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An Approach for Extending Dynamic Structural

Models to Multi-Product Firms

Aviv Nevo� Federico Rossiy

August 2, 2007

Abstract

We propose an approach to extend the standard framework of dynamic games to

deal with multi-product �rms. Our approach applies to industries with a large number

of products o¤ered by a small number of �rms.

1 Introduction

Ericson and Pakes (1995) propose what has since become the standard framework for dy-

namic games. In principle, the parameters of their model, such as investment or sunk costs,

can be estimated by maximizing the likelihood of observed choices, following the nested

algorithm (Rust, 1987), which has been used successfully in single agent models. In prac-

tice, however, this approach is not computationally feasible when studying dynamic games

because of the need to solve the equilibrium many times. More recently several alterna-

tives have emerged. A common feature of these new methods is that they avoid the use

of computationally-intense techniques to compute the equilibrium strategies, and instead

estimate strategies directly from the choices observed in the data (Aguirregabiria and Mira,

�Northwestern University and NBER. Department of Economics, 2001 Sheridan Rd, Evanston, IL, (847)
491-8212, nevo@northwestern.edu. Corresponding author.

yNorthwestern University. e-mail: f-rossi@northwestern.edu
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2007, Bajari, Benkard and Levin, 2007, Pakes, Ostrovsky and Berry, 2007, Pesendorfer and

Schmidt-Dengler, 2003).1

While our ability to estimate the dynamic model has signi�cantly improved, in order

to study counterfactual situations the equilibrium of the model still needs to be computed.

Therefore, the original Ericson-Pakes model is somewhat limited in its application to cases

where the state space is relatively small. In particular, the model is limited in its ability to

study markets with multi-product �rms. Below we show that in the setup of Pakes-McGuire

(1994) with multi-product �rms the state variable of each �rm is a vector of qualities of each

of its products. So even though the model might be tractable with single product �rms,

it quickly becomes non tractable with multi-product �rms.2 In this paper we propose an

extension to the original model that allows the modeling of multi-product �rms in dynamic

games.

2 The model

We focus on the di¤erentiated products version of the Ericson-Pakes model, detailed in

Pakes-McGuire (1994).

2.1 Static Flow Pro�ts

On the demand side, we assume that consumers choose one of the J products o¤ered in

the market, or the outside good, that gives the highest utility. The utility that consumer i

obtains from purchasing brand j at time t is

Uijt = �jt + �ijt; �jt = x
0
jt� � �pjt + �jt (1)

where �jt is the mean utility of product j at t; xjt is a vector of observable characteristics of

product j; pjt is the price; the term �jt captures product- and time-speci�c shocks which are

1For related methods in the single agent context see Hotz and Miller (1993), Hotz, Miller, Sanders and
Smith (1994), Manski (1993) and Aguirregabiria and Mira (2002). For a review of structural estimation of
dynamic games see Ackerberg et al. (2006).

2Extending the core version to allow multi-product �rms is also a concern listed in the agenda outlined
by Pakes (2000, pg. 22).
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common to all consumers; �ijt is an idiosyncratic error term, and � and � are parameters. If

the consumer decides not to purchase any of the goods, she chooses the outside option that

has a mean utility normalized to zero.

There are F �rms in the market. Each �rm f sells a subset of the J products denoted

Ff . We de�ne the quality, or e¢ ciency level, of a product as, !jt = x0jt� + �jt, and the

market structure of the industry at time t is characterized by a J-dimensional vector st =

(!1t; :::; !Jt). The quantity sold and the optimal price will be a function of the e¢ ciency

levels of the �rms�own products and the state of the industry (i.e., the competitors quality).

Therefore, the static pro�t function of �rm f can be written as (dropping subscripts t):

�f

�
f!jgj2Ff ; s

�
=
X
j2Ff

h
pj

�
f!jgj2Ff ; s

�
�mcj

i
M�j

�
f!jgj2Ff ; s

�
� Cf ; (2)

where pj and �j, denote the price and market share of product j,mcj and Cf are the marginal

cost to produce product j and the �xed cost of production; M is the size of the market,

including consumers who choose the outside option. We assume that �rms set prices to

maximize pro�ts and the existence of a pure-strategy Bertrand-Nash equilibrium in prices.

2.2 Dynamic Decisions

In addition to pricing, in each period the �rms decides if to invest and if so how much. Let

xj denote the investment in product j. Each unit of investment costs c, and the outcome is

stochastic. Examples of investment are advertising or research that is aimed in improving

the quality of the product. For clarity of exposition we do not consider entry or exit, either

at the �rm or at the product level.

The investment decisions are made to maximize the value of the �rm, given by

Vf

�
f!j;1gj2Ff ; s1

�
= max

(xj;t>0;j2Ff )

1X
t=1

�t�1E

24�f �f!j;tgj2Ff ; st�� cX
j2Ff

xj;t

35 (3)

where � is the discount rate.
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The expectations are taken with respect to uncertainty about future quality levels, and

competitors actions. Let the CDF P
�
f!j;t+1gj2Ff ; st+1j fxjtgj2Ff ; f!jtgj2Ff ; st

�
represent

�rm f beliefs on next period e¢ ciency levels (!j;t+1) and market structure (st+1), given

current investments (xjt), e¢ ciency levels (!jt), and market structure (st). In every period

each product�s e¢ ciency evolves according to the following rule

!j;t+1 = !j;t + (�j;t � �t) ; (4)

where �jt and �t are two independent, non-negative random variables. The �rst has a

distribution that comes from a family fP (�jx) ; x 2 R+g that is stochastically increasing in

the investment level for that product, xjt, and such that �jt = 0 if xjt = 0. The second is an

exogenous random variable with probability � (�); in our setup it represents the e¢ ciency

value of the outside good, therefore it is a demand shock that is common to all products.

The value of the �rm is a function of its own state and the state of its competitors. Even

if each �rm has a single product, there is a small number of �rms, and the e¢ ciency levels can

take on a small number of values, then solving for the value function is subject to the curse

of dimensionality. Pakes and McGuire (1994) propose to mitigate this problem somewhat

by assuming exchangeability of the pro�t function such that the identity of the �rms is not

important. Therefore, only the number of �rms at each e¢ ciency level matters, not their

identity. This signi�cantly reduces the state space. However, with multi-product �rms even

if we are assume exchangeability, the state space will still be very large and probably not

computationally tractable.

3 Results

In the section we propose an approach that makes the model tractable. The solution will

rely heavily on what we will call an adjusted inclusive value (henceforth AIV) de�ned as

De�nition 1 Let if = log
hP

r2Ff exp (!r � �mcr)
i
be the adjusted inclusive value (AIV)

of �rm f.
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The adjusted inclusive value is the di¤erence between the quality of each product, de�ned

by the characteristics, and the marginal cost needed to produce the quality level of each

product. It can therefore be interpreted as the net quality level, or a value added of sort,

that the �rm is able to produce in the market. The AIV is closely related to the inclusive

value (McFadden,1978), which captures the expected utility from several products prior to

observing the random variables �ij�s, or equivalently the utility for the average consumer

averaging over the �ij�s. From the �rm perspective this inclusive value needs to be adjusted

to take account of di¤erent marginal costs of production. Indeed, as we will now show under

some assumptions the AIV is all that we need to compute the static pro�ts.

Assumption A1 The idiosyncratic error term �ijt in (1) is identically and independently

distributed type I extreme value.

Assumption A1 implies that aggregate demand is given by the Logit Model (McFadden,

1974). In particular it implies market shares of the form

�j

�
p; f!jgj2Ff ; s

�
=

exp(!j � �pj)
1 +

P
k2Ff exp(!k � �pk)

:

It is well-known that this model has several unattractive features (for example, see Mc-

Fadden 1978; or Berry Levinsohn and Pakes, 1995). However, this assumption will turn out

to be extremely useful for us. We discuss below ways to relax it. Note that this assumption

is made by much of the literature cited in the Introduction.

We now show that under Assumption A1 the static �ow pro�ts can be written as a

function of �rm level AIV, and does not require the product-speci�c quality levels.

Lemma 1 Under Assumption A1 �f
�
fwjgj2Ff ; s

�
= �f (if ; sf), where sf = (i1; :::; iF ):

Proof: Taking the �rst-order condition of the pro�t function for �rm f , as de�ned in (2),

with respect to product j�s price, we get

p�mc = 
�1�
�
p; fwjgj2Ff ; s

�
(5)
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where � (�), p, and mc are J � 1 vectors of market shares, prices, and marginal cost, re-

spectively, and 
 is a J � J matrix with the element 
jr equal to �@�r=@pj if j and r are

produced by the same �rm, 0 otherwise. Given Assumption A1, the derivatives of the share

equations are @�j=@pj = ���j(1 � �j) and @�r=@pj = ��j�r. Plugging these back into

equation (5) yields

(p�mc)f =
1

�
�
1�

P
r2Ff �r

� = 1

� (1� ��f )
: (6)

where ��f =
P

r2Ff �r is �rm f�s total share. This equation implies that each �rm applies

the same markup to all of its products. In order to compute the pro�ts we need to compute

the share of each �rm.

We now show that, given this pricing rule, the share of �rm f can be computed knowing

only the �rms�AIV.

��f =
X
j2Ff

�j =
X
j2Ff

exp (�j)

1 +
PJ

r=1 exp (�r)
=

=
X
j2Ff

exp (�� (pj �mcj)) exp (!j � �mcj)
1 +

PJ
r=1 exp (�� (pr �mcr)) exp (!r � �mcr)

:

Since �rms apply the same markup to each of their products,

= exp (��markupf )
X
j2Ff

exp (!j � �mcj)
1 +

PF
g=1 exp (��markupg)

P
r2Fg exp (!r � �mcr)

;

=
exp (if � �markupf )

1 +
PF

g=1 exp (ig � �markupg)

where if is the AIV de�ned above. Firms�shares are function of the AIV, therefore, sub-

stituting the markup computed in equation (6) into the pro�t de�ned in equation (2) we

get

�f

�
fwjgj2Ff ; s

�
=M ��f (if ; sf)

�(1� ��f (if ; sf))
� Cf = �f (if ; sf) Q.E.D.
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In order to show that the �rm�s dynamic problem also does not require the product-

speci�c quality we need to make an additional assumption.

Assumption A2 P
�
if;t+1; sft+1j fxjtgj2Ff ; f!jtgj2Ff ; st

�
= P (if;t+1; sft+1jxft; ift; sft) ; where

xf;t =
P

j2Ff xj;t.

This assumption restricts the stochastic evolution of the states in equation (4). There

are several examples of the process described in equation (4) that will satisfy Assumption

A2. For example, if the shocks �jt = �kt, or if �jt=!jt = �kt=!kt, for all k and j produced by

the same �rm. The assumption also restricts the way that investment decisions impact the

transitions: all that matters is the total �rm-level investment and not a the product speci�c

decisions.

We now can write our main result.

Proposition 1 Under Assumptions A1 and A2 Vf
�
fwj;1gj2Ff ; s1

�
= Vf (if ; sf1), 8f 2

f1; :::; Fg.

Proof. Substituting the result of Lemma 1 into equation (3) we get

Vf

�
f!j;1gj2Ff ; s1

�
=

= max
(xj;t>0;j2Ff )

1X
t=1

�t�1
Z 24�f (if;t; sft)� cX

j2Ff

xj;t

35 dP �if ; stj fxj1gj2Ff ; f!j1gj2Ff ; s1�

By Assumption A2

= max
xf;t>0

1X
t=1

�t�1
Z
[�f (if;t; sft)� cxf;t] dP (if;t; stjxf1; if1; sf1) = Vf (if ; sf1) Q.E.D.
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What we have shown is that, given our assumptions, the state variables of the prob-

lem include only �rm level variables and do not require knowing, and keeping track of the

product-level state variables. This result allows to consider �rms that produce many brands

without carrying the demand of each single brand, which would make the dynamic multi-

product �rm problem unfeasible.

4 Extensions

There are several ways to relax Assumptions A1 and A2 and still get some of the bene�ts of

our approach. Assumptions A1 can be somewhat relaxed by assuming a generalized extreme

value distribution. As a special case, consider the Nested Logit model. In this case we will

need one state variable per �rm per nest to compute the �ow pro�ts. Our approach will

not work for the more general Random Coe¢ cients Logit model, unless there is a limited

number of combinations the characteristics can take. In this case we could compute the AIV

for each unique combination, just like the nest in the Nested Logit Model. Obviously with a

large number of di¤erent combinations this will not be very helpful. Assumption A2 can also

be somewhat relaxed by allowing for other variables to enter the transition probabilities.
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