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Efficient Sorting in a Dynamic Adverse-Selection Model∗

Igal Hendel,†Alessandro Lizzeri,‡and Marciano Siniscalchi.§

This version, May 2004.

Abstract

We discuss a class of markets for durable goods where efficiency (or approximate efficiency)
is obtained despite the presence of information asymmetries. In the model, the number of times
a good has changed hands (the vintage of the good) is an accurate signal of its quality, each
consumer self-selects into obtaining the vintage that the social planner would have assigned
to her, and consumers’ equilibrium trading behavior in secondary markets is not subject to
adverse selection. We show that producers have the incentive to choose contracts that lead to
the efficient allocation, and to supply the efficient output. We also provide a contrast between
leasing contracts, resale contracts, and different kinds of rental contracts. Resale contracts do
not lead to the efficient allocation. A specific kind of rental contract provides the appropriate
incentives to consumers.

1 Introduction

Since Akerlof’s (1970) seminal paper, adverse selection has been recognized to be a potential source
of inefficiency in durable-goods markets. This paper presents a model of a durable-goods market
in which full information payoffs and allocations can be achieved in a competitive equilibrium even
under asymmetric information. Our interpretation of this result is that inefficiency in standard ad-
verse selection models of durables is not due solely to asymmetric information, but to a combination
of other restrictions of trading possibilities.1

Some recent literature has pointed out that the extent of inefficiency in the classic model
depends on restrictions of trading opportunities. Two features of these restrictions of the classic
model have been examined separately by different strands of the literature: exogenous ownership
and restricted secondary markets. The first strand of the literature (Hendel and Lizzeri 1999, 2002,
and Johnson and Waldman 2003) departs from the exogenous ownership assumption. In markets for

∗We thank Patrick Bolton, Melvyn Coles, Alessandro Gavazza, and Steve Tadelis for helpful discussion and
suggestions. We also thank the editor, Mark Armstrong, and two anonymous referees for useful comments.

†Department of Economics, University of Wisconsin. Email: igal@ssc.wisc.edu
‡Department of Economics, New York University. Email: alessandro.lizzeri@nyu.edu
§Department of Economics, Northwestern University. Email: marciano@northwestern.edu
1While some of these restrictions are realistic, we argue that it is useful to understand the exact sources of

inefficiency both for theoretical reasons and to better evaluate policy recommendations.
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durable goods such as cars, the identity of the owners of used goods is endogenous: high-valuation
consumers self-select into the new-goods market, and lower valuation consumers self-select into the
used-goods market. This self-selection can reduce the inefficiencies, but some distortions remain
because multiple qualities of used goods are traded in a single market.2 The second strand of the
literature (Janssen and Roy 2001, 2002) deals with the restricted secondary markets assumption
but retains the exogenous ownership assumption. Janssen and Roy show that, when used-goods
markets are open at every date, more welfare-enhancing trades are possible. Prices and traded
qualities increase over time, and the time to trade acts as a sorting device because owners of high
quality cars are more willing to wait to obtain the high prices. However, a delay in efficient sorting
is necessary to induce incentive compatible trade, and this leads to a welfare loss. This welfare loss
does not disappear as the discount factor goes to one.

We show that removing both restrictions of Akerlof’s model at the same time can lead to the
first-best outcome, if the appropriate kind of rental contracts is offered, and if consumers observe
the number of times a good has been traded. Thus, the combination of multiple secondary markets
and endogenous assignment of new goods can completely eliminate the inefficiencies caused by
asymmetric information. Because the identity of new car consumers is endogenously determined,
the highest-value cars are allocated to the right consumers; the existence of multiple secondary
markets leads to the allocation of used units to the right used-car consumers. Because efficient
sorting requires that each consumer type always holds goods of a single quality, special (but simple)
contracts are needed to induce this holding pattern.

The basic intuition for our results emerges most starkly in an asymmetric-information environ-
ment we call the simple depreciation model. We assume that all new units of the durable good have
the same, known quality. However, goods depreciate stochastically: if the good is of quality qn at
date t, there is a positive probability that the good depreciates to quality qn+1 by date t + 1. This
implies that a good produced some time in the past may be of several distinct qualities, numbered
0 (highest) through N (lowest). In steady state, there is a distribution of qualities, with newly
produced goods replacing units that have depreciated. Smoothly functioning secondary markets
play two key roles in this environment: (1) they must allow high-valuation consumers whose units
have depreciated to replace them with new goods, transferring the used good to lower-valuation
consumers; (2) they must allocate used units efficiently among low-valuation consumers. If the
quality of the good is publicly observable, trade in secondary markets achieves these two goals and
leads to the efficient allocation. If, on the other hand, a prospective buyer cannot observe the
quality of the good prior to purchase, adverse selection could in principle preclude efficiency.

However, we show that, even in the presence of these information asymmetries, there is a
competitive equilibrium in which a menu of rental contracts induces precisely the same allocation
that would prevail if quality were observable; furthermore, per-period rental rates are the same as
under observable quality. In this equilibrium, all that consumers need to observe is the vintage of
a unit, i.e. the number of distinct consumers who have used it in the past. Thus, in this model,

2An exception that is explored by Hendel and Lizzeri and Johnson and Waldman is the case in which there are
only two types of consumers. In this case, only one type consumes used goods, so sorting in secondary markets is not
an issue. We will see below that another exception is the case of two qualities.
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as long as this limited amount of information about the trading history of a good is available,
asymmetric information about quality is completely harmless.3,4

The equilibrium may be briefly described as follows. Every vintage (including vintage 0, which
corresponds to new goods) is traded at a different (rental) price. In each period, a high-valuation
consumer rents a new (vintage-0) unit, and stops renting that unit when it depreciates for the first
time. At that point the vintage of the unit increases from zero to one. Consumers with somewhat
lower valuation rent a vintage-1 unit and keep renting it until the unit depreciates again, at which
point its vintage increases to 2, and is passed on to consumers with yet lower valuation. The process
continues until the good “falls apart and dies”. Consumers who stop renting a unit of vintage n
obtain another unit of the same vintage. Therefore, in equilibrium, the vintage of a unit is a perfect
signal of its quality: a good that has had n previous consumers is of quality qn.

Rental contracts provide the “right” incentives to consumers; in particular, consumers have no
reason to keep renting a unit once that unit has depreciated: better units are available at the same
rental price. Thus, consumers of inferior vintages have no reason to worry about adverse selection.
In contrast, a system of resale markets generates the “wrong” incentives: some consumers find it
profitable to keep a unit after it depreciates, so that its vintage is no longer a perfect signal of
quality. The intuition behind the difference between the two alternative mechanisms (resale vs
rental) is the following. In a system of resale markets, consumers suffer a capital loss when the
good changes hands (and hence its vintage increases). This loss is instead borne by the producer
of the good when the good is rented. Thus, with rental contracts, the consumer has no incentive
to retain depreciated units.

Given that the desirable efficiency properties of rental contracts depend on transferring the
capital loss generated by a change in vintage from consumers to producers, it is important to un-
derstand whether producers are willing to bear such losses. We show that there is a competitive
equilibrium in which the efficient amount of output is produced and the efficient menu of rental
contracts is chosen by each firm. Thus, firms are indeed willing to bear the capital losses associ-
ated with changing vintages. It should however be emphasized that this result does require that
consumers be able to observe the contracts offered by individual firms. This is a strong, albeit
standard, requirement which is consistent with the spirit of competitive equilibrium analysis.

In the simple depreciation model, vintage is an effective signal of quality because there is no
uncertainty about the quality of the new good (it is known to be q0), and depreciation occurs only
one step at a time (e.g. from qn to qn+1, but not to qn+k, for k > 1). In order to examine the
robustness of the intuition just described, we analyze a more general model that allows both for
initial uncertainty about the quality of newly produced goods, and for more general depreciation
processes. Again, efficiency involves assortative matching of qualities to consumers. The quality
of a unit is only observed by a consumer who has tried it in the past. In contrast with the

3Note that this information is commonly available to used car consumers in the US through Carfax.
4Consider the following alternative assumptions: cars follow the depreciation process specified in the text, but a

used unit can only be traded once, t periods after it is produced. This yields a model that is very similar to the
ones studied by Hendel and Lizzeri and Johnson and Waldman: from the point of view of prospective consumers,
the quality of a unit offered on the used-car market is a random variable with a distribution determined by the
depreciation rates. Under this interpretation, the only difference between our simple depreciation model and the
environments studied in the papers cited above is the number of active secondary markets for a given unit.
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simple depreciation model, in this more general model, in order to find a good of the right quality,
consumers must experiment with different units.

We show that it is still possible to employ the vintage of the good to signal its quality and to
achieve sorting; however, in contrast with the simple depreciation model, sorting occurs with delay
because experimentation is required. Each unit changes hands until it finds its right match, and the
unit increases in vintage each time it changes hands. In turn, a consumer continues experimenting
with a particular vintage until she gets the top quality of that vintage, and then keeps the unit until
it depreciates. If the car depreciated only one step, the next consumer to obtain that unit will hold
on to it until the next time it depreciates. If, on the other hand, the car depreciated k > 1 steps,
the next consumer to obtain that unit will immediately return it to try another car of the same
vintage, while the car is traded at least k times, increasing in vintage with every trade (exactly k
times if the car does not depreciate while this process continues). Thus, as in the previous model,
units “trickle down” from consumers with high valuation to consumers with lower valuations.

As in the simple depreciation model, a menu of rental contracts induces consumers to follow
an experimentation policy leading to the efficient matching of goods to consumers.5 Moreover,
the utility cost of the delay connected with experimentation becomes negligible if retrading can
happen quickly. Furthermore, the rental prices that induce consumers to follow this experimentation
policy converge to the observable-quality rental prices when the time between transaction converges
to zero. We show that, as a consequence, producers’ incentives are approximately in line with
efficiency.

Our analysis of the general depreciation model highlights a role for secondary markets to fa-
cilitate experimentation. Since experimentation is only necessary when quality is not publicly
observable, secondary markets are more active when quality is unobservable.

An implication of our model is that, if transactions involve rental contracts, observability of the
vintage of the good is welfare-improving. The role of the observability of trading histories in the
case of resale markets is less obvious. Indeed, House and Leahy (2001) provide a model in which
observability of trade histories can create additional distortions. In their setup, there are two car
qualities; consumers are homogeneous in their valuations for quality, but the match value of a
consumer/car pair deteriorates stochastically over time. Thus, while the good should change hands
as often as possible sorting does not matter. Adverse selection creates a distortion, since owners
of good-quality units may refrain from trading and observability of trade histories may delay trade
because delay is a signal that a car is high quality (as in Janssen and Roy).

In contrast, extensive numerical analysis of a three-quality version of our simple depreciation
model indicates that, even in the case of resale markets, the allocation when the vintage of the
good is observable is more efficient than in the case in which it is unobservable. This contrast may
be explained by noting that gains from trade stem from different sources in the two models. In
our model, consumers are heterogeneous in their valuation for quality; as a consequence, efficiency
does depend upon the identity of the agents buying a used unit: it is efficient to match high-quality
used units to quality-sensitive consumers. Since trade history is a signal of the quality of traded
units, observability can enhance the buyer-car match.6

5As in the simple depreciation model, resale markets generate the wrong incentives.
6Stolyarov (2002) develops a model of trade in secondary markets with transaction costs. He shows that the
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We should note that the goal of the paper is not to construct a realistic model of a durable-
goods market. Rather, our model is designed to enable us to evaluate the distortions caused by
adverse selection in the absence of any other friction in secondary markets. A more realistic model
would acknowledge the importance of frictions such as transaction costs. However, by assuming
away additional complications, we are able to isolate the role of informational asymmetries as a
barrier to the efficient operation of secondary markets.

2 Preliminaries

2.1 Model

We consider a discrete-time, infinite-horizon economy. Time is measured in some specified unit
(e.g. days, months, years), and every time period lasts for ∆ ∈ (0, 1] units. There is a unit mass
of infinitely lived consumers who differ in their valuation for quality, characterized by a “type”
θ ∈ [θ, θ] ⊂ R+, distributed according to the c.d.f. F ; the latter is assumed to have a strictly
positive density. The total mass of cars equals Y < 1; at any time, the quality of a car may take
up one of finitely many values, denoted q0 > q1 > . . . > qN ≥ 0.7

Consumers discount utility streams at the instantaneous rate ρ; thus, u utils at time t > 0
are worth e−ρtu utils at time 0. Car qualities and consumer valuations determine instantaneous
flow utility from consumption, as follows: if a type-θ consumer drives a quality-q car for τ units of
calendar time, she receives utility equal to∫ τ

0
e−ρtqθ dt =

1− e−ρτ

ρ
qθ.

Associating quality levels with instantaneous (as opposed to per-period) utility from consumption
simplifies the comparison of consumption streams in economies characterized by periods of different
length ∆. Finally, utility is quasi-linear in “money”. Specifically, for every Lebesgue-measurable
function q : R+ → {q0, . . . , qN} and every pair of sequences {Pk}k≥0, {tk}k≥0 in R+, the utility of
a type-θ consumer who, at each time t ∈ R+, drives a car of quality q(t) and effects a (lump-sum)
payment of Pk at time tk for every k ≥ 0, is∫ ∞

0
e−ρtq(t)θ dt−

∑
k≥0

e−ρtkPk.

Each period consumers receive an endowment e of ‘money’. We assume that e is finite and
‘large’, namely e is large enough that consumers can potentially afford any quality they wish to

probability of trade is non-monotonic in the age of the good. In his model inefficiencies arise because consumers
may keep goods too long due to transaction costs. Potential transaction costs in our setting are endogenous and
due to asymmetric information. Tadelis (1999, 2002) develops an adverse-selection model where the name of a firm
summarizes its reputation.

7Y < 1 will hold in equilibrium as long as costs of production are not too small. The discrete distribution of
qualities is convenient but does not play an important role.
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consume.8

In any period, a car may depreciate (i.e. its quality may deteriorate), or it may break down,
i.e. “die”, in which case it exits the economy and is replaced by a newly-produced car. We assume
throughout that the “death” of a car is publicly observable, regardless of whether or not quality is.

We analyze two models of the depreciation process. In the simple depreciation model, the
quality of a newly produced car is known to be q0. For n = 0, . . . , N − 1, at the end of each period,
a car currently of quality qn depreciates to qn+1 with probability γn∆; a quality-qN car does not
depreciate, but may die with probability γN∆ at the end of each period. It turns out that the
analysis is independent of the length ∆ of time periods.

In the general depreciation model, for n = 0, . . . N , a newly produced car has quality qn with
probability χn ≥ 0, where

∑N
n=0 χn = 1. Moreover, for n = 0, . . . , N and m = n + 1, . . . , N + 1, a

car of quality qn depreciates to qm (if n < m ≤ N) or dies (if m = N +1) with probability γn,m∆ in
every time period. The simple depreciation case corresponds to χ0 = 1 and γn,m = 0 for m > n+1.
Thus, there are two generalization relative to the simple depreciation model: (1) initial quality is
uncertain; (2) depreciation can occur in more than one step.

It can be shown that, as ∆ → 0, the general depreciation process has a well-defined continuous-
time limit, which may be (somewhat loosely) described as follows: if, at time t, car quality equals
qn, then (i) the time until the next depreciation event is exponentially distributed, with parameter∑N+1

m=n+1 γn,m; and (ii) conditional upon a depreciation event, the quality of the car becomes qm

with probability
(∑N+1

m=n+1 γn,m

)−1
γn,m.

To avoid redundancies, we assume that the general depreciation process generates a positive
mass of cars of each quality level. Formally, for every n = 0, . . . , N , there is at least one sequence
m0 < . . . < mM = n, with M ≥ 0, such that χm0

> 0 and γm`,m`+1
> 0 for all ` = 0, . . . ,M − 1.

To clarify, for n = 0, this requires that newly produced cars attain the highest quality level q0 with
positive probability; for n = 1, it requires that either newly produced cars attain quality level q1

with positive probability, or that they attain quality level q0 with positive probability, and that
quality-q0 cars depreciate to q1 with positive probability; and so on.

2.2 Efficiency

We now define our reference notion of efficiency. At each time t ≥ 0, positive assortative matching
of consumer types to cars must obtain; thus, we need to determine cutoff types θ∗0, . . . , θ∗N ∈ [θ, θ]
such that types θ ∈ [θ∗0, θ] hold a quality-q0 car, types θ1 ∈ [θ∗1, θ

∗
0) hold a quality-q1 car, and so

on; types θ < θ∗N will not hold any car (recall that the mass Y of cars is less than 1, the mass of
consumers).

In order to determine these cutoff types, we must first derive the steady-state masses of cars
of each quality, as determined by the depreciation process. Let v∗n denote the steady-state mass of
cars of quality qn. We consider the general specification of the depreciation process, as it entails

8The assumption that the endowment is large allows us to rule out equilibria with price ‘bubbles’, where resale
prices of a good escalate because consumers expect them to rise in the future. The assumption of a large endowment
is made to avoid keeping track of the wealth of each consumer. Such a problem would complicate the analysis, and
seems tangential to the issue studied here.

6



only a slight penalty in terms of analytical complexity. Recall that ∆ denotes the length of a period
in terms of the chosen units of calendar time.

It is convenient to introduce the following notation. First, for all n = 0, . . . , N and m =
n+1, . . . , N+1, let Gn,m =

∑N+1
`=m γn,`, so Gn,m∆ is the probability that a quality-qn car depreciates

at all (or dies) in a period; we assume that Gn,n+1 ≤ 1 for all n = 0, . . . , N . Next, denote by
γn,n(∆) the probability that a car of quality qn does not depreciate in a single period: that is,
γn,n(∆) = 1−Gn,n+1∆.

For n = 0, . . . , N , the steady-state mass v∗n must satisfy the following system of equations:

v∗0 = γ0,0(∆)v∗0 + χ0y
∗ (1)

v∗n = γn,n(∆)v∗n + χny∗ +
n−1∑
k=0

γk,n∆v∗k (2)

y∗ =
N∑

n=0

γn,N+1∆v∗n (3)

Y =
N∑

n=0

v∗n. (4)

That is: Y is the total mass of cars (equation 4) and y∗ is the mass of cars that die in each time
period, and are replaced by newly produced cars (equation 3). The mass of cars of quality q0 consists
of quality-q0 cars that have not depreciated in the previous period, and of newly-produced quality-
q0 cars (equation 1). Finally, the mass of quality-qn cars, for n > 0, is given by undepreciated
quality-qn cars, newly-produced quality-qn cars, and cars previously of higher quality that just
depreciated to qn (equation 2).

Straightforward manipulations9 show that the above system of equations admits a unique so-
lution, which is independent of ∆ (so our benchmark is unaffected by the duration of a period).
Furthermore, a simple induction argument shows that, under the assumption on the depreciation
process stated at the end of the preceding section, v∗n > 0 for all n = 0, . . . , N .

The ex-post efficient steady-state allocation of cars to consumers (“efficient sorting” hereafter)
can then be described as follows. First, let θ−1 := θ; next, proceeding iteratively for n = 0, . . . , N ,
assuming that θ∗n−1 has been defined, choose θ∗n such that

∀n = 0, . . . , N, F (θ∗n−1)− F (θ∗n) = v∗n; (5)

observe that θ−1 > θ∗0 > . . . > θ∗N by construction; also, θ∗N > θ, because Y < 1.
Thus, for every n = 0, . . . , N , the mass of consumers with types θ ∈ [θ∗n, θ∗n−1] is equal to the

mass of cars of quality qn. As noted above, we then assign all cars of quality qn to consumer types
θ ∈ [θ∗n, θ∗n−1].

9For any y∗ ≥ 0, Eqs. (1) and (2) determine v∗0 , . . . , v∗N ; furthermore, adding up Eqs. (1) and (2) and solving for
y∗ shows that Eq. (3) is automatically satisfied. If y∗ = 0 then v∗n = 0 for all n, and since χ0 > 0, there exists y∗

such that Eq. (4) holds. Substituting for y∗ in Eqs (1), it becomes apparent that the solution is independent of ∆.
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We are interested in analyzing the incentives of consumers and producers. For expository rea-
sons, it is convenient to focus on consumers’ incentives first, assuming that production is exogenous,
and then extend the analysis to the supply side of the economy. Correspondingly, we distinguish be-
tween consumer equilibrium, which assumes exogenous production, and market equilibrium,
which encompasses firms’ optimal choice of output and contracts.

3 Simple Depreciation Model

3.1 Observable-Quality Benchmark and Trickle-Down

We begin by briefly analyzing consumer equilibrium in the simple depreciation model, under the
assumption that quality is observable. This will serve as a benchmark, and also illustrate our
notation.

Regardless of whether cars are sold or rented, the following strategies constitute a consumer
equilibrium. Whenever consumers of type θ ∈ [θ∗0, θ] do not have a car, they obtain a car of quality
q0 and keep it as long as the car remains of quality q0. As soon as the car depreciates to q1 they
get rid of the car and obtain a new car of quality q0. Consumers of type θ ∈ [θ∗n, θ∗n−1] behave in an
analogous fashion with cars of quality qn. Clearly, the resulting equilibrium allocation is ex-post
efficient; moreover, this equilibrium allocation is essentially10 unique.

Under rental, a consumer who rents a car of quality qn pays a fee 1−e−ρ∆

ρ rn at the beginning of
the period (hence, if she keeps renting the same quality, she pays this fee at times 0,∆, 2∆, . . .).
This can be seen as the discounted value of a constant, instantaneous rental price rn to be paid
throughout the period. Consequently, the per-period utility for a type-θ consumer who rents a
quality-qn car can be written as

∫ ∆
0 e−ρt[qnθ − rn] dt = 1−e−ρ∆

ρ [qnθ − rn]. The N + 1 rental prices
that sustain this equilibrium allocation can then be defined exactly in the same way as the sorting
prices in a static model:

θ∗nqn − r∗n = θ∗nqn+1 − r∗n+1, n = 0, 1, ...N (6)

where, by convention, r∗N+1 = qN+1 = 0. These instantaneous rental prices are defined by the
indifference of marginal type θ∗n between renting a good of quality qn and renting a good of quality
qn+1. Also notice that the prices defined in equation (6) are independent of ∆.

Under selling, the prices that sustain this consumer equilibrium are defined by the expected
present value of rental prices (where the expectation is necessary since the time until the good
depreciates and is sold is stochastic). It is easy to verify that these prices are defined by the
conditions

p∗n −
∞∑

k=1

(1− γn∆)k−1γn∆e−ρ∆kp∗n+1 =
∞∑

k=0

(1− γn∆)kγn∆
1− e−ρ∆k

ρ
r∗n, n = 0, 1, ...N (7)

where, by convention, p∗N+1 = 0, and r∗n is defined in equation (6). The right-hand side of this
expression is the expected present value of the rental payment for a unit of a good of quality qn,

10If the car she is currently renting does not depreciate, a consumer is indifferent between keeping the same unit
and renting another unit of the same quality.
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given that the consumer will stop renting it once the unit depreciates. In the left-hand side, the
expected present value of revenues from resale is subtracted from the price of the quality-qn good.

We use the term trickle-down to denote the process by which these goods are allocated in
equilibrium: the good trickles down from the high-valuation consumers to the low-valuation ones
as it declines in quality.

The equilibrium just described has the following key feature: the quality of any given unit of
the good offered on the market can be exactly inferred from its vintage, i.e. the number of times
the unit has changed hands. A unit of vintage n is of quality qn.

Therefore, the equilibrium strategies described above can equivalently be formulated as follows:
for each n = 0, ..., N , consumer types θ ∈ [θ∗n, θ∗n−1] rent or buy vintage-n cars, and keep the same
unit until it depreciates. Notice that, in order to implement these strategies, only the vintage of a
unit must be observed, not its quality or its age. Yet, if all consumers follow these strategies, the
ex-post efficient allocation will ensue, and qualities will be fully revealed. For this reason, we deem
these strategies revealing.11

3.2 Failure of Resale Markets under Asymmetric Information

We now turn to the analysis of the simple depreciation model with unobservable quality. Specifically,
assume that consumers cannot observe the quality of a specific car without using it. Moreover, a
consumer who is using a specific car at time t observes the time-t realization of the depreciation
process that determines the quality of the car at time t + 1. It is notationally convenient (but
without loss of generality) to assume that realizations of the depreciation process occur at the end
of each period.

We continue to assume that the trading history of each unit is observable. Thus, the revealing
strategies described in the previous section are still well-defined, and it is natural to ask whether
they still constitute a consumer equilibrium.

Consider resale markets first. We show that, if there are more than two qualities, under asym-
metric information, revealing strategies do not constitute a consumer equilibrium with resale.
Moreover, we show that there is no consumer equilibrium with resale that achieves the efficient
allocation.

By analogy with the complete-information case, we begin by analyzing trading environments
consisting of N + 1 resale markets; a vintage-n unit is sold at a price pn, for n = 0, ..., N .

Theorem 1 (i) If there are more than two qualities, in a system of resale markets, there is no set
of N + 1 vintage-dependent prices that supports the revealing strategy profile.

(ii) If there are only two qualities, then there exists an ex-post efficient consumer equilibrium.

Observe that both statements are true for any value of ∆.

Proof. (i) Assume (by contradiction) that a vintage-n car is indeed of quality qn. Denote
by Vn(θ) the ex-ante value of purchasing a vintage-n good, and then behaving as prescribed by

11In this simple setting, whether or not the age of a car is observed is irrelevant. This is not necessarily the case if
consumers may keep more than one quality (see the discussion in section 3.6).
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the vintage−n revealing strategy: keep the car until it depreciates to qn+1 and then buy another
vintage-n car. Denote by Wn(θ, qn) the value of already owning a car of quality qn for a consumer
who is a vintage-n consumer and who follows the policy just described. We have

Vn(θ) = −pn +
1− e−ρ∆

ρ
qnθ + e−ρ∆[γn∆(Vn(θ) + pn+1) + (1− γn∆)Wn(θ, qn)]

Wn(θ, qn) = Vn(θ) + pn (8)

Thus,

Vn(θ) =
1−e−ρ∆

ρ qnθ − pn(1− e−ρ∆(1− γn∆)) + e−ρ∆γn∆pn+1

1− e−ρ∆
(9)

In order to achieve the efficient allocation, the following condition inducing efficient ex-ante sorting
must be satisfied:

VN (θ∗N ) = 0, andVn(θ∗n) = Vn+1(θ∗n), for n = 0, ...N − 1. (10)

These N + 1 equations determine prices p0, p1, ..., pN . To obtain the efficient allocation, these
prices must induce the right ex-post keeping behavior: no consumer in [θ∗n−1, θ

∗
n] should want to

keep any good of quality lower than qn. We will show that, if equations (10) are satisfied, then the
consumer of type θ∗n strictly prefers keeping quality qn+1. The value of selling the good is:

pn+1 + Vn(θ∗n) = pn+1 + Vn+1(θ∗n) = Wn+1 (θ∗n, qn+1) = (11)

=
1−e−ρ∆

ρ qn+1θ + e−ρ∆γn+1∆pn+2

1− e−ρ∆
(
1− γn+1∆

) +
e−ρ∆γn+1∆Vn+1(θ∗n)
1− e−ρ∆

(
1− γn+1∆

)
where the first equality uses equation (10), the second equality uses equation (8) and the last
equality is just a solution for Wn+1 (θ∗n). Consider the alternative strategy for the consumer of
holding on to the good until it depreciates to qn+2 and then following the policy of buying vintage
n + 1. Denote by WK the value of this strategy.

WK(θ∗n) =
1− e−ρ∆

ρ
qn+1θ + e−ρ∆

(
γn+1∆ (Vn+1(θ∗n) + pn+1) +

(
1− γn+1∆

)
WK(θ∗n)

)
Thus,

WK(θ∗n) =
1−e−ρ∆

ρ qn+1θ + e−ρ∆γn+1∆pn+1

1− e−ρ∆
(
1− γn+1∆

) +
e−ρ∆γn+1∆Vn+1(θ∗n)
1− e−ρ∆

(
1− γn+1∆

) .
Subtract the right-hand side of this equation from the expression for Wn+1 (θ∗n, qn+1) in equation
(11) to obtain

Wn+1 (θ∗n, qn+1)−WK(θ∗n) = −

(
e−ρ∆γn+1∆

1− e−ρ∆
(
1− γn+1∆

)) (pn+1 − pn+2) (12)
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If we can show that pn > pn+1 for every n, we can conclude that keeping quality qn+1 is better than
selling it for type θ∗n (and, given the continuity of payoffs with respect to θ, for all types sufficiently
close to θ∗n). We now claim that equation (10) implies that pn > pn+1, n = 0, 1, . . . N−1. We prove
this by induction: First, note that for n = N − 1, we can rewrite equation (10) as:

1− e−ρ∆

ρ
θ∗N−1(qN−1 − qN ) + e−ρ∆γN∆pN = (pN−1 − pN )(1− e−ρ∆(1− γN−1∆))

since pN+1 = 0 because qN+1 = 0. Thus, pN−1 > pN and the claim is true for n = N − 1. Assume
the claim is true for n + 1 (i.e., pn+1 > pn+2). We can rewrite equation (10) as:

1− e−ρ∆

ρ
θ(qn − qn+1) + e−ρ∆γn+1(pn+1 − pn+2) = (pn − pn+1)(1− e−ρ∆(1− γn∆))

so that pn > pn+1, which proves the inductive step.
(ii) If N = 1 (i.e., there are only two qualities), existence of an efficient equilibrium is established

if we can show that the prices defined by equations (10) induce the correct keeping behavior. For
consumers of vintage 1, this is trivial. For consumers of vintage 0, the right keeping behavior
requires that all type θ ≥ θ∗0 be willing to sell the car the moment it depreciates to q1. This
requires that for all such θ’s,

p1 + V0(θ) ≥
1− e−ρ∆

ρ
θq1 + e−ρ∆ (1− γ1∆) p1 + e−ρ∆V0(θ). (13)

Rewrite equation (13) as

V0 (θ) ≥
1−e−ρ∆

ρ θq1 −
(
1− e−ρ∆ (1− γ1∆)

)
p1

1− e−ρ∆

Note that the right hand side of this equation is equal to V1 (θ) (since p2 = 0). Thus, the ex-post
keeping condition is equivalent to the ex-ante condition that V0 (θ) ≥ V1 (θ), implying that all types
who buy vintage 0 will never want to keep quality q1.

The intuition for this result is the following. For revealing strategies to be an equilibrium with
resale markets, type θ∗n must be just willing to be a vintage-n consumer ex-ante, i.e., Vn(θ∗n) =
Vn+1(θ∗n). Furthermore, he should be willing to sell the good as soon as it becomes of quality qn+1.
These two conditions together imply that he should be willing to sell a vintage-n good that just
depreciated to quality qn+1 and then buy a vintage-(n + 1) good whose quality (in equilibrium) is
qn+1. However, this cannot be optimal. The reason is that by keeping the vintage n car that is of
quality qn+1 until it depreciates again, the consumer enjoys a quality qn+1 good which he can then
sell for pn+1. In contrast, if he buys a vintage n + 1 car, he would still enjoy a quality qn+1 unit,
but would only be able to sell it for pn+2. Thus, it is less costly to consume qn+1 if one happens
to have a vintage-n good than it is to consume the same quality with a vintage n + 1 good: the
resale price is higher in the first case. Note that this logic fails for n = N − 1 because when a good
of quality N − 1 depreciates twice it dies, and we have assumed that this event is observable. This
implies that efficiency is possible when N = 1.

11



Remark 1 Inefficiency does not vanish in the limit as ∆ → 0.

Proof. In the proof of part (i) of Theorem 1 we showed that in a system of resale markets buyers
have an incentive to keep the wrong qualities. Thus, it is enough to show that these incentives do
not disappear in the limit as ∆ → 0. To do this, recall that the right-hand side of equation (12)
expresses the (negative) payoff from keeping quality qn+1 for the marginal type who should instead
be keeping only qn. We now show that this expression is bounded away from zero. Observe that

lim
∆→0

(
e−ρ∆γn+1∆

1− e−ρ∆
(
1− γn+1∆

)) =
γn+1

γn+1 + ρ
> 0.

Now suppose by contradiction that the limit allocation is efficient. It is easy to show that then prices
must converge to the observable-quality prices implicitly described in equation (7); consequently,
(pn+1 − pn+2) must converge to a finite positive quantity. But this implies that the payoff to type
θ∗n from keeping the lower quality qn+1 is bounded away from zero as ∆ → 0. Furthermore, since
payoffs are continuous in θ, the mass of types who benefit from keeping the lower quality is bounded
away from zero as ∆ → 0. This contradicts the assumption that the limit allocation is efficient,
and proves the claim.

We now show that the only candidate for an efficient consumer equilibrium under resale is the
revealing strategy profile. This result, jointly with Theorem 1, implies that there is no efficient
consumer equilibrium under stochastic depreciation and resale. By Remark 1, this is true even in
the limit as ∆ → 0.

We consider K + 1 markets, numbered 0, ...,K ≤ ∞. New cars are traded in market 0. For
all k = 1, ...,K, equilibrium determines the price pk that clears market k, as well as the (average)
quality of cars traded in that market. We do not distinguish between markets where the same
qualities are traded and the same prices prevail.

Proposition 1 If there exists a system of K +1 resale markets and an equilibrium strategy profile
that yields the efficient allocation, then K = N and the consumer equilibrium consists of the
revealing strategy profile.

Proof. Note first that, if in some market k, positive masses of goods of two or more different
qualities are sold, there is a positive mass of consumers who obtain cars of the wrong quality. But
this is ruled out by efficiency; hence, a single quality is traded in every market. Now consider the
markets where quality qN is traded; the price in all such markets must be equal to 1−e−ρ∆

ρ θNqN .12

Hence, in effect, there is a unique market for quality-qN cars. Now suppose that qualities qm, for
m = n, ..., N , are traded each in a unique market. Then, all cars of quality qn−1 must have the
same resale value, and by a similar argument to the one for quality-qN cars, it follows that the
market for quality-qn−1 cars is also unique. Hence, there are exactly N + 1 markets, one for each
quality. Furthermore, efficiency also implies that consumers of type θ ∈ [θ∗n, θ∗n−1] are only active
in market n.

12This requires that endowments be finite; otherwise there could be sequences of increasing prices sustained by
expectations of ever-increasing resale values.
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3.3 Rental and Efficiency under Asymmetric Information

We now show that the set of instantaneous rental prices {r∗n}N
n=0 that prevail under observable qual-

ity (cf. equation (6)) lead to the efficient allocation even under asymmetric information. Specifically,
we consider rental contracts that specify an instantaneous rental price rn the consumer pays for
renting vintage n. Moreover, the consumer can keep renting the same unit as long as she wishes,
and stop paying the rental fee the moment she wishes to return the unit (without any cancellation
fees to the manufacturer). Consumers are not allowed to rent units they returned in the past. This
prevents the consumers from strategically returning cars to lower their rental payments.

Consider the ex-ante value Vn(θ) of pursuing the ex-post efficient policy of renting vintage n
and keeping until (and only until) the good depreciates to qn+1. It is easy to see that

Vn(θ) =
∞∑

k=0

e−ρk∆ 1− e−ρ∆

ρ
[qnθ − r∗n] =

qnθ − r∗n
ρ

. (14)

We now verify that, given the observable-quality rental prices (equation 6), consumers optimally
follow efficient policies. This requires: (i) the ex-ante sorting condition that types θ ∈ [θ∗n, θ∗n−1]
be willing to rent a vintage n car; (ii) the “ex-post keeping” condition that consumer types θ ∈
[θ∗n, θ∗n−1] not be willing to keep any quality below qn.

Condition (i) is satisfied if for every n, Vn(θ∗n) = Vn+1(θ∗n). Given equation (14), this condition
is equivalent to θ∗nqn − r∗n = θ∗nqn+1 − r∗n+1 which is clearly satisfied given that {r∗n}N

n=0 are defined
by equation (6). That is, observable-quality rental prices are such that the self-selection conditions
are satisfied even if quality is not observable.

In contrast to the case of resale, ex-post keeping (condition (ii)) is automatically satisfied
under rental. No consumer has an incentive to keep any quality below the highest quality of any
vintage. Suppose that a consumer of type θ is renting vintage n and he is currently consuming
a quality-m good. Consuming this good for one period and then resuming tomorrow the efficient
policy of only keeping quality qn yields a payoff of 1−e−ρ∆

ρ [qmθ − r∗n] + e−ρ∆Vn(θ). If instead the
consumer returns quality qm immediately to start the efficient policy today, he obtains a payoff of
Vn(θ) = 1−e−ρ∆

ρ [θqn − r∗n] + e−ρ∆Vn(θ). We can therefore conclude that, under rental, incentives
to keep are always guaranteed to hold. Thus, the instantaneous rental prices {r∗n}N

n=0 guarantee
that both ex-ante sorting and ex-post keeping incentives are consistent with the ex-post efficient
allocation that obtains under observable quality. As above, note that the conclusion holds for any
positive value of ∆.

Theorem 2 If the goods are rented, there is a consumer equilibrium under asymmetric information
that features the same allocation, strategies, and instantaneous rental prices as under observable
quality.

An important feature of the rental contracts that implement the efficient allocation is that they
have indeterminate duration. A rental contract that required that the good be returned after some
fixed number of periods would not lead to the efficient allocation. To see this, recall that the key
feature of the mechanism is that the vintage of the good is a perfect signal of quality. Thus, the
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trading behavior of consumers must signal the depreciation history. If a consumer were required to
return the good after a fixed number of periods, then the fact that the good is returned would not
convey any information regarding its quality—the good may or may not have depreciated by the
time the good is returned.

A menu of leasing contracts would not lead to an efficient allocation either. A leasing contract
consists of two prices: a rental price that the consumer pays for a pre-specified length of time, and
a purchase price that the consumer pays at the end of the period if he chooses to purchase the unit.
Thus, a leasing contract suffers from a combination of the shortcomings of resale markets and of the
type of fixed-duration rental contracts just discussed. To see this, we need to consider two cases: (1)
either the consumer returns the good at the termination of the lease for all depreciation histories,
or, (2) for some depreciation histories, the consumer purchases the good at the termination of
the lease. In case (1), it is not possible to infer the quality of the good from the behavior of the
consumer. Therefore, at some point in the future, potential consumers of the unit are uncertain
about the quality of the good. This means that, with positive probability, the good is allocated
inefficiently for at least one period. In case (2), efficiency requires that the consumer who purchases
the good sell it once it depreciates. However, the consumer now faces incentives that are similar to
those she faces in a system of resale markets, and we have seen that efficiency cannot be obtained
in that case either.

The inefficiency of leasing contracts is in contrast with the result obtained by Johnson and
Waldman (2001), who show that leasing contracts can lead to efficiency. The difference is due to
the fact that in Johnson and Waldman (2001) there are only two consumer types and, as in Hendel
and Lizzeri (2002), the timing of depreciation is deterministic.

3.4 Supply Side

We now consider the incentives of car producers. We will show that, if producers are competitive,
there is a market equilibrium where firms maximize profits by renting the goods at the observable-
quality rental prices. Thus, efficient sorting is achieved in equilibrium. Furthermore, the efficient
amount of output is supplied. Thus, the equilibrium we characterize leads to the first-best allocation
in spite of the presence of asymmetric information in secondary markets.

Assume that there is a unit measure of producers, each of whom has an opportunity to produce
a single unit of the good at a cost c in every period.13 Firms have the same instantaneous discount
factor ρ as consumers.

Denote by R(y) the per-unit expected present value of revenue as a function of the total industry
output y. If this output is offered according to the efficient rental contracts, the value of this
revenue can be obtained recursively as follows. Define Rn(y) as the expected present value of
revenue conditional on quality being qn in the current period:

Rn(y) =
1− e−ρ∆

ρ
r∗n(y) + e−ρ∆((1− γn∆)Rn(y) + γn∆Rn+1(y)), n = 0, ...N

13The assumption that a producer can produce only one unit every period ensures that each producer is ‘small’
and simplifies the analysis considerably.
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where RN+1 = 0 by convention. It can be verified that

RN (y) =
1−e−ρ∆

ρ r∗N (y)

1− e−ρ∆(1− γN∆)
, Rn(y) =

N−n∑
k=0

1−e−ρ∆

ρ rn+k(y)e−ρk∆
∏k−1

j=0 γn+j∆∏k
j=0(1− e−ρ∆(1− γn+j∆))

, n = 0, . . . , N−1.

Because every new unit is born with quality q0, it must be the case that R(y) = R0(y). It is easy
to see that R(y) is decreasing in y since each rn(y) is decreasing in y for every y. We assume that
R(1) < c < R(0).14

Let y∗ be the output defined by the solution of R(y∗) = c. This is the output that leads to zero
profits for all firms in the industry. Since R(y) is decreasing and continuous, and R(1) < c < R(0),
y∗ exists and is unique.

We now construct a market equilibrium with the following features: a fraction y∗ of firms
produce each period. Active firms offer rental contracts at instantaneous prices {r∗n(y∗)}N

n=0. The
remaining 1−y∗ firms are inactive. Thus, the equilibrium under asymmetric information is identical
to the equilibrium that would obtain under observable quality.

To formalize the market equilibrium concept, we need to describe the class of contracts that
firms can offer. Each firm can offer a sequence of mechanisms, one for every consumer who enters
into a relationship with the firm during the lifetime of the car (recall that each firm produces a
single car). For instance, the rental contracts described in the previous subsection can be viewed
as a sequence of N + 1 mechanisms, each corresponding to a vintage; the consumer is induced to
return the car as soon as it depreciates, and a returned car previously offered under the “vintage-
n” mechanism is offered under the “vintage-(n + 1)” mechanism in the subsequent time period.
However, we can allow for more general mechanisms. Informally, each mechanism features the
following ingredients (see the Appendix for a formal description and analysis):

(i) the deviating firm partially or fully reveals information it has gathered concerning the car’s
history to date;

(ii) upon entering the mechanism, and prior to receiving the car, the consumer pays a price r0

and sends a message m0;
(iii) at the end of each period k, the consumer sends a message mk and pays a price rk, which

may depend on all messages sent up to and including time k (where time is indexed relative to the
inception of the relationship between the consumer and the firm);

(iv) finally, the message mk indicates (possibly among other things) whether or not the consumer
desires to continue the relationship with the firm; similarly, after receiving the message mk, the
firm can indicate that it intends to terminate the mechanism. In the latter case, an additional
terminal transfer r̄k will be effected.

The role of messages is twofold: first, they allow the firm to design type-dependent payments
and consumption histories; second, they allow the firm to extract information about qualities. Of
course, the rental contracts in the previous subsection do not use any of this additional structure:

14Assuming R(0) > c implies that some production is viable. The assumption that R(1) < c guarantees that a unit
mass of firms is sufficient to exhaust industry profits. We also want to avoid dealing with the case where costs are
so low that, under observable quality some qualities would be available at zero price. In this case, all qualities below
some level would not be purchased by anybody.
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they are very simple contracts. By allowing for this richness, our assumptions impose almost no
restrictions on the possible mechanisms.

In order to focus on the distortions caused by adverse selection, we abstract from issues related
to lack of commitment; that is, we assume that each firm is bound to the menu of mechanisms it
announces. We also emphasize that we make the strong informational assumption that consumers
observe the entire contract terms offered by a firm. Note however that, it would be easy to enrich
the model to show that, given that other firms publicize their contract terms, it is optimal for a
firm to also do so, because hiding prior contract terms would be construed as a bad signal about
the history of the unit that the firm rents.

Finally, we assume that firms expect consumers to best-respond to the mechanisms they offer,
both on and off the equilibrium path.

Theorem 3 The following constitutes a market equilibrium for any ∆ > 0:
(i) firms produce the first-best output y∗, and offer N + 1 vintage-dependent rental contracts at

the instantaneous rental prices r0, . . . , rN determined by equation (6);
(ii) for every n = 0, . . . , N , consumer types θ ∈ [θ∗n, θ∗n−1] rent vintage-n cars and only keep

cars of quality qn, where the cutoffs θ∗0, . . . , θ
∗
N are determined by equation (5).

The proof of this result is in the Appendix; we now provide a brief sketch of the argument.
Individual rationality implies that a consumer of type θ ∈ [θn, θn−1] will agree to transact with
a deviating firm under some mechanism M only if the value of participating in mechanism M ,
then reverting to renting vintage-n cars is at least as large as her payoff if she rents vintage-n cars
forever. This provides an upper bound on the revenues that a deviating firm may obtain from
mechanism M by transacting with type θ. We employ this bound to show that any deviation is
dominated by a menu of one-period rental contracts, each targeted to a specific consumer type. In
this menu, the deviator fully reveals the quality history of the car, and chooses each rental price so
as to leave the target type indifferent between (i) renting the deviator’s car in the current period,
then continuing with her designated putative equilibrium rental contract, and (ii) employing her
designated putative equilibrium contract in the current as well as in all subsequent periods. We
then show that individual rationality implies that the rental prices charged by the deviator for each
quality cannot exceed the rental prices for vintages defined by equation (6); hence, there can be
no profitable deviation even if the deviator had full knowledge of the quality history of the car.
Furthermore, since industry output equals y∗, which is determined by the zero-profit condition, no
new entry can occur.

3.5 Discussion

We now discuss the robustness of the results of this section to possible modifications of the model.

The depreciation process Theorems 1 and 2 continue to hold even if we allowed for a much
more general depreciation process where the probability that a car depreciates is a function of the
age of the unit. A menu of rental contracts would still lead to efficient sorting since consumers’
incentives are not affected by the time structure of the probabilities of depreciation. The logic
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of the failure of resale markets is also unaffected. Finally, while the structure of the proof of
Theorem 3 relies on stationarity, we conjecture that the result would still hold when depreciation
is time-dependent.

Note also that Theorem 2 does not rely on the depreciation rate being observable. Consumers
just need to know that, by renting vintage n, they can obtain a quality-qn good. Indeed, none of
the calculations concerning consumer incentives in the discussion preceding (and proving) Theorem
2 depend on the probability of depreciation. Asymmetric information of depreciation rates would
probably increase the size of the distortions in the case of resale markets.

On the other hand, the exact efficiency result of this section does rely in an important way on
the fact that depreciation occurs one step at a time, since this implies that, in equilibrium, the
quality of the good is known. If at any point in time the quality of the good can decrease by one or
more than one step, then it is not possible to obtain first-best efficiency through rental contracts.
Section 4 deals with this case.

Noise traders Suppose that there is a fraction of consumers who have to trade for exogenous
reasons (e.g., moving to another country). This phenomenon has been explored by Greenwald
(1986) in a modification of Akerlof’s adverse selection model. In his model, the presence of such
‘noise traders’ has a positive welfare effect because it increases the volume of trade. Greenwald
showed that noise traders generate a multiplier effect because the they cause a price increase which
induces some non-noise traders to sell generating more beneficial trades. In contrast, in our model,
noise traders would have a negative welfare effect because they would make the vintage a less precise
signal of quality. A car of vintage n may be returned by a noise trader prior to depreciation, when
its quality is still qn; this car would now be of vintage n + 1, and it would therefore end up in the
hands of a consumer with lower valuation who should be consuming quality qn+1 instead. Note
however, that this distortion may not be too large. First, the good would go to some consumer in
the interval [θn+1, θn] instead of some consumer in [θn, θn−1]; these intervals are “close” if there are
many qualities. Second, the good is misallocated only until it depreciates, because at that point
the vintage-(n + 1) consumer will keep the good, which is now the right match for him. Rental
prices would have to be adjusted to reflect these misallocations, but the adjustment is minor as
long as the fraction of noise traders is not too large.

3.6 Quantifying the Distortions Under Selling: observable vs unobservable
trading histories

Theorem 1 shows that, with resale markets and more than two qualities, there is no efficient
equilibrium. In order to analyze the nature of the distortions generated by asymmetric information,
we now fully characterize equilibrium in a setting with three qualities. Furthermore, to clarify the
role of observability of trading histories under resale markets, we compare our framework with
observable vintages to a scenario in which consumers can only distinguish new and used goods, but
do not observe the number of times a good has been traded.

It is clear from our Theorem 2 that, under rental, observability of trading histories is beneficial.
If consumers could not observe the vintage of a car, matching would, by necessity, be much coarser.
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However, under resale markets, the equilibrium allocation is inefficient, so it is not immediately
clear that observability is similarly beneficial. For example, as mentioned in the Introduction,
House and Leahy (2001), in a different setup, show that observing trading histories can have a
negative welfare impact.

As we have seen in Theorem 1 three is the minimal number of qualities such that asymmetric
information introduces distortions in resale markets. Going beyond three qualities is conceptually
simple but tedious and adds no new insight. Furthermore, the efficiency gain from making vintages
observable is likely to increase with the number of different qualities. This is because, in equilibrium,
each vintage can have distinct average quality which could lead to finer sorting. Thus, the efficiency
gain that we calculate here is likely to be a lower bound.

The proofs of the two Propositions provided here can be found in a “Web Appendix” available
from the authors’ Web sites.

In the preceding analysis, behavior and prices do not depend on the age of the car despite
the fact that age is observable. In the equilibrium under selling however, if consumers observe
the age of the car, there may not be equilibria in which prices are independent of age. This is
because, under selling, consumers of a given vintage may behave differently: lower types may
keep more qualities. In this case, older cars are likely to be of lower quality, even conditional
on vintage. Hence, in these circumstances, older cars would sell at lower prices. Unfortunately,
while a qualitative characterization of equilibrium with age-dependent prices would not be difficult,
computing equilibria becomes extremely hard: because cars have indefinite lifespans, we would need
to compute infinitely many prices. For simplicity and to highlight the beneficial role of vintages,
we will thus proceed by assuming that the age of the car is unobservable.

Observable Vintages In a steady-state equilibrium, the set of consumer types is partitioned
into four intervals: (1) types in [θ, θ2] never buy any car; (2) types in [θ2, θ1] buy vintage 2; (3)
types in [θ1, θ01] buy vintage 1; and types in

[
θ01, θ

]
buy vintage 0. Denote by qe

n the average
quality of cars that were vintage n−1 the previous date and just became vintage n; in other words,
qe
n is the average quality of cars that were just traded. Clearly, qe

0 = q0. The following proposition
characterizes equilibrium.

Proposition 2 (i) There exists a consumer equilibrium under resale with observable vintages. In
this equilibrium:
(ii) qe

2 = q2 ≤ qe
1 < q1.

(iii) Buyers of vintage-2 cars keep their cars until they die. Buyers of vintage-1 cars keep quality-q1

cars and sell quality-q2 cars. Finally, there exists θ0 ∈ (θ01, θ̄] such that types θ ∈ [θ0,1, θ0] buy
vintage 0, keep qualities q0 and q1, and sell q2, whereas types θ ∈

[
θ0, θ

]
buy vintage 0, keep q0

only, and sell all other qualities.

Note first that only quality-q2 cars are sold as vintage 2 goods; for this reason, qe
2 = q2. On the

other hand, since q2 ≤ qe
1 < q1, a positive mass of cars that are offered on the market as vintage-1

goods must be of quality q2. Part (iii) implies that no quality-q0 car is ever offered for resale.
Note also that, while θ0 > θ01, there are parameter values for which θ0 = θ. That is, it is always

the case that some high types buy vintage-0 cars and keep both qualities q0 and q1; however, it may
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be the case that all high types adopt this policy. In such cases, no cars of quality q1 are offered for
resale, and the equilibrium effectively features two vintages.

Unobservable Vintages Now assume that consumers cannot distinguish goods that have been
sold only once from goods that have been sold more than once. Now consumers will be partitioned
into three intervals (1) types in [θ, θ2] who never buy any car; (2) types in [θ2, θu] who buy used
cars; (3) types in

[
θu, θ

]
who buy vintage 0. Denote by qu the average quality of used cars. The

following proposition characterizes equilibrium.

Proposition 3 (i) There exists a consumer equilibrium under resale with unobservable vintages.
In this equilibrium:
(ii) q2 ≤ qu < q1.
(iii) Buyers of used cars keep quality-q1 cars and sell quality-q2 cars. There exists θ0 ∈ (θu, θ̄] such
that types θ ∈ [θu, θ0] buy new cars, keep qualities q0 and q1, and sell q2, whereas types θ ∈

[
θ0, θ

]
buy new cars, only keep q0, and sell all other qualities.

Thus, a positive mass of used cars is of quality q2. However, no quality-q0 cars are offered for
resale.

The behavior of new good consumers is qualitatively the same as that of vintage-zero consumers
in the case of observable quality. The behavior of used good consumers reflects a form of arbitrage:
specifically, a consumer who owns a used good of quality q2 can sell it at a price pu and buy
another used good for the same price. If qu > q2, which is the case whenever θ0 < θ̄, all used goods
consumers are better off selling quality-q2 used goods and only keeping quality-q1 cars.

Finally, as above, it is always the case that some high types keep both qualities q0 and q1 (i.e.
θ0 > θu); furthermore, for certain parameter values, all high types adopt this policy (i.e. θ0 = θ̄).

Comparison of the two scenarios and the role of observable vintages The differences in
equilibrium outcomes between the two scenarios15 may be understood by focusing on two forces.
Suppose first that the resale behavior of new goods consumers is the same in the two scenarios.
Then, multiple secondary markets allow better sorting of used units. Loosely speaking, the ability to
distinguish between two used-car vintages effectively unbundles goods sold by new goods consumers;
within at most two periods, quality-q1 goods are allocated to vintage-1 consumers, and quality-q2

goods are allocated to vintage-2 consumers. Thus, higher-quality used cars are assigned to higher-
valuation consumers. If instead vintages are unobservable, such unbundling is impossible and all
consumers who are not new goods consumers end up consuming the same average quality over their
lifetimes.

Second, in the case of unobservable vintages, cars that are sold by new goods consumers are
pooled with quality-q2 cars that are sold by used goods consumers.16 Such pooling will reduce the

15This discussion assumes that θ0 ∈ (θ01, θ̄) in the observable-vintages case, and θ0 ∈ (θu, θ̄) when vintages are
unobservable. When the interval

ˆ
θ0, θ

˜
is empty in both scenarios, the allocations are the same.

16These include consumers who owned quality q1 units that depreciated, and those who purchased a used good the
previous period and found its quality to be q2.
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resale value of new goods, and this will induce a higher fraction of new goods consumers to keep
quality-q1 cars.

A direct comparison of the equilibrium allocations in the two scenarios cannot be provided
because the overall equilibrium cannot be solved for in closed form. We therefore proceeded nu-
merically. In our extensive numerical analysis, we always found social surplus to be higher when
vintages are observable. We now briefly describe the computations we carried out.17

We compute two measures of the efficiency gain resulting from vintage observability. Let Sv

and Snv denote per-period surplus under observable and unobservable vintages respectively; also
let Seff denote per-period surplus under the efficient allocation. Finally, let S1 denote per-period
surplus in the absence of secondary markets, computed as follows: let θ2 = F−1(1− Y ) and

S1 =
1− e−ρ∆

ρ

∫ θ̄

θ2

E(q) · θ dθ.

S1 is the maximum surplus achieved by opening only the market for new goods: the 1 − Y low-
valuation consumers are excluded, but cars are randomly assigned to higher-valuation consumers.

One possible measure of relative efficiency is then Sv
Seff

− Snv
Seff

, the difference between the fraction
of the efficient social surplus realized with and without vintage observability. Alternatively, we can
measure realized efficiency as a fraction of Seff − S1, the maximum possible efficiency gain relative
to a single-market environment; the quantities Sv−S1

Seff−S1
and Snv−S1

Seff−S1
are the fractions of this gain

actually realized under observable and unobservable vintages respectively, so another measure of
relative efficiency is their difference Sv−Snv

Seff−S1
.

For the purposes of comparing social surplus, the minimum and maximum quality levels can be
chosen arbitrarily; we set q0 = 1 and q2 = 0. Also, recall that, under simple depreciation, the length
of a period is immaterial; we set ∆ = 1. Hence, a full parameterization of both models consists
of the intermediate quality q1 ∈ [q2, q0], the depreciation probabilities γ0, γ1, γ2, the instantaneous
discount factor ρ, the total mass of cars Y , and the distribution F of consumer types.

We assume that types are uniformly distributed on [0, 1],18 and set e−ρ = 0.9 and Y = 0.8. We
consider qualities q1 ∈ (q2, q0) on a grid of size 20. Finally, we analyze two choices of minimum
and maximum depreciation probabilities γmin, γmax (“high” and “low”), and consider values of
γ0, γ1, γ2 ∈ [γmin, γmax], each on a grid of size 20. Table 1 summarizes some of our findings.

In rows 4 and 5, for each of the two measures described above, we report the maximum and
minimum efficiency gains due to vintage observability, calculated over the 204 = 160, 000 different
parameterizations generated by each choice of γmin and γmax. As noted above, vintage observability
is always beneficial; however, for certain parameter values, the equilibrium is the same regardless
of whether vintages are observable or not (i.e no quality-q1 cars are traded in either setting); in
these cases the efficiency gain is zero. Overall, these figures suggest that the efficiency gain from
vintage observability, especially when measured relative to a single-market environment, can be
substantial, and is larger when depreciations are less frequent.

17The matlab code is available upon request.
18We also experimented with Beta-distributed types. Again, social surplus was higher with observable vintages.
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High Depreciation Low Depreciation

γmin =0.1, γmax =0.9 γmin =0.01, γmax =0.1

Max Min Max Min

Sv−Snv
Seff

5.49% 0 8.31% 0
Sv−Snv
Seff−S1

18.6% 0 41.87% 0
Sv
Seff

– 89.87% – 92.81%
Sv−S1
Seff−S1

– 38.14% – 42.53%
S1
Seff

95.90% 62.48% 96.20% 62.26%

Table 1: Efficiency Gains

Rows 6 and 7 report the minimum realized efficiency gain Sv
Seff

under resale markets and observ-

able vintages, and the minimum realized gain Sv−S1
Seff−S1

relative to a single-market environment.19

Since rental contracts yield the efficient allocation, these quantities measure the potential ineffi-
ciency associated with resale.

We wish to emphasize that the numbers in row 6 correspond to “worst-case scenarios”, i.e.
parameter values for which resale markets perform particularly poorly. For different parameter
values, the gains from using rental contracts rather than selling contracts are not very large. This
may help explain why rental contracts are not commonly observed in the car market; perhaps the
gains are not large enough to justify the larger administrative costs, and the potential problems of
moral hazard in maintenance that are likely to be associated with rental contracts. Furthermore,
we note that leasing contracts (which constitute more than a third of transactions in the new car
market) share some of the advantages of rental contracts—although, as pointed out in Section 3.3,
the two are not perfect substitutes.

Finally, the last row reports the minimum and maximum surplus achievable in a single-market
environment; these figures can be useful as a reference.

4 General Depreciation Model

We now consider the general environment described in Section 2.1. In contrast with the model
discussed in Section 3, the initial quality of the new good is uncertain, and the good may depreciate
by an arbitrary number of quality steps (or die) in any time period. As before, efficiency requires
assortative matching of qualities to consumers. It is easy to verify that the system of instantaneous
rental prices defined by equation (6) still sustain the efficient allocation if quality is observable.

We now assume that the quality of the good is not observable before purchase: it becomes
observable only to the current user at the end of the first period of consumption. The key distinction

19By Theorem 1, resale contracts achieve efficiency if there are only two qualities; thus, the maximum efficiency
gain can be made to approach 1 by choosing q1 close to q0 or q2. For this reason, this figure is not shown in Table 1.
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between the present model and the simple one-step depreciation model presented in Section 3 is the
fact that efficient sorting now requires experimentation: for instance, highest-valuation consumers
need to try several units before finding one of quality q0. Consequently, in the environment under
consideration, it is impossible to obtain the first-best allocation: the first consumer of the good
consumes the ‘wrong’ quality with positive probability. However, we will show that approximate
payoff efficiency is possible when the length of the periods ∆ shrinks to zero (i.e. trading becomes
more and more frequent).

The goal of this section is to show that the efficiency properties of vintage-dependent rental
contracts of indeterminate duration are robust: approximate efficiency can be obtained in a much
more general setting than the simple depreciation model. We do not claim that these rental
contracts are the best mechanism in this more complex environment. In particular, menus of
contracts that depend more finely on the trading history may well be superior. However, our
results imply that any gains from more complex mechanisms would be negligible in a world where
retrading costs are small.

4.1 Experimentation and the Trickle-Down Algorithm

As in the simpler setting of Section 3, we assume that the vintage of each car is observable.
For n = 0, . . . , N and m = n, . . . , N , denote by vn

m the mass of cars of vintage n and quality m.
These quantities must satisfy the following equations:

v0
0 = γ0,0(∆)v0

0 + χ0y (15)

v0
m = χmy

vn
n = γn,n(∆)vn

n + γn−1,n∆vn−1
n−1 + γn,n(∆)vn−1

n

vn
m =

m−1∑
`=n−1

γ`,m∆vn−1
` + γm,m(∆)vn−1

m .

That is: vintage-0 cars consists of quality-q0 cars that have not depreciated, and newly-produced
cars. Since vintage-0 cars worse than q0 are immediately retraded, the stock of quality-qm cars of
vintage 0, for m > 0, consists solely of newly-produced cars. Vintage-n cars of quality qn come from
three sources: vintage-n, quality-qn cars that have not depreciated, vintage-(n − 1) quality-qn−1

cars that have depreciated to qn, and vintage-(n − 1) quality-qn cars that have not depreciated.
Vintage-n cars of quality worse than qn all come from the stock of vintage-(n − 1) cars, and are
immediately retraded.

Observe that the masses vn
m, for n 6= m, measure the efficiency loss due to the fact that

consumers need to experiment in order to receive a car of their designated quality.
Furthermore, the mass of new cars must correspond to the mass of cars dying in each period:

y =
N∑

`=0

N∑
k=`

γk,N+1∆v`
k. (16)
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Finally, there is a total of Y cars on the market at each given time:

N∑
`=0

N∑
k=`

v`
k = Y. (17)

We can now define cutoff types to identify consumers of each vintage. Let θ−1 = θ for notational
convenience; then, for n = 0, . . . , N , let θn be defined by the condition

F (θn−1)− F (θn) =
N∑

m=n

vn
m. (18)

4.2 Rental and Experimentation under Asymmetric Information

We now turn to the analysis of consumer incentives. Each consumer is facing a stationary, infinite-
horizon dynamic programming problem, with states ∅ (corresponding to the event that the car
just died), q0, . . . , qN . The possible actions (controls) are “rent your current car for an additional
period” (not available in state ∅) and “return your current car, if any, and rent a vintage-n car”, for
n = 0, . . . , N . The transition probabilities are determined by actions and depreciation probabilities
in the obvious way. As in the simpler setting of Section 3, we consider contracts that specify
vintage-dependent rental fees represented by instantaneous rental prices r0, . . . , rN . Other aspects
of the trading history of a specific unit (e.g., age and timing of past trades) do not affect the terms
under which it is offered.20

We assume that consumers are not allowed to exercise choice among units of the same vintage,
but possibly different trading histories; equivalently, one could assume that consumers are informed
of the full trading history of a unit only after they decide to rent it.21 This assumption allows for a
more straightforward comparison with the analysis of section 3, and is of no consequence as far as
the interpretation of our results is concerned: as mentioned in the beginning of this Section, we do
not claim that the rental mechanism we examine is the best in the current, general setting; rather,
our results show that any other mechanism can only lead to ε-improvements in either welfare from
the social planner’s point of view, or profits from the point of view of the firms. This is the case
regardless of how finely alternative mechanisms depend upon or disclose past trading history.

20For instance, suppose Car A is first rented at time t−1 and first returned at time t, whereas Car B is first rented
at time t−15 and first returned at time t. Then, at the end of time t, both Cars A and B are deemed to be of vintage
1, and hence are offered at rental price r1.

21Note that while in section 3 the vintage of a car was a sufficient statistic for quality, this is not necessarily true
if one allows for both uncertainty about the quality of new cars, and multi-step depreciation. However, this is of no
consequence when ∆ → 0. Loosely speaking, to allow for more complicated history dependent rental prices, we would
simply need to keep track of a larger set of consumer intervals. When ∆ → 0, a simple extension of Lemma 2 implies
that the rental prices of all cars with the same vintage would converge to the same limit, regardless of the actual
trading histories. This in turn implies that, in the limit, all consumers and all firms are approximately indifferent
among all rental contracts for cars of the same vintage.
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In order to describe the value functions, it is useful to introduce additional notation. The
probability that a newly rented vintage-n car is of quality qm equals

λ0
m = χm and λn

m =
∑m−1

`=n−1 γ`,m∆vn−1
` + γm,m(∆)vn−1

m∑N
k=n

(∑k−1
`=n−1 γ`,k∆vn−1

` + γk,k(∆)vn−1
k

) , (19)

for m = n, . . . , N . These expressions are derived by looking at the supply of vintage-n cars of
each quality, as it appears in Eqs. (15); for vintage 0, the supply consists solely of newly produced
cars, whose quality is distributed according to the proportions χ0, . . . , χN . For vintages n > 0,
the supply consists of vintage-(n− 1) cars, and we keep track of the various ways a quality-qm car
might be offered in the vintage-n market according to the trickle-down algorithm.

We denote the expectation operator corresponding to the distribution λn
n, . . . , λn

N by En; for
simplicity, we also define Ln

m =
∑N

`=m+1 λn
` . Note that, although the notation does not emphasize

this fact, both λn
m and En are also a function of ∆.

By standard arguments, there exists a stationary policy that is optimal for the consumer. We
now describe the set of stationary policies. If the current state is ∅ (no car), the policy must
specify which vintage to rent: thus, this portion of the policy can be represented by an integer
n ∈ {0, . . . , N}. If the current state is instead qn, for n = 0, . . . , N , the policy must specify whether
to keep the current car (i.e. rent the currently rented unit for another time period), or return it
and rent another car. A consumer who chooses to return her current car faces the same problem as
a consumer whose car has just died: hence, it is without loss of generality to restrict attention to
policies that prescribe that the same vintage be rented if the current car dies, or if it is returned.
Such policies are thus fully specified by a pair (n, M), where n ∈ {0, . . . , N} is the vintage the
consumer rents in state ∅, and M ⊂ {n, . . . , N} is a (possibly empty) collection of quality indices
corresponding to qualities the consumer keeps.22

Consider one such stationary policy (n, M) with M 6= ∅ (see Lemma 3 for the case M = ∅).
The value function for consumer type θ in state ∅ can be written as follows:

V n
M (θ, ∅) =

1− e−ρ∆

ρ
[En(q|q ≤ qn)θ − rn] + (20)

+ e−ρ∆

8<:
24 X

m≥n : m/∈M

λn
m

 
γm,m(∆) +

X
`>m : `/∈M

γm,`∆

!
+

X
m≥n : m∈M

λn
m

X
`>m : `/∈M

γm,`∆

35V n
M (θ, ∅)+

+
X

m∈M

λn
m

24γm,m(∆)V n
M (θ, qm) +

X
`>n : `∈M\{m}

γm,`∆V n
M (θ, q`)

35+
X

m≥n : m/∈M

λn
m

 X
`>m : `∈M

γm,`∆V n
M (θ, q`)

!9=; ;

The first term on the right-hand side of equation (20) is the flow payoff from experimenting with
a vintage–n good which has an uncertain quality En(q|q ≤ qn). The remaining terms refer to the

22In general, one cannot guarantee a priori (without fixing rental prices and solving for the optimal policy) that
restricting attention to cutoff policies—i.e. M = {n, . . . , m} for some m ≥ n—will be w.l.o.g.. Intuitively, without
restrictions on the depreciation probabilities γn,m, it may be the case that a car of current quality qn+1 yields a
higher expected discounted utility than a car of current quality qn (e.g. if quality qn+1 depreciates slowly, whereas
qn does not depreciate but dies with high probability).
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possible events that the consumer faces the first period after experimentation. In particular, the
consumer returns the car (so her state switches to ∅) if its quality is outside the “keeping set” M
at the beginning of the period, and either (i) there is no depreciation, or (ii) the car depreciates to
another quality not in M ; the consumer also returns the car if its quality is initially in the keeping
set M , but depreciation yields a quality not in M . These possibilities are captured in the second
line of equation (20). Symmetrically, the consumer keeps her car if its quality is initially in the
keeping set M , and either (i) there is no depreciation, or (ii) the car depreciates to another quality
in M ; she also keeps the car if its quality was initially outside M , but depreciation yields a quality
level in the keeping set M . The third line of equation (20) corresponds to these considerations.

If instead the consumer is currently renting a quality-q` car, with ` ∈ M ,

V n
M (θ, q`) =

1− e−ρ∆

ρ
[q`θ − rn] + e−ρ∆

[( ∑
k>` : k/∈M

γ`,k∆

)
V n

M (θ, ∅) + (21)

+

(
γ`,`(∆)V n

M (θ, q`) +
∑

k>` : k∈M

γ`,k∆V n
M (θ, qk)

)]
.

We now define the instantaneous rental prices r0, . . . rN so as to ensure that

V N
{N}(θN , ∅) = 0, V n

{n}(θn, ∅) = V n+1
{n+1}(θn, ∅), n = 0, . . . , N − 1. (22)

The main result of this paper can now be stated.

Theorem 4 There exists ∆∗ > 0 such that, for all ∆ ∈ (0,∆∗), there is a consumer equilibrium
wherein cutoff types and instantaneous rental prices are determined by equations (18) and (22)
respectively, and for every n = 0, . . . , N , consumer types θ ∈ [θn, θn−1] rent vintage-n cars and only
keep cars of quality qn.

Furthermore, as ∆ → 0, cutoff types and instantaneous rental prices converge to their observable-
quality counterparts: θn → θ∗n and rn → r∗n for all n = 0, . . . , N .

We prove this result via several lemmas. The first, Lemma 1, shows that the Eqs. (15), (16) and
(17) uniquely determine masses in each stage of the trickle-down algorithm, and show that these
masses converge to the appropriate efficient quantities as the length of each time period shrinks.
The proof of this Lemma is available in a “Web Appendix” on the authors’ Web sites.

Lemma 1 There is a unique solution to Eqs. (15), (16) and (17). Furthermore, as ∆ → 0, for
every n = 0, . . . N , m vn

n → v∗n and vn
m → 0 for m = n+1, . . . N . Consequently, θn → θ∗n as ∆ → 0.

Turn now to consumer incentives. The following Lemma provides the key step in the proof of
Theorem 4: it shows that the value functions V n

{n}(θ, ∅) can be written as a weighted average of
a “long-run” component, which corresponds to the net payoff from renting a car of known quality
qn in each period, and an “experimentation” component; furthermore, the weight on the latter
vanishes as ∆ → 0. This is then shown to imply that rental prices, as defined above, converge to
their observable-quality counterparts as ∆ → 0.
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Lemma 2 For every n = 0, . . . , N ,

V n
{n}(θ, ∅) = (1− wn)

En(q|q ≤ qn)θ − rn

ρ
+ wn

qnθ − rn

ρ

where wn = e−ρ∆λn
n(1−Gn,n+1∆)

1−e−ρ∆(1−Gn,n+1∆)+e−ρ∆λn
n(1−Gn,n+1∆)

∈ (0, 1), and wn → 1 as ∆ → 0. Therefore, the
rental prices defined in equation (22) satisfy rn → r∗n as ∆ → 0.

Proof. See Appendix.

We now employ the decomposition of payoffs provided in Lemma 2 to show that experimentation
policies of the form (n, M) with M 6= {n} cannot be optimal for any type, and “pure-consumption”
policies (M = ∅) can be disregarded w.l.o.g. .

Lemma 3 There exists ∆∗ > 0 such that, for ∆ ∈ (0,∆∗), and for all θ, the policies (n, M) with
M 6= {n} are suboptimal. Furthermore, for every n = 0, . . . , N , every ∆, and every θ, in each
state ∅, q0, . . . , qN , the policy (n, ∅) is not strictly better than the policy (n, {n}).

Proof. Consider type θ and policy (n, M), and let m = max M ; by Lemma 2, there exists
∆n,m > 0 such that, for ∆ ∈ (0,∆n,m), qmθ−rn

ρ < (1 − wn)En(q|q≤qn)θ−rn

ρ + wn
qnθ−rn

ρ = V n
{n}(θ, ∅)

and qm ≤ wnqn ≤ (1 − wn)En(q|q ≤ qn) + wnqn =
∂V n

{n}(θ,∅)
∂θ (1 − e−ρ∆). This implies that, for

∆ ∈ (0,∆n,m), qmθ−rn

ρ < V n
{n}(θ, ∅) for all types θ. Now consider one such ∆, and suppose that

(n, M) is optimal for some type θ. Then, in particular, V n
M (θ, ∅) ≥ V n

{n}(θ, ∅) > qmθ−rn

ρ . Moreover,
by equation (21), since m = max M (so k > m implies k /∈ M) and γm,m(∆) = 1−Gm,m+1∆,

V n
M (θ, qm) =

1− e−ρ∆

ρ
[qmθ − rn] + e−ρ∆

[
Gm,m+1∆V n

M (θ, ∅) + γm,m(∆)V n
M (θ, qm)

]
=

=
1− e−ρ∆

1− e−ρ∆(1−Gm,m+1∆)
qmθ − rn

ρ
+

e−ρ∆Gm,m+1∆
1− e−ρ∆(1−Gm,m+1∆)

V n
M (θ, ∅);

it follows that V n
M (θ, qm) < V n

M (θ, ∅): that is, renting another car of vintage n and then reverting to
(n, M) is more profitable for type θ than following the policy (n, M) if her current car is of quality
qm, i.e. the lowest quality the consumer is supposed to keep under policy (n, M).

Choosing ∆∗ = minn,m ∆n,m completes the proof of the first claim. As for the second, for any
type θ and any n = 0, . . . , N , the policy (n, ∅) yields En(q|q≤qn)θ−rn

ρ in any state; by Lemma 2,

V n
{n}(θ, ∅) = (1 − wn)En(q|q≤qn)θ−rn

ρ + wn
qnθ−rn

ρ , with wn ∈ [0, 1]. Since En(q|q ≤ qn) ≤ qn for all
n = 0, . . . , N , it follows that, in any state ∅, q0, . . . , qN , the consumer is at least as well off returning
the current car and switching to the policy (n, {n}).

The argument can now be concluded. An optimal policy of the form (n, M) exists for every
θ ∈ [θN , θ̄]; by Lemma 3, for ∆ ∈ (0,∆∗), we can restrict attention to policies of this class with
M = {n}. But rental prices are defined so as to ensure that, for all types θ ∈ [θn, θn−1], it is
optimal to adopt policy (n, {n}) in state ∅ and adhere to it in the continuation; hence, (n, {n})
must be an optimal policy for these types.
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4.3 Supply Side in the General Depreciation Model

The analysis of producers’ incentives is more delicate than in the simple depreciation environment.
Since initial quality is uncertain and depreciation by more than one quality level is possible, ex-
perimentation is necessary in the trickle-down mechanism for consumers to obtain the ‘right’ car
quality. This implies that some delay is inevitable before the right match between cars and con-
sumers is achieved. When the time between periods ∆ is small, this delay is short; however, the
presence of this delay raises the possibility that producers may choose to deviate from the menu of
rental contracts to offer a mechanism that accelerates experimentation. For instance, a firm might
require consumers to report the current quality of the car when they return it, then offer it to the
‘right’ consumer type in the following period. Even in the absence of such reports, it can be shown
that profitable deviations from the menu of rental contracts defined above are possible.

For instance, learning the current quality of the car from its previous consumer is beneficial
to a firm for two reasons: (i) one or more steps in the trickle-down mechanism may be bypassed,
and (ii) the next consumer will not need to experiment in order to find the right quality for her;
therefore, she will be willing to pay a higher per-period rental price to the deviating firm. However,
if the time between periods is small, the gain from such deviations is also small : if ∆ is small, (i)
allocating a car via the trickle-down mechanism only imposes a short delay, and (ii) the cost of
experimentation is small.

These intuitive observations can be formalized and developed in two directions. In the setting
of Section 3.4, it is possible to adapt the proof of Theorem 3 to establish the following approximate
equilibrium result.

Theorem 5 For every ε > 0, there exists ∆ε > 0 such that, for all ∆ ∈ (0,∆ε), the following
constitutes a market ε-equilibrium:

(i) firms produce the first-best output, and offer N +1 vintage-dependent rental contracts at the
instantaneous rental prices r0, . . . , rN determined by equation (22);

(ii) for every n = 0, . . . , N , consumer types θ ∈ [θn, θn−1] rent vintage-n cars and only keep
cars of quality qn, where the cutoffs θ0, . . . , θN are determined by equation (18).

Furthermore, as ∆ → 0, for every n = 0, . . . , N , θn → θ∗n and rn → r∗n.

The proof of Theorem 5 can be found in the Appendix; here we provide a brief sketch. As
explained in Section 3.4, each deviation can be shown to be dominated by a menu of one-period
rental contracts; the argument is independent of the specific features of the depreciation process.
Prices in the dominating menu of rental contracts are set so as to ensure that each target consumer
is indifferent between renting a car from the deviating firm, then reverting to experimentation with
her designated vintage, and experimenting with that vintage forever.

As suggested by the above intuitive discussion, under general depreciation, the rental prices
charged in each period by the deviating firm for a car of quality qn can be larger than 1−e−ρ∆

ρ rn,
because the latter is determined taking into account the cost of experimentation borne by con-
sumers. We also noted above that the gain from such a one-period deviation is “small” if ∆ is not
too large; however, we must quantify gains from deviations per unit of calendar time, because as
∆ becomes smaller, the expected number of periods until the car dies grows larger. We thus show
that gains per time unit vanish as ∆ → 0, which completes the proof.
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Theorem 5 may be interpreted as stating that, if ∆ is small, then there is an approximate
equilibrium wherein all firms offer the rental contracts described in Section 4.2. The previous
version of this paper (Hendel, Lizzeri and Siniscalchi, 2002) considered a model characterized by
initial uncertainty about quality, no depreciation, and a positive probability that the car dies in
each period; these assumptions correspond to γn,m = 0 for m = n + 1, . . . , N and γn,N+1 > 0.
In this environment, we established a complementary result: when ∆ is small, there is an exact
equilibrium wherein almost all firms offer the rental contracts described above, but a small mass
of firms offer other types of contracts.

5 Concluding Remarks

We now outline some possible extensions of our analysis.
Throughout this paper, we have assumed that the consumer learns the quality of a unit as

soon as she uses it for the first time. This leads to rather strong efficiency results. If instead
one were to assume that the quality discovery process may take a minimal amount of time, and
that such learning may be imperfect, then new effects would arise out of the interaction between
asymmetric information and slow learning. In particular, we conjecture that in such a model, a
consumer may get rid of a high quality unit if he is sufficiently convinced that it is low quality.
Once the high quality good is in the hands of a low valuation consumer, it may become impossible,
under asymmetric information, to get it back in the hands of high valuation consumers. Thus,
some degree of misallocation may be inescapable.

It would be interesting to extend the model to study matching under asymmetric information
in the labor market, so as to understand the relation between job mobility and wage growth. To
this end, two additional key features should be incorporated in the model. First, both sides in the
labor market can take actions after learning the quality of a match: both employers and workers
can in principle choose to dissolve a match, whereas in our model the car cannot decide to get rid
of the consumer. Second, idiosyncratic components are likely to be a more important feature of
match quality in labor markets than in markets for durable goods.

Finally, it may be instructive to contrast our results with those from the literature on the Coase
conjecture. This literature deals with a monopolistic producer of a durable good of known quality.
In that setting, a monopolist may prefer a rental contract over a sale contract, because the former
avoids the commitment problem.23 In the context of a durable-goods monopoly, if consumers
are patient, the stationary subgame-perfect equilibrium outcome under selling is approximately
efficient.24 In contrast, under rental, the equilibrium outcome involves the monopolist producing
too little output. Thus, the consequences for efficiency of these alternative contractual arrangements
are the opposite of those we find in our model.

This paper’s broader contribution is that it provides an efficiency benchmark that is a polar
opposite of the classic model. Having these two opposites - extreme efficiency and extreme inef-
ficiency creates a scale that makes it easier to identify the sources and the extent of inefficiencies
arising in the asymmetric information environments with durables.

23See Bulow (1982) for this argument.
24See Gul, Sonneschein, and Wilson (1986).
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6 Appendix

6.1 Proof of Lemma 2

Begin with a preliminary result; for the proof see the Webappendix.

Lemma 4 For all n = 0, . . . , N , lim inf∆→0 λn
n > 0.

Turn now to the proof of Lemma 2. Note that, for M = {n}, the functions V n
{n} can be rewritten

in the following simpler form:

V n
{n}(θ, ∅) =

1− e−ρ∆

ρ
[En(q|q ≤ qn)θ − rn] + (23)

+ e−ρ∆
{(

Ln
n+1 + λn

nGn,n+1∆
)
V n
{n}(θ, ∅) + λn

nγn,n(∆)V n
{n}(θ, qn)

}
,

V n
{n}(θ, qn) =

1− e−ρ∆

ρ
[qnθ − rn] + e−ρ∆

{
Gn,n+1∆V n

{n}(θ, ∅) + γn,n(∆)V n
{n}(θ, qn)

}
= (24)

=

(
1− e−ρ∆

) qnθ−rn

ρ + e−ρ∆Gn,n+1∆V n
{n}(θ, ∅)

1− e−ρ∆(1−Gn,n+1∆)
.

Plugging back into equation (23) yields

V n
{n}(θ, ∅) =

1− e−ρ∆

ρ
[En(q|q ≤ qn)θ − rn] + e−ρ∆

(
Ln

n+1 + λn
nGn,n+1∆

)
V n
{n}(θ, ∅)+

+ e−ρ∆λn
nγn,n(∆)

(
1− e−ρ∆

) qnθ−rn

ρ + e−ρ∆Gn,n+1∆V n
{n}(θ, ∅)

1− e−ρ∆(1−Gn,n+1∆)
=

=

(
1− e−ρ∆

) En(q|q≤qn)θ−rn

ρ + e−ρ∆λn
n(1−Gn,n+1∆)

(
1− e−ρ∆

) qnθ−rn

ρ

1− e−ρ∆
[
Ln

n+1 + λn
nGn,n+1∆ + λn

n(1−Gn,n+1∆) e−ρ∆Gn,n+1∆
1−e−ρ∆(1−Gn,n+1∆)

] .
Rewrite the denominator as follows:

1− e−ρ∆

[
1− λn

n + λn
nGn,n+1∆ + λn

n(1−Gn,n+1∆)
e−ρ∆Gn,n+1∆

1− e−ρ∆(1−Gn,n+1∆)

]
=

= 1− e−ρ∆

[
1− λn

n(1−Gn,n+1∆) + λn
n(1−Gn,n+1∆)

e−ρ∆Gn,n+1∆
1− e−ρ∆(1−Gn,n+1∆)

]
=

= 1− e−ρ∆

[
1− λn

n(1−Gn,n+1∆)
(

1− e−ρ∆Gn,n+1∆
1− e−ρ∆(1−Gn,n+1∆)

)]
=

= 1− e−ρ∆

[
1− λn

n(1−Gn,n+1∆)
1− e−ρ∆

1− e−ρ∆(1−Gn,n+1∆)

]
=

= (1− e−ρ∆) +
e−ρ∆λn

n(1−Gn,n+1∆)(1− e−ρ∆)
1− e−ρ∆(1−Gn,n+1∆)

= (1− e−ρ∆)
{

1 +
e−ρ∆λn

n(1−Gn,n+1∆)
1− e−ρ∆(1−Gn,n+1∆)

}
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Therefore, we can write

V n
{n}(θ, ∅) = (1− wn)

En(q|q ≤ qn)θ − rn

ρ
+ wn

qnθ − rn

ρ
=

=
[(1− wn)En(q|q ≤ qn) + wnqn] θ − rn

ρ
,

where

wn =
e−ρ∆λn

n(1−Gn,n+1∆)
1−e−ρ∆(1−Gn,n+1∆)

1 + e−ρ∆λn
n(1−Gn,n+1∆)

1−e−ρ∆(1−Gn,n+1∆)

=

=
e−ρ∆λn

n(1−Gn,n+1∆)
1− e−ρ∆(1−Gn,n+1∆) + e−ρ∆λn

n(1−Gn,n+1∆)
.

By Lemma 4, lim inf∆→0 λn
n ≡ Λn > 0, so

wn ≥
e−ρ∆Λn(1−Gn,n+1∆)

1− e−ρ∆(1−Gn,n+1∆) + e−ρ∆Λn(1−Gn,n+1∆)
→ Λn

0 + Λn
= 1,

i.e. wn → 1. Now consider rental prices. Clearly, rN = r∗N ; thus, assume that rn+1 → r∗n+1 for
n < N ; then V n

{n}(θn, ∅) = V n+1
{n+1}(θn, ∅) iff

rn = rn+1 +
[
(1− wn)En(q|q ≤ qn) + wnqn − (1− wn+1)En+1(q|q ≤ qn+1) + wn+1qn+1

]
θn →

→ r∗n+1 + (qn − qn+1)θ∗n = r∗n,

because wn → 1 and θn → θ∗n.

6.2 Supply Side under Simple and General Depreciation

The proofs of Theorems 3 and 5 are very similar, except that an additional step is required for the
latter. It is thus convenient to present them together.

We begin by describing the realizations of the quality process, or quality histories. Recall that a
car of quality qn that depreciates becomes a car of quality qm with probability γn,m∆. Also, when
a car of quality qN depreciates, it disappears (“dies”). Thus, we are led to consider quality histories
of the form (q0, . . . , q0, q1, ..., q1, q2, ..., qn, ..., qN , ..., qN , 0), where 0 denotes that the car has died.
Formally, let Q be the set of all finite sequences {q0, ..., qJ} such that (i) if q0 = qn, then χn > 0,
and (ii) qj ≥ qj+1 for all j = 0, ..., J − 1; also, let Q̄ the set of all complete quality histories: that
is, (q0, ..., qJ) ∈ Q̄ iff (q0, ..., qJ) ∈ Q and qJ = 0.

Let Q denote the set of all qualities: that is, Q = {q0, ..., qN , 0}; then, for all integers m, Qm

denotes the Cartesian product of m copies of Q (in particular, Q0 = ∅).
Recall that depreciation events occur at the end of the period. Therefore, the history (q0, ..., qJ)

should be interpreted as follows: q0 is the initial quality of the car; then, for j > 0, qj is the quality
of the car in period j, which is determined by the realization of the depreciation process at the end
of period j − 1.
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We now describe deviations from the putative equilibrium rental contracts. A deviation consists
of a collection of mechanisms, each targeted to a specific type of consumer. We begin by analyzing
single mechanisms.

It turns out that, in order to assess whether a deviation is profitable, only certain elements
of a mechanism need to be explicitly described. In particular, below we derive upper bounds on
the revenues of a deviating firm. These bounds are determined solely by individual rationality
considerations, taking into account the fact that equilibrium contracts offered by other firms are
always available to consumers. Therefore, we only need a representation of a mechanism that allows
us to compute consumers’ utility and payment flows.

Moreover, it is technically convenient to analyze a larger set of deviations than would be feasible
for a firm operating in the environment described in the main text; in particular, we assume that
(i) the deviating firm knows the initial quality of its newly-produced car, and (ii) the firm can
ascertain the type of any consumer it transacts with. Since the firm can commit to the contracts
it offers, having access to such information can only have a positive effect on revenues; therefore,
our upper bound will be valid a fortiori when all informational constraints are taken into account.

We first specify under what circumstances a car may be offered via the mechanism; we do so by
indicating a set of initial quality histories. The interpretation is that the consumer who enters the
mechanism does not necessarily know the previous history of the car, but knows that it belongs to
the specified initial set. It is up to the deviating firm to decide how much to reveal to consumers.

Second, we must be able to establish when the car exits the mechanism—either because it dies,
or because it is returned to the firm. A specific mechanism will prescribe that certain actions
be taken (e.g. the consumer is supposed to keep the car for 3 periods, then return it if the car
has depreciated at least once, and otherwise keep it for 2 more periods). These prescriptions and
actions determine a set of final quality histories; our minimalistic description of a deviation only
requires the specification of the latter.

Third, we define revenues. Again, a specific mechanism will prescribe that certain transfers be
effected, possibly contingent on the actions taken by the consumer (e.g. the consumer pays a price
p upon entering the mechanism; then, if she keeps the car for more than 3 periods, she pays a rental
price r for each additional period.) And, again, such specifics are irrelevant for our purposes; we
only define a revenue function that indicates, for every continuation history that is consistent with
some initial history and leads to a final history, the transfer effected by the consumer to the firm.

Finally, we specify a set of target consumer types that are allowed to enter the mechanism.
We need not describe the specifics of the mechanism that result in only certain types entering the
mechanism; as noted above, for the purposes of the present analysis, we simply assume that firms
can decide whether or not to transact with her.

Definition 1 A (reduced-form) mechanism is a tuple M = (I, F, R,Θ), where:

• I, F ⊂ Q and both sets are nonempty.

• If (q0, ..., qJ) ∈ F , then there exists j0 < J such that (q0, ..., qj0) ∈ I;
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• If (q0, ..., qj0) ∈ I, then there exist J > j0 and {qj0+1, ..., qJ} ∈ QJ−(j0+1) such that
(q0, ..., qj0 , qj0+1, ..., qJ) ∈ F ;

• If (q0, ..., qj0) ∈ I, then there does not exist j1 > 0 and {qj0+1, ..., qj1} ∈ Qj1−(j0+1) such that
(q0, ..., qj0 , qj0+1, ..., qj1) ∈ I.

Now define the set of continuation histories

H =
{
(qj0 , ..., qJ) ∈ QJ−j0+1 : (q0, ..., qj0 , qj0+1, ..., qJ) ∈ F for some (q0, ..., qj0) ∈ I

}
• If (qj0 , ..., qJ) ∈ H, then there is no {qJ+1, ..., qK} ∈ QK−J such that (qj0 , ..., qJ , qJ+1, ..., qK) ∈

H.

• R : H → R

• Θ ⊂ [θ, θ].

Suppose that, in period j0, a consumer enters the mechanism and receives a car characterized
by the initial quality history (q0, ..., qj0) ∈ I. The consumer does not observe the entire history;
however, as soon as she receives the car, she learns qj0 . She then keeps the car until its realized
partial history is one of the elements of the set F—say, (q0, ..., qj0 , qj0+1, ..., qJ). The consumer then
returns the car at the end of period J , and her total payments to the firm from period j0 through
time J are given by eρ∆(J−j0)R(qj0 , ..., qJ).25 That is, R(qj0 , ..., qJ) is the discounted value of the
transfer at the beginning of period j0.

The last restriction on initial histories rules out the possibility that both a history and one of
its subhistories be elements of I. For instance, the set {(0, 0), (0, 0, 1)} violates this restriction. The
intuition is that, if (0, 0) is an initial history, then the consumer enters the mechanism in period 2,
so (0, 0, 1) could not also be an initial history.

The restriction on continuation histories is a definiteness requirement: the consumer must be
able to tell whether a final history has obtained based on what she observes. If (qj0 , ..., qJ) and
(qj0 , ..., qJ , qJ+1, ..., qK) were both possible continuation histories, the consumer would not be able
to decide whether or not to exit in period J . Thus, we eliminate this possibility.

For example, under simple depreciation, the equilibrium mechanism for vintage-1 cars is defined
as follows: I consists of all partial histories (q0, ..., qj0) such that qj0 = q1 and qj = q0 for all j < j0;
F contains all histories (q0, ..., qJ) such that qJ = q2 and qj > q2 for j < J ; H is a set containing
all partial histories of the form (q1, ..., q1, q2) (any number of repetitions of q1) and R(qj0 , ..., qJ)
equals

∑J−1
j=j0

1−e−ρ∆

ρ r1e
−ρ∆(j−j0) = 1−e−ρ∆[(J−1)−j0]

ρ r∗1.

25If (qj0 , ..., qJ) is a feasible intermediate partial history, then in particular qj0 is one of the
possible initial qualities of the car, i.e. (q0, ..., qj0) ∈ I. In other words, the very first observation
the consumer makes is the initial quality of the car (which was realized in period j0 − 1).

Also note that, as a consequence of the definition, intermediate partial histories have length at
least 2: they contain the initial quality of the car, and the quality resulting from the realization of
the depreciation process at the end of the first period of the mechanism. Thus, initial histories can
never be complete histories.
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We emphasize that this is not a complete description of a mechanism and/or of the consumer’s
optimizing behavior conditional upon entering the mechanism; it is merely a reduced-form repre-
sentation of those elements that are essential to the analysis.

The initial quality distribution (qn, χn : n = 0, . . . , N +1) and depreciation probabilities γn,m∆
determine a probability distribution Pr[·] over the set of complete histories Q̄. Certain derived
probabilities will now be obtained. First, for any partial history (q0, ..., qj),

Pr[(q0, ..., qj)] = Pr[{(q̄0, ..., q̄J) ∈ Q̄ : ∀j′ = 0, ..., j, q̄j′ = qj′}].

It also makes sense to define conditional probabilities of the following type:

Pr[(qj0+1, ..., qj)|(q0, ..., qj0)] =
Pr[(q0, ..., qj0 , qj0+1, ..., qj)]

Pr[(q0, ..., qj)]
.

Finally, fix a mechanism M = (I, F, R,Θ). We are interested in the conditional probability of
reaching a mechanism by way of a specific initial history (q0, ..., qj0) ∈ I, given that the mechanism
is reached in period j0. Assuming throughout there are histories of such length in I, this probability
can be computed as follows:

Pr[(q0, ..., qj0)|I, j0] =
Pr[(q0, ..., qj0)]

Pr[{(q̂0, ..., q̂j0) ∈ I}]

A collection of mechanisms that constitute a deviation must be internally consistent. To mo-
tivate, consider the following two mechanisms: M0 is such that I0 = {(q0)}, and the consumer is
supposed to keep the car for exactly 3 periods, then return it to the firm regardless of the realization
of the depreciation process; M1 is such that I1 = {(q0, q1, q2)}, and the consumer keeps the car
until it dies. The pair (M0,M1) is not a well-defined deviation, because it does not specify what
to do if the car does not depreciate each period. This motivates the following definition.

Definition 2 A menu is a collection M of (reduced-form) mechanisms such that, for every partial
history (q0, . . . , qJ), there is a unique mechanism M = (I, F, R,Θ) ∈ M and period j0 ≤ J such
that

1. (q0, . . . , qj0) ∈ I;

2. for some J ′ > J and (qJ+1, . . . , qJ ′) ∈ QJ ′−(J+1), (q0, . . . , qJ , qJ+1, . . . , qJ ′) ∈ F .

That is: at any point in the course of the car’s quality history, it is always clear which mechanism
must be used (or is being used). As noted above, we allow for menus that distinguish between
different initial qualities of the deviator’s car (more precisely, between histories that differ in their
period-zero component, which corresponds to the initial quality of a new car).

Throughout the remainder of this proof, let V e(θ) denote the expected payoff to type θ if she
uses the putative equilibrium rental contracts and follows the appropriate policy for her; under
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simple depreciation, for θ ∈ [θ∗n, θ∗n−1], V e(θ) = qnθ−r∗n
ρ ; under general depreciation, θ ∈ [θn, θn−1],

V e(θ) = Vn,{n}(θ, ∅). For the sake of notational uniformity, we denote cutoff types for the simple
depreciation model by θn, etc, suppressing stars.

Suppose that the deviating firm offers a menu M, and consider an arbitrary mechanism M =
(I, F, R,Θ) ∈M; the firm’s expected revenues from M , if a consumer enters it in period j0, can be
expressed as follows:

RM,j0 =
∑

(q0,...,qj0 )∈I

Pr[(q0, ..., qj0)|I, j0]

×
∑

(qj0+1,...,qj):
(q0,...,qj0 ,qj0+1,...,qj)∈F

Pr[(qj0+1, ..., qj)|(q0, ..., qj0)]R(qj0 , ..., qj).

Suppose that a consumer θ ∈ [θn, θn−1] is targeted by mechanism M , so θ ∈ Θ. Individual rational-
ity then determines an upper bound on her willingness to pay for M in period j0. Specifically, let
V (θ) denote the value from type θ’s best strategy not involving participation in M when she does
not have a car; note that this strategy may prescribe participating (at a later date) in some other
mechanism offered by the deviator—i.e. it is not necessarily confined to the putative equilibrium
rental contracts. Hence, in general, V (θ) ≥ V e(θ). In any case, in period j0, type θ only accepts to
participate in the mechanism M if her expected payment does not exceed the difference between
(i) the consumption value of entering M in period j0, then following her best continuation policy
when the mechanism terminates, and (ii) the value of adopting her best continuation policy at j0.
This determines the following upper bound on expected revenues from type θ to the deviator:

R̄M,j0(θ) = −V (θ) +
∑

(q0,...,qj0 )∈I

Pr[(q0, ..., qj0)|I, j0]
∑

(qj0+1,...,qj):
(q0,...,qj0 ,qj0+1,...,qj)∈F

Pr[(qj0+1, ..., qj)|(q0, ..., qj0)]

×

 j−1∑
k=j0

e−ρ∆(k−j0) 1− e−ρ∆

ρ
qkθ + e−ρ∆jV (θ)


=

∑
(q0,...,qj0 )∈I

Pr[(q0, ..., qj0)|I, j0]
∑

(qj0+1,...,qj):
(q0,...,qj0 ,qj0+1,...,qj)∈F

Pr[(qj0+1, ..., qj)|(q0, ..., qj0)]

×

 j−1∑
k=j0

e−ρ∆(k−j0) 1− e−ρ∆

ρ
qkθ − (1− e−ρ∆j)V (θ)

 . (25)

We now construct a new menu M′ that still satisfies each target consumer’s individual ratio-
nality constraint, and yields at least as much revenues as M to the deviating firm. The new menu
consists of one-period “rental” contracts, targeted to a single consumer type, wherein the firm fully
discloses the history of the car up to the current period; each mechanism in the original menu is
replaced by a collection of such one-period rental contracts, and payments are defined so as to leave
the target consumer indifferent between taking up the contract (for one period), then reverting to
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her designated putative equilibrium rental contract, and choosing the latter right away. This im-
plies that any policy involving her designated putative equilibrium contract, as well as any contract
made available to her by the deviator, yields exactly the same expected payoff, so the new menu
consists of individually rational mechanisms.

Formally, consider an arbitrary M = (I, F, R,Θ) ∈ M; for every θ ∈ Θ and partial history
(q0, . . . , qj0 , . . . , qj) such that (i) (q0, . . . , qj0) ∈ I and (ii) for some (qj+1, . . . , qJ) ∈ QJ−(j+1),
(q0, . . . , qj , . . . , qJ) ∈ F , define a mechanism M(θ, q0, . . . , qj) with (q0, . . . , qj) as unique initial
history,

{(q0, . . . , qj , qj+1) : Pr[(q0, . . . , qj , qj+1)|(q0, . . . , qj)] > 0}

as set of final histories, θ as unique target type, and

Rθ(qj , qj+1) =
1− e−ρ∆

ρ
qjθ − (1− e−ρ∆)V e(θ) (26)

as revenue function. It is clear that the collection of mechanisms thus obtained is a menu; note
that, in particular, this menu prescribes different contracts for a newly produced car, depending on
its initial quality.

To verify individual rationality, observe that, by construction, if a consumer of type θ enters
the mechanism M(θ, q0, . . . , qj0) [which can happen only in period j0, following the partial history
(q0, . . . , qj0) of the car offered by the deviator], her per-period payoff is (1−e−ρ∆)V e(θ). Hence, her
per-period payoff from any mechanism offered by the deviator is the same, and of course it coincides
with the expected per-period payoff from her designated putative equilibrium rental contracts.

We now verify that the deviator does not lose by offering the menu M′ in lieu of M. Consider
any mechanism M = (I, F, R,Θ) ∈ M, any initial history (q0, . . . , qj0) ∈ I, any final history
(q0, . . . , qj0 , qj0+1, . . . , qj) ∈ F consistent with (q0, . . . , qj0), and any type θ. Under the menu M′,
the firm receives

j−1∑
k=j0

e−ρ∆(k−j0)Rθ(qk, qk+1)

=
j−1∑
k=j0

e−ρ∆(k−j0)

[
1− e−ρ∆

ρ
qkθ − (1− e−ρ∆)V e(θ)

]

=
j−1∑
k=j0

e−ρ∆(k−j0) 1− e−ρ∆

ρ
qkθ − (1− e−ρ∆)V e(θ)

j−1∑
k=j0

e−ρ∆(k−j0)

=
j−1∑
k=j0

e−ρ∆(k−j0) 1− e−ρ∆

ρ
qkθ − (1− e−ρ∆(j−j0))V e(θ)

Notice that this quantity appears in the last line of equation (25); hence, taking conditional ex-
pectations over all histories (q0, . . . , qj0 , qj0+1, . . . , qj) ∈ F consistent with (q0, . . . , qj0), and then
over all (q0, . . . , qj0) ∈ I, yields precisely the upper bound R̄M,j0(θ) on revenues accruing to the
deviating firm from mechanism M if it transacts with type θ beginning in period j0. Since this is

35



true for all target types and all mechanisms, the new menu M′ yields at least as much revenues as
the initial one.

Recall that, in the case of simple depreciation, for θ ∈ [θn, θn−1], V e(θ) = qnθ−rn

ρ . In the
general depreciation case, Lemma 2 shows that, for every n = 0, . . . , N , V e(θ) = Vn,{n}(θ, ∅) =
(1− wn)En(q|q≤qn)θ−rn

ρ + wn
qnθ−rn

ρ ; write this as q̃nθ−rn

ρ , where

q̃n = (1− wn)En(q|q ≤ qn) + wnqn, n = 0, . . . , N .

It is then possible to rewrite equation (22), which determines the putative equilibrium rental prices
r0, . . . , rN , as follows: q̃NθN − rN = 0, q̃nθn − rn = q̃n+1θn − rn+1 for n = 0, . . . , N − 1. Notice
that this is analogous to equation (6), except that the “experimentation-corrected” quantities q̃n

are used in lieu of the actual ones (note however that q̃N = qN ). In other words, the simple
depreciation case corresponds to setting wn = 1 independently of ∆.

For n < N , rn = rn+1 + θn(q̃n − q̃n+1), and hence

rn = q̃NθN +
N−1∑
m=n

θm(q̃m − q̃m+1). (27)

Considering θ ∈ [θn, θn−1] and substituting for V e(θ) in equation (26) then yields

Rθ(qj , qj+1) =
1− e−ρ∆

ρ
qjθ − (1− e−ρ∆)

q̃nθ − rn

ρ
=

1− e−ρ∆

ρ

[
(qj − q̃n)θ + rn

]
.

Assume for concreteness that qj = q`, and rewrite the above as

Rθ(qj , qj+1) =
1− e−ρ∆

ρ
[(q̃` − q̃n)θ + rn] +

1− e−ρ∆

ρ
(q` − q̃`)θ.

We claim first that (q̃` − q̃n)θ + rn ≤ r`. Suppose first that ` ≤ n: from equation (27),

r` − rn =
n−1∑
m=`

θm(q̃m − q̃m+1) ≥ θ
n−1∑
m=`

(q̃m − q̃m+1) = (q̃` − q̃n)θ,

because, for m = `, . . . , n− 1, θm ≥ θn−1 ≥ θ ∈ [θn, θn−1]. If instead ` > n,

rn − r` =
`−1∑
m=n

θm(q̃m − q̃m+1) ≤ θ

`−1∑
m=n

(q̃m − q̃m+1) = (q̃n − q̃`)θ,

because, for m = n, . . . , `− 1, θm ≤ θn ≤ θ ∈ [θn, θn−1]. Therefore, if qj = q`,

Rθ(qj , qj+1) ≤ 1− e−ρ∆

ρ
r` +

1− e−ρ∆

ρ
(q` − q̃`)θ ≤

1− e−ρ∆

ρ
r` +

1− e−ρ∆

ρ
(q` − q̃`)θ̄.
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Therefore, the menu M′ (hence, the original menu M) cannot improve upon the menu consisting
of the putative equilibrium rental contracts by more than 1−e−ρ∆

ρ maxn(qn− q̃n)θ̄ per period. Under
simple depreciation, q̃n = qn for all n, which concludes the proof of Theorem 3.

To complete the proof of Theorem 5, note that the gains from deviating from the putative
equilibrium rental contracts cannot exceed the maximum per-period gain times the expected lifetime
of the car (i.e. the expected number of periods until the car dies). For every n = 0, . . . , N ,
the number of periods until a car of quality qn depreciates is a geometric random variable with
parameter Gn,n+1∆, so the expected number of periods until depreciation is 1

Gn,n+1∆ (recall that
a car depreciates at the end of the period, so if depreciation occurs in the first time period, this
means that the car has remained at quality level qn for one period). We can then argue inductively
as follows. Let Ln be the expected lifetime (in periods) of a car of quality qn, where n = N + 1
signifies death. Then LN+1 = 0 and

Ln =
1

Gn,n+1∆
+

N+1∑
m=n+1

γn,m

Gn,n+1
Lm.

Thus, if the deviating firm has a car of quality qn, she cannot improve upon the putative equilibrium
menu by more than 1−e−ρ∆

ρ max`(q` − q̃`)θ̄ · Ln, where again we let n = N + 1 signify that the car

has already died. We argue that, for all n, 1−e−ρ∆

ρ max`(q` − q̃`)θ̄ · Ln → 0 as ∆ → 0. This is
trivially true for n = N + 1. Thus, assume it is true for n + 1. Then

lim
∆→0

1− e−ρ∆

ρ
max

`
(q` − q̃`)θ̄ · Ln

= lim
∆→0

[
1− e−ρ∆

ρ
max

`
(q` − q̃`)θ̄ ·

1
Gn,n+1∆

+
N+1∑

m=n+1

γn,m

Gn,n+1

1− e−ρ∆

ρ
max

`
(q` − q̃`)θ̄ · Lm

]

= lim
∆→0

1− e−ρ∆

ρGn,n+1∆
max

`
(q` − q̃`)θ̄

= lim
∆→0

1− e−ρ∆

ρGn,n+1∆
· lim
∆→0

max
`

(q` − q̃`)θ̄ =
1

Gn,n+1
· lim
∆→0

max
`

(q` − q̃`)θ̄ = 0,

because q̃` → q` for all ` as ∆ → 0. This proves Theorem 5.
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