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ABSTRACT

This paper considers the profit maximization problem of a firm that must make sunk investments

in long-lived assets to produce output.  It is shown that if per period accounting income is

calculated using a simple and natural allocation rule for investment called the relative

replacement cost (RRC) rule, that, in a broad range of plausible circumstances, the firm can

choose the fully optimal sequence of investments over time simply by choosing a level of

investment each period to maximize next period’s accounting income.  Furthermore, in a model

where shareholders delegate the investment decision to a better-informed manager, it is shown

that if accounting income based on the RRC allocation rule is used as a performance measure for

the manager, robust incentives are created for the manager to choose the profit maximizing

sequence of investments regardless of the manager’s own personal discount rate or other aspects

of the manager’s personal preferences.
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INTRODUCTION

In a variety of industries, firms must make sunk investments in long-lived assets to

produce output. Calculation of profit maximizing investment levels and evaluation of the firm’s

performance in such a situation is inherently complicated because of the need to consider

implications for cash flows over multiple future periods.  One technique that firms routinely use

to create simplified single period “snapshots” of their performance, is to calculate per-period

accounting income using accounting measures of cost that allocate the costs of purchasing long-

lived assets over the periods that the assets will be used. Firms use these single-period snapshots

of performance both to directly guide their investment decisions and to evaluate the performance

of managers who make investment decisions. Given their widespread use to both directly and

indirectly guide investment decisions, it is perhaps surprising that there has been almost no

formal analysis in the economics, finance, or accounting literature that attempts to investigate

whether there is any basis for these accounting practices and, if so, how the choice of an

allocation rule ought to be affected by factors such as the pattern of depreciation of the

underlying asset, the firm’s discount rate, the rate at which asset prices are changing over time,

and the manager’s own rate of time preference. This paper provides a theory which addresses

these questions.  It shows that, in a broad range of plausible circumstances, a natural and simple

allocation rule, which will be called the relative replacement cost (RRC) rule, can be used both to

simplify calculation of the optimal level of investment and to create robust incentives for

managers to choose this level of investment when the decision is delegated to them. 

In particular, two major results are proven.  First, it is shown that, when accounting

income is calculated using the RRC allocation rule, the firm can choose the fully optimal
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sequence of investments simply by choosing a level of investment each period to maximize next

period’s accounting income.  Second, in a model where shareholders delegate the investment

decision to a better informed manager, it is shown that if shareholders base the manager’s wage

each period on current and past period’s accounting income calculated using the RRC rule, that

the manager will have the incentive to choose the fully optimal sequence of investments so long

as each period’s wage is weakly increasing in current and past period’s accounting income.  

Furthermore, this result holds regardless of the manager’s own personal discount rate or other

aspects of the manager’s personal preferences. Therefore, the investment incentive problem is

solved is a robust way and the firm is left with considerable degrees of freedom to address any

other incentive problems that may exist, such as providing incentives for the manager to exert

effort each period, by choosing the precise functional form of the wage function each period. 

In the formal model of this paper, it is assumed that assets have a known but arbitrary

depreciation pattern and that the purchase price of new assets changes at a known constant rate

over time. The RRC allocation rule is defined to be the unique allocation rule that satisfies the

two properties that: (i) the cost of purchasing an asset is allocated across periods of its lifetime in

proportion to the relative cost of replacing the surviving amount of the asset with new assets; and 

(ii) the present discounted value of the cost allocations using the firm’s discount rate is equal to

the initial purchase price of the asset.  

Property (i) can be interpreted as a version of the “matching principal” from accrual

accounting that states that investment costs should be allocated across periods so as to match

costs with benefits where the “benefit” that an asset contributes to any period is interpreted to be

the avoided cost of purchasing new capacity in that period.  Property (ii) can be viewed as stating



See the roundtable discussion in the Continental Journal of Applied Corporate Finance1

(Stern and Stewart 1994) and the associated articles (Sheehan 1994, Stewart 1994). 

Most of the literature on the optimal investment problem under certainty restricts itself to2

considering the case of exponential depreciation, where a constant share of the capital stock is
assumed to depreciate each year regardless of the age profile of the capital stock.  See Jorgensen
(1963) for an early analysis of this case and see Abel(1990) for a more extensive discussion of
the optimal investment literature and further references.  The assumption of exponential
depreciation dramatically simplifies the analysis because the age profile of the existing capital
stock can be ignored. However, for the purposes of this paper’s study of cost allocation rules, it is
important to allow for general patterns of depreciation because one of the most interesting
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that the investment should be fully allocated taking the time value of money into account.  Most

traditional accounting systems ignore the time value of money when allocating investment costs

over time.  The term “residual income” is generally used in the accounting literature to describe

income measures that are calculated using an allocation rule for investment that takes the time

value of money into account (Horngren and Foster 1987, pp. 873-74).   Recently there has been

an explosion of applied interest in using residual income both to directly guide capital budgeting

decisions and as a performance measure for managers who make capital budgeting decisions. 

Management consulting companies have renamed this income measure “economic value added”

(EVA) and very successfully marketed it as an important new technique for maximizing firm

value.  Fortune, for example, has run a cover story on EVA, extolling its virtues and listing a

long string of major companies that have adopted it (Tully 1993).    This paper provides an1

explicit formal model which justifies the use of residual income in the capital budgeting process

and also specifically identifies the particular allocation rule that should be used to calculate

residual income and how it depends on the depreciation pattern of the underlying assets             .

This paper’s results are based on Arrow’s (1964) analysis of the optimal investment

problem under certainty for general patterns of depreciation.    Arrow shows that for any given2



questions to investigate regarding cost allocation rules is how the nature of the appropriate cost
allocation rule should change as the depreciation pattern of the underlying assets changes.
Obviously the pattern of depreciation must be a factor which can be exogenously varied in order
to investigate this question. Furthermore, the case of exponential depreciation is not a particularly
natural case to consider for most real applications.  In most real applications a much more natural
case to consider is the so-called case of one-hoss shay depreciation, where assets are assumed to
have finite lifetimes and to remain equally productive over their lifetimes. This paper’s analysis
of the general case, will, in particular, apply to the case of one-hoss shay depreciation.

This term was coined by Jorgensen(1963).3
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depreciation pattern of assets, a vector of “user costs”  can be calculated with the property that,3

under a broad range of plausible circumstances,  the seemingly complex optimal investment

problem collapses into a series of additively separable single period problems, where the firm can

be viewed as choosing the amount of capital to “rent” each period with rental rates given by the

vector of user costs.  This paper’s basic insight is that a simple cost allocation rule (namely the

RRC rule) can be defined with the property that the cost it allocates to any period of an asset’s

lifetime is equal to the surviving amount of the asset multiplied by that period’s user cost.  The

desirable characteristics of the RRC allocation rule are then shown to follow from this property.

Intuitively, Arrow’s results establish that, for purposes of calculating the optimal sequence of

investments, a planner can assume that the true marginal cost of providing an additional unit of

capital in any period is equal to that period’s user cost, and the RRC allocation rule provides

correct information to guide  investment decisions by reflecting this fact.   

As part of the proof that the RRC rule has the property that the cost it allocates to any

period of an asset’s lifetime is equal to the surviving amount of the asset multiplied by that

period’s user cost, this paper derives a different and much simpler formula for calculating user

cost than the formula derived by Arrow.  In particular, Arrow’s formula for calculating user cost



 For the special case of exponential depreciation, the formula determining replacement4

rates is very simple - a constant share of the asset is replaced each period - and Arrow observes
that his formula for user cost collapses into the simple formula directly derived by Jorgensen
(1963) for this case.  The incremental contribution of this paper is to show that a similarly simple
formula to calculate user costs exists for general depreciation patterns, even when there is no
simple formula to calculate the vector of replacement rates. 
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depends on the vector of so-called “replacement rates” from renewal theory, which describe the

series of replacements of an original asset as it depreciates, replacements of the replacements as

they in turn depreciate, etc. that would be required to generate a permanent increase in the stock

of capital of one unit.  For the case of general depreciation patterns, the formula for the vector of

replacement rates is complicated and difficult to calculate and is defined by an infinite series of

recursively defined functions. This paper shows that it is possible to derive an alternate and much

simpler formula for user cost which does NOT depend on replacement rates.    In particular, it4

shows that a very simple formula exists to calculate hypothetical “perfectly competitive” rental

prices for assets, and then proves that these hypothetical perfectly competitive rental prices must

be equal to user costs.  The fact that user cost can be calculated by a very simple formula that

does not depend on replacement rates is an interesting result independent of its application to

cost allocation rules. Furthermore, the fact that  user costs can be interpreted as hypothetical

perfectly competitive rental prices provides some extra economic intuition to explain their role. 

There are two recent groups of papers in the literature that have investigated the question

of whether or not allocation rules for investment can be identified such that the resulting

measures of per period accounting income can play a useful role in the capital budgeting process. 

One approach is due to Anctil (1996) and Anctil, Jordan and Mukherji (1998).  They assume that

depreciation is exponential, that there are adjustment costs to changing the size of the capital



See Rogerson (1992) for an earlier, related, result.  Papers that have generalized5

Rogerson’s(1997) result and applied it in a number of different settings include Baldenius and
Reichelstein (2005), Baldenius and Ziv (2003), Dutta and Reichelstein (1999, 2002), and
Reichelstein (1997, 2000).
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stock, and that the environment is completely stationary so that a stationary equilibrium level of

capital stock exists.  The papers show that the time path of capital stock when fully optimal

investments are chosen and the time path of capital stock when the firm simply attempts each

period to maximize that period’s residual income both converge to the stationary capital stock

and thus converge to one another.  This means that the policy of attempting to maximize residual

income on a period-by-period basis yields a policy that converges to the optimal policy. While

this is an interesting result, it only shows convergence to the optimal policy in the limit and only

applies to the case of a stationary environment with exponential depreciation.

The other approach is due to Rogerson (1997).   It derives similar sorts of  results to the5

results of this paper for the simpler case where it is assumed that the firm engages in a one-time

investment at the beginning of the first period, instead of investing in every period, as in this

paper. An allocation rule called the relative benefits (RB) rule is shown to have the same sorts of

desirable properties in the model of Rogerson(1997) that the RRC allocation rule is shown to

have in the model of this paper.  While the allocation rules identified by both papers can be

interpreted as allocating investment costs across periods in proportion to the relative benefit that

the investment creates across periods, the relevant notion of “benefit” turns out to be very

different in each case.  In particular, in the one-time investment model of Rogerson(1997), the

optimal allocation rule is determined solely by the demand-side factor of how the level of

demand varies across periods.  In contrast, the optimal allocation rule in the model of this paper



See for example, Demski(1981), Thomas(1978) and Young(1985).6
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is determined solely by supply side factor of how investments made in different periods can

substitute for one another in creating capital stock to be used in a given period.  In particular the

optimal allocation rule does not depend on how demand varies over time. Therefore the

economic factors that determine the optimal allocation rule are quite different depending upon

whether investments in different periods substitute for one another or not. 

The results of this paper are also related  to the larger economics and accounting literature

that studies the allocation of joint costs of any sort, that are not necessarily inter-temporal in

nature.   This paper’s theory of cost allocation exhibits a striking difference from most of these6

existing theories, which stems from a fundamental difference in the manner in which joint costs

affect the nature of the underlying cost function.  In the model of this paper, the firm can be

thought of as a multi-product firm producing joint products, where the level of capital stock

available in each period is a separate product.  The function giving the present discounted cost of

providing any vector of capital stocks can then be viewed as the firm’s cost function.  From this

perspective, the essential content of the user cost result is that the firm’s cost function is linear

and additively separable in each period’s capital stock over the relevant range of capital stocks. 

In contrast, the literature on allocation of joint costs typically considers models where the

presence of joint costs implies that the resulting cost function is not additively separable.  The

explanation for this difference, is that the existing literature typically considers the case where

there is a single joint cost that applies to multiple products.  In such a model, the only way that

the firm can increase the output of any product is by increasing its investment in the single joint

cost, and this results in increased output of all of the products.  However in the model of this
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paper, there are multiple overlapping joint costs.  Namely, if assets have a lifetime of T years,

then investment in period 0 is a joint cost of producing stocks of capital in periods 1 through T,

investment in period 1 is a joint cost of producing stocks of capital in periods 2 through T, etc.  

In this case, it is possible to adjust the entire vector of planned investments so as to increase

output in the next period while holding output in all subsequent periods constant, and the

marginal cost of increasing output in the next period is simply equal to the present discounted

value of this entire series of adjustments.  Given the linear cost of purchasing assets, the result of

this property is that the underlying cost function turns out to be linear and additively separable in

each period’s capital stock over the relevant range of capital stocks, even though there are clearly

joint costs of production.

Most existing theories of cost allocation begin with models where the presence of joint

costs implies that it is impossible to both fully allocate costs and set the unit accounting cost of

each product equal to marginal cost.  This means that theories of (full) cost allocation necessarily

involve departures of unit accounting cost from marginal cost.   In contrast, this paper’s theory

considers a model where the underlying cost function turns out to be linear and additively

separable in each product even though there are clearly joint costs of production.  Therefore

setting the unit accounting cost of each product equal to marginal cost will fully allocate costs. 

However, in this paper’s model, the value of marginal cost in any given period is not readily

apparent because it is equal to the present discounted value of a potentially very complicated

series of adjustments in future investments.  The result of this paper is essentially that a simple

cost allocation rule can be used to calculate the true value of the marginal cost.

In a companion  paper to this paper (Rogerson 2007), it is shown that the approach of this
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paper can also be applied to the issue of calculating welfare maximizing prices for a regulated

firm.  In particular it is shown that when there are constant returns to scale within each period

(i.e., when output in each period is proportional to the capital stock in each period), that the

accounting cost of output calculated using the RRC allocation rule is equal to long run marginal

cost.  Therefore prices set equal to accounting cost calculated using the RRC allocation rule are

first best in that they both induce efficient consumption decisions and allow the firm to break

even.

 The paper is organized as follows.  Section I presents the model and section II presents

the results on user cost.  Section III introduces notation to define cost allocation rules and shows

that the RRC allocation rule has the property that it sets the accounting cost of using a unit of

capital in any period of its lifetime equal to Arrow’s user cost of capital in that period. Section IV

shows that the optimal level of investment in any period can be calculated by maximizing next

period’s accounting income when accounting income is calculated using the RRC rule.  Section

V considers an  extension to the basic model in which it is assumed that shareholders delegate

the investment decision to a better-informed manager, and shows that robust incentives for the

manager to choose the fully optimal sequence of investments can be created by using accounting

income based on the RRC allocation rule as a performance measure for the manager.  Section VI

briefly explains how the results generalize to the case where future asset prices do not change at a

constant rate.  Finally section VII draws a brief conclusion.  All proofs are contained in Appendix

A.  Appendix B describes and derives Arrow’s original formula for user cost that depends on

replacement rates and discusses its connection to the formula derived by this paper. 



It is possible to conduct the entire analysis in continuous time without any significant7

changes.  
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I.  THE MODEL 

Suppose that there are an infinite number of periods indexed by t 0 {0, 1, 2, . . .}where

tperiod 0 is the current period.   Let I  0 [0, 4) denote the number of assets that the firm purchases7

in period t 0 {0, 1, . . .}.  This will also be referred to as the level of investment in period t.  Let I

0 1= (I , I , . . . ) denote the entire vector of asset purchases.  

Assume that a certain fraction of the asset “depreciates” or becomes permanently

unavailable for further use in each period of its life. It will be convenient to use notation that

directly defines the share of the asset that survives, and is thus available for use in each period,

t rather than the share that depreciates.  Let s denote the share of an asset that survives until at

1   2least the t  period of the asset’s lifetime and let s = (s , s , . . ., ) denote the entire vector ofth

t 1 tsurvival shares.  It will be assumed that s 0 [0,1] for every t, s =1, and that s  is weakly

decreasing in t.  

Two natural and simple examples of depreciation patterns are the cases of exponential

depreciation and one-hoss shay depreciation. The case of exponential depreciation occurs when a

t constant share of the asset depreciates each period.  Formally, this means that  s is given by

t (1) s = ât-1

for some â 0 (0,1).  The case of one-hoss shay depreciation occurs when assets have a finite

lifetime of T years and remain equally productive over their entire lifetime.  Formally, this

tcorresponds to the case where s  is of the form



 i.e., an asset purchased during period 0 becomes available for use in period 1, etc. The8

analysis generalizes to allow for any lag length between the period when an asset is purchased
and the period in which is first becomes useful.  The assumption of a single period of lag
minimizes notational clutter.

Note that the above formulation does not exclude the possibility that the firm enters9

period 0 with existing assets that were purchased in earlier periods.  However, the capital stock

tvariable, K , is defined to only include assets purchased in period 0 or thereafter.  It could
therefore be thought of as the “incremental” capital stock created by the firm’s investment
decisions beginning in the current period. As will be seen, there will be no need in this paper to
formally introduce notation to describe the capital stock created by assets that the firm enters
period 0 with.  That is, the only notion of capital stock that it will be necessary to formally model
will be the “incremental” capital stock as defined by equation (3).  Therefore, for purposes of this
paper, unless otherwise indicated, the  terms “capital stock” and “incremental capital stock” will
be used as interchangeable synonyms.  In the occasional instance when it is useful to refer to
assets that the firm already owns at the beginning of period 0, these will be referred to as  “legacy
assets.” 
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1, t 0 {1, 2, . . ., T}

t(2) s  =  
0, otherwise

where T is a positive integer.

tAssume that an asset becomes available for use one period after it is purchased.    Let K8

denote the number of assets the firm has available for use in period t 0 {1, 2, . . } due to assets

purchased in period 0 or later.   This will also be referred to as the capital stock in period t.  Let9

1  2 t 0 t-1K = (K , K , . . . ) denote the entire vector of capital stocks.   Let ø (I , . . ., I ) denote the

function from R  to R giving the capital stock in period t resulting from investments in periods 0t

through t-1.  It is defined by

t

t 0 t-1 t-i i(3) ø (I , . . ., I )  = 3 I  s
i=1



12

 1 0  2 0 1Let ø(I) = (ø (I ) , ø (I , I ),  . . .) denote the function from R to R giving the entire vector of4 4 

capital stocks generated by an entire  vector of investments.   The function ø(I) will be called the

capital accumulation function.

t 0Note that the capital accumulation function is linear and that K  is determined only by I

t-1.  through I  A simple induction argument establishes that the capital accumulation function is

invertible and that the required level of investment in period t is determined as a linear function

1 t+1of K  through K .  For future reference, this will be stated as a lemma.

Lemma 1:

The inverse of the capital accumulation function exists.  Furthermore, for any t 0 {0, 1, . . . }, the

1 t+1 required level of investment in period t is determined as a linear function of K  through K .

Proof:

See Appendix A. QED

 t 1 t+1Let ö (K , . . ., K ) be the function from R to R giving the required level of investmentt+1 

1 t+1 0 1in period t necessary to generate the vector of capital stocks (K ,. . ., K )  and let ö(K) = (ö (K ),

1 1 2ö (K , K ), . . . ) be the entire inverse capital accumulation function.

t Let ä 0 (0,1) denote the firm’s discount rate.  Let z  denote the price of purchasing a new

t unit of the asset in period t.  Assume that  z is determined by

t 0(4) z  = á  zt

0 where z 0 (0, 4) and á 0 (0, 1/ä).  That is, the price of a new unit of the asset in period 0 is a



Section VI will describe the manner in which the results generalize to the case where10

asset prices do not change at a constant rate.
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known positive number and the price of purchasing a unit of the asset either stays constant over

time or changes at a known constant percentage rate.   The assumption that á < 1/ä guarantees10

that the firm does not find it profitable to “stockpile” assets ahead of time.  The present

discounted cost of any vector of investments is given by

4 

t t(5) 3z I ät

t=0

It will be convenient to view the firm as directly choosing a vector of capital stocks rather

than as directly choosing a vector of investments.  Define C(K) to be the function from R to R4 

giving the present discounted cost of generating any vector of capital stocks.  It is formally

defined by substituting the inverse capital accumulation function into (5) to yield

4 

t 1 t+1 t(6) C(K) = 3ö (K , . . ., K )z ät

t=0 

The function C(K ) will sometimes be referred to as the “cost function” of the firm.

To complete the description of the model, let B(K, t) be the function determining the

firm’s operating profit or “benefit” in period t 0 {1, 2, . . . } if it has the capital stock K 0 [0, 4). 

K KLet B (K, t) denote the marginal benefit function. It will be assumed, that for every t, B (K, t)

exists, is continuous, is strictly decreasing when it is strictly positive, and that it either converges



If there is no operating cost associated with letting capital stock sit idle for a period,11

Kthen B (K, t) will never be negative but will instead be equal to zero once the level of capital
stock is reached such that production and sale of further output would reduce operating profit.
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to zero or becomes negative for large enough values of K.   Let B(K) denote the present11

discounted value of the benefits created by the vector of capital stocks, K.

4 

t(7) B(K) = 3B(K , t)ät

t=1

The firm’s optimization problem is to choose a vector capital stocks to maximize the

present discounted value of its cash flows subject to the constraint that the levels of investment

required to generate this vector of capital stocks are all non-negative.

(8) maximize   B(K)  -   C(K)
      K

Subject to:

t 1 t(9)    ö (K , . . . , K )  $ 0 for t 0{0, 1, , . . . }

It will be necessary to assume that one additional condition with real economic content is

satisfied in order to guarantee that the non-negativity constraints on investment do not bind in the

above problem.  In particular a condition will be assumed to hold that is sufficient to guarantee

that the vector of capital stocks which is the unconstrained maximizer of (8) is weakly increasing

in t. It is, of course, clear that a vector of capital stocks that is weakly increasing in t will

automatically satisfy the non-negativity of investment constraints in (9). The condition that will
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be assumed to hold is that  the marginal benefit function is weakly increasing over time when

marginal benefit is calculated in “real” dollars using the cost of purchasing one new unit of the

asset as a numeraire.  This will be referred to as the monotonicity (M) condition since its role is

to guarantee monotonicity of the capital stock.  It is formally stated below.

The Monotonicy (M) Condition:

K[B (K, t)/á ] is weakly increasing in t for every K.t 

This condition is essentially a generalized version of the condition that marginal revenue is

weakly increasing over time and therefore we would generally expect to see it satisfied in

situations where demand is weakly increasing over time. For the remainder of this paper, it will

be assumed that the monotonicity condition is satisfied. 

II.  USER COSTS AND HYPOTHETICAL PERFECTLY COMPETITIVE RENTAL
PRICES

Recall that the present discounted cost to the firm of providing itself with a vector of

capital stocks, given that it must purchase its own assets, is given by the cost function, C(K),

defined by equation (6).  Inspection of equation (6) reveals that the present discounted cost is a

t 1 t+1linear function of the required investments in each period which are given by the ö (K , . . ., K )

t 1 t+1functions.  However, Lemma 1 has already established that the  ö (K , . . ., K ) functions are

linear in each period’s capital stock.  It therefore follows immediately that the entire cost function

C(K) is linear in each period’s capital stock and can therefore be written in the form 
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4 

t t(10) C(K) = 3c  K  ät

t=1

1 2for some vector of constants, c = (c , c , . . . ) 0 R .   Substitution of (7) and (10) into (8) then4

shows that firm’s objective function in its optimization problem becomes

4 

t t t(11) 3 ä [B(K , t) - c K ]t 

t=1

In particular, the objective function is the sum of a sequence of terms where the t term onlyth 

t depends on K and can be interpreted as the discounted profit the firm would earn in period t if it

t trented K units of capital stock for that period at a rental rate of c .   Therefore, so long as the non-

negativity constraints on investment given by (9) do not bind, the optimization problem collapses

into a series of very simple completely separate single period optimization problems where the

firm can view itself as being able to rent capital each period at rental rates given by the vector c. 

The method of solution is therefore to determine a formula for calculating the vector of constants

c and then to show that the monotonicity condition is sufficient to guarantee that the vector of

capital stocks that is the unconstrained maximizer of (11) automatically satisfies the non-

negativity of investment constraints given by (9).

1 2, The vector of constants c = (c , c . . . ) such that the cost function is given by (10) will be

called the vector of user costs.  Arrow(1964) determines a formula for calculating the vector of

user costs by directly calculating the coefficients of the inverse capital accumulation function and

then substituting the results into equation (6).  The  “problem” with this approach is that the



Arrow’s original formula is derived and compared to this paper’s formula in Appendix12

B. As already mentioned in the introduction, for the special case of exponential depreciation, the
formula determining replacement rates is very simple - a constant share of the asset is replaced
each period - and Arrow observes that his formula for user cost collapses into the simple formula
directly derived by Jorgensen (1963) for this case.  The incremental contribution of this paper is
to show that a similarly simple formula to calculate user costs exists for general depreciation
patterns, even when there is no simple formula to calculate the vector of replacement rates. 
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formulas for calculating the coefficients of the inverse capital accumulation function are quite

complex and difficult to work with, and that this complexity carries over to the ultimate formula

for the vector of user costs that is derived.  In particular, the resulting formula depends on the

vector of so-called “replacement rates” from renewal theory which describe the sequence of

replacements of an original asset as it depreciates, replacements of the replacements as they in

turn depreciate, etc. that would be required to permanently increase the capital stock by one unit. 

The replacement rates are determined by a relatively complex infinite series of recursively

defined equations.  This paper will show that an alternate approach can be used to derive a

different (but equivalent)  formula for the vector of user costs which is dramatically simpler and

which, in particular, does not depend on replacement rates.  12

More specifically, this paper will consider a hypothetical scenario where it is assumed

that a rental market for assets exists.  It will shown that an extremely simple formula exists to

calculate a vector of zero-profit, perfectly competitive rental prices for this hypothetical rental

market and that these hypothetical perfectly competitive rental prices must necessarily be equal

to the vector of user costs.  Thus, the very simple formula for calculating hypothetical perfectly

competitive rental prices provides an alternate (but equivalent) formula for calculating user costs.

The main use that this paper will make of the simple alternate formula for calculating

user costs will be to prove the result that the RRC allocation rule has the property that the cost it
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allocates to any period of an asset’s lifetime is equal to that period’s user cost multiplied by the

surviving amount of the asset.  However, the fact that user costs can be calculated by a very

simple formula that does not depend on replacement rates is an interesting result independent of

its application to cost allocation rules.  The assets involved in many real investment problems

obviously do not exhibit an exponential pattern of depreciation, and the alternate formula for user

costs provides a new simple method of characterizing the optimal investment path for such cases.

Furthermore, the fact that  user costs can be interpreted as hypothetical perfectly competitive

rental prices provides some extra economic intuition to explain their role. 

This section is organized as follows.  Subsection A defines hypothetical perfectly

competitive rental prices, determines the simple formula which can be used to calculate them,

and shows that these rental prices must be equal to user costs. Subsection B provides some extra

intuition for the result that the cost function is linear in each period’s capital stock by directly

calculating marginal cost for the case of one-hoss shay depreciation.  Finally subsection C

verifies that the monotonicty condition implies that the vector of capital stocks that maximizes

(8) satisfies the constraints in (9). 

A.  Perfectly Competitive Rental Prices

tLet c  denote the price of renting one unit of capital stock in period t and let 

1 2c = (c , c , . . . ) denote an entire vector of rental prices.  Suppose that a hypothetical supplier of

rental services can enter the market in any period by purchasing one unit of the asset and then

renting out the available capital stock over the asset’s life.  Then under the assumptions that

suppliers  incur no extra costs besides the cost of purchasing the asset, that they can rent the full



For the case of exponential depreciation defined by equation (2), k* = [1 - âáä]/áä.  For13

the case of one-hoss shay depreciation defined by equation (3),  k* = [1- áä] / [(äá) - (äá) ].T T+1
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remaining amount of the asset to a customer every period, and that their discount rate is equal to

ä, the zero profit condition that must be satisfied by a perfectly competitive equilibrium is

4 

t t+i i(12) z  = 3 c  s ä for every t 0 {0, 1, 2, . . .}i                                                                 

i=1

tLet c * denote the period t rental price given by 

t t(13) c * =  k* z

where the constant k* is defined by13

     4 

i(14) k* =   1/ [ 3 s  (äá) ] i

     i=1

1and let c* = (c *, . . . ) denote the entire vector of these values for rental prices.  It is

straightforward to verify that these rental prices satisfy the zero profit condition (12).  This will

be stated as Lemma 2.

Lemma 2:

The vector of rental prices c* satisfies

4 

t t+i i(15) z  = 3 c * s  ä for every t 0 {0, 1, 2, . . .} i                                                                 

i=1



It also follows from Proposition 1 that c* is the unique vector of rental costs that14

satisfies the zero profit condition, (12). The vector of user costs is, be definition, unique.  (i.e.
since the cost function C(K) is a well-defined function, it cannot simultaneously satisfy equation
(10) for two different vectors of constants).  Since Proposition 1 states that a vector of rental
costs satisfying the zero profit condition must be equal to the vector of user costs, it therefore
follows that there can be at most one vector of rental costs that satisfies the zero profit condition.
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Proof:

Straightforward algebra. QED

Proposition 1 now states the main result of this section, which is that a vector of rental

prices satisfies the zero profit condition if and only if it is the vector of user costs.

Proposition 1:

1 2A vector of rental prices c = (c , c , . . . ) satisfies the zero profit condition (12) if and only if the

cost function, as defined by equation (6),  satisfies condition (10).

Proof:

See Appendix A. QED

It now follows immediately from Lemma 2 and Proposition 1 that the vector of rental

costs c* defined by equations (13)-(14) is also the vector of user costs.  14

Corollary 1:

The vector of rental costs c* defined by equation (13)-(14) is the vector of user costs. 

That is, the cost function C(K) can be written as 



Arrow’s formula for k* in terms of the replacement rates is given by equation (B.11) in15

Appendix B, where the replacement rates are defined by (B.1)-(B.4).
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4 

t t(16) C(K) = 3c * K  ät

t=1

Proof:

As above. QED

The vector of rental costs c* will be interchangeably referred to as either the vector of

user costs or the vector of perfectly competitive rental prices.  According to equations (13)-(14),

the user cost/perfectly competitive rental price in any period is equal to the constant k*

multiplied by the cost of purchasing assets in that period.  A relatively simple formula directly

defined in terms of the depreciation pattern of the assets determines the constant k*. 15

B.  Directly Calculating the Marginal Cost of Increasing Capital Stock in a Single Period

 Since each asset represents a joint cost of producing stocks of capital across multiple

periods, it may seem counter-intuitive that the resulting cost function defined over vectors of

capital stocks is linear and additively separable in each period’s capital stock.  The explanation

for this result is that the case where a firm engages in ongoing investment in sunk assets creates

an unusual structure of “multiple overlapping joint costs” which essentially allows the firm to

separately control the capital stock in any given period by simultaneously making adjustments to

the entire vector of planned current and future investments.

For example, consider the case of one-hoss shay depreciation where each asset lasts with
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undiminished productivity for T years.  Then the firm can increase its capital stock in period 1 by

one unit while holding the capital stock in all other periods constant by implementing the

following series of adjustments to its investment plans. The firm must purchase an additional unit

of the asset in period 0 to increase the capital stock by one unit in period 1.  However, it will now

be able to reduce its asset purchases by one unit in period 1.  Now when period T arrives, the

extra asset that the firm purchased in period 0 will no longer be available in the next period, so

the firm will have to purchase an extra unit of the asset in period T to maintain its level of capital

stock at the previously planned level.  However, as before, it will now be able to reduce its asset

purchases by one  unit in period T+1.  This process continues indefinitely.  That is, the firm can

increase its capital stock in period 1 by exactly one unit and hold the capital stock in all other

periods constant by  shifting the purchase of one unit of the asset forward in time from period 1

to 0, T+1 to T , 2T+1 to 2T, etc.  The present discounted value of the cost of these adjustments

calculated in period 1 dollars is, by definition,  the marginal cost of increasing the capital stock

by one unit in period 1.  It is straightforward to directly calculate this value and show that it is 

1equal to k*z .  A similar calculation shows that the marginal cost of increasing the capital stock

tin any period t calculated in period t dollars is equal to k*z . 

Note that for the simple case of one-hoss shay depreciation, it is easy to directly calculate

the series of required incremental changes in investment and therefore directly calculate their

present discounted value which is equal to marginal cost.  However, for more complex patterns

of depreciation, the pattern of shifts in asset purchases over all future periods required to increase

the capital stock in the next  period by one unit while holding the capital stock in all future

periods constant can become very complicated and difficult to directly calculate.   Arrow’s



Since B(K, t) is only defined for non-negative values of K, the “unconstrained” problem16

still requires imposition of the constraint that each capital stock be non-negative. 
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original calculation of user costs is based on directly calculating the entire time series of shifts in

asset purchases and then calculating their present discounted value. Proposition 1 and Lemma 2

essentially show that there is a very simple formula which can be used to directly calculate the

present discounted value of the required shifts in asset purchases even when the formula for

calculating the entire series of shifts in assets purchases becomes very complicated.

C. The Solution to the Constrained Optimization Problem

1 2Let K* = (K *, K *, . . .) denote the unique vector of capital stocks that maximizes (8)

subject to no constraint.   It is the unique solution to the first order conditions16

K t t t K t t(17) {B (K , t) = c *   and K * $ 0 } or { B (K *, 0) < 0   and K * = 0 }

tThe monotonicity condition obviously implies that K * is weakly increasing in t which in turn

implies that K* satisfies the non-negativity on investment constraints given by (9).  Since K* is

the unconstrained maximum to (8) and K* satisfies (9), it is obviously the solution to the

constrained problem (8)-(9).  For future reference this will be stated as a lemma.

Lemma 3:

The vector of capital stocks K* is the unique solution to the optimization problem (8)-(9).

Proof:

As above. QED



24

III.  COST ALLOCATION RULES 

This section will introduce notation to define cost allocation rules, depreciation rules, and

accounting income.  It will also define the RRC allocation rule, and show that RRC allocation

rule has the property that the cost of purchasing an asset allocated to any period of the asset’s

lifetime is equal to the surviving amount of the asset multiplied by that period’s user cost.

A.  Allocation and Depreciation Rules

1 1 iDefine a depreciation rule to be a vector d = (d , d , . . . ) such that d  $0 for every i and

4 

i(18) 3d  = 1
i= 1

i where d is interpreted as the share of depreciation allocated to the i  period of the asset’s life. Letth

1 2D denote the set of all depreciation rules.  Define an allocation rule to be a vector a = (a , a , . . .)

i ithat satisfies a  $ 0 where a  is interpreted as the share of the asset’s purchase cost that is allocated

to the i  period of the asset’s life.    Let A denote the set of all allocation rules.  For any discountth

rate ( 0 [0, 4) an allocation rule will be said to be “complete given (” if the discounted sum of

the allocation shares using ( is equal to 1, i.e., if  

4 

i (19) 3a (  = 1i

i= 1

Let '(a) denote the unique value of ( such that a is complete with respect to (.

Firms generally think of themselves as directly choosing a depreciation rule and a

discount rate instead of as directly choosing an allocation rule.  The cost allocated to each period



See Rogerson (1992) for a fuller discussion of the relationship between depreciation and17

allocation rules and their properties. 
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is then calculated as the sum of the depreciation allocated to that period plus imputed interest on

the remaining (non-depreciated) book value of the asset.  Formally, for any depreciation rule, d,

and discount rate ( the corresponding allocation rule is given by

    4 

i i j (20) a  =     d  +     {(1- ()/(}  3d .
    j=i

It is straightforward to verify that the resulting allocation rule determined by (20)  is complete

given  (.  It is also straightforward to verify that for any a 0  A , there is a  unique (d, () 0 D x[0,

4) such that (20) maps (d, ()  into a.  It is defined by  ( = '(a) and 

4 4 

i j j(21) d  = 3 ( a      - 3 ( aj-i j-i-1

j=i+1 j=i+2

Therefore one can equivalently think of the firm as choosing either a depreciation rule and a

discount rate or as choosing an allocation rule. For the purposes of this paper, it will be more

convenient to view the firm as directly choosing an allocation rule.     17

B.  Accounting Cost and Accounting Income

The accounting cost of using assets in any period is by definition equal to the sum of the

t 1  tcosts allocated to that period because of investments in previous periods.  Let A (K , . . ., K , a )



The accounting cost in period t should also include whatever costs of legacy assets are18

also allocated to that period.  However, these are completely fixed costs and are thus irrelevant to
determining which vector of capital stocks maximizes accounting income in any given period.
Since this will be the only question regarding accounting income that will be investigated, these
legacy accounting costs can thus be ignored.
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denote the accounting cost in period t conditional on the firm’s choice of capital stocks up until

that point and the allocation rule it uses.  It is formally defined by

t

t 1  t t-i 1 t+1-i t-i i(22) A (K , . . ., K , a)      = 3N (K , . . ., K )z a  
i=1

The ith term of equation (22) is the accounting cost of using assets that are in the ith period of

t-i 1 t+1-itheir lifetime, which is equal to the number of such assets, N (K , . . ., K ), multiplied by the

t-ipurchase price of assets in that period, z , multiplied by the share of the purchase cost allocated

ito period t, a . The total accounting cost is the sum the accounting costs due to investment in all

t 1  tprevious periods.   Let Y (K , . . . , K , a) denote the accounting income in period t, which is18

equal to the operating profit in period t minus the accounting cost allocated to period t.

t 1 . . ., t t t 1 t(23) Y (K , K , a)   =    B(K , t)  -   A (K , . . . ,K , a). 

C.  The RRC Allocation Rule

If one unit of an asset is purchased in some period t, the asset will be in the ith period of

its lifetime during period t+i,  so the price of purchasing new assets in the ith period of its

t ilifetime is equal to z" .  Since s  units of the original asset will  survive in the ith period of itsi
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lifetime, the total cost of purchasing new assets to replace the surviving amount of the asset in

i t 1 2the ith period of its lifetime is equal to s z " .  Therefore an allocation rule a = (a , a , . . . ) can bei

said to allocate costs in proportion to the cost of replacing the surviving amount of the asset with

new assets if it satisfies

i i(24) a    =   ks"i

for some positive real number k.   It is easy to verify that an allocation rule of the form in (24) is

complete with respect to * if and only if the constant k is equal to the value k* defined by (14). 

Let a* denote the allocation rule determined by setting k equal to k*.

i i(25) a *   =   k*s" i

This will be called the relative replacement cost (RRC) allocation rule.  It is the unique allocation

rule that satisfies the two properties that: (i) it allocates costs in proportion to replacing the

 surviving amount of the asset with new assets,  and (ii) it is complete with respect to *.

The RRC allocation rule takes a particularly simple form for the case where assets follow

the one-hoss shay depreciation pattern defined by equation (3) where assets last T years and

remain equally productive over their entire lifetimes.  In this case the RRC rule is given by

k*" , i 0 {1, . . ., T}i

i(26) a * =
0, i 0 {T+1, . . . . }
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When the purchase price of replacement assets stays constant over time (i.e., when " =1), the

RRC allocation rule allocates a constant share of cost to each period.  If the purchase price of

replacement assets is changing over time, then the allocation shares change at the same rate that

the price of replacement assets is changing at.  

D.  The Relationship Between Accounting Cost Under the RRC Rule and User Cost

This section will show that there is a very close connection between accounting cost

calculated under the RRC allocation rule and user cost.  In particular, it will be shown that the

RRC allocation rule has the property that the cost allocated to any period of an investment’s

lifetime is simply equal to that period’s user cost multiplied by the surviving amount of the asset. 

All of the results of the following sections will be shown to follow from this property.

More formally, suppose that the firm purchases one unit of the asset in period t. Then the

total cost that an allocation rule a assigns to the ith period of the asset’s life is given by

t i(27) z a

t isince the total cost of the asset is z and the allocation rule a allocates the share a  of this cost to

the ith period of the asset’s lifetime. Since the asset is purchased in period t, it will be in the ith

period of its lifetime in period t+i.  Therefore the user cost in the ith period of the asset’s lifetime

multiplied by the surviving number of assets in that period is given by

t+i i(28) c *s .
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Therefore an allocation rule a has the property that the cost of period t investment allocated to the

ith period of the investment’s life is equal to that period’s user cost multiplied by the surviving

amount of the asset if and only if the expression in (27) is equal to the expression in (28).  

Definition: 

1 2An allocation rule a = (a , a , . . . ) will be said to satisfy the “user cost property for allocations of

period t investment to the ith period of the investment’s lifetime,” or the “user cost for (t, i)

property” if

t i t+i i(29) z  a   =  c *s

Of course equation (29) can be rewritten as

i t+i i t.(30) a   = c *s /z

Therefore, whether or not an allocation rule a satisfies the user cost for (t, i) property depends

ionly the ith period allocation share, a .    In particular, for any (t, i),  an allocation rule satisfies

the user cost for (t, i) property if and only if its ith period allocation share is equal to the value

given by the RHS of equation (30).  Substitution of equations (4), (13), and (25)  into (30) shows

that (30) can be rewritten as

i i(31) a  = a *
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i iNote that the RHS of (31) does NOT depend on t.  This means setting a  = a * simultaneously

guarantees that an allocation rule satisfies the user cost for (t, i) property for every t.  Conversely,

an allocation rule that satisfies the user cost for (t, i) property for any t 0 {0, 1, . . . } must exhibit

i ithe property that a  = a *.  Proposition 2 summarizes these results.

Proposition 2:

1 2  Let a = (a , a , . . .) denote an allocation rule.     Then for any i 0 {1, 2, . . . } the following three

statements are equivalent.

(i) a satisfies the user cost for (t, i) property for some t 0 {0, 1, . . . }

(ii) a satisfies the user cost for (t, i) property for every t 0 {0, 1, . . . }

i i(iii) a  = a *

Proof:

As above. QED

In particular, then, Proposition 2 implies that the RRC allocation rule satisfies the user

cost property for (t, i) for every value of t and i.  It follows from this that the total accounting cost

of using capital in any period must simply be equal to the existing number of units of capital in

that period multiplied by that period’s user cost. This is stated as Corollary 2.

Corollary 2:

Suppose that the RRC allocation rule is used to calculate accounting cost.  Then the accounting

cost in any period is equal to the number of units of capital in that period multiplied by that
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period’s user cost. Formally,

t 1  t t t(32) A (K , . . ., K , a*)   =   c *K

Proof:

See Appendix A. QED

IV.  A SIMPLE RULE FOR CALCULATING OPTIMAL INVESTMENT 

This section will consider the procedure where the firm chooses a level of investment

every period to maximize next period’s accounting income, which will be called period-by-

period maximization of accounting income.  It will be shown that a sufficient condition for

period-by-period maximization of accounting income to yield the fully optimal vector of capital

1 1stocks is that the allocation rule used by the firm to calculate accounting income satisfy a  = a *,

i.e., that the first period allocation share used by the firm be the set according to the RRC rule. 

To see this, suppose that the firm is in period t 0 {0, 1, . . .}  and that it will therefore

t+1 choose K by its current-period investment decision.  According to Lemma 3, the optimal capital

stock in period t+1 maximizes

t+1 t+1 t+1(33) B(K , t+1) - c *K

Now suppose that the firm simply chooses a level of investment in period t to maximize period

t+1 accounting income.  Then, so long as the non-negativity constraint on investment does not

t+1 bind, K will be chosen to maximize
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t+1 t 1 t+1(34) B(K , t+1) - z a K

t 1since z a   is the accounting cost allocated to period t+1 if one unit of the asset is purchased in

period t.  By comparing equations (33) and (34), it obviously follows that, if the firm chooses

investment every period to maximize next period’s accounting income, then a sufficient

condition for the firm to choose the fully optimal vector of investments is that the coefficients

t+1multiplying K  in equations (33) and (34) be equal for every t, i.e, that 

t 1 t+1(35) z a  = c *

for every t.  However, equation (35) is simply the user cost for (t, 1) property and Proposition 3

1 1has already established that (35) is true if and only if a  = a * .  Proposition 4 states the result.

Proposition 4:

1, 2, Suppose that the firm calculates accounting income using the allocation rule a = (a a . . . ). 

Then a sufficient condition for period-by-period maximization of  accounting income to yield the

1 1fully optimal sequence of investments is that a  = a *.  

Proof:

As above. QED    

Of course the sufficient condition in Proposition 4 only specifies  the first period

allocation share of the allocation rule used by the firm.  Therefore, while the RRC allocation rule
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satisfies this sufficient condition, there are obviously many other allocation rules that also satisfy

it.   However, the RRC allocation rule is a particularly simple and natural allocation rule and it is

not clear that it would be possible to identify some other equally simple and natural allocation

1 1 i irule that sets a equal to a * but sets a  unequal to a * for other values of i.   Furthermore, the next

section will consider a more complex model where shareholders delegate the investment decision

to management and accounting income is used as a managerial performance measure, and will

show that a sufficient condition for an allocation rule to create good investment incentives in this

model is that the allocation share in every period be set according the RRC allocation rule.

V.  MANAGERIAL INVESTMENT INCENTIVES 

This section will consider an extension to the basic model in which it is assumed that

shareholders delegate the investment decision to a better-informed manager and show that there

is a sense in which robust incentives for the manager to choose the fully optimal sequence of

investments can be created by using accounting income based on the RRC allocation rule as a

performance measure for the manager.  Subsection A will describe the basic model.  Then

Subsection B will present the main result and Subsection C will discuss it. 

A.  The Model With Delegation of the Investment Decision 

Assume that the production/demand environment is as described in the previous sections. 

Assume that shareholders know the parameters of the model necessary to calculate the RRC

allocation rule, i.e., they know the depreciation pattern of assets, s, and they know the future rate

of change of asset prices, ".   However, assume that shareholders do not know current or future
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tdemand functions and therefore do not know the benefit function, B(K , t). This means that they

do not have sufficient information to calculate the optimal investment level.  Assume that the

manager knows all of the functions and parameters in the model so that the manager is able to

calculate the optimal investment level. 

Suppose  that shareholders delegate the production decision to the manager in order to

take advantage of his private information and that they create a compensation scheme for the

manager by choosing an allocation rule and wage function.  The allocation rule is used to

calculate each period’s accounting income.  The wage function determines the wage the manager

receives each period as a function of the accounting income in the current period and past

periods.   Assume that the manager has a utility function defined over vectors of wage payments

over time.  For any given wage function, one can therefore define an indirect utility function of

the manager over vectors of accounting income.  It will turn out to be useful to employ notation

that suppresses  the manager’s direct utility function over wage payments and the wage function

chosen by shareholders and instead focuses on the indirect utility function over accounting

tincome created by the composition of these two functions.   Let y  denote period t accounting

1 2income and let y = (y , y , . . .) denote an entire vector of accounting incomes.  Let U(y) denote

the manager’s indirect utility function over vectors of accounting incomes that is created by the

choice of a wage function and the manager’s own direct utility function over wage payments.  

For any allocation rule a the manager will choose the vector of capital stocks K to

maximize

1 1 2 1 2(36) U(Y (K , a), Y (K , K , a ), . . . ).
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The question which will be investigated in this section is whether or not a wage function and

allocation rule can be identified such that the manager has the incentive to choose the efficient

vector of capital stocks, K*.  In general this would appear to be a very complex problem whose

solution depends on the precise functional form of the manager’s underlying direct utility

function over wage payments, including the manager’s own personal discount rate.  Therefore, it

appears that even if it was possible to identify a wage function and allocation rule that induced

the manager to choose the efficient level of investment each period, that it would be necessary to

have detailed information about the manager’s preferences, including his own personal discount

rate, in order to determine such a wage function and allocation rule.

The key idea of this section is that almost all of this apparent complexity can be avoided

by the appropriate choice of an allocation rule.  In particular, most of the apparent complexity is

created by the fact that, in general, the manager faces trade-offs between maximizing accounting

income in different periods.  That is, an investment plan that would maximize accounting income

in any given period is unlikely to also maximize accounting income in all other periods. 

Therefore, selecting the optimal investment plan requires the manager to make complex trade-

offs between periods.  The wage function and the manager’s own underlying direct utility

function over wage payments both will have significant and potentially complex effects on how

the manager trades off accounting income between periods.  However, suppose that there was a

vector of capital stocks that simultaneously maximized the accounting income in every period. 

Then, so long as the indirect utility function U was weakly increasing in all of its arguments, this

vector of capital stocks would also obviously maximize the managers’s utility regardless of the

precise functional form of U.  The fairly modest condition  that each period’s wage is weakly



Of course, it must also be assumed that the agent’s direct utility function over wages is19

weakly increasing in each period’s wage.
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increasing in current and past periods’ accounting income is clearly sufficient to guarantee that U

is weakly increasing in each of its arguments.   Therefore if there is a vector of capital stocks19

that simultaneously maximizes accounting income in every period, this vector of capital stocks

would maximize the manager’s utility for the entire class of wage functions satisfying the modest

condition that each period’s wage is a weakly increasing function of current and past periods’

accounting income. 

Formally, an allocation a will be said to create robust incentives for the manager to

choose the vector K if K maximizes each period’s accounting income calculated using a.  

Definition:

An allocation rule a will be said to create robust incentives for the manager to choose the capital

1 2stock  vector KN = (K N, K N, . . . ) if

1 2 t t 1 t(37) (K N, K N, . . K N ) 0 argmax   Y (K ,. . .K , a)  for every t 0 {1, 2, . . .}   

1 2 t(K ,K , . .K )

B.  The Result

The result that the RRC allocation rule creates robust incentives for the manager to

choose the optimal vector of capital stocks, K*, follows immediately from Corollary 2. 

Substitution of (32) into (23) shows that accounting income under the RRC allocation rule is

given by
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t 1 t t  t t(38) Y (K , . . . , K , a*)   =    B(K , t)  - c *K .

t tNote that accounting income in period t only depends on K  and that it is maximized at K *. 

1 2This, of course, implies that the vector of capital stocks K* = (K *, K *, . . . ) simultaneously

maximizes accounting income for every time period, which establishes the result of interest. 

Proposition 4:

The RRC allocation rule, a*, creates robust incentives for the manager to choose the fully

optimal vector of capital stocks, K*.

Proof:

As above. QED

C.  Discussion

The above result does not formally show that a contract using the RRC allocation rule is

the optimal solution to a completely specified principal agent problem.  It is clear that such a

result would be straightforward to prove in a model where it was assumed that the only

incentive/information problem was that the manager is better informed than shareholders about

some information necessary to calculate the fully optimal investment plan.  However, there

would be no need in such a model to base the manager’s wage on any measure of the firm’s

performance.  This is because one fully optimal contract would be for shareholders to simply pay

the manager a constant wage each period sufficient to induce the manager to accept the job. 

Then the manager would be (weakly) willing to choose the profit maximizing investment plan. 



It must be assumed that the manager has private information in order to create the need20

for shareholders to delegate the investment decision to the manager in the first place.

38

Therefore, in reality, the result of this paper will only be useful in situations where there

is some additional incentive problem which requires shareholders to base the manager’s wage on

some measure of the firm’s performance.  A natural candidate would be to assume that there is a

moral hazard problem within each period, i.e., that each period the manger can exert

unobservable effort which affects the firm’s cash flow that period. This would create a multi-

period moral hazard problem with asymmetric information.  The modeling problem this creates20

is that solutions to such problems are extremely complex and the nature of the solution generally

depends on particular aspects of the environment (such as the agent’s preferences), that the

principal is unlikely to have reliable information about.  Thus, it is not clear that such contracts

would be suitable for use in the real world where robustness to small changes in the environment

is likely to be important.

In light of these difficulties, the result of this paper can be interpreted as offering a useful

alternative approach. In particular, this paper shows that, by restricting themselves to choosing a

compensation scheme where accounting income is calculated using the RRC allocation rule and

where each period’s wage is a weakly increasing function of current and past periods’ accounting

income, shareholders can guarantee in a robust way that the investment incentive problem will be

completely solved and still leave themselves considerable degrees of freedom to address

remaining incentive issues.  For example, by using accounting income based on the RRC

allocation rule as a performance measure, shareholders could thereby guarantee that the

investment incentive problem was completely solved and then use a “trial and error” process over
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time to identify a wage function that appeared to create the appropriate level of effort incentives.

Note that in cases where it is possible to calculate a fully optimal contract, it may well be

that the fully optimal contract will not necessarily induce the agent to choose the profit

maximizing level of investment.  (A general lesson from the incentives literature is that when one

calculates the fully optimal contractual solution to a situation involving multiple interacting

incentive problems, it is often the case that it is optimal to purposely distort the solution to one

problem away from the first best in order to get extra leverage on the other problem.)  However,

it precisely these sorts of calculations that are exceedingly complex and that are unlikely to be

robust to small changes in the contracting environment.  Therefore, if shareholders have  an

opportunity to guarantee that a first best solution is created to one of the two incentive problems

in a simple robust way while still leaving themselves considerable degrees of freedom to address

the second incentive problem through a trial and error process, this may be a very attractive

alternative in the real world. 

This paper’s approach of showing that a certain allocation rule induces the manager to

make first-best investment decisions so long as each period’s wage is weakly increasing in

current and past periods’ accounting income was first used in Rogerson (1997) to analyze a

model where it was assumed that investment only occurs once, in the initial period.   As

discussed in the introduction, the current paper essentially provides a similar sort of result for the

more complex case where investment occurs every period.  Dutta and Riechelstein (2002) have

shown that Rogerson’s (1997) allocation rule can be made part of a fully optimal contractual

solution to a fully specified principal agent model that includes a moral hazard component in

what they refer to as a LEN model - which means that contracts are assumed to be linear, utility
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is assumed to be exponential, and noise is assumed to be normal. An interesting project for future

research would be to determine if the Dutta/Reicheltein(2002) approach could be adapted to the

model of this paper.

VI.  GENERALIZATIONS

The results of this paper were proven under the assumption that the purchase price of new

assets changes at a constant rate.  This section will describe the extent to which the results

generalize to the case where the vector of purchase prices for new assets is allowed to be any

vector of non-negative prices.   The findings of this section can be summarized as follows.   So

long as the non-negativity constraints on investment do not bind, cost allocation rules can still be

identified that have the same sorts of desirable properties that the RRC allocation rule was shown

to have in previous sections. However, there is no longer necessarily any simple or natural way to

describe these allocation rules in terms of the underlying parameters of the model.  Therefore,

while the generalization is of analytic interest, because it helps clarify precisely why the cost

allocation result is true and what it depends on, it may be of more limited practical interest. 

However, a firm’s information about future prices is likely to be somewhat imprecise in any

event, so that it may be very natural and reasonable in many applied cases to project future prices

by simply specifying a likely average future growth rate.  

The remainder of this section will briefly describe the manner in which the results

generalize. Because the generalization is a relatively natural and simple extension of the results

of previous sections, detailed formal statements of results and proofs will not be provided. 

The same model will be considered except it will no longer be assumed that the purchase



The monotonicity condition must also be replaced by a generalized condition.  This is21

K t tthat B (K, t) - c * is weakly increasing in t where c * denotes period t user cost as defined below. 

Proposition 1, which states that the vector of perfectly competitive rental prices must be22

equal to the vector of user costs, still holds for the general case.  However, there is no longer any
simple method to calculate the vector of perfectly competitive rental prices for the general case.
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0 1price of new assets changes at a constant rate.  Rather, z = (z , z , . . . ) will be allowed to be any

vector of non-negative numbers.   It is straightforward to verify that the initial observation of21

this paper - that the capital accumulation function is linear and invertible and that, as a

consequence, the cost function C(K) must also be linear - is still true.  That is, there still must be

1 2a vector of constants c* = (c *, c *, . . . ) such that the cost function can be written as in equation

(16).  Arrow(1964) provides a formula for calculating this vector of constants for the general

case.  See Appendix B of this paper for a statement of the general formula and a sketch of its

derivation.  The main difference in the general case is that it that it is no longer possible to use

this paper’s approach to derive a simpler version of the formula that does not depend on the

vector of replacement rates.   The user cost in any period is still equal to the present discounted22

value of the entire vector of adjustments to investments that would increase capital stock in that

period by one unit while holding the capital stock in all other periods constant.  However,

without the regularity created by the assumption that asset prices change at a constant rate over

time, the formula does not collapse to any simple form. Therefore, in the general case, each

period’s user cost is potentially a very complex function of the vector of all current and future

asset prices and the vector of survival shares. 

For the general case it will be necessary to potentially allow the firm to choose a different

t1 t2tallocation rule to allocate each period’s investment.  Let a  = (a , a , . . . ) denote the allocation



42

0 1rule used to allocate assets purchased in period t for t 0 {0, 1, 2, . . . } and let v = (a , a , . . .)

1 t 0 t-1denote the entire vector of allocation rules chosen by firm.  Let A (K , . . ., K , a ,. . . , a ) denotet

the accounting cost in period t given that the firm chooses investments to produce the vector of

1 t 0 t-1capital stocks (K , . . ., K ) and the allocation rules (a , . . . , a ) are used to allocate the

investments.  It is formally defined by 

t

t 1  t t-i 1 t+1-i t-i t-i, i0 t-1(39) A (K , . . ., K , a , . . ., a  ) = 3N (K , . . ., K )z a  
i=1

As before, accounting income in any period is defined to be operating profit minus accounting

cost.

Now, two potentially different vectors of allocation rules will be defined.  (As will be

seen, these vectors of allocation rules turn out to be identical under the assumption that asset

prices change at a constant rate over time.  However, in the general case, it will turn out that they

are not identical.)  First, the vector of user cost allocation rules is defined as follows.  For any

t1 t2tperiod t, define the user cost allocation rule for period t, denoted by a = (a , a , . . . ),  to beU U U

the allocation rule such that the cost allocated to the ith period of the asset’s lifetime is equal to

that period’s user cost multiplied by the surviving amount of the asset.  It is formally defined by

ti t i t(40) a   = c *s /z .U 

o 1Let v  = (a , a , . . . ) denote the entire vector of user cost allocation rules.  The second,U U U

potentially different,  vector of allocation rules that will be defined will be called the vector of
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relative replacement cost (RRC) allocation rules.  For any period t, define the RRC allocation

t1 t2trule for period t, denoted by a = (a , a , . . . ),  to be the unique allocation rule that satisfiesR R R

the following two properties for any investment made in period t: (i) the cost allocated to any

period of the asset’s lifetime is proportional to the cost of replacing the surviving amount of the

investment with new assets; and (ii) the present discounted value of the allocations using the

firms’s discount rate is equal to the original purchase price of the asset.  It is formally defined by

4 

ti t+i i t+j j(41) a = z s  / [ 3z s *  ]R j

j=1

Recall that sections IV and V showed that using the vector of allocation rules (a*, a*, . . )

had various desirable properties in the special case where asset prices change at a constant rate. 

A review of the proofs of these sections will show that the only property of the vector (a*,a*,.  . )

that was used to prove any of the propositions in these sections was that the cost of purchasing an

asset allocated to any period of its lifetime was equal to that period’s user cost multiplied by the

surviving amount of the asset. However, by equation (40), the vector of user cost allocation rules

is constructed to have this property.  Therefore, for the general case, the same arguments can be

used to show that the vector of user cost allocation rules has these same desirable properties. 

Namely, the arguments of Section IV show that if the firm calculates accounting income using

this vector of allocation rules, then period-by-period maximization of accounting income will

yield the fully optimal vector of investments.  The arguments of Section V show that the vector

of allocation rules v  creates robust incentives for the manager to choose the fully efficient vectorU

of investments in the sense that this vector of investments simultaneously maximizes each



The following observation establishes that this result will not generalize.  In the general23

case, the vector of user cost allocation rules is still constructed to have the property that the cost
of using any vintage of asset in any period will be equal to that period’s user cost multiplied by
the surviving number of units of the asset. That is, the user cost allocation rule has the property
that, in any given period,  the unit cost of using any vintage of asset is constant.   However, it is
easy to see that the cost of using different vintages of assets will NOT generally be constant
under the vector of RRC allocation rules so long as asset prices do not change at a constant rate.
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period’s accounting income.  It is also straightforward to verify that the proof of Proposition does 

not depend on the assumption that asset prices change at a constant rate and is thus still true for

the general case.  It follows from this that each of the user cost allocation rules is complete with

respect to the firm’s discount rate, *.  Therefore the result of previous sections that holds true for

the general case is that a vector of allocation rules - namely the vector of user cost allocation

rules - can always be defined which has desirable properties for guiding investment decisions as

described above, and such that the allocation rule used every period is complete with respect to

the firm’s discount rate.  

For the special case where asset prices change at a constant rate over time, it is easy to see

that the period t RRC allocation rule, as defined by (41), is the same for every period and is equal

to the allocation rule a* defined by (24)-(25) which, in previous sections, was simply referred to

as the RRC allocation rule. Furthermore, given this paper’s formula for the vector of user costs

for the special case, as given by (13)-(14), it is also straightforward to observe that the period t

user cost rule defined by (40) is the same for every period and is also equal to the allocation rule

a*.  Therefore, for the special case where asset prices change at a constant rate, it turns out that

the vector of user cost allocation rules is simply equal to the vector of RRC allocation rules.  

This result does NOT generalize.  That is, in the general case it is no longer true that the vector of

user cost allocation rules is equal to the vector of RRC allocation rules.   One can still determine23
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a formula for calculating the vector of user cost allocation rules in terms of the underlying

parameters of the model by substituting the formula expressing user cost as a function of these

underlying parameters into equation (41).  However, in the general case, the resulting formula is

NOT the formula for calculating the vector of RRC allocation rules, nor does it appear to

collapse into any other sort of simple or natural form.  

VI.  CONCLUSION

Firms that make sunk investments in long-lived assets create simplified single-period

snapshots of their performance by allocating the cost of purchasing long-lived assets over the

periods the assets will be used to calculate period-by-period accounting income.  This paper has

shown that, in broad range of plausible circumstances, a very simple and natural allocation rule -

the RRC rule - exists such that measures of period-by-period accounting income calculated using

this rule can play a useful role in guiding investment decisions.  In particular two results are

shown.  First, it is shown that if per period accounting income is calculated using the RRC rule,

the firm can choose the fully optimal sequence of investments over time simply by choosing a

level of investment each period to maximize next period’s accounting income.  Second, in a

model where shareholders delegate the investment decision to a better-informed manager, it is

shown that if accounting income based on the RRC allocation rule is used as a performance

measure for the manager, robust incentives are created for the manager to choose the profit

maximizing sequence of investments regardless of the manager’s own personal discount rate or

other aspects of the manager’s personal preferences.
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APPENDIX A: PROOFS

Lemma 1:

1 2Let K = (K , K , . . . ) be the vector of capital stocks that the firm would like to generate. 

0 1Obviously, I  must be set equal to K .  This establishes that period 0 satisfies the induction

t 1 t+1.   0 t-1 hypothesis that I is a linear function of K  through K Now suppose that I  through I have

i 1 i+1 t+1been determined and I  is a linear function of K  through K  for every i 0 {0, . . ., t-1}.  Let KA

denote the amount of capital that will be available in period t+1 if the firm chooses zero

t+1 0 t-1 investment in period t.  The variable K is a linear function of I  through I determined by theA

t+1capital accumulation function.  Therefore by the induction hypothesis, K  is a linear function ofA

1 t. t t+1K  through K    Obviously, I  must be set equal to the difference between K  (the required

t+1   t+1amount of capital in period t) and K  (the available amount of capital in period t.) Since K  A A

1 t t 1 t+1is a linear function of K  through K , this means that I is a linear function of K through K .QED

Proposition 1:

First suppose that c satisfies equation (12).  If I generates K then, C(K) is given by

4 

t t (A.1) C(K) = 3 z I ät

t=0

Substitution of (12) into (A.1) yields

4      4  

t+i i t (A.2) C(K) = 3     3 c s  ä  I ä .i t

t=0 i=1

Reorganize the summation to yield

4   t

t i t-i(A.3) C(K) = 3   c  ä   3 s I  t

t=1  i=1
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t Substitution of K for the inner summation in (A.3) yields equation (10).

Now suppose that the cost function satisfies equation (10).  For any t 0 {0, 1, . . } suppose

that firm purchases one unit of the asset in period t and no units of the asset in any other period. 

1 2Let K  = (K , K , . . . ) denote the resulting vector of capital stocks given byt t t

0, i # t

i(A.4) K =  t

i-ts , i $ t+1

From the definition of C(K) in equation (6), we know that

t(A.5) C(K ) = ä z .t t

However, since C(K) satisfies equation (10), substitution of (A.4) into (10) shows that

4 

t+i i(A.6) C(K ) = 3c  s  ät t+i.

i=1

Setting the RHS of (A.5) equal to the RHS of (A.6) then yields equation (12).  QED

Corollary 2:

Since a* satisfies the user cost for (j, i) property for every j 0 {0, 1, 2, . . .} and i 0 {1, 2, . . .},

i i j+i i(A.7) z  a * = c * s for every j 0 {0, 1, 2, . . .} and i 0 {1, 2, . . . }.

Substitute t = j+i into (A.7) to rewrite it as

t-i i t i(A.8) z  a * = c * s for every t 0 {1, 2, . . .} and i 0 {1, . . ., t}.

Substitution of a = a* and (A.8) into (22) and reorganization yields

       t

t 1  t t t-i 1 t+1-i i(A.9) A (K , . . ., K , a*) = c * {3N (K , . . ., K )s  }
      i=1

t Substitute K for the term in brackets in (A.9) to yield (32). QED



In Arrow’s formulation, time is modeled as being continuous and the function that this24

paper calls the “cost function” is never explicitly defined or calculated. Furthermore, the capital
stock variable that is explicitly modeled includes both incremental capital stock (i.e., capital
stock resulting from investments made in period 0 and after) and legacy capital stock (i.e., capital
stock resulting from investments made before period 0).  Finally, Arrow denominates all cash
flows using the purchase price of new assets as numeraire, so that he can assume without loss of
generality that the purchase price of new assets is simply equal to one in every period.  While
Arrow is correct that this can be done without loss of generality, this makes it difficult to
disentangle effects on the vector of user costs due to the way the firm values cash flows from
effects due to the way in which the purchase price of assets changes over time.   
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APPENDIX B: ARROW’S(1964) DERIVATION OF THE USER COST FORMULA

Arrow’s original derivation of a  formula for calculating the vector of user costs was

based on directly calculating the coefficients of the inverse capital accumulation function.  For

the case where the purchases price of new assets changes at a constant rate over time, this paper

presents an alternate derivation that relies on the showing that the vector of user costs can also be

interpreted as being a vector of perfectly competitive prices, which produces a much simpler (but

equivalent) formula for calculating the vector of user costs.  However, Arrow’s original formula

is still needed to calculate the vector of user costs for the general case considered in section VI.

Furthermore, the reader may be interested to compare Arrow’s original formula for the case

where the purchase price of new assets changes at a constant rate over time, to the formula

derived by this paper.  Since Arrow uses a somewhat different model than the model used by this

paper,  a reader would likely have to invest a considerable amount of time in reading Arrow’s24

paper in order to translate Arrow’s results to the model presented in this paper.  Therefore, this

Appendix sketches Arrow’s original derivation of the formula for user cost in the context of this

paper’s model. 

0 1Define the vector of replacement rates, denoted by r = (r , r , . . . ),  by the following



Arrow credits Feller(1941) with the original derivation of this result. Feller(1941)25

considers the case of continuous time which likely involves subtleties related to existence and/or
uniqueness that do not arise in the discrete case. 
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thought experiment.  Suppose that a firm purchases one unit of the asset in period 0 and then in

every subsequent period purchases just enough new assets to replace assets as they wear out, so

tthat the firm maintains a stock of capital equal to 1 forever. Let r  denote the number of assets

0that the firm purchases in period t for t 0 {0, 1, 2, . . .}.  By construction, r  is equal to 1.  The

formula for calculating the replacement rate in any subsequent period t 0 {1, 2, . . . } is calculated 

by summing up the entire series of replacements of original assets, replacements of replacements, 

etc.  that will occur in any period.  Formally, 

t

t t(B.1) r = Gm for i 0 {1, 2, . . . }n

n=1

twhere m  is the number of asset’s that experience their “nth replacement”  in period t and isn

defined recursively by 

i i( B.2) m = 1- s1

and 

0, for i # n

i(B.3) m =n+1

i-1

j i-jG m m for i$ n+1n

j=1

t 1, tArrow reports  that a  formula for ö (K . . . , K ) in terms of the vector of replacement25

rates is given by

t

t 1, t+1 t+1-i t-i i(B.4) ö (K . . . , K ) = G [K  - K ]r
i=0
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0 where K is interpreted to be 0.   This result is very intuitive.  One can think of generating a

1 2vector of capital stocks K = (K , K , . . . ) by creating a successive series of “permanent”

increments in the capital stock.  In period 1 the capital stock is “permanently” changed from 0 to

1 1 2K , in period 2 the capital stock is “permanently” changed from K to K , etc.   The effect of each

permanent increment on current and future periods’ investment is determined by the replacement

shares.  Equation (B.5) presents the results of this calculation.  For the purposes of this paper it

will be useful to rewrite (B.5) as

t

t 1 t+1 t+1    t+1-i i  i-1(B.5) ö (K , . . . , K ) = K + G K  [r - r ]
i=1

The cost function, C(K), can now be calculated by substituting (B.5) into (6) which yields 

4 

t t(B.6) C(K) = G c * K  ät

t=1

twhere c * is given by

4 

t 0 t-1 i+1 i t+i (B.7) c * =  r z /ä G [r - r ]ä z + i

i=0

Equation (B.7) provides the formula for period t user cost for the general case.

Some extra intuition for why the functional form determining user cost in equation (B.7)

takes the precise form that it does, can be had by directly calculating the incremental cost of

increasing the stock of capital in a given period t while holding the stock of capital in all

subsequent periods fixed.  The present discounted cost of this change can be directly calculated

by first determining the changes in investment that are required to generate this change and then
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calculating the present discounted cost of these changes in investment.  This calculation is

illustrated in Table 1. 

Table 1
Cost of Changes in Investment Necessary to Increase Capital Stock by 1 Unit in Period t

While Holding Capital Constant In All Other Periods

Period (1)* (2)* (3)* (4)*

0 0 0 t-1t-1 +r 0 +r r z /ä  

1 1 0 1 0 tt +r 0 r -r (r -r )z-r

2 1 2 1 2 1 t+1t+1 +r -r r -r (r -r )z ä
. . . . .
. . . . . .

i+1 it+i +r -r  i+1 i i+1 i t+ir -r (r -r )z äi-1

* Explanation of Column Headings:
Column (1) = change in investment to permanently increase capital stock by one

unit beginning in period t.
Column (2) = change in investment to permanently decrease capital stock by one

unit beginning in period t+1.
Column (3) = sum of columns (1) and (2)
Column (4) = cost of change in column (3) in period t dollars

The key idea is that an increase in the capital stock of one unit in period t, while holding

the capital stock all other periods fixed, can equally well be thought of as the net result of two

different changes - a permanent increase in the capital stock by one unit in period t followed by a

permanent decrease in the capital stock of one unit in period t+1. Column (1)  lists the changes in

investment necessary in each period to produce a permanent increase in the stock of capital

beginning in period t.  Column (2) lists the changes in investment necessary in each period to

produce a permanent decrease in the capital stock of one unit beginning in period t+1.  Column

(3) then lists the sum of these changes and column (4) multiplies the period j  entry in column (3)
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jby z ä to calculate the present discounted value of the cost of these investment changes in periodj-t 

t dollars.  By construction, the sum of the terms in column (4) is equal to the incremental cost of

increasing capital by one unit in period t.  It is easy to verify that the sum of the terms in column

t* (4) yields the expression for c  in equation (B.7).   

t  The summation in (B.7) can be reorganized to produce a formula for c * that  depends on

replacement shares instead of first differences of replacement shares.  This reorganization yields

 4 

t  i t-1+i t+i(B.8) c * = 3r ä (z   - äz )  i-1 

i=0

and corresponds to Arrow’s(1964)  formula for user cost given by the LHS of equation (14).

Now suppose that the purchase price of new units of the asset changes at a constant rate

over time as described by equation (4).  Substitution of equation (4) into (B.8) yields

t t(B.9) c * = k* z

where

4 

i(B.10) k* = [(1-äá)/äá] 3r (äá) .i 

i=0

Equations (B.9)-(B.10) present Arrow’s formula for user cost for the case when asset prices

change at a constant rate over time.  Recall that this paper’s formula for user cost is given by

equations (13)-(14).  A comparison of (B.10) and (14) shows that Arrow’s formula for k*

depends on the vector of replacement rates which are in turn relatively complicated functions of

the vector of survival shares.  In contrast, this paper’s formula for k* is expressed directly as a

relatively simple function of the vector of survival shares.
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