as stable

equilibria.16 I use the likelihood ratio test statistic (LRTS) to compare the likelihood of the model

which allows two equilibria with the more restricted model which allows only a single equilibrium.

The LRTS does not have its standard χ2 distribution in testing for the homogeneity of mixtures

because two regularity conditions are violated: under the null hypothesis of a single component some

parameters are not identified and λ may be on the boundary of its [0,1] parameter space. Chen

and Chen (2001) show that the LRTS for a binomial mixture model has an asymptotic distribution

which is equivalent to the distribution of the supremum of a centered Gaussian process with a specific

covariance which is a continuous function of the single binomial probability under the null hypothesis

of a single component (here p∗). It is hard to estimate this distribution but Chen and Chen argue

that because the distribution exists and p∗ can be consistently estimated under the null hypothesis, it

is appropriate to use a parametric bootstrap to estimate the critical values of the LRTS.17 I use the

following bootstrap testing procedure:

1. use the actual data to estimate bp∗ and the value of the log-likelihood under the null hypothesis
of a single equilibrium;

2. use the actual data to estimate cβ1, bα, bλ and the log-likelihood under the alternative hypothesis
that there may be two stable equilibria. The LRTS for the actual data is calculated;

3. use bp∗ as the binomial choice probability to create a new set of data, under the assumption that
there is only one equilibrium, with the same number of repetitions as the actual data and the

same number of players in each repetition. Repeat steps 1 and 2 using this data.

4. repeat step 3 B times (I use B = 249). The jth-order statistic of the test statistics calculated in

step 3 estimates the j
(B+1)th quantile of the distribution of the LRTS under the null hypothesis

(McLachlan and Peel (2000), p. 193).

16Additional issues arise in testing for multiple equilibria in models with more than two possible equilibria. For
example, certain testing criteria might reject a model with two equilibria in favor of a model with three equilibria but
also reject a model with three equilibria in favor of a model with one equilibrium. The resolution of issues of this kind
is beyond the scope of this paper.
17Lemdani and Pons (1997), Theorem 3, give the form of the asymptotic distribution where Nm varies across observa-

tions.
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It is relatively computationally expensive to estimate cβ1, bα and bλ if the binomial components pA
and pB which fit the data best cannot be supported as stable equilibria. This happens frequently when

the data is generated from a single equilibrium as, of course, is the case for the bootstrapped data. I

therefore use a less expensive method to calculate the LRTS for the bootstrap replications. This fits

a two component binomial mixture (pA, pB, λ) under the alternative hypothesis without imposing the

constraint that pA and pB must be supported as stable equilibria. This gives a log-likelihood which is

weakly greater than if I imposed the constraint. The constraint is imposed in calculating the LRTS

for the actual data and the same model is estimated for the actual and bootstrap data under the null

hypothesis of a single equilibrium (any probability strictly greater than zero and strictly less than one

can be supported as a stable equilibrium in a one equilibrium model). As a result my assessments of

the significance of multiple equilibria are conservative i.e., I am less likely to reject the null of a single

equilibrium. Appendix B presents some simulation results regarding the performance of the bootstrap

in testing for the homogeneity of binomial mixtures and the extent to which my tests are conservative.

5 The Timing of Commercial Breaks by Music Radio Stations

I estimate the model using data on the timing of commercials by contemporary music radio stations.

Section 5.1 explains the relevance of the model to stations’ timing decisions, Section 5.2 describes the

data and Section 5.3 presents some summary statistics and the results of estimating some simple logit

models. Section 5.4 presents the empirical results from estimating the basic model described above

and Section 5.5 presents the results from two extensions.

5.1 Listener Behavior and Station Timing Decisions

Section 2 presented an incomplete information discrete choice game where a player’s payoff from

choosing a particular action t was given by βt + αP−it + εit. I now explain the relationship between

this game and station timing decisions where an action is having a commercial break in a particular

time interval.

While actual time is continuous the scheduling of commercials on music stations has a strong

element of discreteness because it involves planning the order of songs and commercial breaks, so
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that, for example, a programmer decides whether to have a commercial break with one or two songs

remaining in the hour (Warren (2001), p. 27 and Lynch and Gillespie (1998), p. 111 provide sample

schedule “clocks”). The three terms in the payoff function can be rationalized in the following way.

βt allows some times to be more desirable for commercials than others. Some times may be more

desirable because of how Arbitron estimates station ratings and because many listeners tune-in at the

start of each hour. I assume that βt is the same across markets which is plausible but I do consider

below whether differences in driving patterns across markets could also explain the results. αP−it, with

α ≥ 0, allows a station’s payoff to increase with the proportion of other stations in i’s market choosing
t for a commercial break (P−it). The simple model of listener behavior presented in the Introduction

justifies why a station’s audience for its commercials might increase with the proportion of other

stations having commercials at the same time. α should increase with listeners’ propensity to switch

stations. εit allows each station to have idiosyncratic preferences over the timing of commercials. It is

assumed to be private information to player i and to be independent and identically distributed across

players and actions. The εs represent two features of station timing decisions. First, a programmer

may have idiosyncratic preferences over scheduled timing arrangements because, for example, he wants

to develop a reputation for having “travel on the 3s”. Second, other programming, such as songs,

travel news or competitions, can vary and be unpredictable in length and a station would not want to

annoy its listeners by cutting short this programming in order to play commercials at precise times.18

For this reason the exact time at which a station plays commercials tends to vary from day-to-day.

Figure 6 illustrates this by showing the timing of commercials on a Boston Rock station during the

hour 5-6 pm during one week in 2001.

A station’s decision for an hour might be, for example, to have 14 songs with three commercial

breaks placed after the 5th, 8th and 12th songs. Estimating a model with this kind of choice is well

beyond the current literature and the scope of this paper. I therefore estimate the model by analyzing

a simple choice. I define two timing choices during the last part of the hour which is the part with the

most commercials (see Figure 1). I then look at those stations which choose one of these choices (very

18Warren (2001) p. 24 describes how sweeping the quarter-hours “can be done some of the time. But it can’t be done
consistently by very many stations. Few songs are 2:30 minutes long any more”. A station manager confirmed this as
an accurate description of the situation.
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Figure 6: The Timing of Commercials on WROR-FM October 29-November 2 2001, 5-6pm
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few choose both) and examine which one they choose to estimate a two action model. I present some

simple logit specifications which show that focusing on this selected sample of stations and ignoring,

for example, how many commercial breaks a station has during an hour, does not produce spurious

evidence that there is clustering of commercials at different times in different markets.19

5.2 Data

The timing data is taken from airplay logs provided by Mediabase 24/7 which electronically monitors

stations to collect data on music airplay. Table 1 shows an extract of an airplay log for a Classic Hits

station. I describe the set of stations in the Mediabase sample before explaining how I use the logs

to analyze station timing decisions.

5.2.1 Coverage of the Mediabase Sample

I have logs for 1,094 contemporary music stations. BIAfn’s MediaAccess Pro database identifies each

station’s home metro-market (defined by Arbitron) and its music category in each ratings quarter.

The sample stations are home to 147 different metro-markets although 14 of these markets have only

one sample station. The stations are in seven contemporary music categories: Adult Contemporary,

19Formally, the incentive to coordinate could be consistently estimated in this model by just focusing on players’
choices over two particular actions if the expected proportion of players choosing either of these actions is the same across
repetitions of the game. In fact there are some radio markets where relatively few stations have commercials at the end
of the hour and ignoring this tends to lead me to underestimate the degree of clustering in the data.
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Table 1: Extract from a Daily Log of a Classic Hits (Rock) station
Time Artist Title Release Year
5:00PM CLAPTON, ERIC Cocaine 1980
5:04PM BEATLES While My Guitar Gently Weeps 1968
5:08PM GRAND FUNK Some Kind of Wonderful 1974
5:12PM TAYLOR, JAMES Carolina in My Mind 1976
5:16PM RARE EARTH Get Ready 1970
5:18PM EAGLES Best of My Love 1974
Stop Set BREAK Commercials and/or Recorded Promotions -
5:30PM BACHMAN-TURNER Let It Ride 1974
5:34PM FLEETWOOD MAC You Make Loving Fun 1977
5:38PM KINKS You Really Got Me 1965
5:40PM EDWARDS, JONATHAN Sunshine 1971
5:42PM ROLLING STONES Start Me Up 1981
5:46PM ORLEANS Dance with Me 1975
Stop Set BREAK Commercials and/or Recorded Promotions -
5:56PM JOEL, BILLY Movin’ Out (Anthony’s Song) 1977

Album Oriented Rock/Classic Rock, Contemporary Hit Radio/Top 40, Country, Oldies, Rock and

Urban.20 A music category aggregates similar music formats. For example, BIAfn classifies the

Classic Hits format station in Table 1 in the Rock category. The sample does not include every

station in these categories in the 147 markets but, as shown in Table 2, it does include stations which

account for the majority of listenership especially in the largest markets and in categories other than

Oldies. Stations in different categories are treated symmetrically in the model. This is appropriate

as the available evidence suggests that listeners switch as much between stations in different music

categories as between stations in the same category.21 The prevalence of cross-category switching may

reflect listeners’ taste for music variety as well as the fact that stations classified in the same category

may play quite different kinds of music (see Sweeting (2004b) for an analysis).

I use data from the first five weekdays of each month in 2001. The panel is unbalanced because

Mediabase’s sample of stations and markets expands over time and many individual station-days are

20The music categories that are not in the sample are Classical, Easy Listening, Jazz and Nostalgia/Big Band which
appeal to older listeners than contemporary music categories. I drop station-quarters where a station in the airplay
sample is categorized outside of the seven categories. This only affects two stations.
21For example, Arbitron Company (2003) estimates the number of listeners each pair of stations in the Boston market

had in common in Fall 2002 (one year after the end of the airplay data). There were 6 Rock stations and 8 non-Rock
contemporary music stations which had been in the airplay sample in Fall 2001. On average, 15.8% of the listeners to a
Rock station listened to each of the other Rock stations and 17.1% of the listeners to a Rock station listened to each of the
non-Rock stations. Rock listeners were more likely to listen to other contempary music stations than non-contemporary
music stations apart from news/talk station WBZ-AM which is the largest station in Boston.
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Table 2: Coverage of Airplay Sample Stations by Music Category
Contemporary Number of Number of Number of Average % of

Music Airplay Home Market Home Market Fall 2001 Home
Category Metro- Rated Rated Listening Covered

Markets Stations Airplay Stations by Airplay Sample
Arbitron Metro-Markets Ranked 1-70 (1 is New York and 70 is Ft. Myers, FL)

All categories 69 1003 720 86.1
Adult Contemporary 66 221 162 89.2
AOR/Classic Rock 65 111 98 95.9
CHR/Top 40 64 131 112 95.6
Country 64 141 94 92.1
Oldies 44 64 44 92.1
Rock 61 147 122 94.0
Urban 44 133 88 86.0

Arbitron Metro-Markets Ranked 71 and above (71 is Knoxville, TN)
All categories 78 759 374 68.8
Adult Contemporary 56 135 78 78.7
AOR/Classic Rock 34 66 45 82.5
CHR/Top 40 59 96 75 91.4
Country 60 137 76 85.7
Oldies 1 3 1 40.7
Rock 42 81 60 86.7
Urban 27 58 39 86.2

Note: to understand how to read the table look at the Country entry for Arbitron metro-markets ranked 1-70.

I have airplay data on at least one home-market Country station in 64 of these markets. In these 64 markets

there are 141 rated Country stations with 94 of them in the airplay data. The airplay stations account for

92.1% of Country listening in the 64 markets (i.e., they have more listeners than the average station). “All

categories” combines the seven categories. A rated station has a non-zero listening share listed by Arbitron.

missing so that there are 51,601 station-days of data.

5.2.2 Definition of Timing Choices

The logs identify the start time of each song and whether there was a commercial break between songs.

I use the logs in two different ways to define the timing of commercials. The first way, which provides

most of the results presented here, estimates the length of each song and then, assuming that commer-

cial breaks fill the gaps between songs where “Commercial Breaks and/or Recorded Promotions” are

indicated, identifies the median minute of the commercial break. I then examine stations which have

commercial breaks with median minutes in the intervals :48-:52 or :53-:57 (but not both).22 The sec-

22 I estimate the length of each individual song using observations where the song is followed by another song without
a commercial break. Its length is then defined as the median number of minutes between the start time of the song and
the start of the next song. If a song is played less than 10 times without being followed by a commercial break then I
assume that the song is 4 minutes long. I then form a minute-by-minute log assuming that each song is played its median
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ond way uses the order of songs and commercial breaks. I examine stations which have a commercial

break with one or two songs remaining in the hour (but not both).

There is measurement error in identifying which minutes have commercials because the logs do

not identify non-music programming which may be placed between a song and a commercial break.

If there is clustering on different times in different markets then as long as this measurement error

is not correlated across stations within a market then the measurement error will tend to make the

clustering less pronounced (less evidence of multiple equilibria) and the incentive to coordinate will be

underestimated. The potential for measurement error is greater if a station plays only a few songs so

I only use station-hours with at least 8 songs.

I focus attention on the hours 3-7 pm which Arbitron classifies as the afternoon drive. I do not

use the morning drive because many stations have a lot of talk programming in the morning with

more than half of all station-hours having less than 8 songs. On the other hand, less than 5% of the

sample has less than eight songs during the afternoon drive. I also estimate the basic model for four

randomly-chosen non-drivetime hours (3-4 am, 12-1 pm, 9-10 pm and 10-11 pm) when I expect the

incentive to coordinate, α, to be weaker than during drivetime.

5.3 Summary Statistics and Logit Specifications

Table 3 presents summary statistics on station timing choices. Almost all station-hours have at least

one commercial break except during 3-4 am when 20% of station-hours are commercial-free. Part

(a) of the table presents statistics based on allocating commercial breaks to 5 minute time intervals.

Around 60% of station-hours have a commercial break in either the :48-:52 interval or the :53-:57

interval apart from during 3-4 am when, once again, fewer stations have commercials. Roughly equal

numbers of stations choose each interval in every hour. Part (b) of the table presents statistics based

on the order of songs and commercial breaks. Fewer stations make each choice than in part (a) as

most songs are shorter than 5 minutes. In both parts of the table the number of stations making both

choices is much smaller than would be expected if the decisions about each choice were independent.

length unless this would completely eliminate a commercial break in which case I assume that the song is shortened to
allow at least one minute of commercials. I assume that commercial breaks fill the remaining gaps between songs where
commercial breaks are indicated and identify the median minute of each break. The break is allocated to one of the time
intervals :48-:52 and :53-:57 based on the median point of the break. If the median point is :52 minutes and 30 seconds
then I allocate the break to the earlier (:48-:52) interval.
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Table 3: Summary Statistics on Station Timing Choices at the End of the Hour
(a) Timing Defined by Median Minute of Commercial Break and Five Minute Time Intervals

Number of station-hours with
breaks in both

Hour at least 8 songs any break in hour break in :48-:52 break in :53-:57 :48-:52 & :53-:57
3-4 am 50,694 39,968 9,974 7,965 64
12-1 pm 50,664 49,300 15,431 13,915 87
3-4 pm 50,963 50,375 16,737 13,559 70
4-5 pm 50,617 49,879 15,916 14,592 88
5-6 pm 50,459 48,978 16,043 15,194 73
6-7 pm 50,694 50,003 16,794 13,106 74
9-10 pm 49,927 48,187 13,558 14,640 64
10-11 pm 48,619 46,116 13,106 13,459 58

(b) Timing Defined by Order of Songs and Commercial Breaks
Number of station-hours with

break with 2 break with 1 breaks with 1 and 2
Hour at least 8 songs any break in hour songs left in hour song left in hour songs left in hour
3-4 am 50,694 39,968 7,955 6,874 88
12-1 pm 50,664 49,300 13,558 12,440 350
3-4 pm 50,963 50,375 14,974 13,093 481
4-5 pm 50,617 49,879 14,735 13,767 570
5-6 pm 50,459 48,978 14,705 13,959 521
6-7 pm 50,694 50,003 15,165 12,616 481
9-10 pm 49,927 48,187 12,131 14,020 783
10-11 pm 48,619 46,116 11,467 12,981 618

As I estimate a discrete choice model where each player makes a single choice the stations making both

choices are ignored in the estimation of the basic model.

Table 4 shows the results of estimating some simple logit models. The specification is Pr(I1ihmd =

1|X, γ) = eXγ

1+eXγ where I1ihmd is an indicator equal to 1 if station i in hour h in market m on day

d chooses action 1 defined as having a commercial in the :53-:57 time interval (action 0 :48-:52) or

a commercial break with one song remaining in the hour (action 0 two songs). The X variables

include the proportion of other stations in i’s metro-market m choosing action 1 on day d in hour h

(PROPORTION). The coefficient on PROPORTION will be positive if commercials are clustered

at different times in different markets, although, as explained in Section 3.3, the coefficients cannot be

used to form a consistent estimate of α.

In column (1) the X variables are PROPORTION , dummies for i’s music category, dummies for

the number of blocks of commercials i has during the hour (which can vary between 1 and 7 with a
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Table 4: Logit Specifications
(a) Timing of Commercials Defined by Median Minute of Commercial Break

(1) (2) (3) (4)
PROPORTION
Drivetime 0.3134 (0.0891) 0.2635 (0.0871) 0.2346 (0.0578) 0.1551 (0.0573)
Non-drivetime 0.1158 (0.0810) 0.0444 (0.0793) -0.0065 (0.0452) 0.0006 (0.0432)

Dummies Hour Hour Hour Hour
Day of Week Day of Week Day of Week
Music Category Music Category Music Category
Number of Breaks Number of Breaks Number of Breaks

Hour * COMMUTE Hour * COMMUTE
Hour * MARKETRANK Hour * MARKETRANK
Hour * Region Dummies Hour * Region Dummies

Number of station-hours 376,607 376,607 212,420 212,420

(b) Timing of Commercials Defined by the Order of Songs
(1) (2) (3) (4)

PROPORTION
Drivetime 0.3481 (0.0811) 0.3163 (0.0783) 0.1925 (0.0391) 0.1694 (0.0396)
Non-drivetime 0.1142 (0.0789) 0.0474 (0.0772) -0.0748 (0.0375) -0.0551 (0.0360)

Dummies Hour Hour Hour Hour
Day of Week Day of Week Day of Week
Music Category Music Category Music Category
Number of breaks Number of Breaks Number of Breaks

Hour * COMMUTE Hour * COMMUTE
Hour * MARKETRANK Hour * MARKETRANK
Hour * Region Dummies Hour * Region Dummies

Number of station-hours 376,607 376,607 184,980 184,980

Note: Standard errors in parentheses allow for correlation across observations from the same station across hours and across days.
If only one station is observed in a market-day then observations on that station cannot be used as PROPORTION is not defined.
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mean of 2.08 and standard deviation of 0.67), hour dummies and day of week dummies. In columns

(1) and (2) I use all stations whether or not they have a commercial break in one of the two time slots

both in estimation and in defining PROPORTION . The PROPORTION coefficient is allowed to

vary between drivetime (3-7 pm) and non-drivetime hours (the four other hours listed above). The

standard errors are calculated to allow for correlation across choices by the same station across hours

and across days. The PROPORTION coefficients are positive and statistically significant at the 0.1%

level during drivetime indicating that commercials are clustered at different times in different markets

during drivetime. This is consistent with multiple equilibria. The coefficients are much smaller and

statistically insignificant at the 10% level outside drivetime. The results are very similar for the two

different definitions of when commercials are played.

The most obvious concern with interpreting clustering as reflecting multiple equilibria is that

market-specific factors might also lead stations in different markets to have commercials at differ-

ent times even if there is no incentive to coordinate. A candidate is local commuting patterns as

clustering is more pronounced during drivetime. Arbitron provides an estimate of average one-way

commuting times (for people not working at home) in each market on its website and I use this to

create a variable COMMUTE.23 The mean and median COMMUTE is 24 minutes and the stan-

dard deviation across the sample markets is 3.3 minutes. Commuting patterns might also vary with

the size of the market so I create a MARKETRANK variable which is simply Arbitron’s rank of the

market, based on population, and which varies from 1 (New York City) to 222 (Muskegon, MI). They

may also vary with region, so I create region dummies for 4 geographic regions (North East, South,

Mid-West and West).24 In column (2) I include COMMUTE, MARKETRANK and the region

dummies allowing their effects to vary by hour. The drivetime PROPORTION coefficients fall only

slightly and, in fact, they fall by less than the non-drivetime coefficients. This shows that clustering

is not explained by those aspects of commuting patterns which are correlated with commuting time,

market size or region. A station manager also said that while commuting patterns may affect how

23Arbitron’s estimates are based on data from the long-form version of the 2000 Census. Arbitron’s website is
www.arbitron.com.
24The North East region includes markets in ME, NH, VT, MA, RI, CT, NY, PA and NJ. The Mid-West region

includes OH, IN, MI, IL, WI, IA, MO, MN, KS, NE, ND and SD. The South region includes FL, GA, SC, NC, VA,
WV, MD, DE, KY, TN, AL, MS, LA, AK, OK, TX and Washington DC. The West region includes the remaining states
including Hawaii.

29



many commercials are played during an hour but they would be unlikely to affect a fine choice such

as whether to have a break at 4:50 rather than 4:55 for which timing relative to other stations would

be more important.

Columns (3) presents a specification which is close to the basic model which I estimate. Only

stations choosing either action 0 or action 1 (but not both) are used in estimation and in defining

PROPORTION . The only additional variables are hour dummies. The PROPORTION coefficients

are positive and highly significant during drivetime and insignificant or negative outside drivetime. In

column (4) I add the same controls as in column (2). The drivetime coefficients fall but remain

statistically significant at the 1% level. The drivetime coefficients in columns (3) and (4) are smaller

than those in columns (1) and (2) indicating that focusing on timing choices between actions 0 and

1 ignores some clustering as there are some markets in which relatively few stations choose either of

these actions.25 Therefore estimating the model using only stations which choose these actions will

lead me to underestimate the incentive to coordinate.

5.4 Results from the Basic Model

Table 5(a) presents the results from estimating the model of Section 2 separately for each drivetime

hour. Action 0 is defined as having a commercial in the :48-:52 time interval and action 1 is defined as

having a commercial in the :53-:57 time interval. Stations not choosing either action are excluded from

the estimation. Every market-day observation is treated as a separate and independent observation

of the game and β1,α and λ are assumed to be identical across market-days. Standard errors are

calculated using a resampling bootstrap procedure. In each replication of the procedure markets are

drawn, with replacement, from the data. Markets, rather than market-days, are sampled to allow for

correlations across observations from the same market. The procedure is repeated 25 times.

The first set of results in each column show the estimates when it is assumed that the same

equilibrium is played in every market-day observation. β1 and α are not separately identified and

the reported estimate of β1 assumes that α is equal to zero. The coefficient is negative in hours
25For example, the drivetime PROPORTION coefficient in column (2), median minute specification, implies that a

10% increase from the mean in the proportion of other stations in the market choosing action 1 is associated with a
0.515% increase in the probability of a station choosing action 1. The column (4) coefficient implies that a 10% increase
in the proportion of other stations choosing action 1 is associated with a 0.379% increase in the probability of a station
choosing action 1.
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Table 5: Basic Model Results with Timing Defined by the Median Minute of a Commercial Break
(a) Afternoon Drivetime Hours
3-4 pm 4-5 pm 5-6 pm 6-7 pm

One Equilibrium Model
β1 (assuming α = 0) -0.2116 (0.0450) -0.0874 (0.0406) -0.0546 (0.0424) -0.2492 (0.0437)
Log-likelihood -20734.8 -20995.6 -21539.0 -20393.3
Implied equilibrium p∗ 0.447 0.478 0.486 0.438

Two Equilibria Model
β1 -0.0008 (0.0012) -0.0007 (0.0012) 0.0008 (0.0009) -0.0009 (0.0012)
α 2.0140 (0.0072) 2.0127 (0.0082) 2.0147 (0.0069) 2.0154 (0.0069)
λ 0.2582 (0.1165) 0.4735 (0.1512) 0.2127 (0.1502) 0.2419 (0.1016)
Log-likelihood -20731.6 -20989.6 -21535.2 -20390.4
Implied equilibria p∗A, p

∗
B 0.534,0.417 0.541,0.421 0.585,0.459 0.517.0413

Joint-payoff maximizing pJP 0.021 0.021 0.979 0.020

Test for Multiple Equilibria
LRTS 8.3 12.1 7.7 5.8
90th,95th,99th percentiles 3.1,4.3,6.1 3.6,5.7,7.6 2.7,4.4,6.8 2.7,4.3,8.1
of LRTS distribution

Number of market-days 7,598 7,656 7,702 7,657
Number of station-days 30,156 30,332 31,091 29,752

(b) Non-Drivetime Hours
3-4 am 12-1 pm 9-10 pm 10-11 pm

One Equilibrium Model
β1 (assuming α = 0) -0.2266 (0.0440) -0.1040 (0.0412) 0.0771 (0.0377) 0.0267 (0.0372)
Log-likelihood -12232.1 -20181.1 -19435.8 -18330.7
Implied equilibrium p∗ 0.444 0.474 0.5193 0.507

Two Equilibria Model
β1 -0.2266 (0.0440) -0.1040 (0.0412) 0.0001 (0.0003) 0.0267 (0.0372)
α - - 2.0041 (0.0039) -
λ - - - -
Log-likelihood -12232.1 -20181.1 -19435.6 -18330.7
Implied equilibria p∗A, p

∗
B 0.444 0.474 0.545,0.499 0.507

Test for Multiple Equilibria
LRTS 0 0 0.3 0
90th,95th,99th percentiles 3.2,4.8,7.1 2.3,3.3,7.2 3.0,4.5,7.6 3.1,4.5,9.1
of LRTS distribution

Number of market-days 6,520 7,549 7,482 7,360
Number of station-days 17,811 29,172 28,070 26,449

Notes: Standard errors in parentheses. Log-likelihoods do not include binomial coefficients which are

constants and independent of the parameters.
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when more stations choose :48-:52 than :53-:57. The second set of results allow for two equilibria to

be played. β1 and α are separately identified if there are multiple equilibria in the data. The two

equilibria model fits better than the one equilibrium model in each drivetime hour. This is reflected

in the LRTS which is reported together with the estimated 90th, 95th and 99th percentiles of the

LRTS’s distribution under the null hypothesis of a single equilibrium. Based on these percentiles, the

LRTS is statistically significant at the 1% level in three of the four hours (3-6pm) and significant at

the 5% level in the remaining hour (6-7 pm). The β1 coefficient measures whether :53-:57 is more

attractive for commercials independent of any incentive to coordinate. In none of the hours is the

estimate of β1 significantly different from zero which is consistent with both of these time intervals

being equally distant from the quarter-hours which are known to be unattractive times for commercials.

The magnitude of α is best understood by examining the implied equilibrium probabilities (p∗A, p
∗
B) of

choosing :53-:57 for a commercial break. For example, the 4-5 pm coefficients imply that in equilibrium

A stations choose :53-:57 with probability 0.541 (:48-:52 with probability 0.459) and in equilibrium B

stations choose :53-:57 with probability 0.421 (:48-:52 with probability 0.579). The equilibrium degree

of clustering is clearly modest in all of the drivetime hours.

Table 5(b) shows the results for the four non-drivetime hours. In three of the four hours the

estimates of the two equilibria model imply that there is a single equilibrium in the data (LRTS equals

zero). For 9-10 pm the two equilibria model fits slightly better than the one equilibrium model but

the LRTS is only 0.3 and is not close to being statistically significant. Without evidence of multiple

equilibria we cannot infer whether there is an incentive to coordinate during these hours. However, the

presence of multiple equilibria during drivetime but not outside drivetime is consistent with the model

only having multiple equilibria if the incentive to coordinate is strong enough because the incentive

should be greater during drivetime when there are more in-car listeners.

In the spirit of Figure 4(b), Figure 7(a) and (b) illustrate why the data for 4-5pm support the

existence of multiple equilibria but only modest clustering. The proportion of stations choosing :53-

:57 is on the horizontal axis. The bold solid lines show kernel density estimates for the actual data.26

The shape of the density is irregular because of the different numbers of stations observed in different

26The kernel density is estimated using an Epanechnikov kernel at 101 evenly spaced points between 0 and 1.
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Figure 7: Proportion of Stations Choosing Action 1 (:53-:57) in Each Market-Day Observation in the
Actual Data and in Data Simulated from the Estimated Models
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market-day observations. In (a) the light solid line shows the mean kernel density from 50 sets of

simulated data generated from the estimated one equilibrium model and the dashed lines indicate one

standard deviation from this mean density. The density for the actual data lies below the density for

the simulated data for most proportions between 0.25 and 0.7 and slightly above the simulated density

for most of the remaining proportions, i.e., there are more observations where very high or very low

proportions of stations choose :53-:57 than the single equilibrium model predicts. In (b) the light solid

line shows the mean density for data simulated from the estimated two equilibria model. The density

for the actual data is within one standard deviation of the mean density for the simulated data for

almost all proportions. (c) repeats (a) using data for 12-1 pm. The density for the actual data lies

slightly above the mean density for the simulated data for proportions between 0.45 and 0.55 and close

to the mean density for almost all proportions. This is consistent with the one equilibrium model

fitting the data as well as the model which allows two equilibria.

The modest nature of equilibrium clustering during drivetime may seem surprising given the evi-

dence on how many listeners switch stations to avoid commercials. Does this imply that the avoidance

of commercials has little effect on the value of advertising time or industry revenues? It does not be-

cause of the presence of externalities in the timing game. Each station makes it timing decision

without internalizing how its decision affects the payoff (audience) of other stations. This externality,

combined with the fact that each station may find it privately costly to choose the time which it expects

most of the other stations in its market to choose because commercials have to be fitted in around

other programming (the εs in the model), leads to significantly less clustering in Nash equilibrium

than there would be if the stations in a radio market maximized their joint payoffs. Calculating the

strategies which maximize expected joint payoffs is straightforward under the assumption that the εs

remain private information so a station’s strategy can only depend on its own εs.27 If other stations

choose action 1 with probability p−i then the expected benefit to other stations from i choosing action

1 is (Nm − 1)p−i α
Nm−1 = αp−i. Similarly, if i chooses action 0 then the expected benefit to other

27Brock and Durlauf (2001), p. 3318, provide a similar calculation for a social planner’s problem.
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stations is α(1− p−i). i maximizes expected joint payoffs by choosing action 1 if and only if

β1 + 2αp−i + εi1 ≥ 2α(1− p−i) + εi0 (13)

and the strategies which maximize expected joint payoffs will satisfy (pJP )

pJP =
eβ1+2αp

JP

eβ1+2αp
JP
+ e2α(1−pJP )

(14)

The difference between (14) and (4) is that α is replaced by 2α: joint payoff maximization effectively

doubles the incentive to coordinate. More than one value of pJP may satisfy (14) but if β1 ≥ 0

then the expected joint payoff maximizing strategy will have pJP ≥ 0.5. The joint payoff maximizing
strategies implied by the estimates for the four drivetime hours are shown in Table 5(a). They involve

almost perfect coordination with each station choosing the most attractive interval with probability

around 0.980.

While this calculation relies on the functional forms assumed in the model it is interesting for three

reasons. First, it shows that the modest observed clustering is not necessarily inconsistent with the

claim that the value of radio commercials would be maximized by all stations playing commercials at

the same time so that listeners could not avoid them. Second, it shows that the private costs associated

with the precise timing of commercials may have a large effect on equilibrium timing patterns. It

is interesting to note that television stations, which use more pre-recorded programming in which

commercials can be placed quite precisely, appear to have commercials which overlap more than radio

stations.28 Third, it illustrates that Nash equilibrium outcomes in coordination games can be quite

different from joint payoff maximizing outcomes even if, unlike in, for example, a price-setting game,

there is no incentive for an individual player to undercut other players.

The results when the basic model is estimated using the order of songs are shown in Appendix C.

The results are similar to those presented above with no significant evidence of multiple equilibria out-

side drivetime and significant evidence during drivetime except that the LRTS for 4-5 pm is marginally

insignificant at the 10% level while the results for 5-6 pm indicate greater clustering of commercials

28Epstein (1998) provides empirical evidence on the timing of commercials by the major television networks during
primetime.
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with a more significant LRTS.

5.5 Enriching the Model

I extend the model with multiple equilibria in two stages. The first extension allows the proportion

of observations from each equilibrium to vary across markets using the fact that the data contains

multiple observations from the same market. I find that most markets stay in the same equilibrium

(commercials clustered at the same time) over time. The second extension introduces covariates into

the model and allows for unobserved market-specific heterogeneity in the incentive to coordinate. The

incentive to coordinate is stronger in smaller markets and in markets with more concentrated station

ownership.

5.5.1 Market-Specific λs

The basic model assumes that the probability that any observation is generated by equilibrium A

strategies is the same. This implies that if there are multiple equilibria across markets then there

are also multiple equilibria within markets whereas it seems plausible that if stations are trying to

coordinate on timing then they would stay in the same equilibrium from day-to-day. This assumption

can be relaxed by using the repeated observations from each market to estimate a market-specific

λm, 0 ≤ λm ≤ 1.29 I continue to assume that β1 and α are constant across markets so that only

the proportion of observations in each equilibrium varies. The log-likelihood, ignoring the binomial

coefficients, is

lnL =
MX

m=1

DmX
d=1

ln

⎛⎜⎝ λmp
∗
A(β1, α)

n1md(1− p∗A(β1, α))
Nmd−n1md

+(1− λm)p
∗
B(β1, α)

n1md(1− p∗B(β1, α))
Nmd−n1md

⎞⎟⎠ (15)

Even with over 140 markets the parameters can be estimated easily using maximum likelihood. The

estimated values of β1 and α and the implied equilibrium strategies are shown in Table 6 for the

four drivetime hours when action 1 is defined as having a commercial in the :53-:57 time interval.

Standard errors are, as before, calculated using a resampling bootstrap procedure which is repeated

29Consistency of the estimates requires that the number of observations per market tends to infinity. In the data there
are up to 60 observations per market.
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Table 6: Results With Market-Specific λm Equilibrium Selection Probabilities for Four Drivetime
Hours

3-4 pm 4-5 pm 5-6 pm 6-7 pm
β1 -0.0085 (0.0014) -0.0068 (0.0027) -0.0076 (0.0020) -0.0085 (0.0014)
α 2.0690 (0.0077) 2.0617 (0.0094) 2.0645 (0.0083) 2.0690 (0.0076)
Log-likelihood -19917.3 -20124.4 -20733.6 -19612.6
Implied equilibria p∗A, p

∗
B 0.573,0.321 0.602,0.331 0.591,0.327 0.571,0.321

Joint-payoff maximizing pJP 0.018 0.018 0.018 0.018

Number of market-days 7,598 7,656 7,702 7,657
Number of station-days 30,156 30,332 31,091 29,752

Notes: Standard errors in parentheses. Log-likelihoods do not include binomial coefficients which are

constants and independent of the parameters.

25 times. Comparison of the log-likelihoods in Tables 5 and 6 shows a sizeable improvement in the

model’s fit. The estimated values of α increase and the equilibrium strategies imply slightly more

clustering of commercials than was implied by the basic model. For example, the 4-5 pm equilibrium

A involves each station choosing :53-:57 with probability 0.602, compared with 0.541 in the basic

model, and equilibrium B involves each station choosing :48-:52 with probability 0.669, compared with

0.579 in the basic model. The estimates of β are negative implying that :48-:52 is more attractive

for commercials than :53-:57. As in the basic model joint payoff maximization would involve almost

perfect coordination on timing.

Figure 8 shows the distribution of the estimated values of λm for 4-5 pm (the histograms for the

other drivetime hours are similar) for markets with at least two stations in the sample. Approximately

two-thirds of the bλms are less than 0.1 or greater than 0.9 which shows that most markets tend to have
commercials clustered at the same time from day-to-day even if these times differ across markets.30

Markets with bλm around 0.5 may either have commercials which are clustered but at different times

on different days or they may have commercials which are always fairly evenly distributed across the

two time intervals.

Figure 9 maps which markets have high or low bλms. Hollow shapes are markets with bλm > 0.5.

Stars represent markets with very high or very low values of bλm. Three features of the map are of inter-
est. First, the equilibria are not concentrated in different regions of the country. For example, states

30These results are consistent with estimates from logit specifications similar to those in Table 4 with station-hour fixed
effects. In several specifications the coefficient on PROPORTION is positive but statistically insignificant, and much
smaller than the estimates in Table 4, during drivetime.
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Figure 8: Distribution of cλm for 4-5 pm for Markets with at least Two Stations in the Sample
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such as California, Florida, Ohio and North Carolina have some markets with bλm > 0.8 and other mar-

kets with bλm ≤ 0.2. This suggests that factors such as different regional tastes for programming cannot
explain why commercials are clustered at different times in different markets. Second, there appears

to be some clustering at a very local level. For example, Akron-Canton-Cleveland, Appleton-Green

Bay, Boston-Portsmouth-Worcester, Los Angeles-Riverside and San Francisco-San Jose are examples

of pairs or groups of very close markets which are largely in the same equilibrium. In these markets

many listeners in the smaller market may listen to stations in the larger market and, as a result,

stations in the smaller market may want to choose the same times for commercials as stations in the

larger market. For example, 55% of listening in Worcester, MA in Fall 2001 was to stations which

were home to the Boston market which is approximately 40 miles away.31 Third, the largest markets

are disproportionately represented by circles. For example, 45% of the largest 20 markets in the data

based on their Arbitron market size rank (New York City to Tampa, FL) are represented by circles

compared with 24% for the remaining markets. One explanation is that clustering is greater in smaller

markets because coordination is, in some sense, easier when there are fewer stations. I investigate this

31 It is much rarer for listeners in a large market to listen to stations in a smaller market. For example only 1.8% of
listening in the Boston market in Fall 2001 was to Worcester stations. I estimated a model with the λms restricted to be
the same in markets where more than 30% of rated listening in the smaller market was to stations in the larger market.
These restrictions were rejected at the 1% significance level.
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Figure 9: Market-Specific λm for 4-5 pm for Timing Defined by the Median Minute of a Commercial Break
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possibility by allowing the incentive to coordinate to depend on covariates such as market size or the

number of stations.

5.5.2 Market Characteristics

I now enrich the market-specific λ model to allow market characteristics to affect the attractiveness

of each interval and the incentive to coordinate. For example, the relative attractiveness of having

early commercials may depend on drivetime commuting patterns. The incentive to coordinate may

also vary with observable and unobservable market characteristics.

Specifically I assume that player i in market m’s payoff from choosing action t on day d is given by

πimdt = Xβ
mβt + (X

α
mα+ ξαm)P−imdt + εidt (16)

where P−imdt is the proportion of other stations in the market choosing action t on day d. Xα
m and X

β
m

are observed market-specific covariates and ξαm reflects unobserved market-specific factors which affect

the incentive to coordinate. I normalize β0 to be equal to zero. ξαm is assumed to be independent

of Xα
m and Xβ

m, common across stations within a market, fixed within a market over time and to be

independently and identically distributed across markets with ξαm ∼ N(0, σ2). σ2 is identified because

the variance of the εs is fixed. There are multiple equilibria in market m if Xα
mα+ ξαm is large enough

relative to Xβ
mβ. The log-likelihood, ignoring the binomial coefficients, is

lnL =
MX
m=1

ln

Z ∞

−∞

DmY
d=1

⎛⎜⎝ λmp
∗
A(β1, α,X, ξαm)

n1md(1− p∗A(β1, α,X, ξαm))
Nmd−n1md

+(1− λm)p
∗
B(β1, α,X, ξαm)

n1md(1− p∗B(β1, α,X, ξαm))
Nmd−n1md

⎞⎟⎠ f(ξαm|σ)dξαm

(17)

The integral cannot be computed analytically so I estimate the model using Simulated Maximum

Likelihood (SML). As σ is a parameter to be estimated I draw ums from a standard uniform (U [0, 1])

distribution and calculate ξαms = σΦ−1(ums) where Φ−1() is the inverse of the cumulative distribution
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function of a standard normal random variable. The simulated log-likelihood is

lnLSIM =
MX

m=1

ln
1

S

SX
s=1

DmY
d=1

⎛⎜⎝ λmp
∗
A(β1, α,X, σΦ−1(ums))

nmd1(1− p∗A(β1, α,X, σΦ−1(ums)))
Nmd−nmd1

+(1− λm)p
∗
B(β1, α,X, σΦ−1(ums))

nmd1(1− p∗B(β1, α,X, σΦ−1(ums)))
Nmd−nmd1

⎞⎟⎠
(18)

where S is the number of draws used for each market. SML estimates are only consistent if, asM and

Dm →∞, S →∞ as well (Gouriéroux and Monfort (1996), p. 43) so I use 50 independent simulations

draws per market.32

The α parameters are identified by whether commercials are more clustered in markets with high

values of the Xα characteristics. The β1 parameters are identified by whether commercials are

more clustered in markets where most stations choose :53-:57 and whether this varies with the Xβ

characteristics. σ is identified from how much variation in the degree of clustering in different markets

cannot be explained by the Xα variables. The Xβ
m and Xα

m variables and ξαm are constant over time

so the parameters are identified from “between-market” variation. It is assumed that the X variables

are exogenous to station timing decisions.

The Xβ
m variables are a constant and the COMMUTE variable described in Section 5.3. I use

various combinations of Xα
m variables in addition to a constant. MARKETRANK was also described

in Section 5.3. NUMBER is the average number of rated (non-zero listening share listed by Arbitron)

contemporary music stations which are home to the market during the 4 ratings quarters in 2001. I

use the average value because the very limited amount of within-market variation in the number of

rated stations between ratings quarters is almost entirely due to whether small stations are rated by

Arbitron and whether BIAfn classifies them in a contemporary music category. This variation should

not affect the incentive of larger stations to coordinate with each other and given that ξαm is assumed

to be constant over ratings quarters this sort of variation would give strong predictions for how the

degree of clustering should vary within-markets over time which would almost certainly be rejected

32 It is appropriate to mention some further details of the estimation procedure. I use a nested estimation procedure
where for each value of the parameters β1, α and σ I maximize (18) with respect to the market-specific λm. (18) may
have multiple local maxima so I start the estimation procedure from multiple starting points using 10 simulation draws
per market and then, having established reasonable starting values, restart the estimation procedure using 50 simulation
draws per market. For both stages of the estimation procedure I try both derivative-based and non-derivative based
methods to maximize (18). Multiple local maxima appear only to present a significant problem when there are several
covariates. If Xα

mα+ ξαms < 0 I assume that the symmetric equilibrium is played even though there could be asymmetric
equilibria. It is very rare for Xα

mα+ ξαms < 0 at the estimated parameters.
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by the data.33 The mean of NUMBER is 12.1 stations (standard deviation 5.0). The markets

with the most stations are Salt Lake City (24), Chicago, Pittsburgh and Wilkes-Barre/Scranton (all

22). These markets have the most stations because of demographics (Spanish-language stations which

are common in many large markets are not included in the contemporary music categories) and the

absence of large markets nearby. OUTLISTENING measures the proportion of contemporary music

listening which is to stations which are outside of the market. This is also averaged across ratings

quarters in 2001. The mean of OUTLISTENING is 0.20 (0.27) and it varies from 0 (in 20 markets)

to 0.91 in Morristown, NJ. HHI measures ownership concentration among the rated contemporary

music radio stations which are home to the market. This is also averaged across ratings quarters

because there were few within-market mergers in 2001 and within-market variation is therefore largely

due to variation in the number of rated contemporary music stations. Ownership is identified using

the transactions history of each station listed in BIAfn’s database and this is used to calculate each

firm’s share of rated contemporary music stations. HHI is the sum of the squares of these shares.

The average of HHI is 0.28 (0.15). It has a maximum of 1 in Reading, PA where there is only one

home to the market contemporary music station and minimum values in Nashville, TN (0.11) and

Columbus, OH (0.12).

Table 7 presents the estimation results using data from 4-5 pm with action 1 defined as having a

commercial in the :53-:57 time interval. The same simulation draws for each market are used in each

specification to make the results more comparable across columns. The covariates, apart from the

constants, are normalized to have means equal to zero and standard deviations equal to one. The

coefficients therefore represent the effect of a one standard deviation increase in the variables. Standard

errors are, as before, calculated using a resampling bootstrap procedure with 25 replications.

In column (1) Xβ
m includes a constant and COMMUTE while Xα

m only includes a constant. The

incentive to coordinate can vary across markets because of unobserved heterogeneity. Both of the

β1 parameters are very small and insignificantly different from zero, indicating earlier commercials

are not systematically more attractive in markets where commuting times are longer or shorter than

33Sweeting (2004a) examines the effect of within-market variation in characteristics on the overlap of commercials using
linear regressions. He finds that within-market variation has less effect on overlap than between-market variation in the
same characteristics although the coefficients typically have the same sign.
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Table 7: Results with Market-Specific λm Equilibrium Selection Probabilities and Market Character-
istics for 4-5 pm

(1) (2) (3) (4) (5)
β1
Constant 4.5e-6(1.0e-4) -3.6e-5(9.6e-5) -8.2e-5(5.3e-5) -7.9e-5(7.5e-5) -7.7e-5(7.6e-5)
COMMUTE 1.3e-6(1.1e-4) -1.1e-5(1.1e-4) 5.7e-5(6.1e-5) 6.6e-5(9.1e-5) 6.9e-5(9.4e-5)

α
Constant 2.0773(0.0133) 2.0846(0.0080) 2.0800(0.0124) 2.0897(0.0114) 2.0898(0.0099)
MARKETRANK - 0.0579(0.0123) - 0.0458(0.0089) 0.0436(0.0078)
NUMBER - - -0.0446(0.0107) - -
HHI - - - 0.0390(0.0198) 0.0374(0.0178)
OUTLISTENING - - - - 4.1e-6(0.0075)

σ 0.0816(0.0157) 0.0671(0.0143) 0.0817(0.0151) 0.0668(0.0126) 0.0659(0.0143)

Simulated Log -20025.1 -20003.2 -20018.2 -19999.0 -19998.8
Likelihood

Market-days 7,656 7,656 7,656 7,656 7,656
Station-days 30,332 30,332 30,332 30,332 30,332

Notes: Standard errors in parentheses. Log-likelihoods do not include binomial coefficients which are

constants and independent of the parameters.

average. This is true for all of the specifications in the table. The average incentive to coordinate

across markets is 2.0773, which implies equilibrium values of (p∗A, p
∗
B) of (0.6646,0.3354). Multiple

equilibria cannot be supported if Xα
mα+ ξαm is less than 2, and with an estimated standard deviation

of ξαm of 0.0816, the probability that a market has Xα
mα+ ξαm less than 2 is approximately 0.17. The

remaining columns examine whether market characteristics explain the heterogeneity in the incentive

to coordinate.

Column (2) includes MARKETRANK in Xα
m and the positive coefficient shows that there is

a greater incentive to coordinate (more clustering) in markets with lower market population. The

MARKETRANK coefficient is highly significant. A one standard deviation decrease inMARKETRANK

from its mean, which is equivalent to moving from El Paso, TX to San Jose, CA, changes the equi-

librium values of (p∗A, p
∗
B) from (0.6716,0.3284) to (0.5989,0.4011) if ξαm = 0. The reduction in the

estimate of σ is consistent with MARKETRANK explaining some of the heterogeneity in the degree

of clustering across markets. Column (3) replaces MARKETRANK with NUMBER. The nega-

tive and significant coefficient indicates that the incentive to coordinate is lower in markets with more
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stations, although the estimate of σ is the same as in column (1). This suggests that variation in the

incentive to coordinate is determined more by factors which vary with market size than the number

of rated contemporary music stations in the market which, as noted above, is larger in Salt Lake City

(ranked 34) and Wilkes-Barre/Scranton (67) than New York City (1) and Los Angeles.(2).

Column (4) includesMARKETRANK and HHI in Xα
m. The positive coefficient on HHI, which

is significant at the 5% level, indicates that there is greater incentive to coordinate in markets with

more concentrated ownership. This is consistent with the analysis in Section 5.4 where I showed

that stations would coordinate more if they internalized how their individual timing decisions affected

the audience of other stations because common owners should internalize these externalities. With

MARKETRANK equal to its mean, a one standard deviation decrease in HHI (from 0.28 to 0.13)

changes the equilibrium values of (p∗A, p
∗
B) from (0.6730,0.3237) to (0.6348,0.3652) if ξαm = 0. Col-

umn (5) includes MARKETRANK, HHI and OUTLISTENING in Xα
m. If markets with more

stations have weaker incentives to coordinate then we might also expect that the ability of listeners to

receive stations in other markets would also weaken the incentive. However, the OUTLISTENING

coefficient is almost identical to zero.

6 Conclusion

Many models with interesting interactions between agents have multiple equilibria. In much of the

applied literature multiplicity has been seen as only creating estimation problems. Common responses

to this perceived problem such as changing the model to guarantee uniqueness or assuming that only

one equilibrium is played in the data are unsatisfactory if it is plausible, as it surely often is, that

the data contains observations from different equilibria. The central idea in this paper is that not

only is it possible to estimate models where there are multiple equilibria both in the model and in

the data but that the existence of multiple equilibria can actually help to identify the parameters.

The intuition is that multiple equilibria only arise when interactions are important and the existence

of multiple equilibria in the data allows us to rule out parameters which cannot support all of the

observed equilibria. I illustrate this idea using a simple game in which the parameters are only

separately identified if there are multiple equilibria both in the game and in the data.
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The game is used to study the timing of commercial breaks by music radio stations. A station,

which sells the audience of its commercial breaks to advertisers, may have an incentive to play its

commercials at the same time as other stations in its market to reduce the number of listeners who

avoid its commercials by switching to music on other stations. However, the fact that stations do

tend to play commercials at the same time (Figure 1) could also be explained by common factors, such

as Arbitron’s methodology for estimating station ratings, which make certain times attractive for all

stations to play commercials. I use the possibility that stations may coordinate on playing commercials

at different times in different markets, together with the assumption that common factors are the same

across markets, to identify the incentive to coordinate. I find evidence of multiple equilibria, allowing

the incentive to coordinate to be identified, during drivetime. The estimated incentive to coordinate has

only modest effects on Nash equilibrium timing strategies but implies that commercials would overlap

almost perfectly if each station internalized how the timing of its commercials affects the audience of

other stations. I find that markets tend to stay in the same equilibrium over time and that commercials

overlap more in smaller markets and in markets with more concentrated station ownership.

Two issues merit further discussion. The first issue is how the overlap of commercials affects

welfare. The externalities in the coordination game suggest that advertising time would become more

valuable if commercials overlapped more than they do at present. Stations would extract some of

this value through higher prices to advertisers. Increased listenership to commercials is one possible

reason why increases in ownership concentration in local radio markets have been associated with

small increases in advertising prices (Brown and Williams (2002)). A large increase in revenues might

indirectly benefit listeners by encouraging station entry, which would increase programming variety,

and by encouraging investments in station quality. The free-rider problem means that an individual

listener ignores these effects when switching stations. However, a welfare calculation would also take

into account listeners’ disutility from hearing commercials they do not value and which they are unable

to pay to avoid.

The second issue is whether the idea that multiple equilibria can help to identify parameters applies

in models other than the type of game considered here where players have an incentive to choose the

same action. In many settings, especially in Industrial Organization, a more natural assumption may
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be that agents want to choose different actions to avoid competition. For example, if firm A provides a

high quality product then firm B may want to have a low quality product to soften price competition.

Can multiple equilibria in the data help to provide identification in this setting? This question deserves

detailed consideration in its own right but a simple example suggests that they can. Suppose that A

and B make simultaneous product quality choices in a set of independent markets (an example might

be two gasoline retailers deciding whether each outlet should be full-serve or self-serve) and that, in

the data, we always observe one high quality firm and one low quality firm. If firm A is the high

quality firm in every market then this pattern could be explained either by strategic differentiation or

by A having a relative cost advantage in producing a high quality product. On the other hand, if we

observe A as the high quality firm in some markets and B as the high quality firm in other markets

then if we treat these different outcomes as representing multiple equilibria in the quality choice game

and are willing to assume away the possibility of perfect negative correlation in firm costs then this

may provide convincing evidence that strategic differentiation is important.
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A Proofs of Propositions 1 and 2

Proposition 1. All parameter vectors (β1, α) where (β1, α) support only one equilibrium are not
separately identified.

Proof. If (β1, α) support only one equilibrium then the single equilibrium choice probability p
∗ satisfies

p∗(β1, α) =
eβ1+αp

∗

eβ1+αp∗ + eα(1−p∗)
(19)

and the probability of an (Nm,n1m) observation is

Pr(n1m|β1, α,Nm) =
Nm!

n1m!Nm − n1m!
p∗(β1, α)

n1m(1− p∗(β1, α))
Nm−n1m (20)

I show that (β1, α) are not separately identified by naming (β
0
1, α

0)6= (β1, α)pairs which also support one
equilibrium choice probability p∗0(β01, α0) with p∗0(β

0
1, α

0) = p∗(β1, α), implying that Pr(n1m|β1, α,Nm) =
Pr(n1m|β01, α0, Nm). I name particular (β01, α0) pairs but there is a continuum of pairs which would
work.

If α > 0, consider α0 = 0 and β01 = β1 − α + 2αp∗. As α0=0 there is only a single equilibrium
p∗0(β01, α0) which satisfies

p∗0(β01, α
0) =

eβ
0
1

1 + eβ
0
1
=

eβ1−α+2αp∗

1 + eβ1−α+2αp∗
=

eβ1+αp
∗

eβ1+αp∗ + eα(1−p∗)
(21)

so p∗0(β01, α0) = p∗(β1, α) and (β1, α) are not separately identified.
If α = 0, p∗(β1, α) is given by

p∗(β1, α) =
eβ1

1 + eβ1
(22)

Consider α0 = 1 and β01 = β1+1− 2p∗. As a necessary condition for there to be multiple equilibria is
that the maximum slope of a station’s reaction function (12α) is at least 1, there is a single equilibrium.

34

(β01, α0) support a single equilibrium choice probability p∗0 with

p∗0(β01, α
0) =

eβ
0
1+α

0p∗0

eβ
0
1+α

0p∗0 + eα0(1−p∗0)
=

eβ1+1−2p∗+p∗0

eβ1+1−2p∗+p∗0 + e(1−p∗0)
(23)

If p∗0(β01, α0) = p∗(β1, α) then the RHS of (23) simplifies to

p∗0(β01, α
0) =

eβ1

1 + eβ1
(24)

which verifies that p∗0(β01, α0) = p∗(β1, α) and (β1, α) are not separately identified.

Proposition 2. Parameter vectors (β1, α) which support two distinct stable equilibria are separately
identified if Conditions 1 and 2 hold.

Proof. If (β1, α) support two distinct equilibria the probability of an (Nm, n1m) observation is

Pr(n1m|β1, α, λ,Nm) =
Nm!

n1m!(Nm − n1m)!

µ
λp∗A(β1, α)

n1m(1− p∗A(β1, α))
Nm−n1m+

(1− λ)p∗B(β1, α)
n1m(1− p∗B(β1, α))

Nm−n1m

¶
(25)

34Recall from Section 2.1 that all equilibria are symmetric so that there is an equilibrium where R(p) = p (the reaction
function crosses the 450 line). The reaction function is continuous on [0, 1]. Taken together these facts imply that for
there to be two distinct equilibria the slope of the reaction function must be greater than 1 at some point.
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with p∗A(β1, α) 6= p∗B(β1, α). I proceed in two stages: first, I apply a well-known result to show that
(p∗A, p

∗
B, λ) are separately identified under the stated conditions and second, I show that (β1, α) are

identified if p∗A and p∗B are identified.
First stage: (25) is the pmf of a binomial mixture distribution with two components. The bi-

nomial probabilities for the two components are p∗A and p∗B, and the mixing proportion parameter is
λ. Proposition 4 of Teicher (1963) and the lemma of Margolin et al. (1989) give sufficient conditions
for p∗A,p

∗
B and λ to be identified. Applying these results, (p∗A, p

∗
B, λ), with p∗A ≥ p∗B, are separately

identified if p∗A 6= p∗B ((β1, α) support more than one equilibrium), 0 < λ < 1 (Condition 1) and some
of the observed groups contain at least 3 members (Condition 2). Therefore (p∗A, p

∗
B, λ) are separately

identified.35

Second stage: it is sufficient to show that there is a unique (β1, α) which can support a pair (p
∗
A, p

∗
B)

with p∗A 6= p∗B as equilibrium choice probabilities. Suppose not and that (β
0
1, α

0)6=(β1, α) also supports
(p∗A, p

∗
B) with p∗A 6= p∗B as equilibrium choice probabilities. From (4), four equations must hold

p∗A =
eβ1+αp

∗
A

eβ1+αp
∗
A + eα(1−p∗A)

p∗A =
eβ

0
1+α

0p∗A

eβ
0
1+α

0p∗A + eα
0(1−p∗A)

(26)

p∗B =
eβ1+αp

∗
B

eβ1+αp
∗
B + eα(1−p∗B)

p∗B =
eβ

0
1+α

0p∗B

eβ
0
1+α

0p∗B + eα
0(1−p∗B)

(27)

and manipulating each of these equations gives

ln

µ
p∗A

1− p∗A

¶
= β1 + α(2p∗A − 1) ln

µ
p∗A

1− p∗A

¶
= β01 + α0(2p∗A − 1) (28)

ln

µ
p∗B

1− p∗B

¶
= β1 + α(2p∗B − 1) ln

µ
p∗B

1− p∗B

¶
= β01 + α0(2p∗B − 1) (29)

Combining the equations in (28) and (29) gives

α0 − α =
β1 − β01
2p∗A − 1

and α0 − α =
β1 − β01
2p∗B − 1

(30)

implying p∗A = p∗B. This contradicts p
∗
A 6= p∗B.

B Estimation and Testing

B.1 EM Algorithm Estimation of the Basic Model with Multiple Equilibria

This Appendix describes how the EM Algorithm can be used to estimate the parameters of the basic
model. The equilibrium probabilities of choosing action 1 are p∗A(β1, α) and p

∗
B(β1, α) with p

∗
A(β1, α) ≥

p∗B(β1, α). I use the algorithm to estimate p∗A, p
∗
B and λ. The estimates of p∗A and p∗B are then used

to provide estimates of β1 and α. The log-likelihood in terms of p∗A, p
∗
B and λ, ignoring the binomial

coefficient, is

lnL =
MX
m=1

ln

½
λp∗A

n1m(1− p∗A)
Nm−n1m

+(1− λ)p∗B
n1m(1− p∗B)

Nm−n1m

¾
(31)

35These conditions are also necessary. If p∗A = p∗B then one cannot identify λ because the two components of the
mixture are identical (indeed λ is not really defined). If λ = 0 then one cannot identify p∗A (no observations come from
this component so there is no information on its binomial probability) and if λ = 1 then one cannot identify p∗B . If all
groups have only 1 or 2 members then the only possible (n1m,Nm − n1m) outcomes are (2, 0), (1, 1) and (0, 2). It is easy
to show that there is more than one combination of (p∗A, p

∗
B , λ) which give the same probabilities for these outcomes.

The intuition is that as the probabilities sum to 1 there are only two equations and three unknowns.
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where M is the number of independent repetitions of the game.
The first-order conditions from maximizing (31) with respect to λ, p∗A and p∗B are

MX
m=1

τm
λ
− (1− τm)

(1− λ)
= 0 (32)

MX
m=1

µ
n1mτm
p∗A

− (Nm − n1m)τm
(1− p∗A)

¶
= 0 (33)

MX
m=1

µ
n1m(1− τm)

p∗B
− (Nm − n1m)(1− τm)

(1− p∗B)

¶
= 0 (34)

where τm is the conditional probability (given that data and parameters) that equilibrium A is played
in repetition m,

τm =
λp∗A

n1m(1− p∗A)
Nm−n1m

λp∗An1m(1− p∗A)Nm−n1m + (1− λ)p∗Bn1m(1− p∗B)Nm−n1m (35)

The EM Algorithm exploits the fact that the solution to (32)-(34) is also a solution to iterating a
two-step “Expectation(E)-Maximization(M)” procedure.36 The E-step takes the conditional expecta-
tion of the complete data log-likelihood by replacing indicator variables for the equilibrium being played
(the ZA

ms in (6)) with bτm which is τm evaluated at the current values of the parameters (cp∗A,cp∗B, bλ).
Ignoring the binomial coefficient, this expectation is

E(lnLC) =
MX

m=1

⎛⎝ bτm hln bλ+ n1m lncp∗A + (Nm − n1m) ln(1−cp∗A)i+
(1− bτm) hln(1− bλ) + n1m lncp∗B + (Nm − n1m) ln(1−cp∗B)i

⎞⎠ (36)

The M-step involves maximizing (36) with respect to the parameters bλ,cp∗A and cp∗B. The new
parameter estimates are

bbλ = PM
m=1 bτm
M

(37)

ccp∗A = PM
m=1 bτmn1mPM
m=1 bτmNm

(38)

ccp∗B = PM
m=1(1− bτm)n1mPM
m=1(1− bτm)Nm

(39)

The E- and M-steps are iterated until the likelihood and the parameter estimates converge. The
final estimates cp∗A and cp∗B are used to calculate cβ1 and bα by solving two equations

ln

Ã cp∗A
1−cp∗A

!
= cβ1 + bα(2cp∗A − 1) (40)

ln

Ã cp∗B
1−cp∗B

!
= cβ1 + bα(2cp∗B − 1) (41)

36Dempster et al. (1977) show that an EM iteration always increases the value of the likelihood so convergence is
guaranteed when the likelihood is bounded above as it is here.
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I then check whether cβ1 and bα support cp∗A and cp∗B as stable equilibria. If they do then cβ1 and bα
are the ML estimates. If they do not then it is necessary to maximize (12) with respect to β1 and
α directly. This requires the calculation of the p∗A(β1, α) and p∗B(β1, α) which β1 and α support as
stable equilibria at each step of the maximization.

B.2 Testing for Multiple Equilibria Using a Bootstrap

B.2.1 Bootstrap Test for the Homogeneity of Mixtures

Chen and Chen (2001) propose using a parametric bootstrap to estimate the distribution of the LRTS
in testing for the homogeneity of a binomial mixture model against the alternative of a two component
mixture. This simulation exercise provides evidence that this approach gives a test of the correct size.

In each simulation data is generated from a single component binomial distribution Binomial(n, p)
where p is chosen as 0.52 (the proportion of stations choosing action 1 is close to 0.5 in the actual data)
and n is 1 in 50 repetitions, 2 in 50 repetitions and so on up to a value of 10 in 50 repetitions. This data
is used to estimate a single component binomial model (estimated parameter bp) and a two component
binomial model (estimated parameters bλ,cpA,cpB) using the EM Algorithm described above. The LRTS
is calculated to compare the two models. The estimate bp is used to generate 249 new sets of data
from a single component model Binomial(n, bp) with n varying as before. One and two component
models are estimated for each set of data in order to estimate the distribution of the LRTS under the
null of a single component. The jth-order statistic estimates the j

250th quantile of the distribution of
the LRTS. This estimated distribution is used to assess whether the LRTS for the initial set of data
is statistically significant at the 10%, 5% and 1% levels.

500 simulations are used. The LRTS is statistically significant at the 1% level in 6 simulations
(1.2%), at the 5% level in 20 simulations (4.0%) and at the 10% level in 47 simulations (9.4%).

B.2.2 Conservative Assessment of the Significance of Multiple Equilibria

The previous simulation exercise examined the use of a parametric bootstrap of the LRTS’s distribution
in comparing a single component binomial model against a two component binomial mixture model
with no constraints on the components of the mixture pA and pB. The economic model in Section 2
does impose the constraint that the components must be supported as stable equilibria in the model.
This simulation exercise confirms that imposing this constraint on the two component model (weakly)
lowers the value of the LRTS (the one component model remains unconstrained). This implies that
the testing procedure described in Section 4.3 will give conservative results, i.e., I am less likely to
reject the null hypothesis of a single equilibrium.

In each simulation data is generated from the model with a single equilibrium where action 1 is
chosen with probability p∗ = 0.52 and there is 1 observed player in 50 repetitions, 2 players in 50
repetitions and so on up to 10 players in 50 repetitions. This data is used to estimate a single
equilibrium model, a two equilibria model and an unconstrained two component binomial model wherecpA and cpB do not have to be supported as stable equilibria. I calculate (a) an LRTS comparing the
one equilibrium model and the two equilibria model and (b) an LRTS comparing the one equilibrium
model and the unconstrained two component binomial model.

500 simulations are used. In every simulation the (a) comparison LRTS is less than or equal
to the (b) comparison LRTS as expected. It is strictly less in 243 simulations. Figure 10 shows
the cumulative distribution function of the LRTS for each comparison. The difference between the
distribution functions suggests that my assessments of whether there is significant evidence of multiple
equilibria may be quite conservative.
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Figure 10: CDF of the LRTS Comparing the One Equilibrium Model and the Two Equilibria Model
and the CDF of the LRTS Comparing the One Equilibrium Model and the Two Component Binomial
Mixture Model
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C Results from the Basic Model With Actions Defined by the Order
of Songs and Commercial Breaks

Table 8 presents the results from estimating the basic model with action 1 defined as having a commer-
cial break with one song remaining in the hour (action 0 two songs). The results are generally similar
to those in Table 5. The main differences are that the LRTS for 4-5 pm is marginally insignificant
at the 10% level (recall that my testing procedure gives conservative assessments of the significance of
multiple equilibria) and the LRTS for 5-6 pm is much more significant than before. The equilibrium
strategies for 5-6 pm and 6-7 pm also imply greater overlap of commercials than in Table 5.
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Table 8: Basic Model Results with Timing Defined by the Order of Songs
(a) Afternoon Drivetime Hours
3-4 pm 4-5 pm 5-6 pm 6-7 pm

One Equilibrium Model
β1 (assuming α = 0) -0.1390 (0.0372) -0.0708 (0.0284) -0.0540 (0.0339) -0.1907 (0.0347)
Log-likelihood -18722.4 -18948.8 -19136.0 -18468.2
Implied equilibrium p∗ 0.465 0.482 0.487 0.452

Two Equilibria Model
β1 0.0002 (0.0014) -0.0003 (0.0004) 0.0009 (0.0015) 0.0017 (0.0018)
α 2.0112 (0.0079) 2.0070 (0.0047) 2.0176 (0.0080) 2.0250 (0.0108)
λ 0.1994 (0.1456) 0.5310 (0.1133) 0.3106 (0.1575) 0.1080 (0.0760)
Log-likelihood -18710.6 -18947.7 -19125.8 -18464.1
Implied equilibria p∗A, p

∗
B 0.568,0.440 0.519,0.441 0.591,0.438 0.609,0.433

Joint-payoff maximizing pJP 0.979 0.021 0.980 0.980

Test for Multiple Equilibria
LRTS 5.7 2.2 20.5 8.1
90th,95th, 99th percentiles 2.7,4.1,8.5 2.5,4.5,8.5 3.0,4.8,9.7 2.8,4.2,11.2
of LRTS distribution

Number of market-days 7,447 7,574 7,563 7,470
Number of station-days 27,105 27,362 27,622 26,819

(b) Non-Drivetime Hours
3-4 am 12-1 pm 9-10 pm 10-11 pm

One Equilibrium Model
β1 (assuming α = 0) -0.1478 (0.0416) -0.0885 (0.0341) 0.1540 (0.0363) 0.1306 (0.0349)
Log-likelihood -10116.8 -17503.6 -16968.4 -16039.9
Implied equilibrium p∗ 0.463 0.478 0.538 0.533

Two Equilibria Model
β1 -0.1478 (0.0416) -0.0885 (0.0341) 0.0003 (0.0007) 0.1306 (0.0349)
α - - 2.0075 (0.0060) -
λ - - 0.3734 (0.1610) -
Log-likelihood -10116.8 -17503.6 16968.4 -16039.9
Implied equilibria p∗A, p

∗
B 0.463 0.477 0.561,0.466 0.533

Joint-payoff maximizing pJP - - 0.980 -

Test for Multiple Equilibria
LRTS 0 0 0.1 0
90th,95th, 99th percentiles 3.0,3.7,8.8 2.4,3.4,5.7 2.3,4.3,6.6 4.2,6.0,11.0
of LRTS distribution

Number of market-days 6,086 7,365 7,268 7,127
Number of station-days 14,653 25,288 24,585 23,212

Notes: Standard errors in parentheses. Log-likelihoods do not include binomial coefficients which are

constants and independent of the parameters.
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