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Abstract
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1 Introduction

Grade retention is an intervention tool in education. It refers to the practice of

requiring a student to repeat the same grade which s/he has already completed be-

cause of her/his poor performance. In Jackson (1975), the aim of grade retention is

explained as an attempt at remedying inadequate academic progress and contribut-

ing to the development of students not ready for the next grade. The underlying

idea is that students who do not successfully complete a grade level will not be able

to digest the next higher grade’s material. These students are therefore, for their

own interest, required to repeat the grade. The most important question, however,

is whether grade retention really helps students to improve their grades or whether

it harms the students’ school success. This paper aims to address this question and

estimates the causal effect of this school intervention on several school outcomes.

The effects of grade retention have been a discussion topic for more than four

decades. Most studies concentrate on the effects of grade retention on performance

in later grades, on the likelihood of drooping out of high school, and on labor market

outcomes for late adolescence (see Guevremont, Roos, and Brownell (2007), McCoy

and Reynolds (1999), Jimerson (1999), Jimerson (2001), and Eide and Showalter

(2001) among others.). The results are somewhat controversial: although the vast

majority of empirical work done with the data from the US and Canada points out

the negative effects of grade retention, there are also a number of papers indicating

gains.

Since being held in a grade is not a random assignment, simple mean comparisons of

outcome variables do not reveal the true causal effect of grade retention. We could

realize true causal effects over a whole population by using mean comparisons, if

we could randomly hold schoolchildren in the same grade for a second year. Since

such an experiment on schoolchildren is impossible and unethical, we should rely

on the econometric methods which enable identification of the true causal effects

in terms of potential outcomes. In the case of binary treatment, there are two

potential outcomes for treated and nontreated cases: one observed depending on

the realized treatment status, and the other one unobserved (i.e. counterfactual).

Identification is achieved under some assumptions in potential outcome framework.

The crucial assumption we use in this paper is Conditional Independence Assump-
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tion1. It means given a set of observable characteristics which are not affected by the

treatment, potential outcomes are independent of treatment assignment. There are

several methods proposed for estimating treatment effects under the assumption of

conditional independence (see Imbens (2004) for a review). The main methods can

be categorized into regression, propensity score weighting and matching methods.

Here, we estimate the effect of grade retention on different outcomes using regres-

sion, propensity score weighting and a combination of regression and propensity

score weighting methods. The advantage of the combination over the single meth-

ods is that the mixed method provides double protection against misspecification.

That is, the estimator is still consistent, even if either the propensity score or the

mean function is wrongly specified but not both (for further discussion of double ro-

bustness see Robins, Rotnitzky, and Zhao (1995), Robins and Ritov (1997), Hirano

and Imbens (2001), Wooldridge (2007), and Bang and Robins (2005)).

In the second part of this paper, we extend the use of the doubly robustnees prop-

erty in the estimation of Local Average Treatment Effect. The pioneering papers,

which incorporate the IV into the potential outcome framework, are Imbens and

Angrist (1994) and Angrist et al. (1996). Imbens and Angrist (1994) show under a

set of assumptions that the IV estimator identifies the causal effect of the treatment

variable on outcome only for the subpopulation whose participation into treatment

is induced by the instrument.2 This causal effect is called Local Average Treatment

Effect (LATE). Even though the initial identifying assumptions from Imbens and

Angrist (1994) do not include covariates, there is a considerable attempt to extend

the LATE concept to include covariates in parametric, semiparametric or nonpara-

metric estimation methods. Abadie (2003), Tan (2006) and Frölich (2007) are the

most recent papers, which introduce new estimation methods of the LATE that in-

clude covariates. In this second part, we propose a doubly robust estimation method

of the LATE with covariates. The identifying assumptions are similar to those of

Abadie (2003), Tan (2006) and Frölich (2007). This method is an extension of dou-

bly robust estimation of the Average Treatment Effect (ATE) under the Conditional

Independence Assumption (CIA) to estimate the LATE (see Robins et al. (1995),

Robins and Ritov (1997), Hirano and Imbens (2001), Wooldridge (2007), and Bang

and Robins (2005) for further information on doubly robust estimation of the ATE).

1This assumption is called Ignorability of Treatment (given observed covariates X) by Rosen-
baum and Rubin (1983) and Unconfoundedness by Imbens (2004).

2Under stronger assumptions like homogenous treatment effect, IV identifies the Average Treat-
ment Effect (see for example Abadie (2003)).
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In this paper we use a German dataset “Gymnasiastenstudie” (Central Archive for

Empirical Social Research (2007)) in order to estimate the causal effect of grade

retention on different school outcomes. This work distinguishes from the existing

literature in many ways. First of all, to our knowledge, there is no empirical study

published which analyzes the effects of grade retention using a Germany dataset.

The dataset we use here is restricted to students attending upper secondary school

(Gymnasium) in North Rhine-Westphalia. However, it is still representative for Ger-

many, since one fourth of the German population resides in North Rhine-Westphalia

and it is the biggest federal state in terms of population among the 16 federal states

in Germany. Furthermore, one forth of the students in Germany is attending school

in North Rhine-Westphalia. Besides that the upper secondary schools (Gymnasien)

in Germany serve almost for one half of the total students after primary education

(Grundschule)3. This paper is also one of the very few papers which rely on econo-

metric evaluation methods in order to analyze the effect of grade retention on school

outcomes. Another contribution of this paper is that it uses one of the least applied

econometric evaluation methods, namely Doubly Robust Method4.

The organization of the paper is as follows: Section 2 briefly explains identifying as-

sumptions and the econometric methods applied. In this section, we explain existing

doubly robust methods for estimation of the ATE and propose our extension of this

kind of methods for estimation of the LATE. Section 3.1 focuses on the sample and

elaborates on the empirical results. This section has also two parts: estimation of

the ATE and estimation of the LATE with the proposed method. Finally, Section

4 summarizes the main results and concludes the paper.

2 Econometric Method

2.1 Estimation of the ATE

Consider N units which are drawn from a large population. For each individual i

in the sample, where i = 1, ..., N , we observe the triple (Yi, Di, Xi). Di shows the

3The exact numbers can be found on the website of Federal Statistical Office:
http://www.destatis.de/.

4To our knowledge, there are only two applications of this method: Bang and Robins (2005)
and Hirano and Imbens (2001)
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binary treatment status for individual i:

Di =

{

1, if the ith individual is treated

0, otherwise

We observe also a vector of characteristics (covariates) for the ith individual denoted

by Xi. For each individual there are two potential outcomes (Yi0, Yi1). Yid denotes

the outcome for each individual i, for which Di = d where d ∈ {0, 1}. For each

individual only one of the potential outcomes is observed depending on the treatment

status. The observed outcome, denoted by Yi in the triple, can be written in terms

of treatment indicator (Di) and the potential outcomes:

Yi = DiYi1 + (1 −Di)Yi0

Our primary interest lies in estimating the average causal effect of the repeating a

grade. This effect is called the average treatment effect (ATE). It gives the mean

effect of the treatment:

τ = E[Yi1 − Yi0] = E[Yi1] − E[Yi0]

Since only one of the potential outcomes is observed, ATE cannot be identified

without further assumptions. For the empirical study we assume that the following

assumptions hold:

A 2.1 Conditional Independence Assumption (CIA)

Yi0, Yi1⊥Di|Xi, where ⊥ stands for independence.

It implies that after controlling for the effect of covariates, treatment and outcomes

are independent.

A 2.2 Common Support

0 < Pr(Di = 1|Xi) < 1

Assumption 2.2 means that for all x there is a positive probability of either par-

ticipating (Di = 1) or not participating (Di = 0). In other words for each value

of covariates there are both treated and untreated cases. Thus, there is an overlap

between the treated and untreated subsamples. If the assumption fails, then we

could have individuals with x vectors who are all treated and those with a different
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x vector who are all untreated.

Rosenbaum and Rubin (1983) show that under CIA identification can be achieved

by conditioning on a function ofXi, a balancing score5, instead of a high dimensional

Xi itself. The most commonly used balancing score in the evaluation literature is the

propensity score, the conditional probability of assignment to the treatment given

the covariates:

p(x) = Pr[Di = 1|Xi = x] = E[Di|Xi = x] (2.1)

Lemma 2.1 Unconfoundedness Given the Propensity Score

Given the CIA and Common Support assumptions, outcomes Yi0 and Yi1 are inde-

pendent of treatment given the propensity score.

Yi0, Yi1⊥Di|p(Xi)

Under these assumptions several methods can be used to estimate the average treat-

ment effect. This paper uses three different methods: regression method, inverse

propensity score weighting method and Doubly Robust Method which is the combi-

nation of the first two methods.

Under the CIA one can estimate the unconditional means E[Yid] = µd based on

the parametric estimation of conditional means E[Yid|Xi = x] for d ∈ 0, 1. Since

the arguments are symmetric, we concentrate on E[Yi1|Xi = x]. Assume that the

conditional mean function is correctly specified, E[Yi1|Xi = x] = m1(x, β1), where

m1(x, β1) is a function depending on a covariate vector and a k−dimensional true

parameter vector β1. Given a consistent estimator β̂1, a consistent estimator of the

unconditional mean, µ1, is:

µ̂1 =
1

N

∑

i

m1(Xi, β̂1) (2.2)

since µ1 = E[m1(x, β1)] by iterated expectations.

5A balancing score is a function of observed covariates Xi such that the conditional distribution
of Xi given balancing score is the same for treated and control units (see Rosenbaum and Rubin
(1983)).
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Thus, one can estimate the average treatment effect based on two parametric re-

gressions as follows:

τ̂reg =
1

N

∑

i

[m1(Xi, β̂1) −m0(Xi, β̂0)] (2.3)

From Wooldridge (2002) and Wooldridge (2009), the asymptotic variance can be

written as follows:

AV
√
N(τ̂reg) = E[(m1(X, β1) −m0(X, β0) − τreg)

2] (2.4)

+E[
∂m1(X, β1)

∂β ′
1

]V1E[
∂m1(X, β1)

∂β ′
1

]′

+E[
∂m0(X, β0)

∂β ′
0

]V0E[
∂m0(X, β0)

∂β ′
0

]′

where V1 and V0 are the variances of β1 and β0. The variance can be estimated by

replacing the expectations with the sample means and true parameters with their

estimates.

Using Lemma 2.1, the mean outcomes for the treatment and control groups can be

identified by weighting the observations with the inverse of the propensity score:

E[Yi1] = E[DY/p(X)]

E[Yi0] = E[(1 −D)Y/(1 − p(X))]

Hence, we can write the ATE as follows:

τ = E[
DY

p(X)
− (1 −D)Y

(1 − p(X))
]

The estimator of ATE can be written as a sample counterpart of the population

expectation. Usually this estimator is referred as the propensity score weighting

estimator6:

τ̂ps =
1

n

∑

i=1

[DiYi/p(Xi; α̂) − (1 −Di)Yi/(1 − p(Xi; α̂))] (2.5)

=
1

n

∑

i=1

(Di − p(Xi; α̂))Yi
p(Xi; α̂)(1 − p(Xi; α̂))

≡ 1

n

∑

i=1

ĝi (2.6)

6This estimator is identical to an estimator from Horvitz and Thompson (1952) for handling
nonrandom sampling.
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Since usually the true propensity score p(X) is not observable, one can use an es-

timated propensity score p(X; α̂), where α̂ is the maximum likelihood estimator

(MLE) (e.g., probit or logit) of the parameter vector of the propensity score speci-

fication. τ̂ps is inconsistent, however, if the propensity score is misspecified (see for

further discussion Horvitz and Thompson (1952), Rosenbaum (1987), and Bang and

Robins (2005))7.

Following Wooldridge (2007), Wooldridge (2009) shows that the asymptotic variance

of τps is:

AV
√
N(τ̂ps − τ) = E[eie

′
i] (2.7)

where ei ≡ gi − E[gis
′
i]E[sis

′
i]
−1si, si is the score function of the MLE model of the

propensity score.

Both of the above mentioned estimation methods, regression and propensity score

weighting, can be easily implemented. There are no computational difficulties, or

curse of dimensionality problems as in nonparametric methods. As mentioned above,

consistency of the estimates hinges upon the true specification of the mean or the

propensity score, depending on which estimation method is used. Wooldridge (2007)

and Hirano and Imbens (2001) show, however, that combining weighting and regres-

sion methods gives a doubly robust estimate of the unconditional mean, providing

double protection against misspecification. As long as one of the functional form

specifications, either that for the conditional mean or the propensity score, is cor-

rectly specified, the resulting estimator for the unconditional mean will be consistent

provided that E[Yd] = E[md(x, β
∗
d)] where β∗

d is the probability limit of an estimator

from the conditional mean function (Wooldridge (2007)). This property holds for

linear exponential family with a canonical link function (see for details Wooldridge

(2007), Scharfstein, Rotnitzky, and Robins (1999)). The three regression models we

use for this application, namely linear, logit and poisson regression, belong to this

family.

The main idea is weighting the objective function of the regression by the inverse of

the propensity score. Depending on the choice of the regression method, the coef-

ficient estimates of the mean function parameters come from weighted least square

or weighted MLE method. The score function of the chosen parametric model is

7Hirano, Imbens, and Ridder (2003) examine the estimator in equation 2.5 where p(Xi; α̂) is
replaced by nonparametric estimates.
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weighted by 1/p(Xi; α̂) and by 1/(1− p(Xi; α̂)) for treated and untreated subpopu-

lation respectively.

Depending on the nature of outcome variable the proper mean function is one of the

following:

• For a continuous outcome variable:

md(Xi, βdw) = X ′
iβdw (2.8)

• For a binary outcome variable:

md(Xi, βdw) = Λ(X ′
iβdw) =

exp(X ′
iβdw)

1 + exp(X ′
iβdw)

(2.9)

• For a count outcome variable:

md(Xi, βdw) = exp(X ′
iβdw) (2.10)

The estimated coefficient β̂dw from weighted regression method solves the weighted

score function

1

N

∑

i

wi(Yi −md(Xi, β̂dw))Xi = 0 (2.11)

where

wi =

{

1/p(Xi; α̂), if Di = 1

1/(1 − p(Xi; α̂)), if Di = 0

Thus, one can estimate the average treatment effect based on two weighted regression

coefficients as in regression methods:

τ̂dr =
1

N

∑

i

[m1(Xi, β̂1w) −m0(Xi, β̂0w)] (2.12)

The asymptotic variance of τ̂dr is same as Equation 2.4 with different V0 and V1
8.

When estimating V0 and V1, one has to take into account that the weights are

8For the linear case the asymptotic variance of τ̂dr is equivalent to the variance derived by
Hirano and Imbens (2001) for linear mean function.
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estimated in a first step. Wooldridge (2007) derives the asymptotic variance of β̂dw

as follows.

AV
√
N(β̂dw) = A−1

0 D0A
−1
0

where A0 ≡ E[H(X, βdw)] andD0 ≡ E[kik
′
i]. ki = k(Xi, βdw) = wi(Yi−m(Xi, β̂dw))Xi

is the weighted score function and H(X, βdw) is the Hessian. Wooldridge (2007) pro-

poses also the following consistent estimators for A0 and D0 :

Â =
1

N

∑

i

wiH(Xi, β̂dw)

D̂ =
1

N

∑

i

k(Xi, β̂dw)k(Xi, β̂dw)′

2.2 Estimation of the Local Average Treatment Effect (LATE)

The formal definition of the LATE uses the potential outcomes notation used earlier

by Neyman (1923) and Fisher (1935), which became a standard notation in the

program evaluation literature after Rubin (1974). Di shows the binary treatment

status for individual i:

Di =

{

1, if the ith individual is treated

0, otherwise

We define two potential outcomes, Yi1 and Yi0, depending on the value of the treat-

ment indicator Di. For each individual, only one of the potential outcomes is ob-

served. The observed outcome, denoted by Yi, can be written in terms of the treat-

ment indicator (Di) and the potential outcomes:

Yi = DiYi1 + (1 −Di)Yi0 (2.13)

The definition of the LATE hinges on the existence of a valid instrument. In this

paper, we concentrate on binary instrument, Zi. Given that the variable Zi is a valid

instrument, we can define the potential treatment status, {Dz
i }, for the two values

of the instrument Zi. Similar to the observed outcome, we can write the realized

treatment status in terms of the instrument Zi and the potential treatment status:

Di = ZiD
1
i + (1 − Zi)D

0
i . (2.14)

According to the relation between the potential treatment status and the binary
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instrument, we can divide the population into four subpopulations. Following the

terminology used by Angrist et al. (1996) we demonstrate these four subpopulations

in the following table:

Table 1: Partition of the population

Compliers Always Takers Never Takers Defiers

Z = 1 D1 = 1 D1 = 1 D1 = 0 D1 = 0

Z = 0 D0 = 0 D0 = 1 D0 = 0 D0 = 1

From the observed data set we cannot identify the group to which an individual

belongs since we only observe the pair (Di, Zi). For example, if we observe Zi = 1

and Di = 1, we can only say that the individual is either complier or always-taker.

Thus, compliers are members of a hypothetically defined subpopulation and cannot

be identified from observed data without further assumptions. The LATE is simply

the expected difference between two potential outcomes for the subpopulation of

compliers. Formally, we can express the LATE as follows:

τLATE = E[Y1 − Y0|D1 > D0]. (2.15)

In order to identify the LATE we use the following assumptions:9

A 2.3 Conditional Independence of the Instrument:

(Y0, Y1, D
z) ⊥ Z|X for each z ∈ {0, 1}.

A 2.4 Rank Condition:

Pr [D = 1 |X,Z ] is a nontrivial function of Z, conditional on X = x.

A 2.5 Monotonicity:

Pr [D1 ≥ D0 |X ] = 1.

A 2.6 First Stage:

0 < Pr [Z = 1 |X = x ] < 1 and Pr [D1 = 1 |X ] > Pr [D0 = 1 |X ].

Assumption A 2.3 implies that the instrument, Z, is as good as randomly assigned

once we condition on the covariates, X. Assumption A 2.3 also rules out the di-

rect effect of the instrument on the potential outcome. The first two assumption

9For the sake of notational simplicity, we drop the running index i.
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together guarantee that the only effect of the instrument on the outcome is through

the treatment variable. Assumption A 2.6 requires that for any value of X both

values of the instrument can be observed. This can be interpreted as a common

support assumption. Furthermore, it assures that the instrument and the treatment

variable are correlated conditional on the covariates. Assumption A 2.5 rules out

the existence of subpopulations, which are affected by the instrument in an opposite

direction. Therefore, the existence of defiers in the population is ruled out.

Imbens and Angrist (1994) show that if Assumptions A 2.3-2.5 hold in the absence

of covariates, then, the average difference in the outcome variable Y relative to that

of the treatment variable D between two instrument groups identifies the LATE:

τLATE =
E[Y |Z = 1] − E[Y |Z = 0]

E[D|Z = 1] − E[D|Z = 0]
. (2.16)

Since it is usually questionable whether we can assume unconditional independence

of the instrument, we will concentrate on the identification of LATE conditional on

covariates. In the following part, we summarize the identification results and sketch

the proofs in the Appendix.

Theorem 1 Under Assumptions A 2.3-A 2.5 the conditional LATE is identified as

τLATE(x) = E
[

Y1 − Y0|X = x,D1 > D0
]

=
E[Y |X = x, Z = 1] −E[Y |X = x, Z = 0]

E[D|X = x, Z = 1] −E[D|X = x, Z = 0]
(2.17)

Theorem 2 Under Assumptions A 2.3-A 2.6 the unconditional LATE is identified

as follows:

τLATE =
EX [E [Y |X,Z = 1] − E [Y |X,Z = 0]]

EX [E [D|X,Z = 1] − E [D|X,Z = 0]]
. (2.18)

Theorem 3 The identification can also be achieved via weighting by the conditional

probability of receiving the instrument, which is called the instrument propensity

score. Let the probability of receiving the instrument be Pr [Z = 1 |X ] = p(X), then,

the unconditional LATE is identified as follows:

τweLATE = E
[

Y1 − Y0|X = x,D1 > D0
]

=
E
[

Z
p(X)

Y
]

− E
[

1−Z
1−p(X)

Y
]

E
[

Z
p(X)

D
]

− E
[

1−Z
1−p(X)

D
] . (2.19)
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These identification results show the connection between the LATE and the ATE.

The ratio in Equation (2.17) can be seen as a ratio of two conditional ATEs: ATE

of Z on Y , τY |Z(x), divided by ATE of Z on D, τD|Z(x). The same relation holds

also for the unconditional effects. We can rewrite Equations (2.17) and (2.18) as:

τLATE(x) =
E[Y |X = x, Z = 1] −E[Y |X = x, Z = 0]

E[D|X = x, Z = 1] −E[D|X = x, Z = 0]
=
τY |Z(x)

τD|Z(x)

τLATE =
EX [E [Y |X,Z = 1] − E [Y |X,Z = 0]]

EX [E [D|X,Z = 1] − E [D|X,Z = 0]]
=

EX

[

τY |Z(x)
]

EX [τD|Z(x)]
=
τY |Z

τD|Z

.

Although τY |Z and τD|Z are not real treatment effects, the identification problem,

however, is similar to the identification problem when estimating the ATE. We can

rewrite Eq. 2.13 and the conditional means of the outcome variable by substituting

the definition of the potential treatment status as follows:

Yi = (ZiD
1
i + (1 − Zi)D

0
i )Yi1 + (1 − (ZiD

1
i + (1 − Zi)D

0
i ))Yi0

E [Yi|Zi = 1] = E
[

Y 1
]

= D1
i Yi1 + (1 −D1

i )Yi0

E [Yi|Zi = 0] = E
[

Y 0
]

= D0
i Yi1 + (1 −D0

i )Yi0.

As it is clear from the above equations, these means are not identified from observed

data because one of the potential outcomes on the right-hand side is always missing.

The estimation problem boils down to the estimation of four unconditional means

with a missing data problem: two unconditional means of potential outcomes with

respect to the instrument Z (E [Y 1] and E [Y 0]) and two unconditional means of the

potential treatment variable with respect to the instrument Z (E [D1] and E [D0]).

The goal is to estimate these unconditional means consistently to get consistent

estimates of the LATE. Using the connection between the LATE and the ATE,

we can borrow estimation methods of the ATE under CIA to get estimators of

the LATE (see Hirano et al. (2003), Imbens (2004), Wooldridge (2002) Ch. 18

for further information on estimation of the ATE). For example, Frölich (2007)

provides a nonparametric estimator for the estimation of the LATE with covariates,

which is basically the ratio of two matching estimators of ATEs of Z on Y and

D. Tan (2006), on the other hand, derives a parametric regression method for the

LATE estimation, where he identifies E [Y |X,Z] by E [Y |D,X,Z] and E [D|X,Z].

Another obvious possibility is to use parametric regression adjustment to get two

ATEs. The conditional mean functions E[Y |X,Z = z] and E[D|X,Z = z] for

z ∈ {0, 1} can be estimated using the individuals who receive the instrument (z = 1)

12



and do not receive the instrument (z = 0) separately if the assumptions listed

previously are fulfilled. Assumemz(X, βz) and µz(X,αz) are models for E[Y z|X] and

E[Dz|X] for z = 0, 1 respectively. The coefficients can be estimated by regression

methods. The M-Estimator based representation of the regression estimation can

be written as:

{β̂1} = argmin
1

N

∑

i

Ziq
y
1(Yi, Xi; β1)

{α̂1} = argmin
1

N

∑

i

Ziq
d
1(Di, Xi;α1)

{β̂0} = argmin
1

N

∑

i

(1 − Zi)q
y
0(Yi, Xi; β0)

{α̂0} = argmin
1

N

∑

i

(1 − Zi)q
d
0(Di, Xi;α0).

where qy(·) and qd(·) are the objective functions. If mz(·) and µz(·) are correct

specifications of the conditional means, with consistent,
√
N -asymptotically normal

estimator of βz and αz for z = 0, 1, we get consistent estimators of E [Y z] and E [Dz]

and as a result consistent estimators of τY |Z and τD|Z . Using the resulting estimated

parameters, the LATE can be estimated by:

τ̂ regLATE =
1
N

∑N
i (m1(Xi, β̂1) −m0(Xi, β̂0))

1
N

∑N
i (µ1(Xi, α̂1) − µ0(Xi, α̂0))

=
τ̂Y |Z

τ̂D|Z
. (2.20)

The consistency of the estimators of E [Y z] and E [Dz], however, hinges upon the

correct specification of the models for the conditional mean functions, mz(X, βz) and

µz(X,αz). As an example, we assume a linear specification for the conditional mean

function, i.e., m1(Xi, β1) = X ′
iβ1. A consistent estimation of the unconditional mean

requires that E [Zi(Y
1
i −X ′

iβ1)] is equal to zero. By law of iterated expectations, we

can write the following equality:

E
[

Zi(Y
1
i −X ′

iβ1)
]

= E
[

E
[

Zi(Y
1
i −X ′

iβ1)
∣

∣Xi

]]

= E
[

E [Zi|Xi] (E
[

Y 1
i

∣

∣Xi

]

−X ′
iβ)
]

.

This expectation is equal to zero only if E [Y 1
i |Xi] = X ′

iβ1, i.e., if the conditional

mean is correctly specified. The relation is the same for the other three terms nec-

essary for the estimation of the LATE.

13



Following the identification result in Theorem 3, the LATE can be estimated by

replacing the p(X) in Eq. (2.19) by its parametric estimate and the expectations by

sample means as proposed by Tan (2006) or as a ratio of two propensity score match-

ing estimators as proposed by Frölich (2007). The parametric weighting estimator

of the LATE is given by:

τ̂weLATE =
N−1

∑

i

[

Zi

p̂(Xi;γ̂)
Yi

]

−N−1
∑

i

[

1−Zi

1−p̂(Xi;γ̂)
Yi

]

N−1
∑

i

[

Zi

p̂(Xi;γ̂)
Di

]

−N−1
∑

i

[

1−Zi

1−p̂(Xi;γ̂)
Di

] (2.21)

=
N−1

∑

i
[Zi−p̂(Xi;γ̂)]Yi

p̂(Xi;γ̂)[1−p̂(Xi;γ̂)]

N−1
∑

i
[Zi−p̂(Xi;γ̂)]Di

p̂(Xi;γ̂)[1−p̂(Xi;γ̂)]

,

where p̂(Xi; γ̂) is the estimated probability of receiving the instrument. This method

is an extension of propensity score weighting estimation of the ATE. The weighting

by the inverse of the probability, however, estimates the unconditional mean consis-

tently as long as the probability of receiving the instrument is correctly specified.

This can be seen from the proof of Theorem 3 in Appendix A. To get from the sec-

ond equality to the third, it is necessary that E [Z|X] = p(X). Therefore, if p(X)

is wrongly specified, the weighting does not recover the unconditional mean.

The asymptotic distribution of the above mentioned estimators of the LATE can be

derived easily for a known joint asymptotic distribution of the ATE estimators τ̂Y |Z

and τ̂D|Z , which satisfy:

√
N

((

τ̂Y |Z

τ̂D|Z

)

−
(

τY |Z

τD|Z

))

d→ N(0,Ω),

where Ω is variance-covariance matrix. Since the LATE is simply the ratio of these

two estimators, we can derive the asymptotic distribution of the LATE estimator

by the Delta Method:

√
N(τ̂LATE−τLATE)

d→ N

(

0,

(

1

τD|Z

)2

VY |Z +

(

τY |Z

(τD|Z)2

)2

VD|Z − 2
τY |Z

(τD|Z)3
Cov

(

τY |Z , τD|Z
)

)

.

(2.22)

In order to estimate the variance of the LATE estimator, we replace the unknown

population parameters τY |Z , τD|Z and their variances with their estimates.
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In this paper, we propose a doubly robust parametric estimation method similar to

the doubly robust estimator of the ATE as in Wooldridge (2007) (see also Robins

et al. (2008)). It shares the same property as the doubly robust estimator of the

LATE proposed by Tan (2006).10 It is essentially the weighted regression of the

four conditional means in Equation 2.20 with the weights 1
P̂ (Z=1|X=x)

for Z = 1 and
1

1−P̂ (Z=1|X=x)
for Z = 0 in order to estimate βz and αz.

{β̂w1 } = argmin
1

N

∑

i

Zi
p(Xi; γ̂)

qy1(Yi, Xi; β1)

{α̂w1 } = argmin
1

N

∑

i

Zi
p(Xi; γ̂)

qd1(Di, Xi;α1)

{β̂w0 } = argmin
1

N

∑

i

(
1 − Zi

1 − p(Xi; γ̂)
)q0(

yYi, Xi; β0)

{α̂w0 } = argmin
1

N

∑

i

(
1 − Zi

1 − p(Xi; γ̂)
)qd0(Di, Xi;α0),

where q(·) is the objective function and γ̂ is the estimated parameter vector for the

instrument propensity score.

τ̂drLATE =
1
N

∑

im1(Xi, β̂
w
1 ) − 1

N

∑

im0(Xi, β̂
w
0 )

1
N

∑

i µ1(Xi, α̂
w
1 ) − 1

N

∑

i µ0(Xi, α̂
w
0 )

(2.23)

This doubly robust estimator of the LATE is consistent if the instrument propensity

score is correctly specified or the mean functions of the outcome variable and the

treatment variable are correctly specified, whereas the consistency of the LATE

estimator based on a unweighted regression or inverse instrument propensity score

weighting hinges upon the correct specification of the relevant models. In short, it is

enough to have one of the methods correct in order to get consistent estimators of the

LATE. Given that it is almost impossible to be sure whether a method is correct,

10Tan (2006) proposes a different combination of the regression method and weighting method.
In order to get the doubly robust estimator of the LATE, the first term in the denominator in Eq.
2.19 is replaced by

E

[

Z

p(1|x)Y
]

− E

[(

Z

p(1|x) − 1

)

E[Y |X = x, Z = 1]

]

the second term in the denominator is replaced by

E

[

1 − Z

1 − p(1|x)Y
]

− E

[(

1 − Z

1 − p(1|x) − 1

)

E[Y |X = x, Z = 0]

]

and the terms in nominator are replaced similarly.
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this doubly robust method provides some safety in applied work. Depending on

which method we are using we need to specify either the instrument propensity

score model (Eq. 2.19) or the conditional mean functions of the outcome variable

and the treatment variable (Eq. 2.20). Let the mz(·) and µz(·) be the correct

specifications of the conditional means. If we use a weighted regression method with

the weights 1
P (Z=1|X=x)

for Z = 1 and 1
1−P (Z=1|X=x)

for Z = 0 to estimate βz and

αz, the estimator of the LATE is consistent even if P (Z = 1|X = x) is wrongly

specified. The LATE estimator in Equation 2.19, however, would not be consistent

with wrongly specified instrument propensity score as illustrated above. We can use

the previous example with a linear mean function m1(Xi, β1) = X ′
iβ1 to show the

doubly robustness of our estimator. A consistent estimation of the unconditional

mean requires that E
[

Zi

p(Xi,γ)
(Y 1

i −X ′
iβ1)

]

is equal to zero. By the law of iterated

expectations, we can write the following equality:

E

[

Zi
p(Xi, γ)

(Y 1
i −X ′

iβ1)

]

= E

[

E

[

Zi
p(Xi, γ)

(Y 1
i −X ′

iβ1)

∣

∣

∣

∣

Xi

]]

(2.24)

= E

[

E [Zi|Xi]

p(Xi, γ)
E
[

(Y 1
i −X ′

iβ1)
∣

∣Xi

]

]

= E

[

E [Zi|Xi]

p(Xi, γ)
(E
[

Y 1
i

∣

∣Xi

]

−X ′
iβ1)

]

.

This shows that, even if p(Xi, γ) is a wrong specification of Pr [Zi = 1 |Xi ], E[Y 1
i ]

is consistently estimated as long as E [Y 1
i |Xi] = X ′

iβ1 holds, i.e., the expecta-

tion is equal to zero. Moreover, with a correctly specified instrument propensity

score we can get a consistent estimator of the LATE for certain combinations of

mz(·) and µz(·) even if mz(·) and µz(·) are wrongly specified. For models satisfying

E[Y z] = E[mz(X, β̂z)] and E[Dz] = E[µz(X, α̂z)] although E[Y z|X] 6= mz(X, β̂z)

and E[Dz|X] 6= µz(X, α̂z), weighted regression will estimate the LATE consistently.

We know that linear, logistic and Poisson regression models satisfy this relation. In

our example for a linear model, if p(Xi, γ) is the correct specification for E [Zi|Xi],

but E[Y 1
i |Xi] 6= X ′

iβ1, by properties of linear model Eq. (2.24) simplifies to:

E
[

E
[

Y 1
i

∣

∣Xi

]

−X ′
iβ1

]

= E
[

Y 1
]

− E [X ′
iβ1] = 0

even if E [Y 1
i |Xi] 6= X ′

iβ1. Therefore, if we choose the mean functions among these

models given that the distributional assumptions are in line with the characteris-

tics of the outcome variables, τ̂LATE will be a consistent estimator of the LATE,
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if P (Z = 1|X = x) is correctly specified or E[Y z|X] and E[Dz|X] are correctly

specified.

The doubly robust estimation of the LATE requires the estimation of the conditional

mean functions and the instrument propensity score to generate the weights. This

can be done by a two step M-Estimation procedure, where the weights are estimated

in the first step and used in the second step (see Wooldridge (2002) p. 353- 356

for asymptotic distribution of two step M-Estimators). Another approach can be

joint estimation of all parameters in M-Estimation framework. Furthermore, by

adding the estimation of τY |Z and τD|Z into the joint estimation procedure, we

can easily get Cov
(

τY |Z , τY |Z
)

, which we need in order to estimate the variance

of the LATE estimator (see Eq. 2.22). Let θ = (β1, β0, α1, α0, γ, τ
Y |Z , τD|Z) and

W = (Y,X,D, Z). The estimators can be defined as a solution for the sample

moment equation

1

N

N
∑

i=1

ψ(Wi, θ̂) = 0. (2.25)

By standard results for M-Estimation it follows that:

√
N(θ̂ − θ)

a∼ N
(

0, A−1V A−1
)

(2.26)

where

A ≡ E

[

∂ψ(Wi, θ)

∂θ′

]

(2.27)

V ≡ V [ψ(Wi, θ)] = E[ψ(Wi, θ)ψ(Wi, θ)
′]

For the estimation of the instrument propensity score, we can use a probit or logit

estimation method. For both, the relevant moment function will be the score of the

loglikelihood. Depending on the nature of the outcome variable the proper mean

function is a generalized linear model with the identity, logit or poisson link function.

The model for the mean can be written as follows:

mz(Xi, βz) = g(X ′
iβz), (2.28)

where g(·)−1 is the canonical link function. For a continuous outcome variable

the suitable link function is the identity link, whereas for a dichotomous outcome

the logit link (g(a)−1 = ln
(

a
1−a

)
)

, g(a) = exp(a)
1+exp(a)

) and for a nonnegative discrete

outcome variable the log link (g(a)−1 = ln(a), g(a) = exp(a)) will be suitable. Thus,

the natural choice for the mean of a binary treatment indicator is a generalized linear
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model with the logit link:

µ(Xi;αz) = Λ(X ′
iαz) =

exp(X ′
iαz)

1 + exp(X ′
iαz)

.

If the instrument propensity score is specified as a logit function P (Zi = 1|Xi) =

Λ(X ′
iγ) =

exp(X′
i
γ)

1+exp(X′
i
γ)

, the moment functions related to each mean function can be

written as follows:

ψ1(W, θ) =
Z

Λ(Xγ)
X ′(Y −m1(X, β1))

ψ2(W, θ) =
1 − Z

1 − Λ(Xγ)
X ′(Y −m0(X, β0))

ψ3(W, θ) =
Z

Λ(Xγ)
X ′(D − Λ(Xα1))

ψ4(W, θ) =
1 − Z

1 − Λ(Xγ)
X ′(D − Λ(Xα0))

ψ5(W, θ) = X(Z − Λ(Xγ))

ψ6(W, θ) = m1(X, β1) −m0(X, β0) − τY |Z

ψ7(W, θ) = µ1(X,α1) − µ0(X,α0) − τD|Z .

The moment function in Eq. 2.25 can be written in terms of these seven moment

functions:

ψ(W, θ) =



























ψ1(W, θ)

ψ2(W, θ)

ψ3(W, θ)

ψ4(W, θ)

ψ5(W, θ)

ψ6(W, θ)

ψ7(W, θ)



























The M-estimators of τY |Z and τY |Z from the weighted moment functions can be

used to estimate the LATE robustly. In the appendix, we provide the variance

estimator, which we need to estimate the variance of τ̂drLATE based on the asymptotic

distribution given in Eq. (2.22). Note that the regression LATE estimator can be

calculated in a similar way. The difference is that the fifth moment condition does

not exist and the other moment conditions are only multiplied by Zi or (1−Zi), but

not weighted by the instrument propensity score.
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3 Empirical Results

3.1 Grade Retention as a Treatment Variable

In the following, the causal effect of grade retention on several school outcomes is

investigated for the German school system. The data set consists of information

on family background and school related topics for about 3000 10th grade students

attending upper secondary school in North Rhine-Westphalia in the year 197011.

The students were sampled from 121 classes at 68 upper secondary schools. The

data contains information from student, parent and teacher questionnaires. About

ten years later, the students’ grades were collected from the schools.

The empirical study on the causal effect of grade retention is distinguished from

earlier studies by its investigation of the effect in a potential outcome framework

and its application of the above explained methods for estimating the ATE of grade

retention on school performance. Treatment is defined as repeating a class at least

once after 10th grade. The effects of grade retention on different outcome vari-

ables are investigated. The first one is the probability of graduating from upper

secondary school (having “Abitur” or not). The other three outcome variables are

only measured for those who have graduated from upper secondary school. One is

the average final grade in upper secondary school. In addition, the effect on math

and German “Abitur” grades is also considered. The aim of the empirical part is

twofold: (i) estimate the causal effect of grade retention on the school performance,

and (ii) investigate the differences of the causal effect for girls and boys. Outcomes

are assumed to be independent of treatment status conditional on the covariates.

All variables used in the study are listed in Table A1.

The variables are chosen in accordance with earlier findings concerning character-

istics associated with being retained as well as with being successful in school. It

is important to include variables related to both treatment status and potential

outcomes so that the CIA holds approximately. A female dummy is included be-

cause most studies show that males are more likely to be retained than females.

A measure of intelligence, IQ, is also included to control for the cognitive skills of

the students. The variable IQ in our study is the sum of correctly solved questions

of a standard psychometric Intelligence Structure Test (IST), which was adminis-

11The original data set consists of two more follow-ups in years 1984 and 1998.
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tered in the class-room in the 10th grade. Since noncognitive skills also appear to

play an important role in school performance, as shown in earlier studies, variables

which measure the attribution of success to diligence (DILIG) and ability (ABIL)

are included as conditioning covariates. The variable WISH is added as a control

for the child’s motivation. We also control for the age of the student. Former

studies also claim that the characteristics of parents, such as economic well being,

education and parental involvement with their child’s school performance, are also

likely to affect the probability of being retained. EDU MOT, EDU FAT, AGE-

MOT, HHINC, INTERSCHOOL are variables which control for family background

and parents involvement. We can also identify whether the child has experienced

any grade retention before 10th grade (PR RET).

The variables which are used in this study are chosen from three different sources.

The outcome variables are taken from the administrative school data and the con-

trol variables are taken from parents and students questionnaires. Merging these

three different data sets decreases the sample size already by about 500 observa-

tions. Some questions are asked to both students and parents. Thus, we combine

the information sets to keep the decrease in the sample size moderate.

We create different samples. With the first sample we analyze the causal effect

of grade retention on high school graduation (ABI) (see Table A2 for descriptive

statistics). Thereafter, we restrict our sample for those who graduated from upper

secondary school in order to estimate the causal effect of grade retention on average

final grade (GPA) and final grades in math (MAT) and German (GER) (see Table

A3 for descriptive statistics). Next we restrict the sample to the students who did

not experience any grade retention before the 10th grade (see Table A4) in order to

see the effect of late grade retention on those students. For this sample we also look

at the upper secondary school graduates and the effect of grade retention on gradu-

ation grades (see Table A5). For all four samples the analysis is done for the entire

sample and for the subsamples by gender. The propensity score, the probability of

being retained after 10th grade is estimated by a logit regression for all subsamples.

The regression results can be found in Table A6 and A7. Table A6 gives the logit

estimation results for the sample before restricting by previous retention status and

A7 gives the results only for students who did not experience retention before 10th

grade. From the logistic regression results, we can conclude that females are less

likely to be retained. IQ has a decreasing effect on probability of being retained
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in general. Having a young mother increases the probability of being retained at

least for the main sample (Table A6 col. (a) and (c)). The variable PR RET is

highly significant and negative for the main sample (Table A6 col. (a), (b), (c)) .

However, when we constrain our sample to high school graduates it does not have

a significant effect on the probability of being hold in the same grade (Table A7

col. (a), (b), (c)). The variables, DILIG and ABIL, are also most of the time sig-

nificantly negative. As in Rauber (2007), we also use these variables to measure to

what extent a student follows an internal attribution strategy by attributing success

to effort and ability. Relying on evidence that individuals with a high degree of self-

esteem frequently tend to attribute success as being internal (see Rauber (2007) and

its references), the interpretation of the negative coefficients might be that higher

self esteem decreases the probability of grade retention. The other variable which

is significantly negative for almost all samples is the willingness to pursue higher

education (WISH), however with different signs for different subsamples. The coef-

ficient (PARINT) which controls for parents interests on their child’s performance

at school is for most specifications significantly negative. It means that if parents

are more interested in school outcomes, the probability of being retained decreases.

For some specifications, the dummy variable for the highest education category of

the mother is significant and negative.

In order to evaluate the common support assumption the density of estimated

propensity scores by treatment status are drawn for all groups (see Figures from

B 1 to B 12). The propensity score graphs do not exhibit a significant common

support problem. Nevertheless, we estimate the ATEs twice for each sample. First,

we do not apply any common support correction and second we use minima-maxima

comparison (see Frölich (2004), Imbens (2004), Imbens and Wooldridge (2007), and

Caliendo and Kopeinig (2008)). Minima-maxima comparison is simply discarding

the control observations with propensity scores below the minimum propensity score

of the treated group and discarding treated observations with propensity scores

above the maximum propensity score of the control group.

The estimation results are summarized in Table 2 and 3. Table 2 shows the results

for the sample without any restrictions and Table 3 shows the results for the sample

of students without previous retention. we estimate the ATE of grade retention for

the entire samples and for the subsamples by gender. The estimates of causal effect

on high school completion are summarized in the upper panel and the estimates of
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causal effect on academic grades in the lower panel of Table 2 and 3. The effects

are estimated using Doubly Robust Method (DR) (Equation 2.12), weighting by

propensity score (PS) (Equation 2.5) and regression (REG) (Equation 2.3) which

are outlined in Section 2. For the regression and DR method, the mean functions of

the outcome variables are chosen properly according to the features of the outcome

variables. The mean function of the binary outcome variable ABI is specified as in

Equation 2.9. For the outcome variables MAT and GER, Equation 2.10 is chosen

as the mean function. The mean of the last outcome variable GPA is chosen as in

Equation 2.8. The control variables are the same as in the propensity score specifi-

cations. For each sample, there are two different sets of estimates; column (a) and

(b). Column (a) shows the estimation results without applying any common support

correction. For the estimates in column (b), we apply minima-maxima comparison

to determine the common support. The standard errors are calculated using the

asymptotic variance formulas and reported in parentheses.

From Table 2, we see that the effect of grade retention on the probability of com-

pletion of upper secondary school for the overall sample is negative according to

the DR and REG estimates. The negative effect is higher in magnitude for females

than for the entire sample, whereas the effect seems to be positive for males. For all

three samples, PS estimates are insignificant. Applying common support restriction

only slightly affects the estimates. For the other three outcomes, the estimates by

each method are significantly positive for each sample with two exceptions. The

PS estimates of the ATE on MAT for females is insignificant with and without

common support restriction. The PS estimates of the ATE on GPA for females

are insignificant without common support restriction. In the German educational

system, grades between 1 and 6 are assigned, where 1 is the best grade and 6 is

the worst grade. Therefore, positive estimates of ATE imply a worsening effect on

grades. We see that the estimates based on different methods are most of the time

very close to each other. The estimates based on DR and REG methods are almost

for each case highly significant whereas the PS estimates are sometimes insignificant.

It is known that the variance of PS estimates are affected largely by very high and

low propensity scores (see for example Khan and Tamer (2007)).

Table 3 shows the estimation results for the students who only experienced grade

retention after 10th grade. The results are very similar to the previous Table, ex-

cept that the effect of grade retention on the probability of graduating from high
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school for male students is significantly negative. Moreover, the estimates are larger

in magnitude compared to the previous results. As in previous results, regardless

of which method is used the estimates are very close for the same outcome vari-

able. This result should give us some confidence about our model specifications.

The negative effect of grade retention on high school completion is higher for boys

than girls. Furthermore, the treatment effects on different school grades are also

higher for boys than girls. It seems like boys are more negatively affected by grade

retention than girls. All in all, our empirical results suggest that grade retention as

a school intervention tool does not provide any improvement on average, but has

rather worsening effects for students.
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Table 2: Estimated ATE’s for the main sample without restrictions according to

previous retention.

Outcome Method Full Sample Female Male

(a) (b) (a) (b) (a) (b)

ABI DR −0.010∗∗ −0.012∗∗ −0.043∗∗∗ −0.048∗∗∗ 0.017∗∗∗ 0.015∗∗

(0.006) (0.005) (0.013) (0.012) (0.007) (0.007)

PS 0.002 0.001 -0.026 -0.033 0.018 0.018

(0.024) (0.024) (0.040) (0.039) (0.029) (0.028)

REG −0.006 −0.007∗∗ −0.033∗∗∗ −0.044∗∗∗ 0.014∗∗∗ 0.011∗∗

(0.004) (0.004) (0.006) (0.007) (0.005) (0.005)

number of observations 2726 2711 1257 1200 1469 1436

number of treated 520 519 201 196 319 316

number of untreated 2206 2192 1056 1004 1150 1120

MAT DR 0.266∗∗∗ 0.262∗∗∗ 0.118∗∗∗ 0.123∗∗∗ 0.395∗∗∗ 0.377∗∗∗

(0.016) (0.016) (0.046) (0.045) (0.024) (0.024)

PS 0.255∗∗∗ 0.257∗∗∗ -0.025 0.009 0.405∗∗∗ 0.416∗∗∗

(0.067) (0.066) (0.105) (0.104) (0.083) (0.083)

REG 0.271∗∗∗ 0.273∗∗∗ 0.104∗∗∗ 0.109∗∗∗ 0.401∗∗∗ 0.383∗∗∗

(0.010) (0.010) (0.022) (0.023) (0.016) (0.016)

GER DR 0.296∗∗∗ 0.298∗∗∗ 0.356∗∗∗ 0.358∗∗∗ 0.314∗∗∗ 0.286∗∗∗

(0.014) (0.013) (0.050) (0.047) (0.018) (0.017)

PS 0.295∗∗∗ 0.301∗∗∗ 0.225∗∗ 0.264∗∗∗ 0.326∗∗∗ 0.341∗∗∗

(0.058) (0.057) (0.102) (0.100) (0.072) (0.069)

REG 0.301∗∗∗ 0.300∗∗∗ 0.363∗∗∗ 0.363∗∗∗ 0.308∗∗∗ 0.284∗∗∗

(0.008) (0.008) (0.022) (0.022) (0.013) (0.013)

GPA DR 0.220∗∗∗ 0.219∗∗∗ 0.177∗∗∗ 0.182∗∗∗ 0.256∗∗∗ 0.242∗∗∗

(0.009) (0.009) (0.028) (0.027) (0.010) (0.010)

PS 0.213∗∗∗ 0.219∗∗∗ 0.100 0.135∗ 0.256∗∗∗ 0.274∗∗∗

(0.041) (0.039) (0.077) (0.075) (0.047) (0.044)

REG 0.225∗∗∗ 0.224∗∗∗ 0.189∗∗∗ 0.192∗∗∗ 0.258∗∗∗ 0.245∗∗∗

(0.004) (0.005) (0.013) (0.013) (0.006) (0.006)

number of observations 1643 1620 686 672 957 922

number of treated 303 299 105 105 198 197

number of untreated 1340 1321 581 567 759 725

The standard errors are calculated as explained in Section 2 and reported in parentheses under the estimates. Column (a) and (b)

report the estimates without and with common support restriction respectively. *, **, ***: significant at 10 %, 5 %, 1%
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Table 3: Estimated ATE’s for the samples without previous retention

Outcome Method Full Sample Female Male

(a) (b) (a) (b) (a) (b)

ABI DR −0.072∗∗∗ −0.073∗∗∗ −0.065∗∗∗ −0.071∗∗∗ −0.088∗∗∗ −0.089∗∗∗

(0.006) (0.006) (0.013) (0.013) (0.008) (0.009)

PS −0.062∗∗ −0.059∗∗ −0.049 −0.055 −0.078∗∗ −0.075∗∗

(0.028) (0.028) (0.042) (0.041) (0.034) (0.033)

REG −0.075∗∗∗ −0.075∗∗∗ −0.064∗∗∗ −0.068∗∗∗ −0.090∗∗∗ −0.092∗∗∗

(0.004) (0.004) (0.009) (0.009) (0.006) (0.006)

number of observations 1748 1738 866 842 882 850

number of treated 377 377 160 158 217 212

number of untreated 1371 1361 706 684 665 638

MAT DR 0.351∗∗∗ 0.348∗∗∗ 0.143∗∗∗ 0.148∗∗∗ 0.549∗∗∗ 0.542∗∗∗

(0.023) (0.023) (0.050) (0.050) (0.032) (0.031)

PS 0.368∗∗∗ 0.363∗∗∗ 0.085 0.108 0.502∗∗∗ 0.541∗∗∗

(0.079) (0.078) (0.114) (0.113) (0.103) (0.103)

REG 0.365∗∗∗ 0.367∗∗∗ 0.140∗∗∗ 0.143∗∗∗ 0.546∗∗∗ 0.546∗∗∗

(0.012) (0.012) (0.027) (0.028) (0.018) (0.019)

GER DR 0.344∗∗∗ 0.342∗∗∗ 0.330∗∗∗ 0.331∗∗∗ 0.402∗∗∗ 0.359∗∗∗

(0.024) (0.024) (0.052) (0.051) (0.026) (0.024)

PS 0.385∗∗∗ 0.382∗∗∗ 0.323∗∗∗ 0.348∗∗∗ 0.367∗∗∗ 0.393∗∗∗

(0.069) (0.069) (0.118) (0.116) (0.084) (0.078)

REG 0.365∗∗∗ 0.365∗∗∗ 0.352∗∗∗ 0.351∗∗∗ 0.415∗∗∗ 0.371∗∗∗

(0.011) (0.011) (0.027) (0.027) (0.021) (0.020)

GPA DR 0.243∗∗∗ 0.241∗∗∗ 0.169∗∗∗ 0.170∗∗∗ 0.288∗∗∗ 0.273∗∗∗

(0.014) (0.013) (0.027) (0.026) (0.013) (0.013)

PS 0.270∗∗∗ 0.267∗∗∗ 0.199∗∗ 0.219∗∗∗ 0.248∗∗∗ 0.284∗∗∗

(0.047) (0.046) (0.083) (0.081) (0.052) (0.048)

REG 0.255∗∗∗ 0.256∗∗∗ 0.197∗∗∗ 0.195∗∗∗ 0.292∗∗∗ 0.278∗∗∗

(0.006) (0.006) (0.016) (0.016) (0.009) (0.009)

number of observations 1248 1242 546 536 702 662

number of treated 227 225 84 84 143 141

number of untreated 1021 1017 462 452 559 521

The standard errors are calculated as explained in Section 2 and reported in parentheses under the estimates. Column (a) and (b)

report the estimates without and with common support restriction respectively. *, **, ***: significant at 10 %, 5 %, 1%

25



3.2 Grade Retention as an Instrumental Variable

In this section, the causal effect of having an upper secondary school graduation

on earnings is investigated for the individuals whose graduation from upper sec-

ondary school is instrumented by grade retention. The empirical part uses the data

from a longitudinal panel study of 3240 10th grade students attending 121 classes

at 68 advanced secondary schools (Gymnasien) in North Rhine-Westphalia (Central

Archive for Empirical Social Research (2007), Meulemann (2007), Rauber (2007)).

Although the dataset is restricted to students attending upper secondary school in

North Rhine-Westphalia, the empirical study is still representative for Germany.

One fifth of the German population resides in North Rhine-Westphalia and it is

the biggest federal state in terms of population among the 16 federal states in Ger-

many. Furthermore, one forth of the students in Germany is attending school in

North Rhine-Westphalia. Besides, the upper secondary schools in Germany serve

almost for one half of the total students after primary education (Grundschule).

The tests and interviews were conducted at three different points in time: during

the 10th grade (1970), at the age of 30 (1984) and at the age of 43 (1997). The 10th

grade students were asked questions about their characteristics, school background

and relations with parents. They also participated in a psychometric test. The

first wave also contains parent and teacher questionnaires. Around 1980, the stu-

dents’ grades were collected from the schools. The last two waves in 1984 and 1997

contain information about the employment and academic history between the last

interview and the current one. The sample size was reduced to about 1600 partic-

ipating individuals at the age 43, which is about 50 percent of the initial sample size.

Estimation of causal effects of schooling on earnings has been an important challenge

in empirical economics due to the selection problems (see Card (1999), Card (2001)

for related issues). However, here we are interested in average returns of school-

ing for those who comply with assignment to the treatment mechanism implied by

the instrument. Here, the treatment variable is the completion of upper secondary

school versus dropping out of upper secondary school after 10th grade, whereas the

binary policy instrument is grade retention at 10th grade. We examine the effect

of the upper secondary school diploma on the earnings for those whose high school

degree is affected by the policy instrument grade retention. In education research it

has been shown that the grade retention is one of the most important determinants

of high school drop out (see Eide and Showalter (2001), Alexander et al. (2003),
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Jacob and Lefgren (2002) among others). The choice of instrumental variable esti-

mation is not because we cannot identify the ATE, but because we are especially

interested in the causal effects of schooling on those individuals who can be seen as

at risk of dropping out of high school due to implementation of grade retention.

The earnings variable is constructed as net monthly income divided by average hours

worked per month for all individuals that worked at least once between 1984 and

1997.12 To claim that the identifying assumptions in Section 2.2 hold approximately,

it is necessary to include confounding variables which affect the potential treatment,

potential outcomes as well as the instrumental variable. As in the ATE estimation

under CIA assumption, a rich set of confounding variables is very crucial. Moreover,

we have to be certain that the confounding variables are not affected by the treat-

ment or the instrumental variable. It is important to note that all the variables are

measured before instrument and treatment status are observed. Therefore, it is less

likely that the covariates are affected by treatment or instrumental status. Given

that many recent papers like Heckman et al. (2006), Carneiro et al. (2007), Heineck

and Anger (2008), Wichert and Pohlmeier (2010), Uysal and Pohlmeier (2010) and

Rauber (2007) provide empirical evidence on the importance of noncognitive and

cognitive skills in determining different outcomes such as school performance, earn-

ings, labor force participation, and job finding success, it is advantageous that our

dataset gives us the possibility to measure certain dimensions of noncognitive skills

and cognitive skills besides the usual control variables. To account for noncognitive

skills, we use the information attribution of success as in Rauber (2007) and Floss-

mann (2010). Whether a person attributes her success to internal factors, such as

diligence and ability, or to external factors, such as family or luck, is closely related

to Rotter’s (1966) concept of the locus of control. Individuals who attribute success

to internal factors have higher self-esteem, and therefore higher noncognitive skills,

whereas individuals who attribute success to external factors do not take respon-

sibility for their lives and blame other for their failures, thus, they are more likely

to have lower noncognitive skills. A measure of intelligence, IQ, is also included

to control for the cognitive skills of the students. The variable which accounts for

cognitive skills is the sum of correctly solved questions of a standard psychometric

Intelligence Structure Test (IST), which was administered in the class-room in the

12Net monthly income in the data set is inflation adjusted. Average hours worked are measured
by actual and not by contractually specified hours. Average hours worked per month are calculated
as weekly hours times four.

27



10th grade. Besides noncognitive and cognitive skills, we use the information on the

desire of further studies to control for motivation. All variables used in the study

are listed in Table B 8.

After selecting the explanatory variables, all observations with missing information

for any of the explanatory variables, outcome variables, treatment variable and in-

strument are dropped. This decreases the sample size to 1552. Table B 9 summarizes

the descriptive statistics of the variables for the entire sample. It also reports means

and standard deviations of the variables in the sample by the treatment variable

upper secondary school diploma, D, and the binary policy instrument grade reten-

tion, Z. 67% of the sample has a high school diploma and 71% of the sample did not

repeat 10th grade. The proportion of grade retainees who hold a high school diploma

is 30%, whereas 71% of the non-retainees earned a high school diploma. Relative to

the high school graduates, those without a high school degree earn less. On average,

the high school graduates have higher IQ scores and are younger. The average age

of the mothers is larger for the high school graduates than for non-graduates. The

parents of high school graduates are on average more educated, earn more and show

more interest on their children’s school outcomes than those of non-graduates The

high school graduates attribute their success less to their diligence, luck and family

than the non-graduates. The other measures of noncognitive skills, ABIL and AS-

TUTE, are not statistically different for high school graduates and non-graduates.

The variable WISH which measures the motivation of the students differ also signif-

icantly between the two groups. The last two columns of Table B 9 show means and

standard deviations of the covariates for those who have not been retained and for

those who have been. Comparison of the averages of the covariates for nonretained

and retained gives similar numbers to those found between high school graduates

and non-graduates except for household income and noncognitive measures. The

household income does not differ significantly for the retainees and non-retainees.

The individuals who repeated the 10th grade attribute their success to astuteness

and family more than those who did not repeat. The other measures of noncognitive

ability do not differ between the two groups.

With the help of Table B 9, we can compute some simple estimators, which are only

consistent if the treatment or the instrument can be assumed to be independent of

potential outcomes. If graduation from upper secondary school were independent of

potential earnings, we could estimate the ATE of graduation from upper secondary
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school as the difference of the sample means by treatment status. This comparison

estimates the ATE as 0.22 (0.02) for log-wages. This naive estimator, however, is

likely to be biased since the individuals select themselves into treatment according to

their potential outcomes. If grade retention were a valid instrument in the absence

of the covariates, we could estimate the LATE by Equation 2.16, which gives 0.30

(0.08). However, it is hard to believe that the potential outcomes are independent

of the instrument without controlling for covariates. The significant differences in

the averages of covariates also support the assumption that unconditional indepen-

dence is difficult to claim. Therefore, we proceed with our doubly robust estimation

method which relies on identification assumptions conditional on the covariates. For

model selection purposes, we also estimate the LATE by the unweighted regression

method and simple inverse instrument propensity score weighting.

The estimation of the instrument propensity score is carried out by using a logit re-

gression on the covariates. Table B 10 reports the logit estimates. From the results,

we can conclude that females are less likely to be retained. IQ has a decreasing effect

on the probability of being retained on average. Having a young mother increases the

probability of being retained. The other variable, which is highly significant is the

willingness to pursue higher education (WISH). The probability of being retained is

lower for students who are planning to pursue higher education. The variable ABIL

is slightly significant and positive, where as the variable FAMILY is significantly

negative. This results has the fairly intuitive interpretation that the internal attri-

bution, therefore higher noncognitive skills, increases the probability of being not

retained, while external attribution, lower noncognitive skills, increases the proba-

bility of being retained. In general, these results coincide with previous findings in

education literature.

As in the estimation of the ATE, we can evaluate the common support assumption

(Assumption A 2.6) by comparing the distributions (histograms) of the estimated in-

strument propensity scores by instrumental variable as suggested in Lechner (2010).

Figure C 13 shows that there is no common support problem.13

In order to apply the doubly robust or the regression method, we also specify the

13The observations shown as off support in Figure C 13 are those individuals who belong to
the group Z = 1 and whose probability of receiving the instrument is larger than the maximum
probability of receiving the instrument for the group (Z=0). Since there are only 9 observations in
off support, we did not drop them, but it is illustrated in the graph for the sake of completeness.
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conditional mean function of the outcome variable, LNWAGE, and the conditional

mean function of the treatment variable, D. Since our dependent variable is contin-

uous, the identity link is chosen. For the binary treatment variable, we use the logit

link function. Table 4 presents the LATE estimates and the standard errors based

on the different methods.14

Table 4: LATE Estimates

Method Estimate Std. Err

Doubly Robust 0.38 0.085

Weighting 0.40 0.125

Regression 0.37 0.089

All three LATE estimates are statistically significant, and they are larger than the

mean comparisons by treatment status and the simple Wald estimate. The doubly

robust LATE estimate is 38%. This means that individuals whose upper secondary

school graduation is induced by grade retention earn on average 38% more if they

graduate from upper secondary school. This estimate is larger than the standard

OLS estimates of returns to schooling and even larger than other IV estimates of re-

turns to schooling (see Flossmann and Pohlmeier (2006), Ichino and Winter-Ebmer

(2004), Ichino and Winter-Ebmer (1999)). However, this does not mean that our

method overestimates the LATE. By definition, the LATE varies with the instru-

ments chosen, simply because the causal effect is identified for different subpopula-

tions depending on the instrument. In this study, we examine average causal effects

of obtaining an upper secondary school degree on earnings relative to the state of

dropping out of upper secondary school for those whose dropping out of the school

is induced by repeating a grade. Our result shows that grade retention as an edu-

cational policy instrument does worsen the future income of retainees indirectly.

14The similarity of the estimates is not a coincidence. We used the doubly robust property of our
proposed method as an informal model selection criterion. If all the specifications are correct, all
three methods provide consistent estimates of the LATE. The differences, in estimates, however,
can be an indication of wrong specification. We perform the estimation with various specifications
and pick the specification which gives the closest estimates by different methods. For some other
specifications the estimates differ substantially among methods.
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4 Conclusion

In this paper, we investigate the causal effect of grade retention on different school

outcomes, such as completion of upper secondary school, final grades in math and

German as well as the average final grade. The effect of grade retention is an impor-

tant research topic since at least four decades. The results from previous research

are somehow controversial. The literature provides evidence for both negative and

positive effects. The methods used for the analysis of the effects range from simple

group comparisons to sophisticated econometric modeling. Here, we estimate the ef-

fect using a potential outcome framework applying econometric evaluation methods

inverse propensity score weighting, regression adjustment and a combination of these

two methods. Inverse propensity score weighting estimates are inconsistent if the

propensity score is wrongly specified and regression adjustment estimates are incon-

sistent if the mean function is wrongly specified. Hence, a combination of these two

methods gives the researcher some protection against misspecification. The resulting

estimator of the ATE is consistent even if only one of the models is correctly speci-

fied. An important drawback is that the main underlying assumption, CIA, which

provides the identification of the average treatment effect is not testable. As most

researchers who uses identification under CIA, we also argue that the rich set of con-

trol variables we use should be enough to satisfy the CIA assumption approximately.

The propensity score estimation results are consistent with much of the existing

empirical research on determinants of grade retention. The estimates of the ATE

on different outcomes are very close to each other regardless of which of the three

methods is chosen. The estimates show that grade retention has a worsening effect

on the students’ educational achievement. It increases drop-out rate from upper sec-

ondary school significantly, and decreases the individual grades in math and German

as well as the average final grade. The worsening effect is larger for boys than for

girls. Given that grade retention is thought as an intervention tool to improve the

educational achievement, our result do not support that this intervention achieves

that goal. This result coincides with other empirical results from the US and Canada

(see for example Jimerson (1999) and Guevremont, Roos, and Brownell (2007)) and

implies the necessity of different approaches to improve the educational achievement.

In the second part, we propose a combination of weighting and regression methods

of the LATE estimation which is doubly robust. The weighting method alone re-
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quires a correct specification of the instrument propensity score to get consistent

LATE estimators, whereas the regression method requires a correct specification of

the outcome and treatment mean functions. To apply the proposed method, we need

to specify both sets of models, but in order to achieve consistency it is sufficient to

have one set correctly specified.

In our empirical application, the causal effect of having an upper secondary school

graduation on earnings is investigated for those individuals whose graduation from

upper secondary school is instrumented by grade retention. We use the doubly

robust property of our proposed estimator as a model selection criteria and choose

the specification, which delivers similar results for the different methods. The LATE

estimates with the proposed instrument is larger than the standard OLS estimates of

returns to schooling and even larger than other IV estimates of returns to schooling.

The implication of this result is that the individuals whose graduation from upper

secondary school is induced by grade retention are affected by the treatment more

than other subpopulations.
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A Appendix

A.1 Proofs

Proof 1 15

E [Y |X,Z = 1] − E [Y |X,Z = 0] =

= E [DY1 + (1 −D)Y0|X,Z = 1] − E [DY1 + (1 −D)Y0|X,Z = 0]

= E
[

(ZD1 + (1 − Z)D0)Y1 + (1 − ZD1 − (1 − Z)D0)Y0

∣

∣X,Z = 1
]

− E
[

(ZD1 + (1 − Z)D0)Y1 + (1 − ZD1 − (1 − Z)D0)Y0

∣

∣X,Z = 0
]

= E
[

D1Y1 −D1Y0

∣

∣X,Z = 1
]

− E
[

D0Y1 −D0Y0

∣

∣X,Z = 0
]

= E
[

D1(Y1 − Y0)
∣

∣X
]

− E
[

D0(Y1 − Y0)
∣

∣X
]

= E
[

(Y1 − Y0)(D
1 −D0)

∣

∣X
]

The first three equations follow from the definition of the potential outcome and the poten-

tial treatment status. The fourth equation follows from Assumption A 2.3.

E
[

(Y1 − Y0)(D
1 −D0)

∣

∣X
]

= E
[

Y1 − Y0|X,D1 −D0 = 1
]

Pr
[

D1 −D0 = 1 |X
]

− E
[

Y1 − Y0|X,D1 −D0 = 1
]

Pr
[

D1 −D0 = −1 |X
]

= E
[

Y1 − Y0|X,D1 −D0 = 1
]

Pr
[

D1 −D0 = 1 |X
]

Therefore,

τLATE(x) = E
[

Y1 − Y0|X,D1 > D0
]

=
E [Y |X,Z = 1] − E [Y |X,Z = 0]

Pr [D1 > D0 |X ]
.

Due to Assumption A 2.5, the second term in the first equation is equal to zero. More-

over, since E [D|X,Z = 0] = Pr [D = 1 |X,Z = 0] = P [always takers|X] + P [defiers|X]
and E [D|X,Z = 1] = Pr [D = 1 |X,Z = 1] = P [always takers|X] + P [compliers|X], the

relative size of the subpopulation of compliers is identified as:

Pr
[

D1 > D0 |X
]

= E [D|X,Z = 1] − E [D|X,Z = 0] .

Therefore,

τLATE(x) = E
[

Y1 − Y0|X,D1 −D0 = 1
]

=
E [Y |X,Z = 1] − E [Y |X,Z = 0]

E [D|X,Z = 1] − E [D|X,Z = 0]
.

Proof 2 The conditional LATE has to be averaged over X in the compliers subpopulation

in order to get the unconditional LATE

τLATE = EX|D1>D0 [τLATE(x)]

=

∫

τLATE(x)f(x|D1 > D0)dx

=

∫

τLATE(x)
Pr
[

D1 > D0 |X = x
]

Pr [D1 > D0]
f(x)dx

15We follow for the proofs mainly Frölich (2007).
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where the last equation follows from Bayes’ Rule. We insert the definition of the conditional

LATE in the above equation:

τLATE =

∫

E [Y |X = x,Z = 1] − E [Y |X = x,Z = 0]

E [D|X = x,Z = 1] − E [D|X = x,Z = 0]

Pr
[

D1 > D0 |X = x
]

Pr [D1 > D0]
f(x)dx

=

∫

E [Y |X = x,Z = 1] − E [Y |X = x,Z = 0] f(x)dx

Pr [D1 > D0]

=
EX [E [Y |X = x,Z = 1] − E [Y |X = x,Z = 0]]

Pr [D1 > D0]
.

From the first to the second equation Pr
[

D1 > D0 |X = x
]

and (E [D|X,Z = 1]−E [D|X,Z = 0])
cancel, and Pr

[

D1 > D0
]

is taken out of the integral since it is independent of X. Note

that:

Pr
[

D1 > D0
]

= E
X

[

E
[

D1 > D0
∣

∣X
]]

= E
X

[E [D|X,Z = 1] − E [D|X,Z = 0]] .

Thus, the unconditional LATE is identified as

τLATE =
EX [E [Y |X,Z = 1] − E [Y |X,Z = 0]]

EX [E [D|X,Z = 1] − E [D|X,Z = 0]]

Proof 3

E

[

Z

p(X)
Y

]

= E

[

E

[

Z

p(X)
Y

∣

∣

∣

∣

X

]]

= E

[

E [Z|X]

p(X)
E [Y |X]

]

= E [E [Y |X,Z = 1]]

and

E

[

Z

p(X)
D

]

= E

[

E

[

Z

p(X)
D

∣

∣

∣

∣

X

]]

= E

[

E [Z|X]

p(X)
E [D|X]

]

= E [E [D|X,Z = 1]]

Thus,

τweLATE = E
[

Y1 − Y0|X = x,D1 > D0
]

=
E
[

Z
p(X)Y

]

− E
[

1−Z
1−p(X)Y

]

E
[

Z
p(X)D

]

− E
[

1−Z
1−p(X)D

]
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A.2 Variance Estimation

In order to estimate the asymptotic variance we replace the unknown parameter
vector θ with its estimate θ̂w and the expectations with sample means in Eq. (2.26):

V̂ =
1

N

∑

i

ψ(Wi, θ̂
w)ψ(Wi, θ̂

w)′

Â =
1

N

∑

i
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w)

∂θ′
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1
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For the linear mean function mz(Xi, βz) and the logit specifications for the mean
function of the treatment indicator µz(Xi;αz) and the instrument propensity score
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P (Xi; γ) the derivatives of the moment functions are:
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∂β′1
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XiX
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w)2
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1 )XiX

′
i

∂ψ2(Wi, θ̂
w)

∂β′0
=

1 − Zi

1 − Λ(X ′
i γ̂
w)
XiX

′
i

∂ψ2(Wi, θ̂
w)

∂γ′
=

1 − Zi

(1 − Λ(X ′
iγ̂
w))2

Λ(X ′
iγ̂
w)(1 − Λ(X ′

iγ̂
w))(Yi −X ′

iβ̂
w
0 )XiX

′
i

∂ψ3(Wi, θ̂
w)

∂α′
1

=
Zi

Λ(X ′
iγ̂
w)

Λ(X ′
iα̂
w
1 )(1 − Λ(X ′

iα̂
w
1 ))XiX

′
i

∂ψ3(Wi, θ̂
w)

∂γ′
= − Zi

Λ(X ′
iγ̂
w)2

Λ(X ′
iγ̂
w)(1 − Λ(X ′

i γ̂
w))(Di − Λ(X ′

iα̂
w
1 ))XiX

′
i

∂ψ4(Wi, θ̂
w)

∂α′
0

=
1 − Zi

1 − Λ(X ′
i γ̂
w)

Λ(X ′
iα̂
w
0 )(1 − Λ(X ′

iα̂
w
0 ))XiX

′
i

∂ψ4(Wi, θ̂
w)

∂γ
=

1 − Zi

(1 − Λ(X ′
iγ̂
w))2

Λ(X ′
iγ̂
w)(1 − Λ(X ′

iγ̂
w))(Di − Λ(X ′

iα̂
w
0 ))XiX

′
i

∂ψ5(Wi, θ̂
w)

∂γ
= −Λ(X ′

iγ̂
w)(1 − Λ(X ′

iγ̂
w))XiX

′
i

∂ψ6(Wi, θ̂
w)

∂β′1
= X ′

i

∂ψ6(Wi, θ̂
w)

∂β′0
= −X ′

i

∂ψ7(Wi, θ̂
w)

∂α′
1

= Λ(X ′
iα̂
w
1 )(1 − Λ(X ′

iα̂
w
1 ))X ′

i

∂ψ7(Wi, θ̂
w)

∂α′
0

= −Λ(X ′
iα̂
w
0 )(1 − Λ(X ′

iα̂
w
0 ))X ′

i

40



B Tables

Table B1: Definition of the Variables used for estimation of the ATE

Variable Definition
ABI Dummy, 1 if upper secondary school degree held (Abitur)
MAT Grade in math in the last year of upper secondary school

between 1-6, 1 is the best grade
GER Grade in German in the last year of upper secondary school

between 1-6, 1 is the best grade
RET Dummy, 1 if a grade is repeated at least once in the school year 1970/71 or later
SHNR School number
FEMALE Dummy, 1 if female
AGE Age in years
IQ Number of correctly solved questions in the Intelligence Structure Test

(IST; Amthauer (1953)). The test was carried out in 1969.
EDU MOT Categorical variable for educational attainment of the mother from 1-4
EDU MOTj Dummy, 1 if EDU MOT=j for j = 1, 2, 3, 4
EDU FAT Categorical variable for educational attainment of the father from 1-4
EDU FATj Dummy, 1 if EDU FAT=j for j = 1, 2, 3, 4
HHINC Categorical variable for net household income in 1970 from 1-9

=1 up to 750 DM, =2 751 up to 1000 DM, =3 1001 up to 1250 DM,
=4 1251 up to 1500 DM, =5 1501 up to 2000 DM,=6 2001 up to 2500 DM,
=7 2501 up to 3000 DM, =8 3001 up to 4000 DM,=9 more than 4000 DM

EMP MOT Categorical variable for mother’s employment status from 1-3
EMP MOT1 Dummy, 1 if the mother is employed during the survey (EMP MOT=1)
EMP MOT2 Dummy, 1 if the mother is unemployed, but was employed before

the survey (EMP MOT=2)
EMP MOT3 Dummy, 1 if the mother is out of labour force (EMP MOT=3)
PARINT1 Dummy, 1 if parents are interested in promotion on to the next grade level
PARINT2 Dummy, 1 if parents are interested in final grades
PARINT3 Dummy, 1 if parents are interested in test grades
INTSCHOOL Average value of PARINT1, PARINT2 and PARINT3
AGEMOT Categorical variable for mother’s age from 1-9

=1 if 30-34, =2 if 35-39, =3 if 40-44, =4 if 45-49, =5 if 50-54,
=6 if 55-59, =7 if 60-64, =8 if 65-70, =9 if she died

AGEMOTj Dummy, 1 if AGEMOT=j
WISH Do you want to continue studying after upper secondary school?

=1 if the answer is yes, =2 if maybe, =3 if no,
=4 if do not know yet, =5 if no upper secondary school degree is planned

WISHj Dummy, =1 if WISH=j
PR RET Dummy, 1 if a grade is repeated at least once before the school year 1969/70
DILIG Measure of attributing success to diligence

on a scale from 0 (weaker) to 5 (stronger)
ABIL Measure of attributing success to ability

on a scale from 0 (weaker) to 5 (stronger)

Source: Dataset Gymnasiastenstudie, own definitions
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Table B2: Summary Statistics of Unrestricted Sample (Sample 1)

Variable Mean Std Dev Minimum Maximum
ABI 0.64 0.48 0 1
RET 0.19 0.39 0 1

FEMALE 0.46 0.50 0 1
AGE 15.41 0.90 13 19

IQ 40.72 8.94 12 70
EDU MOT 4.19 3.50 1 13
EDU VAT 5.86 4.26 1 13

HHINC 4.50 2.06 1 9
EMP MOT 2.02 0.70 1 3
PARINT1 0.64 0.48 0 1
PARINT2 0.61 0.49 0 1
PARINT3 0.75 0.43 0 1

INTSCHOOL 0.67 0.30 0 1
AGE MOT 3.61 1.18 1 9

PR RET 0.36 0.48 0 1
WISH 2.62 1.56 1 5
DILIG 4.12 1.04 0 5
ABIL 3.51 1.08 0 5

Number of Observations 2726

Sample: Sample without restrictions on previous grade retention

Table B3: Summary Statistics of Sample 2

Variable Mean Std Minimum Maximum
GPA 2.97 0.54 1.08 4.10
MAT 3.48 1.08 1 6
GER 3.33 0.85 1 5
RET 0.18 0.39 0 1

FEMALE 0.42 0.49 0 1
AGE 15.19 0.82 13 19

IQ 41.78 9.12 15 70
EDU MOT 4.36 3.60 1 13
EDU VAT 6.10 4.31 1 13

HHINC 4.57 2.06 1 9
EMP MOT 2.03 0.69 1 3
PARINT1 0.64 0.48 0 1
PARINT2 0.64 0.48 0 1
PARINT3 0.78 0.41 0 1

INTSCHOOL 0.69 0.30 0 1
AGE MOT 3.62 1.18 1 9

PR RET 0.24 0.43 0 1
WISH 2.15 1.32 1 5
DILIG 4.09 1.05 0 5
ABIL 3.51 1.09 0 5

Number of Observations 1643

Sample: Graduates from upper secondary school. Sample 1 restricted by ABI=1
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Table B4: Summary Statistics of Sample 3

Variable Mean Std. Dev. Minimum Maximum
ABI 0.75 0.43 0 1
RET 0.22 0.41 0 1

FEMALE 0.50 0.50 0 1
AGE 15.03 0.71 13 19

IQ 40.85 9.08 13 70
EDU MOT 4.15 3.55 1 13
EDU VAT 5.76 4.27 1 13

HHINC 4.41 2.07 1 9
EMP MOT 2.03 0.69 1 3
PARINT1 0.64 0.48 0 1
PARINT2 0.63 0.48 0 1
PARINT3 0.77 0.42 0 1

INTSCHOOL 0.68 0.30 0 1
AGE MOT 3.53 1.16 1 9

WISH 2.45 1.50 1 5
DILIG 4.11 1.03 0 5
ABIL 3.57 1.05 0 5

Number of Observations 1748

Sample: Students without previous grade retention. Sample 1 restricted by PR RET=0

Table B5: Summary Statistics of Sample 4

Variable Mean Std. Dev. Minimum Maximum
GPA 2.92 0.54 1.08 4.00
MAT 3.36 1.09 1 6
GER 3.26 0.87 1 5
RET 0.18 0.39 0 1

FEMALE 0.44 0.50 0 1
AGE 14.96 0.69 13 19

IQ 41.79 9.22 15 70
EDU MOT 4.26 3.62 1 13
EDU VAT 5.92 4.29 1 13

HHINC 4.46 2.06 1 9
EMP MOT 2.03 0.68 1 3
PARINT1 0.65 0.48 0 1
PARINT2 0.79 0.41 0 1
PARINT3 2.12 1.30 1 5

INTSCHOOL 0.69 0.30 0 1
AGE MOT 3.56 1.17 1 9

WISH 2.12 1.30 1 5
DILIG 4.10 1.04 0 5
ABIL 3.56 1.06 0 5

Number of Observations 1248

Sample: Graduates from upper secondary school without previous grade retention. Sample 3

restricted by ABI=1
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Table B6: Propensity Score Estimation Results for Sample 1 and Sample 2

DATA 1 DATA 2
(a) (b) (c) (d) (e) (f)

Variable Full sample Female Male Full sample Female Male
Constant 3.060∗∗∗ 3.067 2.506∗ 3.750∗∗ 2.870 3.575∗

1.242 2.091 1.555 1.680 3.101 2.073
SHNR −0.006∗∗ −0.009∗∗ -0.004 −0.009∗∗∗ −0.015∗∗∗ -0.006

0.003 0.004 0.003 0.003 0.006 0.004
FEMALE −0.534∗∗∗ – – −0.604∗∗∗ – –

0.110 0.146
AGE -0.093 -0.103 -0.070 0.013 0.079 0.013

0.070 0.122 0.087 0.093 0.179 0.111
IQ −0.034∗∗∗ −0.039∗∗∗ −0.031∗∗∗ −0.039∗∗∗ −0.063∗∗∗ −0.027∗∗∗

0.006 0.010 0.008 0.008 0.014 0.010
EDU MOT2 -0.060 -0.039 -0.046 -0.127 -0.020 -0.206

0.141 0.218 0.188 0.188 0.312 0.241
EDU MOT3 -0.105 -0.136 -0.140 -0.272 -0.455 -0.309

0.207 0.325 0.274 0.278 0.482 0.354
EDU MOT4 -0.308 0.262 −0.777∗∗ -0.453 0.370 -1.045

0.243 0.358 0.337 0.319 0.474 0.445
EDU VAT2 0.257∗ 0.385∗ 0.122 0.161 0.091 0.158

0.155 0.230 0.216 0.214 0.343 0.279
EDU VAT3 0.102 0.202 0.052 0.203 0.308 0.170

0.164 0.258 0.216 0.210 0.361 0.264
EDU VAT4 0.217 0.074 0.348 0.324 0.261 0.472

0.190 0.302 0.249 0.249 0.403 0.322
HHINC -0.036 −0.088∗ 0.000 -0.064 −0.132∗ -0.028

0.031 0.050 0.041 0.042 0.072 0.053
EMP MOT1 0.315∗∗ 0.254 0.326∗ 0.305 0.141 0.318

0.144 0.244 0.183 0.190 0.344 0.235
EMP MOT2 0.069 0.158 0.035 -0.036 -0.020 -0.017

0.125 0.204 0.161 0.161 0.274 0.204
INTSCHOOL −0.384∗∗ −0.852∗∗∗ -0.070 -0.247 -0.586 -0.066

0.169 0.277 0.219 0.219 0.379 0.275
AGEMOT2 -0.451 -0.557 -0.386 -0.590 -0.325 -0.632

0.420 0.714 0.527 0.538 1.147 0.638
AGEMOT3 −0.671∗ -0.538 -0.805 -0.570 -0.115 -0.734

0.410 0.700 0.514 0.519 1.118 0.614
AGEMOT4 −0.735∗ -0.696 -0.825 -0.733 -0.155 -0.993

0.412 0.706 0.516 0.522 1.122 0.619
AGEMOT5 −0.741∗ -0.650 -0.833 -0.874 -0.433 -1.019

0.432 0.733 0.543 0.550 1.170 0.650
AGEMOT6 −1.225∗∗∗ -0.840 −1.509∗∗ −1.132∗ -0.401 −1.385∗

0.492 0.805 0.635 0.612 1.232 0.741
AGEMOT7 −1.458∗ -0.801 -1.794 -1.540 (omitted) -1.483

0.865 1.284 1.188 1.228 1.272
AGEMOT8 −1.612∗ (omitted) -1.424 -2.035 (omitted) -1.775

0.871 0.959 1.185 1.256
PR RET −0.414∗∗∗ −0.439∗ −0.414∗∗∗ -0.037 -0.200 -0.002

0.133 0.230 0.167 0.179 0.329 0.219
WISH1 0.422∗∗ 0.684∗∗∗ 0.176 −1.509∗∗∗ −1.276∗∗ −1.876∗∗∗

0.190 0.267 0.277 0.391 0.538 0.636
WISH2 0.537∗∗∗ 0.932∗∗∗ 0.191 −1.308∗∗∗ -0.844 −1.768∗∗∗

0.204 0.285 0.301 0.402 0.553 0.653
WISH3 0.644∗∗∗ 0.482 0.664∗ −1.272∗∗∗ −1.368∗ −1.336∗

0.256 0.426 0.347 0.465 0.737 0.706
WISH4 0.788∗∗∗ 0.829∗∗∗ 0.691∗∗∗ −1.105∗∗∗ −1.045∗∗ −1.383∗∗

0.187 0.265 0.275 0.390 0.538 0.637
DILIG −0.076∗ -0.086 -0.071 -0.129 -0.098 −0.145∗∗

0.047 0.081 0.059 0.061 0.115 0.073
ABIL −0.104∗∗ -0.059 −0.138∗∗ −0.111∗ -0.085 −0.153∗∗

0.046 0.077 0.058 0.059 0.103 0.074
No. of Obs. 2726 1249 1469 1643 680 957

Log-likelihood -1258.31 -515.10 -729.95 -740.46 -267.99 -461.91
LR chi2(k) 140.22 71.92 77.50 89.89 49.20 51.97

The standard errors are reported in parentheses under the estimates. *, **, ***: significant at

10 %, 5 %, 1%
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Table B7: Propensity Score Estimation Results for Different Samples data2

DATA 3 DATA 4
(a) (b) (c) (d) (e) (f)

Variable Full sample Female Male Full sample Female Male
Constant 1.049∗∗ -1.096 2.550 2.290 -1.913 4.209

1.545 2.383 2.117 2.061 3.578 2.730
SHNR −0.006∗∗ -0.006 -0.006 −0.009∗∗ -0.012 -0.008

0.003 0.005 0.004 0.004 0.006 0.005
FEMALE −0.561∗∗∗ – – −0.624∗∗∗ – –

0.131 0.168
AGE 0.062 0.154 -0.004 0.111 0.362∗ 0.025

0.087 0.140 0.116 0.113 0.208 0.139
IQ −0.034∗∗∗ −0.030∗∗∗ −0.037∗∗∗ −0.035∗∗∗ −0.055∗∗∗ −0.027∗∗

0.007 0.011 0.010 0.009 0.015 0.011
EDU MOT2 -0.026 0.010 -0.051 -0.118 -0.028 -0.186

0.172 0.251 0.243 0.223 0.355 0.295
EDU MOT3 -0.061 -0.099 -0.071 -0.255 -0.488 -0.156

0.256 0.368 0.370 0.329 0.529 0.446
EDU MOT4 -0.435 -0.033 −0.817∗ -0.634 0.123 −1.151∗∗

0.302 0.431 0.431 0.391 0.566 0.568
EDU VAT2 0.395∗∗ 0.492∗ 0.271 0.360 0.263 0.375

0.185 0.260 0.274 0.246 0.388 0.327
EDU VAT3 0.088 0.230 0.040 0.359 0.465 0.352

0.200 0.297 0.278 0.246 0.409 0.317
EDU VAT4 0.272 0.171 0.356 0.444 0.518 0.443

0.238 0.351 0.337 0.305 0.458 0.424
HHINC -0.013 -0.069 0.040 -0.017 -0.077 0.024

0.037 0.057 0.051 0.048 0.083 0.062
EMP MOT1 0.544∗∗∗ 0.487∗ 0.570 0.479∗∗ 0.450 0.466∗

0.175 0.280 0.232 0.221 0.396 0.276
EMP MOT2 0.173 0.259 0.157 0.040 0.241 -0.038

0.153 0.236 0.205 0.191 0.320 0.244
INTSCHOOL −0.525∗∗∗ −0.904∗∗∗ -0.277 -0.391 −0.761∗ -0.183

0.201 0.314 0.273 0.253 0.427 0.326
AGEMOT2 -0.291 -0.834 0.160 -0.293 -0.517 -0.271

0.534 0.739 0.786 0.715 1.163 0.934
AGEMOT3 -0.525 -0.791 -0.346 -0.317 -0.458 -0.373

0.526 0.724 0.775 0.701 1.137 0.918
AGEMOT4 -0.658 -1.096 -0.368 -0.476 -0.600 -0.559

0.529 0.735 0.778 0.704 1.146 0.922
AGEMOT5 -0.555 -1.001 -0.215 -0.382 -0.644 -0.370

0.552 0.769 0.808 0.733 1.201 0.952
AGEMOT6 -0.661 -0.914 -0.469 -0.441 -0.637 -0.241

0.605 0.831 0.892 0.784 1.258 1.032
AGEMOT7 -1.702 (omitted) -0.989 -1.194 (omitted) -0.967

1.208 1.374 1.344 1.462
AGEMOT8 -1.028 (omitted) -0.688 -1.197 (omitted) -1.070

0.973 1.168 1.304 1.460
WISH1 -0.166 0.279 −0.874∗∗ −2.618∗∗∗ −2.125∗∗∗ −3.517∗∗∗

0.232 0.301 0.399 0.527 0.670 1.120
WISH2 0.182 0.625∗∗ -0.537 −2.271∗∗∗ −1.790∗∗∗ −3.117∗∗∗

0.242 0.317 0.415 0.535 0.683 1.128
WISH3 0.342 0.193 0.018 −2.206∗∗∗ −2.161∗∗∗ −2.760∗∗

0.313 0.516 0.474 0.598 0.879 1.171
WISH4 0.309 0.562∗ -0.230 −2.065∗∗∗ −1.760∗∗∗ −2.866∗∗∗

0.226 0.293 0.396 0.523 0.665 1.118
DILIG −0.104∗ -0.084 -0.118 -0.073 -0.013 -0.096

0.057 0.091 0.075 0.073 0.135 0.089
ABIL −0.123∗∗ 0.004 −0.219∗∗∗ -0.088 0.044 −0.188∗∗

0.056 0.088 0.076 0.071 0.117 0.091
No. of Obs. 1748 860 882 1248 543 702

Log-likelihood -863.10 -393.98 -457.55 -551.42 -214.12 -329.11
LR chi2(k) 96.54 38.40 69.10 80.88 39.57 51.50

The standard errors are reported in parentheses under the estimates. *, **, ***: significant at

10 %, 5 %, 1%
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Table B8: Description of the variables used for estimation of the LATE

Label Description

Outcome

LNWAGE log hourly wages
Treatment

D = 1 if the individual has a upper secondary school diploma,
= 0 otherwise

Instrument

Z = 1 if the individual did not repeat the 10th grade
= 0 otherwise

Covariates

FEMALE = 1 if female, = 0 otherwise
AGE Age in years
IQ Number of correctly solved questions in the Intelligence Structure Test

(IST; Amthauer (1953)). The test was carried out in 1969.
PR RET = 1 if the individual did repeat a grade prior to the 10th grade

= 0 otherwise
AGEM Age of the mother in 1970
DILIG Measure of attributing success to diligence on a scale from 0 (weaker) to 5 (stronger)
LUCK Measure of attributing success to luck on a scale from 0 (weaker) to 5 (stronger)
FAMILY Measure of attributing success to the family on a scale from 0 (weaker) to 5 (stronger)
ABIL Measure of attributing success to ability on a scale from 0 (weaker) to 5 (stronger)
ASTUTE Measure of attributing success to astuteness on a scale from 0 (weaker) to 5 (stronger)
EDU MOT Categorical variable for educational attainment of the mother from 1-4
EDU FAT Categorical variable for educational attainment of the father from 1-4
HHINC Categorical variable for net household income in 1970 from 1-9

=1 up to 750 DM, =2 751 up to 1000 DM, =3 1001 up to 1250 DM,
=4 1251 up to 1500 DM, =5 1501 up to 2000 DM,=6 2001 up to 2500 DM,
=7 2501 up to 3000 DM, =8 3001 up to 4000 DM,=9 more than 4000 DM

EMP MOT Categorical variable for mother’s employment status from 1-3
PARINT1 Dummy, 1 if parents are interested in promotion on to the next grade level
PARINT2 Dummy, 1 if parents are interested in final grades
PARINT3 Dummy, 1 if parents are interested in test grades
INTSCHOOL Average value of PARINT1, PARINT2 and PARINT3
AGEMOT Categorical variable for mother’s age from 1-9

=1 if 30-34, =2 if 35-39, =3 if 40-44, =4 if 45-49, =5 if 50-54,
=6 if 55-59, =7 if 60-64, =8 if 65-70, =9 if she died

WISH Do you want to continue studying after upper secondary school?
=1 if the answer is yes, =2 if maybe, =3 if no,
=4 if do not know yet, =5 if no upper secondary school degree is planned
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Table B9: Descriptive Statistics

Entire Sample By Graduation By Grade Retention

D=1 D=0 Z=1 Z=0
Outcome
LNWAGE 2.93 3.00 2.78 2.94 2.82

(0.43) (0.44) (0.39) (0.44) (0.34)
Treatment
D 0.67 1.00 0.00 0.71 0.30

(0.47) (0.45) (0.46)
Instrument
Z 0.88 0.95 0.75 1.00 0.00

(0.32) (0.22) (0.43)
Covariates
EMP MOT 2.01 2.03 1.98 2.02 1.92

(0.70) (0.69) (0.72) (0.69) (0.73)
AGEM 3.61 3.64 3.56 3.64 3.40

(1.18) (1.18) (1.20) (1.17) (1.26)
AGE 15.40 15.20 15.81 15.39 15.47

(0.89) (0.83) (0.88) (0.90) (0.86)
IQ 41.02 41.872 39.342 41.192 39.812

(9.03) (9.23) (8.37) (9.08) (8.58)
EDU FAT 5.69 6.16 4.75 5.71 5.50

(4.22) (4.35) (3.79) (4.24) (4.07)
EDU MOT 4.08 4.42 3.41 4.10 3.99

(3.47) (3.65) (2.95) (3.50) (3.17)
PR RET 0.35 0.24 0.55 0.34 0.40

(0.48) (0.43) (0.50) (0.47) (0.49)
INTSCHOOL 0.66 0.68 0.62 0.66 0.62

(0.30) (0.30) (0.29) (0.30) (0.29)
WISH 2.65 2.15 3.63 2.60 2.98

(1.58) (1.33) (1.57) (1.56) (1.63)
DILIG 4.11 4.07 4.20 4.12 4.08

(1.04) (1.07) (0.99) (1.02) (1.22)
LUCK 2.21 2.16 2.32 2.19 2.36

(1.59) (1.56) (1.64) (1.58) (1.68)
ABIL 3.52 3.53 3.51 3.54 3.42

(1.07) (1.09) (1.04) (1.06) (1.16)
ASTUTE 3.11 3.11 3.10 3.08 3.33

(1.31) (1.31) (1.32) (1.31) (1.32)
FAMILY 2.08 2.01 2.21 2.04 2.32

(1.54) (1.52) (1.58) (1.53) (1.62)
HHINC 4.40 4.56 4.07 4.39 4.43

(2.07) (2.09) (1.97) (2.08) (1.97)
Number of obs. 1552 1033 519 1369 183

Note: Standard errors are given in parentheses
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Table B10: Logit Estimation Results

Dependent Variable Z

Variables Coef. Std. Err. p-value
FEM 0.418 0.17 0.02
EMP MOT 0.213 0.12 0.07
AGEM 0.195 0.07 0.01
AGE 0.041 0.11 0.71
IQ 0.018 0.01 0.05
EDU VAT -0.004 0.03 0.89
EDU MOT 0.004 0.03 0.91
PR RET -0.175 0.20 0.39
INTSCHOOL 0.383 0.28 0.16
WISH -0.169 0.06 0.00
DILIG 0.088 0.08 0.25
LUCK -0.009 0.05 0.87
ABIL 0.124 0.07 0.10
FAMILY -0.125 0.05 0.02
ASTUTE -0.159 0.07 0.02
HHINC -0.028 0.05 0.58
CONS -0.203 1.83 0.91
n = 1552
Wald χ2(16) = 49.55
Prob > χ2 = 0.0000
Log pseudolikelihood = -539.55216
Pseudo R2 = 0.0416
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Figure C1: Density of Estimated Probability of Grade Retention for

Sample 1. Estimation is based on specification given in Table A6, Col. (a)
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Figure C2: Density of Estimated Probability of Grade Retention for

females of Sample 1. Estimation is based on specification given in Table

A6, Col. (b)

49



0
.0

5
.1

.1
.0

5
D

en
si

ty

0 .2 .4 .6 .8
Estimated Propensity Score

Untreated: Off support Untreated: On support
Treated: On support Treated: Off support

Figure C3: Density of Estimated Probability of Grade Retention for

males of Sample 1. Estimation is based on specification given in Table A6,

Col. (c)
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Figure C4: Density of Estimated Probability of Grade Retention for

Sample 2. Estimation is based on specification given in Table A6, Col. (d)
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Figure C5: Density of Estimated Probability of Grade Retention for

females of Sample 2. Estimation is based on specification given in Table

A6, Col. (e)
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Figure C6: Density of Estimated Probability of Grade Retention for

males of Sample 2. Estimation is based on specification given in Table A6,

Col. (f)
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Figure C7: Density of Estimated Probability of Grade Retention for

Sample 3. Estimation is based on specification given in Table A7, Col. (a)
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Figure C8: Density of Estimated Probability of Grade Retention for

females of Sample 3. Estimation is based on specification given in Table

A7, Col. (b)
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Figure C9: Density of Estimated Probability of Grade Retention for

females of Sample 3. Estimation is based on specification given in Table

A7, Col. (c)
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Figure C10: Density of Estimated Probability of Grade Retention for

Sample 4. Estimation is based on specification given in Table A7, Col. (d)
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Figure C11: Density of Estimated Probability of Grade Retention for

females of Sample 4. Estimation is based on specification given in Table

A7, Col. (e)
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Figure C12: Density of Estimated Probability of Grade Retention for

males of Sample 4. Estimation is based on specification given in Table A7,

Col. (f)
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Figure C13: Density of Estimated Probability of Grade Retention.

Estimation is based on specification given in Table B 10
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