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Abstract
In this paper, we consider a decision-maker who tries to learn the distribution of outcomes from
previously observed cases. For each observed database of cases the decision-maker predicts a
set of priors expressing his beliefs about the underlying probability distribution. We impose a
version of the concatenation axiom introduced in BILLOT, GILBOA, SAMET, AND SCHMEI-
DLER (2005) which ensures that the sets of priors can be represented as a weighted sum of the
observed frequencies of cases. The weights are the uniquely determined similarities between
the observed cases and the case under investigation. The predicted probabilities, however, may
vary with the number of observations. This generalisation of BILLOT, GILBOA, SAMET, AND
SCHMEIDLER (2005) allows one to model learning processes.
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1 Introduction
How will existing information in�uence probabilistic beliefs? How do data enter the inductive

process of determining a prior probability distribution? KEYNES (1921) discusses in great

detail the epistemic foundations of probability theory. In particular, in Part III of his "A Treatise

on Probability", he critically reviews most of the then existing inductive arguments for this

probability-generating process.

Randomized statistical experiments with identically repeated trials represent an ideal method of

data collection. In this case, decision makers can aggregate information directly into a proba-

bility distribution over unknown states. In most real-life decision problems, however, decision

makers do not have available data derived from explicitly designed experiments with suf�ciently

many identical repetitions. Usually, they face the problem to predict the outcome of an action

based on a set of data which may be more or less adequate for the decision problem under con-

sideration. This requires aggregating data with different degree of relevance. The case-based

decision making approach of GILBOA AND SCHMEIDLER (2001) offers a systematic way to

deal with this information aggregation problem: to evaluate an action, the outcomes of past

observations are summed up, weighted by their perceived degree of relevance, their similarity

to the current decision situation.

In a recent paper, BILLOT, GILBOA, SAMET, AND SCHMEIDLER (2005), henceforth BGSS

(2005), show that, under few assumptions, a probability distribution over outcomes can be de-

rived as a similarity-weighted average of the frequencies of observed cases. Moreover, GILBOA,

LIEBERMAN, AND SCHMEIDLER (2006) demonstrate how one can estimate the similarity

weights from a given database.

The case-based approach in BGSS (2005) associates a database with a single probability distri-

bution. Furthermore, the probability distribution depends only on the frequency of observations

in the data, but not on the length of the database. This approach appears satisfactory if the

database is large and if the cases recorded in the database are clearly relevant for the decision
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problem under consideration. Indeed, BGSS (2005) note also that this approach

"... might be unreasonable when the entire database is very small. Speci�cally, if there
is only one observation, [....] However, for large databases it may be acceptable to assign
zero probability to a state that has never been observed." (BGSS (2005), p. 1129)

In particular, this approach restricts the decision maker to being a frequentist, but allows the

weights assigned to the frequencies to depend on the perceived relevance of the cases. Two

important aspects of the decision situation are, however, neglected. First, even if the decision

maker is able and willing to assign a probability distribution to each database, this distribution

might vary both with the frequency and the length of the database, as for instance in Bayesian

updating. Second, in the face of ambiguity, the decision maker might �nd himself unable to

pinpoint a unique probability distribution.

In this paper, we modify the approach of BGSS (2005) in two ways. First, we allow the

prediction of the decision maker to depend both on the frequency and on the length of the

database. This allows us to capture the idea that, controlling for the frequency, longer databases

contain more precise information and to incorporate Bayesian updating as a special case of our

analysis. Second, we allow the predictions to be represented by a convex set of probability

distributions to capture the idea that information can be ambiguous.

O'HAGAN AND LUCE (2003) describe the dif�culty of making and interpreting point predic-

tions about probabilities as follows:

"The �rst dif�culty we will face is that the expert will almost certainly not be an expert
in probability and statistics. That means it will not be easy for this person to express her
beliefs in the kind of probabilistic form demanded by Bayes' theorem. Our expert may
be willing to give us an estimate of the parameter, but how do we interpret this? Should
we treat it as the mean (or expectation) of the prior distribution, or as the median of the
distribution, or its mode, or something else? [...] We could go on to elicit from the expert
some more features of her distribution, such as some measure of spread to indicate her
general level of uncertainty about the true value of the parameter." (pp. 64-65).

While decision makers might be unable to make point predictions about a prior distribution,

they may be able to identify a range of possible probabilities, either directly as upper and lower

bounds of probabilities, or indirectly by a degree of con�dence expressed regarding a point

prediction. In the former case, a convex set of probabilities is suggested directly, in the latter
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case, one may view the set of probabilities as a neighborhood of an imprecise point prediction.

The decision maker's ambiguity can be related to the length of the database (insuf�cient number

of observations) or to the content of the data (observations which do not exactly correspond to

the case for which a prediction has to be made). The �rst type of ambiguity is relevant even

in the perfect case of randomized statistical experiments. Consider, e.g., a decision maker

observing random draws with replacement from an urn containing black and white balls in

unknown proportions. After one white and two black balls have been drawn out of the urn,

the decision maker might entertain a set of priors describing his beliefs about the constitution

of the urn. This set might include the observed frequency
�
1
3
; 2
3

�
, but it might also contain

other distributions, e.g.,
�
1
2
; 1
2

�
, if the decision maker considers the number of observations to

be insuf�cient to generate an exact prediction. This type of ambiguity will disappear as the

number of observations grows.

The second type of ambiguity arises in situations in which the data contains relevant, but not

identical cases to the one, for which a prediction has to be made. A case often discussed in the

econometrics literature is the one of missing variables, see MANSKI (2000), as well as Example

1 in GONZALES AND JAFFRAY (1998). For instance, medical studies often contain large sets

of data, but fail to record potentially important characteristics, such as the gender of the patients.

MANSKI (2000) argues that in this case, the probability distribution over outcomes cannot be

point-identi�ed. Hence, the data is consistent with a set of probability distributions which will

be non-degenerate even as the number of observations becomes large.

Our model provides a representation which allows for both types of ambiguity. To obtain this,

we modify the main axiom of BGSS (2005), Concatenation, by restricting it to databases of

equal length, i.e., thus controlling for the ambiguity resulting from insuf�cient amount of data.

In order to establish a connection between the predictions for databases of different lengths, we

introduce an additional axiom � "Learning". It captures the idea that, as information accumu-

lates, the changes in the forecast caused by additional con�rming observations get smaller and

smaller. If the perceived ambiguity is due to a limited number of observations, the set of pre-
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dictions converges to a singleton. However, the axiom does not exclude the case of persistent

ambiguity, when predictions converge to a non-degenerate set of beliefs. This distinction be-

tween ambiguity which vanishes with a suf�ciently large number of observations and ambiguity

which remains for any number of observations corresponds to a similar distinction in EPSTEIN

AND SCHNEIDER (2007).

Despite these modi�cations, our approach obtains a similarity function which is unique and

independent of the content and the size of the databases. This property is a central feature

of the representation in BGSS (2005). Hence, as in BGSS (2005), frequentism and kernel

classi�cation represent special cases of our representation. However, our approach captures a

broader scope of rules, including Bayesianism and full Bayesian updating on a set of priors.

Moreover, it allows us to model persistent ambiguity arising from missing or inadequate data.

There exist several approaches as to how a decision maker, whose forecast consists of a set

of probability distributions, can select a prior from this set1. Among these, the max-min rule

suggested by GILBOA AND SCHMEIDLER (1989) and MANSKI (2000) is by far the most

popular. It selects the probability distribution which results in minimal expected utility for the

speci�c action. Our approach allows us to establish a connection between the set of priors

and the selection of a single probability distribution used to evaluate a speci�c act. We show

that whenever the sets of priors which the decision maker associates with different databases

satisfy the axioms of our model, so do the probability distributions determined according to the

max-min rule.

As in BGSS (2005), the question remains open which decision criterion one should use given

the decision maker's beliefs. In order to obtain a decision rule together with a multiple prior

representation one may embed these ideas in a behavioral model in the spirit of GILBOA,

SCHMEIDLER, ANDWAKKER (2002) or derive decision criteria re�ecting degrees of optimism

or pessimism in the face of ambiguity as in the work of COIGNARD AND JAFFRAY (1994) and

GONZALES AND JAFFRAY (1998). We propose such a behavioral approach in EICHBERGER
1 For instance, a Bayesian might assign a prior on the set of possible probability distributions and take
expectations with respect to this prior. Alternatively, one can use the center of the set of probability distributions
(the Steiner point) as a focal probability distribution, see GAJDOS, HAYASHI, TALLON, AND VERGNAUD (2007).
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AND GUERDJIKOVA (2008). We believe, however, that a characterization of the mapping H

from databases to probabilities over outcomes is desirable in its own right. It opens up the pos-

sibility to study the optimal use of data for the derivation of a set of prior distributions and to

model databased learning rules.

The remainder of the paper is organized as follows. Section 2 reviews the related literature.

Section 3 outlines the model and Section 4 provides some motivating examples. In Section 5,

we state the axioms. Section 6 presents the main result. In Section 7, we collect some examples

which illustrate our approach and show that it is compatible with an array of popular statistical

methods. Section 8 concludes the paper. All proofs are collected in the Appendix.

2 Related Literature
There are several ways to model ambiguity of a decision maker in the literature. A represen-

tation of ambiguous beliefs by means of capacities was introduced by SCHMEIDLER (1989).

For convex capacities, this approach coincides with the multiple prior approach advanced in

GILBOA AND SCHMEIDLER (1989). BEWLEY (1986) derives a set of probability distribu-

tions from incomplete preferences. These multiple-prior approaches were developed further

by GHIRARDATO, MACCHERONI, AND MARINACCI (2004) and Chateauneuf, Eichberger,

and Grant (2007). KLIBANOFF, MARINACCI, AND MUKERJI (2005) model ambiguity atti-

tudes by a second-order probability distribution over a set of probability distributions. All these

multiple-prior approaches represent ambiguity by a set of probability distributions which a de-

cision maker considers when evaluating her expected utility. In the spirit of these models, we

model ambiguity by a set of probability distributions over outcomes. The degree of ambiguity

can be measured by set inclusion. The smaller the set of probability distributions over outcomes,

the less ambiguous the prediction.

In GILBOA AND SCHMEIDLER (1989) the set of priors is purely subjective. In contrast, sev-

eral recent papers, AHN (2008), GAJDOS, HAYASHI, TALLON, AND VERGNAUD (2007),

STINCHCOMBE (2003), provide a framework to analyze decisions in situations in which the
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set of priors is objectively given. This allows them to distinguish objectively given Knight-

ian uncertainty from the subjective attitude towards ambiguity. In our framework, a similar

distinction is achieved differently. The decision maker associates with each database a set of

probability distributions, which take into account both the objective information contained in

the data (i.e. the nature and frequency of cases observed, as well as the number of observations)

and the subjective degree of ambiguity. Thus, our approach provides a method to characterize

sets of subjective priors related to the data-generating process.

MARINACCI (2002) and EPSTEIN AND SCHNEIDER (2007) analyze statistical learning in the

context of ambiguity. MARINACCI (2002)'s work provides conditions under which ambiguity

almost surely "fades away" as data accumulate. In contrast, EPSTEIN AND SCHNEIDER (2007)

distinguish two types of scenarios: one in which it is possible to learn the objective probability

distribution and another where ambiguity is persistent. They study the effect of prior informa-

tion on the learning process in the context of statistical experiments in the spirit of ELLSBERG

(1961). If information about the colors of a given number of balls in an urn is obtained from

"sampling with replacement", such "learning" will reveal the proportions of colors in the long

run. In contrast, if the composition of the color in the urn is changing over time, e.g., in Sce-

nario 3 of EPSTEIN AND SCHNEIDER (2007) (p. 1279) because a certain number of balls

is replaced by an administrator in every period, then learning by sampling with replacement

cannot reveal the true proportions of colors and ambiguity will prevail even in the long run.

EPSTEIN AND SCHNEIDER (2007) show also how these types of ambiguity induce different

investment behavior in a portfolio choice model.

Our framework uses the notion of similarity to distinguish between controlled statistical exper-

iments, and situations in which relevant, but not completely identical cases have been observed.

If the observed cases are identical to the case under consideration, as in a controlled statistical

experiment, e.g., in Scenarios 1 and 2 of EPSTEIN AND SCHNEIDER (2007), then the decision-

maker will be able to learn the objective probability distribution satisfying the ergodicity prop-

erty. When, however, the observed cases are distinct from the situation under consideration, as
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in Scenario 3, then ambiguity may persist in form of a limit set of probabilities, even if a large

number of data has been collected. Yet, sampling may still provide information, though the

decision maker has to judge its relevance based on some presumption about the administrator's

behavior.

GONZALES AND JAFFRAY (1998) model preferences over Savage-type acts for a given set of,

possibly imprecise, data. They derive a representation of preferences in form of a linear com-

bination of the maximal and the minimal potential outcome of an act and its expected utility

with respect to the observed frequency of states. The weights attached to the maximal and min-

imal outcomes can be interpreted as degrees of optimism and pessimism. They decrease over

time relative to the weight attached to the expected utility part of the representation. Because

observations may be imprecise a decision maker associates with a set of data a set of priors

centered around the observed frequency. The size of the set of probabilities depends negatively

on the amount of data. While we do not derive a decision rule from behavior, our approach

encompasses a richer class of situations which is not restricted to the case of controlled statis-

tical experiments considered in both COIGNARD AND JAFFRAY (1994) and GONZALES AND

JAFFRAY (1998).

3 The Model
The basic element of a database is a case which consists of an action taken and the outcome

observed together with information about characteristics which the decision maker considers

as relevant for the outcome. We denote by X a set of characteristics, by A a set of actions,

and by R a set of outcomes. All three sets are assumed to be �nite. A case c = (x; a; r) is an

element of the �nite set of cases C = X � A � R. A database of length T is a sequence of

cases indexed by t = 1:::T :

D = ((x1; a1; r1) ; :::; (xT ; aT ; rT )) 2 CT .

The set of all databases of length T is denoted by DT := CT . Finally, D := [
T�1
DT denotes the

set of databases of arbitrary length.
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Consider a decision maker with a given database of previously observed cases, D, who wants

to evaluate the uncertain outcome of an action a0 2 A given relevant information about the

environment described by the characteristics x0 2 X: Based on the information in the database

D; the decision maker will form a belief about the likelihood of the outcomes. We will assume

that the decision maker associates a set of probability distributions over outcomes R,

H (D j x0; a0) � �jRj�1;

with the action a0 in the situation characterized by x0 given the database D 2 D:

Formally,H : D�X�A! �jRj�1 is a correspondence which mapsD�X�A into non-empty,

compact and convex subsets of �jRj�1: As usual, the convex combination of two sets of proba-

bility distributionsH andH 0 is de�ned by �H+(1� �)H 0 = f�h+ (1� �)h0 j h 2 H and h0 2 H 0g.

Elements of this set are denoted by h (D j x0; a0) and we write hr (D j x0; a0) for the probabil-

ity assigned to outcome r by the probability distribution h (D j x0; a0).

We interpret H (D j x0; a0) as the set of probability distributions over outcomes which the de-

cision maker takes into consideration given the database D.

4 Motivating Examples
The following examples illustrate the broad �eld of applications for this framework. They will

also highlight the important role of the decision situation (x0; a0):

The �rst example is borrowed from BGSS (2005).

Example 4.1 Medical treatment

A physician must choose a treatment a0 2 A for a patient. The patient is characterized by a

set of characteristics x0 2 X , e.g., blood pressure, temperature, gender, age, medical history,

etc. Having observed the characteristics x0, the physician evaluates a treatment a0 based on

the assessment of the probability distribution over outcomes r 2 R. A set of cases D observed2

in the past may serve the physician in this assessment of probabilities over outcomes.

2 The "observations" of cases are not restricted to personal experience. Published reports in scienti�c
journals, personal communications with colleagues and other sources of information may also provide
information about cases.
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A case c = (xt; at; rt) is a combination of a patient t's characteristics xt, treatment assigned

at and outcome realization rt recorded in the databaseD: Given the databaseD, the physician

considers a set of probabilities over outcomes, H (D j x0; a0) � �jRj�1, as possible. These

probability distributions represent beliefs about the likelihood of possible outcomes after choos-

ing a treatment a0 for the patient with characteristics x0:

In general, the physician will form his beliefs based on cases in which characteristics poten-

tially different from x0 and actions potentially different from a0 were observed. E.g., O'HAGAN

AND LUCE (2003)(PP. 62-64) discuss how information from different studies about the effec-

tiveness of similar, but not identical, drugs can be combined into a prior distribution.

Two problems can prevent the physician from specifying a unique probability distribution for

a speci�c treatment. First, he might have few observations, and, therefore, doubt that the ob-

served frequencies are representative of the population as a whole. Second, the observations

might not be identical to the case at hand (e.g., the physician might have a vast amount of data

on patients with �u symptoms, which allows him to evaluate different treatments, however, he

might consider all these cases to be of only limited relevance when faced with the symptoms

of swine �u). While in the �rst situation, collecting more data of the same type would reduce

the ambiguity, in the second, the ambiguity is due to incomplete understanding of the relation

between different cases.

Consider, e.g. a situation in which some of the characteristics contained inX were not recorded.

As in MANSKI (2000), suppose that in a study that contains the outcomes of a speci�c treat-

ment, the gender of the patient is not recorded3. Suppose that the treatment resulted in success

for exactly 50% of all cases. A physician who has to assign a treatment to a woman will not

be able to infer from the database which of the following scenarios corresponds to the truth:

(i) the treatment is always effective for men, but never for women; (ii) the treatment is always

effective for women, but never for men; (iii) the treatment is successful in 50% of cases, for

both genders (of course many more intermediate cases are possible). Even after observing a

very large database, the physician will be completely ignorant of the probability of success, and

his prediction will be represented by the interval [0; 1]. Here, the fact that the cases in the data

3 If patient's characteristics are represented by a vector x =
�
x1:::xI

�
, we could use a default

value of �xi to denote that characteristic i has not been recorded for the speci�c observation.
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are not completely identical to the case at hand gives rise to sets of probability distributions.�

As a second application we will consider classic statistical experiments where the decision

maker bets on the color of the ball drawn from an urn.

Example 4.2 Lotteries

Consider three urns with black and white balls. There may be different information about the

composition of these urns. For example, it may be known that
� there are 50 black and 50 white balls in urn 1,
� there are 100 black or white balls in urn 2,
� there is an unknown number of black and white balls in urn 3.

We will encode all such information in the number of the urn, x 2 X = f1; 2; 3g.

In each period a ball is drawn from one of these urns. A decision maker can bet on the color

of the ball drawn, fB;Wg: Assume that a decision maker knows the urn x0 from which the ball

is drawn, when he places his bet a0. An action is, therefore, a choice of lottery a 2 A :=

f1B0; 1W0g, with the obvious notation 1E0 for a lottery which yields r = 1 if E occurs and

r = 0 otherwise.

Suppose the decision maker learns after each round of the lottery the color of the ball that was

drawn. Since there are only two possible bets a = 1B0 or a0 = 1W0 we can identify cases

c = (x; a; r) by the urn x and the color drawn B orW: Hence, there are only six cases

C = f(1;B); (1;W ); (2;B); (2;W ); (3;B); (3;W )g:

Note that for a given urn x, the observation of a case, allows the decision maker to observe

the outcome of the actually chosen action, but also to infer the (counterfactual) outcome of the

lottery he did not choose. This is a speci�c feature of this example, which distinguishes it from

Example 4.1.

Suppose that, after T rounds, the decision maker has a database

D = ((1;B); (3;W ); :::; (2;B)) 2 CT .

With each database D, one can associate a set of probability distributions over the color of

the ball drawn fB;Wg or, equivalently, over the payoffs f1; 0g given a bet a: Suppose a de-

cision maker with the information of database D learns that a ball will be drawn from urn 2
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and places the bet a0 = 1B0, then he will evaluate the outcome of this bet based on the set of

probability distributions H (D j 2; a0) : This set should re�ect both the decision maker's infor-

mation contained in D and the degree of con�dence held in this information. For example, as

in statistical experiments, the decision maker could use the relative frequencies of B and W

drawn from urn 2 in the database D and ignore all other observations in the database. De-

pending on the number of observations of draws from urn 2, say T (2), recorded in the database

D of length T , the decision maker may feel more or less con�dent about the accuracy of these

relative frequencies. Such ambiguity could be expressed by a neighborhood " of the frequencies

(fD(2;B); fD(2;W )) of black and white balls drawn from urn 2 according to the records in

the database D: The neighborhood will depend on the number of relevant observations T (2),

e.g.,

H (D j 2; a0) =
�
(hW ;hB) 2 �1 j fD(2;W )�

"

T (2)
� hW � fD(2;W ) +

"

T (2)

�
. (1)

This set of probabilities over outcomes H (D j 2; a0) may shrink with an increasing number of

relevant observations. �

Example 4.2 illustrates how information in a database may be used and how one can model

ambiguity about the probability distributions over outcomes. In this example, we assumed that

the decision maker ignores all observations which do not relate to urn 2 directly. If there is

little information about draws from urn 2, however, a decision maker may also want to consider

evidence from urn 1 and urn 3, possibly with weights re�ecting the fact that these cases are less

relevant4 for a draw from urn 2. The representation derived in the next section allows for this

possibility.

5 Axioms
In this section, we will take the decision situation (x0; a0) as given. We will relate the frequen-

cies of cases in a database D 2 DT ,

fD (c) :=
jfct 2 D j ct = cgj

T
;

4 Part III of KEYNES (1921) provides an extensive review of the literature on induction from cases
to probabilities.
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to sets of probabilities over outcomes H(D j x0; a0). In particular, let HT (D j x0; a0) be the

restriction of H(D j x0; a0) to databases of length T . We will impose axioms on the set of

probability distributions over outcomes H (D j x0; a0) which will imply a representation of the

following type: for each T � 2 and each database of length T ,

HT (D j x0; a0) =
�P

c2D s (c j x0; a0) fD (c) p̂cTP
c2D s (c j x0; a0) fD (c)

j p̂cT 2 P̂
(cjx0;a0)
T

�
.

The set of probability distributions over outcomes P̂ (cjx0;a0)T denotes the beliefs of the decision

maker when the database D =

 
c:::c|{z}
T -times

!
is observed. This set may depend on the number

of observations. It may be large for small numbers and may shrink as more con�rming data

become available. The weighting function s (c j x0; a0) represents the relevance of a case c for

the current situation (x0; a0) and can be interpreted as the perceived similarity between c and

(x0; a0).

The axioms we introduce below imply that s (� j x0; a0) is unique (up to a normalization) and

does not depend on T , while the sets of probability distributions P̂ (cjx0;a0)T are determined

uniquely. This result generalizes the main theorem of BGSS (2005) to the case in which beliefs

depend on the number of observations and can be expressed as sets of probability distributions

over outcomes.

In the following discussion, (x0; a0) is assumed constant. Hence, we suppress notational refer-

ence to it and writeH(D), h(D), P̂ cT and s (c) instead ofH (D j x0; a0), h (D j x0; a0), P̂
(cjx0;a0)
T

and s (c j x0; a0), respectively. It is important to keep in mind, however, that all statements of

axioms and conclusions do depend on the relevant reference situation (x0; a0). In particular,

the similarity weights, deduced below, measure similarity of cases relative to this reference

situation.

In order to characterize the mapping H(D) we will impose axioms which specify how beliefs

over outcomes change in response to additional information. In general, it is possible that the

order in which data become available conveys important information. We will abstract here

from this possibility and assume that only data matter for the probability distributions over

outcomes.
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Axiom A1 (Invariance) Let � be a one-to-one mapping � : f1:::Tg ! f1:::Tg, then

H
�
(ct)

T
t=1

�
= H

��
c�(t)

�T
t=1

�
.

According to Axiom (A1), the set of probability distributions over outcomes is invariant with

respect to the sequence in which data arrive. Hence, each database D is uniquely characterized

by the tuple (fD;T ), where fD 2 �jCj�1 denotes the vector of frequencies of the cases c 2 C

in the database D and T is the length of the database, i.e. D 2 DT .

Remark 5.1 By Axiom (A1), we can identify every database D = (ct)
T
t=1 with the corre-

sponding multi-set5
n
(ct)

T
t=1

o
, in which the number of appearances of every case c exactly

corresponds to the number of its appearances in D. We will denote the database and its corre-
sponding multi-set by the same letter. In particular, when we write D = D0, we mean equality
of the multi-sets corresponding to the databases D and D0.

In line with BGSS (2005), we call the combination of two databases a concatenation.

De�nition 5.1 (Concatenation) For any T , T 0 2 N, and any two databases D = (ct)
T
t=1 and

D0 = (c0t)
T 0

t=1, the database

D �D0 =
�
(ct)

T
t=1 ; (c

0
t)
T 0

t=1

�
is called the concatenation of D and D0.

By Axiom (A1), concatenation is a commutative operation on databases. The following nota-

tional conventions are useful.

Notation Dk = D � ::: �D| {z }
k-times

denotes k concatenations of the same database D: In particular,

a database consisting of k-times the same case c can be written as ck:

Imposing the following Concatenation Axiom, BGSS (2005) obtain a characterization of a

function h mapping D into a single probability distribution over outcomes.

Axiom BGSS (2005) (Concatenation) For every D, D0 2 D,

h(D �D0) = �h(D) + (1� �)h(D0)

5 On multi-sets see, e.g., BLIZARD (1988).
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for some � 2 (0; 1):

This axiom can be easily adapted to our framework:

Axiom BGSS � Multiple Priors (Concatenation with multiple priors) For every D, D0 2 D

H (D �D0) = �H (D) + (1� �)H (D0)

for some � 2 (0; 1).

Both versions of the axiom imply that, for any k, the databases D and Dk map into the same

set of probability distributions over outcomes, H(D) = H(Dk): Hence, two databases D = c

and D0 = c10000 will be regarded as equivalent. This seems counter-intuitive. Ten thousand

observations of the same case c = (x; a; r) are likely to provide stronger evidence for the out-

come r in situation (x; a) than a single observation. Suppose, that we restrict the prediction to

be single-valued, e.g., because the decision maker is a Bayesian. Unless, the decision maker's

prior assigns a probability of 1 to outcome r, this decision maker will assign a higher probability

to outcome r under D0 than under D. If, in contrast, the decision maker considers the situation

to be ambiguous, we could argue that the database c10000 provides a strong evidence for a proba-

bility distribution concentrated on the outcome r; hr(c10000) = 1. Based on a single observation

(x; a; r), however, it appears quite reasonable to consider a set of probability distributionsH(c)

which also contains probability distributions h(c) with hr0 (c) 2 (0,1) for all r0: In particular,

based on the information contained inD = (c), a decision maker may not be willing to exclude

the case of all outcomes being equally probable, i.e., h(D) with hr0(D) = 1
jRj for all r

0 2 R: It

appears perfectly reasonable to include h in H (c) but not in H (c10000).

Since we would like to capture the fact that con�dence might increase as the number of obser-

vations grows, we cannot simply apply the Concatenation Axiom of BGSS (2005) to concate-

nations of arbitrary databases D and D0. Restricting the axiom to databases with equal length

will provide suf�cient �exibility for our purpose.

To illustrate the idea, consider two cases c1 and c2 and databases with two observations of

these cases, say D1 = (c1; c1); D2 = (c2; c2); and F = (c1; c2): Due to Axiom (A1), one
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can write these databases in terms of frequencies and numbers of observations as F = (fF ; 2);

D1 = (fD1 ; 2); andD2 = (fD2 ; 2): SinceD1�D2 = (c1; c1; c2; c2) = F �F holds, the frequency

of cases in F must be a mixture of the frequencies of D1 and D2;

fF =
1

2
fD1 +

1

2
fD2 :

Whatever the predictions H(D1) and H(D2); which the decision maker expresses based on the

databases D1 and D2; the prediction for the database F = (c1; c2) should in some sense lie

between H(D1) and H(D2): Formally, we will require the existence of a � 2 (0; 1) such that

�H (D1) + (1� �)H (D2) = H (F ).

Axiom (A2) generalizes this idea: for any n databases of equal length T that can be concate-

nated to an n-fold of a database F of length T , we postulate that any probability distribution

over outcomes predicted on the basis of database F can be expressed as a convex combination

of probability distributions over outcomes associated with the databases Di.

Axiom A2 (Concatenation restricted to databases of equal length) Consider databases F 2

DT andD1:::Dn 2 DT for some n 2 N, such thatD1 � :::�Dn = F
n: Then, there exists a vector

� 2 int (�n�1) such that
nX
i=1

�iH (Di) = H (F ) .

In spirit, Axiom (A2) is very similar to the Concatenation Axiom introduced by BGSS (2005).

It has the following intuitive interpretation6: if a decision maker cannot exclude a certain prob-

ability distribution h after observing the evidence in any of the databases D1:::Dn, then he

should not be able to exclude it after observing the evidence in a database of the same length,

F , the frequency of which is a mixture of the frequencies of D1:::Dn. The main difference to

the Concatenation Axiom of BGSS (2005) is that we restrict the axiom to databases of equal

length.

6 Note that the Axiom does not have the following behavioral implication: if action a is preferred to
a0 under all databasesD1:::Dn, then it is also preferred underF . To understand this, consider the case of n = 2. Let
a %D1

a0 and a %D2
a0. Suppose also that the evidence contained in databaseD1 is more relevant for a, while the

evidence contained in D2 is more relevant for a0. Suppose that, at the same time, the decision maker values a0
higher given the relevant evidence contained inD2 than he values a, given the relevant evidence for this action,D1.
In this case, combining the evidence contained in the two databases D1 and D2 into F might lead to a reversal of
preferences, i.e., a0 %F a. The same argument applies also for the Concatenation Axiom of BGSS (2005).
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The restriction to sets of equal length is important for our approach since databases with iden-

tical frequencies, but different length may give rise to different sets of probabilities over out-

comes. In particular, depending on some learning rule (e.g. full Bayesian updating, see Section

7), it may be reasonable to assume that the set of probabilities is non-degenerate, but converges

towards the observed frequency of outcomes as more observations of the same cases become

available. Intuitively, the decision maker becomes more con�dent that the observed frequen-

cies re�ect the actual data-generating process for the database Dk+1 than for Dk. In contrast,

applying the Concatenation Axiom of BGSS (2005), we would have to conclude that for some

� 2 int
�
�k
�
,

H
�
Dk+1

�
= H

�
Dk �D

�
= �1H(D

k) + (1� �1)H(D) =

= �1H(D
k�1) + �2H (D) + (1� �1 � �2)H(D)

=
k+1X
i=1

�iH (D) = H (D) .

for all k 2 N: Thus, imposing BGSS (2005)'s Concatenation Axiom, the set of probability

distributions over outcomes would necessarily be independent of the number of observations.

Our weaker Axiom (A2), however, implies in this case only
Pk+1

i=1 �iH (D) = H (D), which is

trivially satis�ed for any set D.

Axiom (A2) allows us to identify the similarity function. In general, however, similarity will

depend on the length of the database. In order to prevent this, we impose

Axiom A3 (Constant Similarity) Consider the databases F 2 DT andD1:::Dn 2 DT for some

n 2 N, such that D1 � ::: �Dn = F
n: If for some � 2 int (�n�1),
nX
i=1

�iH
�
Dk
i

�
= H

�
F k
�

holds for some k 2 N, then it holds for any k 2 N.

Independence of the similarity function from the number of observations is justi�ed if one

assumes that the similarity of cases is determined by some primitive knowledge about the cases,

which is not based on the information contained in the database7. We discuss this axiom and its

7 Compare also the discussion of "structural priors" in O'HAGAN AND LUCE (2003) (PP. 67-68).
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implications in Section 7.4.

The following axiom requires learning processes to be stable. If the number of observations

of the same case c case increases, beliefs about the outcome of (x0; a0) will react less to each

additional observation and will eventually settle on a (possibly singleton) set of probability

distributions.

Axiom A4 (Learning) For every c 2 C, the sequence of sets HT
�
cT
�
converges8.

We will use the notation H1 (c) for the limit of the sequence limT!1HT
�
cT
�
. Since all sets

HT
�
cT
�
are non-empty, compact and convex subsets of �jRj�1, the limit H1 (c) inherits these

properties.

Under Axiom (A4), ambiguity may persist or vanish in the limit depending on the similarity

of cases to the situation under consideration. E.g., if c represents a statistical experiment w.r.t.

the action of interest, i.e., c = (x0; a0; r) for some r 2 R, then it appears reasonable to assume

that H1 (c) = f�rg, where �r is the Dirichlet distribution putting mass 1 on r. However, if c

includes the observation of an action distinct from a0, say, a0, there is no reason to suggest that

the decision maker will be able to eliminate all ambiguity about the performance of action a

even after observing an in�nite sequence of realizations of a0. Hence, in general, the limit set

will contain more than one element.

The next axiom requires those elements of (H1 (c))c2C which are singletons or segments to be

non-collinear.

Axiom A5 (Non-collinearity) No three of the sets H1 (c) of dimension 0 or 1 are collinear.

Axiom (A5) replaces the Axiom Non-collinearity in BGSS (2005). While BGSS (2005) re-

quire that there are at least three non-collinear vectors in the set (h (D))D2D, our restriction is

imposed on the limit setsH1 (c). To understand the restrictions imposed by (A5), it is useful to

�rst look at its implications in the setting of BGSS (2005). If h is a function and the Concate-

8 For the de�nition of set convergence, see De�nition 4.1 in ROCKAFELLAR AND WETS (2004). Since
the sets H

�
cT
�
are subsets of the jRj � 1-dimensional simplex, it follows that in our model, this

notion of convergence coincides with convergence with respect to the Pompeiu-Hausdorff distance,
see Example 4.13 in ROCKAFELLAR AND WETS (2004).
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nation Axiom of BGSS is satis�ed, we know that h1 (c) exists and h1 (c) = h
�
cT
�
= h (c)

for all c 2 C. This means that no three of the predictions related to the basic cases are collinear.

Intuitively, this excludes the possibility that the set of basic cases C can be reduced by taking

the evidence from a given case c to be exactly equivalent to the evidence of a database contain-

ing observations of two different cases, c0 and c00 in a certain proportion. This requirement is

satis�ed, for controlled randomized experiments, i.e., for the cases of the type (x0; a0; r), for

which ambiguity vanishes and the limit prediction can be reasonably assumed to be �r.

However, ambiguity need not vanish for cases in which characteristics distinct from x0 and

a0 have been observed. In this case, the only restriction imposed by Axiom (A5) concerns

those sets H1 (c) which are segments. We require that they are not collinear to any other

two segments or points in the set (H1 (c))c2C . No assumptions are imposed on those sets in

(H1 (c))c2C with a dimension 2 or higher.

6 Representation Theorem
The following theorem guarantees a unique similarity function for databases of arbitrary length.

Theorem 6.1 Let H be a correspondence H : D ! �jRj�1 the images of which are non-

empty convex, and compact sets and which satis�es the Axioms (A4) Learning and (A5) Non-

collinearity. Let HT (D) be the restriction of H to DT . Then the following two statements are

equivalent:

(i) H satis�es the Axioms (A1) Invariance, (A2) Concatenation restricted to databases of

equal length, and (A3) Constant Similarity.

(ii) There exists a unique, up to multiplication by a positive number, function

s : C ! R++

and a unique correspondence

P̂ : f2; 3:::g � C ! �jRj�1
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such that for all T � 2 and any D 2 DT ,

HT (D) =

�P
c2C s (c) p̂

c
TfD (c)P

c2C s (c) fD (c)
j p̂cT 2 P̂ cT

�
.

The proof of the Theorem is relegated to the Appendix. Note, however, how the axioms affect

the representation. Axiom (A1) ensures that the prediction associated with a database depends

only on the number and the frequency of the observations, but not on the order in which they

arrive. Axiom (A2) implies the existence of weights sT (c) such that the predicted probability

distributions associated with a database D 2 DT can be expressed as a weighted average of

the predictions of the individual cases in this set. Without imposing further restrictions, the

weights sT (c) will depend on the length of the database T and be non-unique. Axiom (A3)

yields independence of the similarity weights of the number of observations. Axioms (A4) and

(A5) ensure uniqueness of the representation.

As in BGSS (2005), uniqueness cannot be guaranteed unless some of the predictions corre-

sponding to cases in C are non-collinear. In contrast to the framework of BGSS (2005), in

which the predictions from databases consisting of observations of a single case c are indepen-

dent of the number of observations T; here the predictions depend on the number of observa-

tions. Hence, in order to deduce a unique similarity function, one could require non-collinearity

for every value of T . An alternative, and in our opinion more intuitive approach, which is cho-

sen here, is to ensure that the predictions from databases of increasing length converge to some

limit set, Axiom (A4) ; and to guarantee non-collinearity of limit sets which are singletons or

segments, Axiom (A5) : Then, for suf�ciently large databases, there exists a selection of at least

three predictions which are not collinear and which allow us to identify the similarity function

uniquely.

Note that replacing Axioms (A2) and (A3) by the Axiom BGSS�Multiple Priors in Theorem

6.1 would imply that the correspondence P̂ ; and hence the predictions H (D) ; would be inde-

pendent of the length of the database.

For some applications, the forecast of a decision maker about the outcome of a given action may

be a unique probability distribution. Using the lower-case letter h to indicate the special case
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where H is a function rather than a correspondence, it is straightforward to rewrite our axioms

for this special case. In particular, Axiom (A4), Learning, now reduces to the requirement

that for each c 2 C, the sequence hT
�
cT
�
converges to some probability distribution h1 (c).

Non-collinearity, Axiom (A5), now ensures that no three of these limit vectors will be collinear.

Hence, we obtain the following corollary to Theorem 6.1:

Corollary 6.2 Let h be a function h : D! �jRj�1 which satis�es Axioms (A4) and (A5) and

let hT (D) be the restriction of h to DT . Then the following two statements are equivalent:

(i) h satis�es the Axioms Invariance (A1), Concatenation restricted to databases with

equal length (A2) and Constant Similarity (A3).

(ii) There exists a unique, up to multiplication by a positive number, function

s : C ! R++

and a unique function

p̂T : f2; 3:::g � C ! �jRj�1

such that for all T � 2 and any D 2 DT ,

hT (D) =

P
c2C s (c) fD (c) p̂

c
TP

c2C s (c) fD (c)
.

Allowing the predicted probability distribution to depend on the length of a database, Corollary

6.2 generalizes the result of BGSS (2005). The time-dependency of this representation allows

us to model learning processes. For example, with increasing numbers of observations the pre-

dicted probability distribution may become less sensitive to new additional data. The following

section provides examples from statistical models.

7 Examples and Applications
A special case of our approach are predictions based on homogenous databases which contain

the same characteristics and actions in all observations. Hence, all data have the same similarity.

Homogenous databases result typically from controlled statistical experiments. In this context,

it appears natural to assume that ambiguity decreases as new data con�rm past evidence.
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In this section we show by examples that several statistical procedures satisfy the axioms of

Theorem 6.1. Moreover, we discuss situations where constant similarity appears natural and

illustrate how our method can be used to select a probability distribution from a set of priors.

7.1 Frequentism

Consider a decision maker who observes the outcome of a statistical experiment, where the set

of possible cases is given by C = ((x0; a0; r))r2R. After observing a database D of length T

and frequency f , the decision maker's beliefs about the outcome of action a0 are described by

hT (D) = f . It is easy to check that this rule satis�es all the axioms. This prediction rule has

the special property that the prediction does not depend on the length of the database, but only

on the observed frequency of cases.

Should the set of cases include also pairs of characteristics and actions different from (x0; a0)

then the decision maker predicts a probability distribution p̂(x;a;r) over outcomes of action a0 in

circumstances x0 the for each observed case (x; a; r) : The similarity weight s (x; a; r) describes

the relevance of this case (x; a; r) for the prediction about (x0; a0). This is the case axiomatized

by BGSS (2005).

7.2 Bayesianism and Full Bayesian Updating

Bayesian updating is one of the most prominent statistical learning rules. Its generalization

to full Bayesian updating incorporates learning with multiple priors, see MARINACCI (2002).

In both cases, predictions depend on the observed frequency as well as on the length of the

database. Hence, neither of these rules satis�es the Concatenation Axiom formulated by BGSS

(2005). Here, we show that both Bayesianism and full Bayesian updating constitute special

cases of our approach.

As in MARINACCI (2002), consider a decision maker who is trying to learn the probability

distribution over the outcomes in a statistical experiment where sampling takes place with re-

placement.

The set of possible cases is given by C = ((x0; a0; r))r2R. Let D be a database of length

T: Then TfD(r) is the number of observations of r in D: Suppose that the decision maker's
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prior information is re�ected by an initial set of priors P , consisting of Dirichlet distributions

on �jRj�1. Then P can be described by the (strictly positive) parameters of these distribu-

tions,
�
�1; :::; �jRj

�
. In particular, for a Dirichlet distribution with parameter �k, the expected

probability of outcome r in absence of any observations is given by �rPjRj
k=1 �k

. The initial set of

distributions H0 is given by:( 
�1PjRj
k=1 �k

; :::;
�jRjPjRj
k=1 �k

!
j
�
�1:::�jRj

�
2 P

)
.

The Bayesian update of a Dirichlet probability distribution on�jRj�1 with parameters
�
�1:::�jRj

�
after observing a database D is another Dirichlet distribution with parameters�

�1 + TfD (r1) ; :::; �jRj + TfD
�
rjRj
��
.

Hence, full Bayesian updating on the set P implies that the decision maker updates each of the

priors according to the Bayesian rule,

H (D) =

( 
�1 + TfD (r1)PjRj

k=1 �k + T
; :::;

�jRj + TfD
�
rjRj
�PjRj

k=1 �k + T

!
j
�
�1; :::; �jRj

�
2 P

)
.

Standard Bayesian updating obtains as a special case where P is a singleton and H (D) is the

probability distribution obtained by Bayesian updating.

Note that the order in which information arrives does not affect the posterior, hence Axiom

(A1) is satis�ed. Furthermore, let F , D1:::Dn be databases of length T such that

F n = D1 � ::: �Dn.

There are strictly positive coef�cients (
i)
n
i=1 summing to 1 such that

fF =
nX
i=1


ifDi .

These (
i)
n
i=1 are independent of T . Hence, we have

H (F ) =

( 
�1 + TfF (r1)PjRj

k=1 �k + T
; :::;

�jRj + TfF
�
rjRj
�PjRj

k=1 �k + T

!
j
�
�1; :::; �jRj

�
2 H0

)

=

( 
�1 + T

Pn
i=1 
ifDi (r1)PjRj

k=1 �k + T
; :::;

�jRj + T
Pn

i=1 
ifDi
�
rjRj
�PjRj

k=1 �k + T

!
j
�
�1; :::; �jRj

�
2 H0

)

=
nX
i=1


i

( 
�1 + TfDi (r1)PjRj

k=1 �k + T
; :::;

�n + TfDi
�
rjRj
�PjRj

k=1 �k + T

!
j
�
�1; :::; �jRj

�
2 H0

)
=

nX
i=1

�iH (Di) ,

with �i =: 
i for i 2 f1:::ng. Full Bayesian updating, therefore, satis�es Axiom (A2). Since
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the coef�cients (
i)
n
i=1, and hence also (�i)

n
i=1 ; do not depend on T , Axiom (A3) is satis�ed as

well.

Since the parameters �1:::�n are strictly positive, it follows that all priors contained in H0

assign strictly positive probabilities to all outcomes in R. Therefore, each of the sequences

H
�
(x0; a0; r)

T
�
will converge to the unit vector assigning probability 1 to outcome r. Hence,

Axiom (A4) ; is satis�ed as well. Finally, since the limit sets coincide with the unit vectors in

�jRj�1, Axiom (A5) holds.

7.3 Kernel Density Classi�cation

In contrast to the previous examples, kernel methods are not restricted to databases generated

from the same statistical experiment. Therefore, similarity plays a role. Consider the standard

kernel density classi�cation model9.

There are jRj classes and a set of objects each of which can be described by a vector of char-

acteristics x 2 X . For instance, a physician might want to divide his patients into classes

according to their reaction to a certain type of drug10. The physician observes cases of the form

c = (x; r), in which a patient of type x has been classi�ed into class r. The physician enter-

tains a notion of closeness between the patients described by a similarity function s : C ! R.

Suppose that the reaction of a patient of type x0 has to be classi�ed. The information of the

physician is given by a database D of length T .

The kernel density classi�cation proceeds as follows11. Given the database D which contains

the cases in which patients of different types have been classi�ed, one needs to determine the

relevance of these cases to the case at hand, i.e., the similarity of an observed patient x to x0.

Weighting the frequencies of cases in which outcome r has been observed by their similarities

9 See, e.g., HASTIE, TIBSHIRANI, AND FRIEDMAN (2001)(P. 184).
10 The classi�cation may also be "action-dependent", e.g., one might be interested in classifying
the patients relative to their risk of contracting a speci�c desease, conditional on a treatment they
have undergone (e.g. vaccination).
11 A similar problem showing that kernel density methods can be represented in terms of similarity-
weighted frequencies can be found in GILBOA (2009).
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and normalizing, one obtains the probability that patient x0 will show the reaction r,

Pr fr j x0g =
P

x2X s (x0;x) fD (x; r)P
r02R

P
x2X s (x0;x) fD (x; r

0)
=

P
(x;r0)2X�R s (x0;x) fD (x; r

0) p̂(x;r
0) (r)P

(x;r0)2X�R s (x0;x) fD (x; r
0)

,

(2)

with p̂(x;r) = �r (the Dirichlet distributions concentrated on r). Note that p̂(x;r) does not depend

on the length of the database T .

Expression (2) implicitly assumes that, when collecting the data, no classi�cation errors have

occurred. Under this assumption, it is sensible to exclude all cases in which a patient has been

assigned to a class different from r. Moreover, once a patient has been classi�ed with a reaction

r, the decision maker trusts that this classi�cation is correct and assigns probability of 1 to

patients of this type belonging to class r.

In practice such assumptions are hard to justify, since classi�cations may be biased. Suppose

for example, that the data come from classi�cations made by different experts. Each expert

observes only patients of a certain type and has the task to record their reaction. Assume that the

expert dealing with class x classi�es the patients correctly with probability 1 � �x and assigns

them mistakenly with probability �x
jRj�1 to any of the remaining classes. If mistakes across

experts are independent and if, in absence of better evidence, one assumes a uniform prior over

the classes, then the physician will derive the following modi�ed probability distribution,

Pr fr j x0g =
P

(x;r0)2X�R s (x0;x) fD (x; r
0) p̂

(x;r0)
T (r)P

(x;r0)2X�R s (x0;x) fD (x; r
0)

;

where the probability distributions p̂(x;r)T are now posterior distributions based on T observa-

tions,

p̂
(x;r)
T (r) = Pr

n
r j x0; (x; r)T

o
= (1� �x)T ;

p̂
(x;r)
T (r0) = Pr

n
r0 j x0; (x; r)T

o
=
1� (1� �x)T

jRj � 1
for all r0 6= r. In this case, Axiom (A1) trivially holds. We have already shown that Bayesian

updating implies Axiom (A2) : Since the similarity function is independent of T , axiom (A3)

applies as well. It is straightforward to check that Axiom (A4) holds, i.e., limT!1 p̂
(x;r)
T = �r.

Ambiguity may become relevant if the physician is uncertain about the magnitude of the mistake
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of the experts. For example, if he believes that the probability of misclassifying a type x lies in

the interval [�x; ��x] � (0; 1) ; he immediately has to deal with a set of probability distributions

P̂
(x;r)
T ,

P̂
(x;r)
T =

8><>:
0B@1� (1� �x)TjRj � 1 ; :::

1� (1� �x)T

jRj � 1 ; (1� �x)T| {z }
rth-position

;
1� (1� �x)T

jRj � 1 :::
1� (1� �x)T

jRj � 1

1CA j �x 2 [�x; ��x]

9>=>; ;
obtained by full Bayesian updating with respect to the probabilities in the set [�x; ��x]. Full

Bayesian updating is consistent with Axioms (A2) and (A3) : Since limT!1 P̂
(x;r)
T = f�rg,

Axiom (A4) holds.

Hence, for an arbitrary database D of length T , the set of probability distributions

HT (D j x0) =
(P

(x;r0)2X�R s (x0;x) fD (x; r
0) p̂

(x;r0)
TP

(x;r0)2X�R s (x0;x) fD (x; r
0)

j p̂(x;r
0)

T 2 P̂ (x;r
0)

T

)
(3)

describes the (ambiguous) beliefs of the physician about the classi�cation of the patient of type

x0 given the observations in D. Note that ambiguity vanishes, as more data become available

and the physician learns the true classi�cation scheme.

7.4 Constant Similarity

So far, we implicitly assumed that the similarity function is independent of the length and con-

tent of the observed data. In statistical analysis, however, the kernel width is usually chosen

depending on the size of the database. The set of cases considered to be relevant for the classi-

�cation of a case x0 shrinks as the number of cases increases. In our model, this corresponds to

a similarity function sT (x0;x) which depends on T . With this modi�cation, the representation

in (3) would satisfy Axioms (A1), (A2) and (A4), but would violate Axiom (A3). Our Ax-

ioms would still allow us to determine the sets of probability distributions P̂ (x;r)T uniquely and

to derive similarity values sT (x0;x) for each x and T: For small values of T , however, these

similarity values would no longer be uniquely identi�ed

Reducing the kernel width as data accumulates re�ects the assumption that large databases are

more representative of the distribution of x, and, therefore, contain a larger fraction of highly

relevant (or even identical) cases. However, if the number of observations increases without

affecting the relative frequencies of cases, then there is no reason to adjust the similarity relation
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between cases. E.g., a physician with a long practice may encounter symptoms which he has

never observed before. Consequently, he may �nd it hard to associate these new cases with

those in his (long) memory. In such a situation, it does not appear reasonable to require the

similarity function to converge to the identity, even for long databases. Hence, if unexpected

cases are likely to occur, Axiom (A3) may be viewed as a sensible �rst approximation.

A non-constant similarity function may also re�ect a decision maker's effort to learn about

correlation between outcomes conditional on the characteristics. Consider, once again the clas-

si�cation problem discussed before and assume that two characteristics x and x0 are very sim-

ilar. If the physician has a database in which patients of types x and x0 are associated with the

same outcome, then this database will con�rm the initial similarity perception. In contrast, if

he observes that most patients of type x are classi�ed as r, whereas most patients of type x0 are

classi�ed as r0, it would be sensible to revise the similarity function. In such a case, the simi-

larity function would depend not only on the length of the database, but also on the observed

frequency of cases. Hence, both Axioms (A2) and (A3) would fail. Modelling an adjustment

process of the similarity function according to the type and quantity of data is complicated by

the fact that, to our knowledge, there is little systematic information in the literature about how

people assess the relevance of observations.

7.5 Missing Data and Persistent Ambiguity

In contrast to BGSS (2004), we assume that decision makers experience ambiguity about their

forecasts. GONZALES AND JAFFRAY (1998) attribute such ambiguity to missing data. In order

to illustrate this possibility and how it can be incorporated in this approach, consider a physician

who has to decide whether to prescribe a speci�c treatment a to a patient with characteristics

x. He has a data-base in which the outcomes success, r = 1; or failure, r = 0; of treatment

a, have been recorded for two types of patients with characteristics x and x0. Suppose that

the physician has reasons to believe that the outcomes of treatment a are (perfectly) negatively

correlated for patients with the two characteristics x and x0 and, for simplicity, that all cases are

equally relevant.
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For long databases in which only outcome r = 1 has been recorded for type x,D = (x; a; r = 1)T ;

it is reasonable to expect that the treatment a will lead to success, P̂ (x;a;1)T = f�1g. The

same prediction, P̂ (x
0;a;0)

T = f�1g ; would obtain if the observed database were given by D0 =

(x0; a; r = 0)T . Hence, for large databases, the probability of success can be assessed as:

Pr fr = 1 j Dg = fD (x; a; 1) + fD (x0; a; 0) .

Suppose that for some of the observations in the database the value of the characteristic, x or x0,

has not been recorded. �x is used to denote the fact that information about the characteristic is

missing. In the extreme case of a database D = (�x; a; r = 1)T the physician cannot unambigu-

ously determine the probability of success for the patient to be treated. Since the characteristic

x or x0 has not been recorded, one cannot rule out that all patients in the database D are of type

x, nor that all patients are of type x0. In the �rst case, he would assign a probability of 1 to a

success, in the second, a probability of 0. The ignorance about the distribution because of the

imprecise data can be modelled by sets of priors P̂ (�x;a;1)T = �1 and P̂ (�x;a;0)T = �1. Combining

databases in which the characteristic has been recorded with such in which data are missing

gives rise to multiple priors

HT (D) =
X

~x2fx;x0;�xg
r2f0;1g

fD (~x; a; r) P̂
(~x;a;r)
T .

Such indeterminacy does not depend on the length of the database and will not disappear as

long as there are imprecise data.

7.6 Selection of a Prior by the Max-Min Rule

Most of the literature on ambiguity deals with decision rules based on preferences over acts.

Following ELLSBERG (1961) ambiguity aversion has become the dominant assumption about

behavior under ambiguity. GILBOA AND SCHMEIDLER (1989) axiomatize a preference repre-

sentation where the decision maker evaluates acts by the lowest expected utility of the act over

all probabilities in a set of priors. Such conservative behavior is also recommended by the pre-

cautionary principle in environmental economics. Whatever the justi�cation for the minimum

rule, it selects a particular probability distribution from the set of priors. We will show by ex-
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ample that, whenever the set of priors of a the decision maker satis�es the axioms proposed in

this paper, then the probability distributions selected by the minimum principle will also obey

these axioms as well12.

Reconsider the case of Example 4.2, in which the decision maker observes only draws from

Urn 2. He wants to predict the outcome of a bet on a black ball drawn from this urn, action a0.

Suppose that the decision maker's beliefs are represented by a set of probability distributions as

given by a correspondence H satisfying Axioms (A1)� (A5), e.g., the correspondence H in

Equation (1).

Let the utility of the decision maker from a black ball been drawn from Urn 2 be 1, and 0

otherwise. Hence, u = (0; 1) is the utility vector associated with action a0. Consider the

max-min rule, which selects the single probability distribution

hmin (D j x0; a0) = argmin fh � u j h 2 H (2; a0 j D)g

from the set H (D j x0; a0). If a decision maker uses this probability distribution hmin to form

the expected utility of a0; then his behavior will be governed by the max-min rule, as described

in GILBOA AND SCHMEIDLER (1989) and MANSKI (2009). We now demonstrate that the

selection hmin also satis�es our Axioms.

Since H satis�es Axiom (A1), Invariance, so does hmin. Consider databases F , D1:::Dn of

length T such thatD1�:::�Dn = F
n. Then there exist positive coef�cients 
j with

Pn
j=1 
j = 1

for which
Pn

j=1 
jfDj = fF holds. By Axiom, (A2), we have

H (2; a0 j F ) =
nX
j=1

�jH (2; a0 j Dj)

for positive coef�cients13 �j such that
Pn

j=1 �j = 1. Note that
nX
j=1

�j min fh � u j h 2 H (2; a0 j Dj)g = min fh � u j h 2 H (2; a0 j F )g

12 Similar results can be established for the rule which selects the Steiner point of each set, as well as for the
more general �-max-min rule, see GHIRARDATO, MACCHERONI, AND MARINACCI (2004) and
CHATEAUNEUF, EICHBERGER, AND GRANT (2007).
13 It appears reasonable to assume that the decision maker in this example perceives all cases to be equally relevant
for his evaluation, as, e.g., in the case of Equation (1). Hence, �j = 
j can be assumed for all j 2 f1:::ng.
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Furthermore,
nX
j=1

�j min fh � u j h 2 H (2; a0 j Dj)g =

nX
j=1

�j
�
hminj � u

�
=

= min fh � u j h 2 H (2; a0 j F )g

= hmin � u,

where hminj =: hmin (2; a0 j Dj) (note that for u = (0; 1), these values are unique). Hence,
nX
j=1

�jh
min
j = hmin (2; a0 j F ) ,

implying that hmin satis�es the Axiom (A2).

Since the weights �j are independent of T , Axiom (A3) is satis�ed as well. For T ! 1,

HT

�
2; a0 j (2;B)T

�
! (0; 1) and HT

�
2; a0 j (2;W )T

�
! (1; 0). It follows that the associ-

ated probability distributions in hmin will also converge to these values, implying that Learning,

Axiom (A4) is satis�ed. Since we have assumed only two outcomes, 0 and 1, Axiom (A5),

Non-collinearity, is trivially satis�ed.

8 Concluding Remarks
Most of the literature on ambiguity takes the degree of ambiguity as a personal subjective char-

acteristic. In particular, there is no formal reference to the information available to the decision

maker. The amount of data is, however, likely to in�uence both the forecast made by the deci-

sion maker and his con�dence in this forecast. In this paper, we provided an approach which

combines this intuition with the similarity-weighted frequency approach of BGSS (2005). We

relax the Concatenation Axiom of BGSS (2005) by restricting it to databases of equal length.

We show that the main result of BGSS (2005), namely that the similarity function is unique,

remains true if one imposes consistency on the weights across databases of different size. This

consistency is essential for the uniqueness of the similarity weights.

If one views the perception of similarity as an imperfect substitute for knowledge about the

relevance of underlying data, then a decision maker has to �nd out which characteristics are

payoff-relevant. Hence, the database may provide not only information about the distribution
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of payoffs, but also about the similarity of alternatives. One may conjecture that the more obser-

vations a database contains, the more precise the perception of similarity may become. PESKI

(2007) suggests a possible approach. He describes a learning process, in which the decision-

maker tries to assign objects optimally to categories in order to make correct predictions. One

may interpret this approach as learning similarity where similarity values are restricted to zero

or one. A more general model would consider a continuum of similarity values.

A further important research question concerns the derivation from preferences of a case-based

multiple-prior representation of beliefs jointly with a decision rule. Combining axioms from

case-based decision making and from the literature on decision making under ambiguity, it

appears possible to �nd a representation of preferences over acts and a set of probabilities over

outcomes conditional on a database. We pursue this issue in EICHBERGER AND GUERDJIKOVA

(2008).

Appendix A. Proofs

To prove Theorem 6.1, we proceed as follows. In a �rst step, Lemma A.1 establishes the

necessity of Axioms (A1), (A2) and (A3) for the representation.

The second step of the proof, Proposition A.2 consists in showing the result of Theorem 6.1

for the special case where predictions are single-valued, i.e. where beliefs are described by a

function h : D ! �jRj�1 satisfying Axioms (A1) � (A5). Using Axioms (A4) and (A5),

Lemma A.3 shows that for suf�ciently large values of T , no three of the vectors hT
�
cT
�
are

collinear. Lemma A.4 uses Axiom (A3) to demonstrate that similarity weights are independent

of the length of the database. In particular, if the representation holds for a givenD 2 D, then it

holds for all databases with the same frequency fD, regardless of their length. In Lemmas A.5

�A.7, we apply the construction of BGSS (2005) to determine the similarity function and show

that the representation holds for large values of T . Lemma A.4 implies that the representation

holds for all values of T if the sets HT
�
cT
�
are singletons HT

�
cT
�
=
�
hT
�
cT
�	
.

In the third step of the proof, we show that a correspondence H satisfying the Axioms (A1)�
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(A5) can be represented as a union of functions h 2 H with the following properties: (i) all

of these functions satisfy Axioms (A1)� (A5); (ii) for all of these functions the coef�cients

� speci�ed in Proposition A.2 are the same and coincide with the coef�cients � for the corre-

spondence H speci�ed in Axiom (A2); (iii) the sets HT
�
cT
�
are given by

�
hT
�
cT
�	

h2H. By

property (i), a representation exists for each of the functions h. Property (ii) implies that all of

these representations feature the same similarity function s. Property (iii) means that we can

identify P̂ cT with HT
�
cT
�
and use the similarity function s to obtain a representation for H .

Lemma A.1 The Axioms (A1), Invariance, (A2), Concatenation for databases of equal length
and (A3), Constant similarity are necessary for H to have a representation of the type

HT (D) =

�P
c2C s (c) p̂

c
TfD (c)P

c2C s (c) fD (c)
j p̂cT 2 P̂ cT

�
.

Proof of Lemma A.1:

It is obvious that for a given D 2 DT ,

HT (D) =

�P
c2C s (c) p̂

c
TfD (c)P

c2C s (c) fD (c)
j p̂cT 2 P̂ cT

�
does not depend on the order of cases observed inD, but only on their frequency and the length

of D, T , hence Axiom (A1) is satis�ed. To see that Axiom (A2) is satis�ed, �rst note that for

all c 2 C and all T 2 f2; 3:::g,

HT
�
cT
�
=

�
s (c) p̂cT
s (c)

j p̂cT 2 P̂ cT
�
= P̂ cT .

Let F n = D1 � ::: �Dn for some n 2 N and some sets D1:::Dn 2 DT , then

fF =
1

n

nX
i=1

fDi .

Hence,

HT (F ) =

P
c2C s (c) p̂

c
TfF (c)P

c2C s (c) fF (c)

=

nX
i=1

P
c2C

1
n
s (c) p̂cTfDi (c)P

c2C
Pn

i=1
1
n
s (c) fDi (c)

=

nX
i=1

P
c2C s (c) p̂

c
TfDi (c)P

c2C
Pn

i=1 s (c) fDi (c)

=
nX
i=1

X
c2C

s (c) p̂cTP
c2C
Pn

i=1 s (c) fDi (c)
fDi (c)

=

nX
i=1

�i
X
c2C

s (c) p̂cTfDi (c)P
c2C s (c) fDi (c)

=

nX
i=1

HT (Di) ;
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with

�i =

P
c2C s (c) fDi (c)Pn

i=1

P
c2C s (c) fDi (c)

.

Since s (c) > 0 for all c 2 C,
�
�i
�n
i=1
2 int (�n�1) and, therefore, Axiom (A2) is satis�ed.

Note further that � does not depend on the length T of the databases D1:::Dn and F , but only

on their frequencies. Hence, if HT
�
F k
�
=
Pn

i=1 �
iHT

�
Dk
i

�
for some k 2 N, it holds for any

k 2 N, implying that Axiom (A3) holds.�

Denote by QjCj+ \�jCj�1 the set of rational probability vectors of dimension jCj. The possible

frequency vectors which can be generated by a database of length T are given by the set:

Q
jCj
T =

8<:f 2 �jCj�1 j f (c) = kc
T
for some (kc)jCjc=1 2 f0; 1:::Tg

jCj with
jCjX
c=1

kc = T

9=; .
Obviously, for each T 2 f2; 3:::g, QjCjT � QjCj+ \ �jCj�1. Let f̂ j be the j-th unit vector in

�jCj�1. f (j) denotes the j-th component of the frequency vector f . The following proposition

establishes the result of the Theorem for the special case, in which H is a function:

Proposition A.2 Assume that a class of functions hT : QjCjT ! �jRj�1 for T � 2 satis�es:

(i) for all distinct f , f 0 and f 00 such that 
f + (1� 
) f 0 = f 00 for some 
 2 (0; 1), there
exists a � 2 (0; 1) such that:

�hT (f) + (1� �)hT (f 0) = hT (f 00)
holds for all T such that f , f 0 and f 00 2 QjCjT ;

(ii) the sequences
�
hT

�
f̂ j
��

T2f2;3:::g
converge for all j 2 f1::: jCjg;

(iii) the set
�
h1

�
f̂ j
��

j2f1:::jCjg
contains no three collinear vectors.

Then, there are positive numbers fsjgjCjj=1, which are unique up to a multiplication by a positive
number, and, for each T � 2, there are unique probability vectors

�
p̂jT
	jCj
j=1
, such that for each

T � 2 and each f 2 QjCjT ,

hT (f) =

PjCj
j=1 sjf (j) p̂

j
TPjCj

j=1 sjf (j)
. (A-1)

Proof of Proposition A.2:

We start with the following Lemma:
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Lemma A.3 Assume that conditions (ii) and (iii) of Proposition A.2 hold. For any three dis-
tinct i, j and k 2 f1::: jCjg there exists a �nite �T fi;j;kg such that the vectors

�
hT

�
f̂ l
��

l2fi;j;kg
are non-collinear for all T � �T fi;j;kg.

Proof of Lemma A.3:

Let d denote the distance between the point h1
�
f̂ i
�
and the line through the two points

h1

�
f̂ j
�
and h1

�
f̂k
�
. Since the three points are non-collinear, d > 0. Since the sequences

hT

�
f̂ l
�
are converging for l 2 fi; j; kg, we know that for each l, there exists a �Tl such

that for all T � �Tl, hT
�
f̂ l
�
is contained in a ball with a center in h1

�
f̂ l
�
and with a ra-

dius d
3
, denoted by hT

�
f̂ l
�
2 Bh1(f̂ l) (d=3). Let

�T fi;j;kg =: maxl2fi;j;kg
�
�Tl
	
. Take any

two points xj 2 Bh1(f̂j) (d=3) and x
k 2 Bh1(f̂k) (d=3) and note that the line which con-

nects these two points must be at a distance at least d
3
from any point xi 2 Bh1(f̂ i) (d=3).

Hence, xi, xj and xk cannot be collinear. Since for every T � �T fi;j;kg, and every l 2 fi; j; kg,

hT

�
f̂ l
�
2 Bh1(f̂ l) (d=3), the three vectors cannot be collinear.�

Let

�T =: max
ffi;k;lg�Cg

�
�T fi;k;lg

	
For each T , de�ne p̂jT =: hT

�
f̂ j
�
. Since each of the sequences

�
hT

�
f̂ j
��

T2f2;3;:::g
converges

and no three limit vectors are collinear, the sequences
�
p̂jT
�
T2f2;3;:::g inherit these properties.

We have to show that there are positive numbers fsjgjCjj=1 such that (A-1) holds. The next Lemma

demonstrates that if such weights can be used to represent hT (f) for some f 2 QjCjT , then the

same weights can be used to represent hT 0 (f) for any T 0 such that f 2 QjCjT 0 .

Lemma A.4 For jCj � 3, let fsjgjCjj=1 be a collection of similarity weights. For any T � 2 and
any f 2 QjCjT , de�ne the function gT (f) by

gT (f) =

PjCj
j=1 sjf (j) p̂

j
TPjCj

j=1 sjf (j)

Suppose that for some f 2 QjCjT , we can show that hT (f) = gT (f) =
PjCj
j=1 sjf(j)p̂

j
TPjCj

j=1 sjf(j)
. Then,

hT 0 (f) = gT 0 (f) for all T 0 such that f 2 QjCjT 0 .
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Proof of Lemma A.4:

Let Tf be the smallest T such that f 2 QjCjT . Then f 2 Q
jCj
T iff T = kTf for some k 2 N. If

� 2 �jCj�1 with �j = 0 iff f (j) = 0 satis�es

hTf (f) =

jCjX
j=1

�jhTf

�
f̂ j
�
=

jCjX
j=1

�j p̂
j
Tf
,

then, by property (i) in Proposition A.2,

hkTf (f) =

jCjX
j=1

�jhkTf

�
f̂ j
�
=

jCjX
j=1

�j p̂
j
kTf
.

In particular,

hT (f) =

jCjX
j=1

�jhT

�
f̂ j
�
=

jCjX
j=1

�j p̂
j
T =

PjCj
j=1 sjf (j) p̂

j
TPjCj

j=1 sjf (j)
= gT (f) ,

implying �i = sif(i)PjCj
j=1 sjf(j)

for i 2 f1; 2; ::: jCjg. Since gkTf (f) =
PjCj
j=1 sjf(j)p̂

j
kTfPjCj

j=1 sjf(j)
=
PjCj

j=1 �j p̂
j
kTf

=

hkTf (f), we have the desired result.�

We now prove the result of Proposition A.2 for the case jCj = 3. For this case, de�ne f � =:P3
j=1

1
3
f̂ j and consider T = 3 �T . Obviously, f � 2 Q3

3 �T
. Let s1, s2 and s3 be the unique up to a

multiplication by a positive number solution of the equation:

h3 �T (f
�) =

P3
j=1 sj p̂

j

3 �TP3
j=1 sj

.

For any T � 2 and any f 2 Q3T , de�ne gT (f) =:
P3
j=1 sjf(j)p̂

j
TP3

j=1 sjf(j)
. Obviously, g3 �T (f �) = h3 �T (f �).

Lemma A.4 then implies

g3k (f
�) = h3k (f

�)

for all k 2 N.

In order to state our next Lemma, we de�ne the �rst simplicial partition of QjCj+ \ �jCj�1 by

the four triangles separated by the segments connecting the three points
�
1
2
f̂ i + 1

2
f̂ j
�
for i 6= j.

The second simplicial partition is obtained by partitioning each of the simplicial triangles into

simplicial triangles, the k-th simplicial partition is de�ned recursively. The simplicial points of

the k-th simplicial partition are all the vertices of the triangles in this partition. Note that all

elements of the �rst simplicial partition are in Q32. The centers of gravity of these triangles are

in Q36. All elements of the second simplicial partition are in Q34, while their centers of gravity
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are in Q312, etc. Our next result shows that, for jCj = 3, the functions h and g coincide on the

set of simplicial points.

Lemma A.5 Let conv
�
f̂ 1k ; f̂

2
k ; f̂

3
k

�
be a simplicial triangle from the k-th simplicial partition

and let f �k =
P3

i=1
1
3
f̂ ik be its center of gravity. Let T0 � �T be such that

n
f̂ ik

o3
i=1
and f �k 2 Q3T0 .

If hT0
�
f̂ ik

�
= gT0

�
f̂ ik

�
for all i = 1:::3 and hT0 (f �k ) = gT0 (f

�
k ), then, for every simpli-

cial triangle conv
�
f̂ 1l ; f̂

2
l ; f̂

3
l

�
of conv

�
f̂ 1k ; f̂

2
k ; f̂

3
k

�
,with a center of gravity f �l =

P3
i=1

1
3
f̂ il ,

h12T0

�
f̂ il

�
= g12T0

�
f̂ il

�
for all i = 1:::3 and h12T0 (f �l ) = g12T0 (f �l ) holds.

Proof of Lemma A.5:

Observe that if (f1; f2) and (f3; f4) are non-collinear segments in Q3T0 with the property that

hT0 (fi) = gT0 (fi) for all i 2 f1:::4g, then for f = (f1; f2) \ (f3; f4), hT0f (f) = gT0f (f),

where T0f = min fT � T0 j f 2 Q3Tg.

In particular, let conv
�
f̂ 1k ; f̂

2
k ; f̂

3
k

�
be a simplicial triangle from the k-th simplicial partition

and let hT0
�
f̂ ik

�
= gT0

�
f̂ ik

�
for all i = 1:::3 and hT0 (f �k ) = gT0 (f

�
k ). By Lemma A.4,

h12T0

�
f̂ ik

�
= g12T0

�
f̂ ik

�
for all i = 1:::3 and h12T0 (f �k ) = g12T0 (f �k ). Note that for any two i,

j 2 f1; 2; 3g, i 6= j and n = f1; 2; 3g n fi; jg,
1

2
f̂ ik +

1

2
f̂ jk =

�
f̂ ik; f̂

j
k

�
\
�
f̂nk ; f

�
k

�
.

Since h12T0
�
f̂ 1k

�
, h12T0

�
f̂ 2k

�
and h12T0

�
f̂ 3k

�
are non-collinear, and, hence,

�
h12T0

�
f̂ ik

�
;h12T0

�
f̂ jk

��
and

�
h12T0

�
f̂nk

�
;h12T0 (f

�
k )
�
are non-collinear as well, they have a unique intersection point.

Since both g12T0
�
1
2
f̂ ik +

1
2
f̂ jk

�
and h12T0

�
1
2
f̂ ik +

1
2
f̂ jk

�
must coincide with this intersection point,

it follows that g12T0
�
1
2
f̂ ik +

1
2
f̂ jk

�
= h12T0

�
1
2
f̂ ik +

1
2
f̂ jk

�
.

Now consider the centers of gravity of the four subtriangles. For the triangle

conv

�
1

2
f̂ 1k +

1

2
f̂ 2k ;

1

2
f̂ 1k +

1

2
f̂ 3k ;

1

2
f̂ 2k +

1

2
f̂ 3k

�
the center of gravity is f �k and, hence, satis�es the condition. Consider, therefore, w.l.o.g.,

the triangle conv
�
f̂ 1l ; f̂

2
l ; f̂

3
l

�
with f̂ 1l = f̂ 3k , f̂ 2l = 1

2
f̂ 1k +

1
2
f̂ 3k and f̂ 3l = 1

2
f̂ 2k +

1
2
f̂ 3k . First

note that since
�
1
2

�
1
2
f̂ 1k +

1
2
f̂ 3k

�
+ 1

2

�
1
2
f̂ 2k +

1
2
f̂ 3k

��
is the intersection of

�
f̂ 3k ;

1
2
f̂ 1k +

1
2
f̂ 2k

�
and
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�
1
2
f̂ 1k +

1
2
f̂ 3k ;

1
2
f̂ 2k +

1
2
f̂ 3k

�
, we have:

h12T0

�
1

2

�
1

2
f̂ 1k +

1

2
f̂ 3k

�
+
1

2

�
1

2
f̂ 2k +

1

2
f̂ 3k

��
= g12T0

�
1

2

�
1

2
f̂ 1k +

1

2
f̂ 3k

�
+
1

2

�
1

2
f̂ 2k +

1

2
f̂ 3k

��
.

Similarly,

h12T0

�
1

2

�
1

2
f̂ 1k +

1

2
f̂ 3k

�
+
1

2

�
1

2
f̂ 1k +

1

2
f̂ 2k

��
= g12T0

�
1

2

�
1

2
f̂ 1k +

1

2
f̂ 3k

�
+
1

2

�
1

2
f̂ 1k +

1

2
f̂ 2k

��
The point 1

2
f̂ 3k +

1
2

�
1
2
f̂ 2k +

1
2
f̂ 3k

�
= 3

4
f̂ 3k +

1
4
f̂ 2k is on the intersection of�

1

2

�
1

2
f̂ 1k +

1

2
f̂ 3k

�
+
1

2

�
1

2
f̂ 2k +

1

2
f̂ 3k

��
;

�
1

2

�
1

2
f̂ 1k +

1

2
f̂ 3k

�
+
1

2

�
1

2
f̂ 1k +

1

2
f̂ 2k

��
and

�
f̂ 2k ; f̂

3
k

�
. Hence, h12T0

�
3
4
f̂ 3k +

1
4
f̂ 2k

�
= g12T0

�
3
4
f̂ 3k +

1
4
f̂ 2k

�
. The center of gravity f �l of

conv

�
f̂ 3k ;

1

2
f̂ 1k +

1

2
f̂ 3k ;

1

2
f̂ 2k +

1

2
f̂ 3k

�
is the intersection of

�
f̂ 3k ;

1
2
f̂ 1k +

1
2
f̂ 2k

�
and

��
1
2
f̂ 1k +

1
2
f̂ 3k

�
;
�
3
4
f̂ 3k +

1
4
f̂ 2k

��
, and, hence, h12T0 (f �l ) =

g12T0 (f
�
l ).�

Applying the claim inductively and using the result of Lemma A.4, we conclude that the func-

tions h and g coincide on the set of all simplicial points.

To complete the proof of Proposition A.2 for the case of jCj = 3, it remains to show that the

functions h and g coincide on the set of all rational points.

Lemma A.6 hT (f) = gT (f) for all f 2 Q3T and for all T � 2.

Proof of Lemma A.6:

Take an arbitrary f 2 Q3T . For some T̂ � �T , let f 2 Q3
T̂
. Form a sequence T 1:::T k::: with T 1 =

6T̂ and T k = 6T k�1 and take a sequence of simplicial triangles
�
f̂ 11 ; f̂

2
1 ; f̂

3
1

�
:::
�
f̂ 1k ; f̂

2
k ; f̂

3
k

�
:::

such that for each k, f̂ 1k , f̂ 2k and f̂ 3k are in Q3Tk , f 2 conv
�
f̂ 1k ; f̂

2
k ; f̂

3
k

�
and limk!1 f̂

i
k = f for

all i 2 f1; 2; 3g. It is obvious that this construction is possible for every f . We want to show

that hTk (f) = gTk (f) for all k.

First note that if f 2 conv
�
f̂ 1k ; f̂

2
k ; f̂

3
k

�
, then by the de�nition of g,

gTk (f) 2 conv
�
gTk
�
f̂ 1k

�
; gTk

�
f̂ 2k

�
; gTk

�
f̂ 3k

��
:

Since for all n 2 f1; 2; 3g, limk!1 p̂
n
Tk
= h1

�
f̂n
�
2 �2, we have that for all r 2 R and all
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j 2 f1; 2; 3g

lim
k!1

 P3
n=1 snf (n) p̂

n
Tk
(r)P3

n=1 snf (n)
�
P3

n=1 snf̂
j
k (n) p̂

n
Tk
(r)P3

n=1 snf̂
j
k (n)

!

= lim
k!1

3X
n=1

p̂nTk (r)

 
snf (n)P3
n=1 snf (n)

� snf̂
j
k (n)P3

n=1 snf̂
j
k (n)

!

=
3X
n=1

h1

�
f̂n
�
(r)

 P3
i=1 sif (i)P3
n=1 snf (n)

�
P3

i=1 sif (i)P3
n=1 snf (n)

!
= 0,

where p̂n
Tk
(r) and h1

�
f̂n
�
(r) denote the rth-components of the vectores p̂n

Tk
and h1

�
f̂n
�
,

respectively. Hence,

lim
k!1




gTk (f)� gTk �f̂ jk�


 = 0
for all j 2 f1; 2; 3g.

Property (i) in Proposition A.2 implies that there exists a vector � 2 �2, independent of T k,

such that

hTk (f) =
3X
n=1

�nhTk
�
f̂n
�
.

Suppose that for some i 2 f1; 2; 3g, �i 6= sif(i)P3
n=1 snf(n)

, i.e. that there exists an � > 0 such that:




�i � sif (i)P3
n=1 snf (n)






 = � > 0.
Since hTk (f) 2 conv

�
hTk

�
f̂ 1
�
;hTk

�
f̂ 2
�
;hTk

�
f̂ 3
��
and

conv
�
hTk

�
f̂ 1
�
;hTk

�
f̂ 2
�
;hTk

�
f̂ 3
��
= conv

�
gTk
�
f̂ 1
�
; gTk

�
f̂ 2
�
; gTk

�
f̂ 3
��

we have that

lim
k!1

conv
�
hTk

�
f̂ 1
�
;hTk

�
f̂ 2
�
;hTk

�
f̂ 3
��
n fgTk (f)g = ?.

Hence, it must be that:

lim
k!1

khTk (f)� gTk (f)k = 0,

which is equivalent to:

lim
k!1







3X
i=1

 
�i �

sif (i)P3
n=1 snf (n)

!
p̂iTk






 = 0, (A-2)

which reduces to 





3X
i=1

 
�i �

sif (i)P3
n=1 snf (n)

!
h1

�
f̂ i
�




 = 0, (A-3)
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By presumption, the vectors
�
h1

�
f̂ i
��

i2f1;2;3g
are not collinear. Hence, (A-3) can be satis�ed

only if �i = sif(i)P3
n=1 snf(n)

for all i 2 f1; 2; 3g. It follows that hTk (f) = gTk (f) for all k. Lemma

A.4 then implies that hT (f) = gT (f) for all T such that f 2 Q3T .�

Lemma A.6 completes the proof of Proposition A.2 for the case of jCj = 3.

Now consider the case of jCj > 3. To de�ne the similarity function for this case, choose three

distinct j, k, l � jCj. De�ne f fj;k;lg =:
P

n2fj;k;lg
1
3
f̂n and let sfj;k;lg be the unique (up to a

multiplication by a positive number) solution of:

h3 �T
�
f fj;k;lg

�
=

P
n2fj;k;lg s

fj;k;lg
n p̂n

3 �TP
n2fj;k;lg s

fj;k;lg
n

:

De�ne

g
fj;k;lg
T (f) =:

P
n2fj;k;lg s

fj;k;lg
n f (n) p̂nTP

n2fj;k;lg s
fj;k;lg
n f (n)

.

for all T and all f 2 Q3T \ conv
n
f̂ j; f̂k; f̂ l

o
. Note that gfj;k;lgT = hT on this set. We �rst show

that the similarity values sfj;k;lgn determined in this way do not depend on the choice of j, k and

l: note that s
fj;k;lg
j

s
fj;k;lg
k

=
s
fj;k;l0g
j

s
fj;k;l0g
k

, since gfj;k;lgT (f) = g
fj;k;l0g
T (f) = hT (f) for all f 2 conv

�
f̂ j; f̂k

�
.

Hence, de�ne


jk =:
s
fj;k;lg
j

s
fj;k;lg
k

=
s
fj;k;l0g
j

s
fj;k;l0g
k

for all l, l0 2 f1::: jCjg. Note that 
jk is well-de�ned for all j, k � jCj, since no three vectors

p̂j
3 �T
= h3 �T

�
f̂ j
�
, p̂k
3 �T
= h3 �T

�
f̂k
�
and p̂l

3 �T
= h3 �T

�
f̂ l
�
are collinear. Furthermore,


jk
kl
lj =
s
fj;k;lg
j

s
fj;k;lg
k

s
fj;k;lg
k

s
fj;k;lg
l

s
fj;k;lg
l

s
fj;k;lg
j

= 1.

De�ne s1 =: 1 and sj =: 
j1 for all j 2 f2::: jCjg. We wish to show that for all triples j, k and l,n
s
fj;k;lg
n

o
n2fj;k;lg

is proportional to fsj; sk; slg. This follows from 
1j
jk
k1 =
1
sj

sj;k;lj

sj;k;lk

sk = 1.

Given s = (sj)jCjj=1, de�ne

gT (f) =:

PjCj
j=1 sjf (j) p̂

j
TPjCj

j=1 sjf (j)

for all T and all f 2 QjCjT .

We know that for jCj = 3, gT (f) = hT (f). We wish to prove that the same is true for any

jCj � 3. We proceed by induction. Suppose that the claim is true for all jCj � N and take

jCj = N + 1. We prove the following claim by induction:
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Lemma A.7 For every subset K � f1::: jCjg, hT (f) = gT (f) holds for every T � 2 and
every f 2 QjKjT \ conv

�n
f̂ j j j 2 K

o�
.

Proof of Lemma A.7:

We know that the claim is true for jKj = 3, so we assume that it is true for jKj = N and prove

that it will hold for jKj = N + 1.

By property (iii) of Proposition A.2, no three of the vectors h1
�
f̂ i
�
are collinear. By the

induction argument, for every m 2 K, hT (f) = gT (f) holds for every T � 2 and every

f 2 QNT \ conv
�n
f̂ j j j 2 Kn fmg

o�
.

Let T � �T and consider �rst f 2 int
�
QN+1T \ conv

�n
f̂ j j j 2 K

o��
. f can be expressed

as: f =
PN+1

l=1 
lf̂
l for some rational coef�cients 
l > 0. For everym 2 K, let fm be the point

in

conv
��n

f̂ l j l 2 Knm
o�
\QNT 0

�
that is on the line connecting f and f̂m, i.e. fm =

PN+1
l=1
l 6=m


l
1�
m

f̂ l, where T 0 is the smallest

number of observations, for which f and fm 2 QNT 0 for all m 2 K. Such a T 0 exists, since


l are rational coef�cients. We have hT 0
�
f̂m
�
= gT 0

�
f̂m
�
and, by the induction argument,

hT 0 (fm) = gT 0 (fm). Property (i) of Proposition A.2 implies

hT 0 (f) 2
�
hT 0
�
f̂m
�
;hT 0 (fm)

�
hT 0 (f) 2

�
hT 0
�
f̂m

0
�
;hT 0 (fm0)

�
for allm andm0 2 K.

Now we wish to show that not all of these intervals are collinear. This follows from the fact that

no three of the vectors h1
�
f̂m
�
are collinear, and hence, by Lemma A.3, the corresponding

vectors hT 0
�
f̂m
�
are also non-collinear for any T 0 � T . Hence, there are two distinct intervals�

hT 0
�
f̂m
�
;hT 0 (fm)

�
and

�
hT 0
�
f̂m

0
�
;hT 0 (fm0)

�
which do not lie on the same line, and,

by property (i) of Proposition A.2, have hT 0 (f) as an intersection point. Since, gT 0 (f) is by

construction also an intersection point of the two intervals, it follows that hT 0 (f) = gT 0 (f).
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By Lemma A.4, we conclude that hT (f) = gT (f) holds for all T � 2 and all

f 2 int
�
conv

�n
f̂ j j j 2 K

o�
\QN+1T

�
,

as well as for all f 2 conv
�n
f̂ j j j 2 Knm

o�
\QNT form 2 K, thus establishing the result.�

Lemma A.7 completes the proof of Proposition A.2.

Lemma A.8 Under Axiom (A5), it is possible to select vectors h1 (c) 2 H1 (c) for each
c 2 C such that no three vectors in the set (h1 (c))c2C are collinear. Furthermore, for each c,
there exists a Tc 2 N and a sequence of vectors ĥT

�
cT
�
2 HT (c)T for T � Tc such that

lim
T!1

ĥT
�
cT
�
= h1 (c) .

Proof of Lemma A.8:

Denote the set ~Cp to be the set of all cases c 2 C, such that H1 (c) is of dimension p 2

f0; 1; ::: jRj � 1g. To show that a selection of vectors h1 (c) with the stated properties exists,

�rst set (h1 (c)) to be the unique elements of each of the sets (H1 (c))c2 ~C0 . No three of these

are collinear by Axiom (A5). Take a case ĉ 2 ~C1. For a given segment (e; f), de�ne l (e; f) to

be the line containing the segment. Consider the set

Lĉ = fl (h1 (c0) ; h1 (c00))gc0, c002 ~C0 [
�
l (H1 (c))c2 ~C1 nl (H1 (ĉ))

�
This is the set of all lines connecting any two singleton sets, as well as the collection of lines

de�ned by the segments in fH1 (c)gc2C , excluding the line containing H1 (ĉ) itself. Choose a

point h1 (ĉ) 2 H1 (ĉ) such that h1 (ĉ) 62 Lĉ. That this can be done is ensured by Axiom (A5).

We now show that no three of the sets fh1 (c)g for c 2 ~C0 [ fĉg and H1 (c) for c 2 ~C1 are

collinear. First consider the combination of h1 (ĉ) with any two points h1 (c0) and h1 (c00)

with c0, c00 2 ~C0. Since h1 (ĉ) 62 l (h1 (c0) ; h1 (c00)), these are non-collinear.

Second, consider the combination of h1 (ĉ) with a point h1 (c0), (c0 2 ~C0), and a segment,

H1 (c
00), (c00 2 ~C1). If h1 (c0) andH1 (c00) are collinear, then h1 (ĉ) 62 l (H1 (c00)) and, hence,

the three sets are not collinear. If h1 (c0) andH1 (c00) are not collinear, then neither is the triple

h1 (ĉ), h1 (c0) and H1 (c00).

Last, consider the combination of h1 (ĉ) with two segmentsH1 (c0) andH1 (c00) (c0, c00 2 ~C1).

Axiom (A5) excludes the case in which all three of the sets H1 (ĉ), H1 (c0) and H1 (c00) lie
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on the same line. Hence, at least one of these two segments, say H1 (c0) is non-collinear to

H1 (ĉ). It follows that h1 (ĉ) 62 l (H1 (c0)) ; which proves that the three sets h1 (ĉ), H1 (c0)

andH1 (c00) are non-collinear. We have thus shown that the new set of limit predictions de�ned

by:

H1
1 (c) = fh1 (c)g for all c 2 ~C0 [ fĉg

H1
1 (c) = H1 (c) for all c 62 ~C0 [ fĉg

satis�es Axiom (A5).

Using the same argument by induction, it is possible to choose points h1 (c) for all c 2 ~C0[ ~C1

in such a way that no three of these points are collinear. This procedure generates a new set of

limit predictions:

H
j ~C1j
1 (c) = fh1 (c)g for all c 2 ~C0 [

n
~C1

o
H
j ~C1j
1 (c) = H1 (c) for all c 62 ~C0 [

n
~C1

o
Using the singleton sets

�
H
j ~C1j
1 (c)

�
c2 ~C0[ ~C1

de�ned in this way, construct the set of all lines

connecting these points:

L ~C0[ ~C1 =

�
l

�
H
j ~C1j
1 (c0) ; H

j ~C1j
1 (c00)

��
c0, c002 ~C0[ ~C1

= fl (h1 (c0) ; h1 (c00))gc0, c002 ~C0[ ~C1 .

Note that the intersection of each of the remainingHj
~C1j

1 (ĉ) with L ~C0[ ~C1 is a �nite collection of

points and segments. Fix a case �c 62 ~C0[ ~C1. Since the setH
j ~C1j
1 (�c) is of dimension 2 or higher,

we can �nd a point h1 (�c) 2 H
j ~C1j
1 (�c) nL ~C0[ ~C1 , which is non-collinear to any pair of vectors in

(h1 (c))c2 ~C0[ ~C1 . Analogously, de�ne the set L ~C0[ ~C1[f�cg = l (h1 (c
0) ; h1 (c

00))c0, c002 ~C0[ ~C1[fĉg

and proceed by induction to complete the construction.

The fact that a convergent sequence
�
ĥT
�
cT
��

T�Tc
exists follows directly from the de�nition

of the limit of a sequence of sets, see ROCKAFELLAR AND WETS (2004, P. 109).�

Proof of Theorem 6.1:

We show that we can represent the correspondence H as a collection of functions H =:�
h : D! �jRj�1	 satisfying the following conditions:
(i) for any T and any three databasesD,D0 andD00 2 DT such that 
fD+(1� 
) fD0 = fD00
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for some 
 2 (0; 1),
�HT (D) + (1� �)HT (D0) = HT (D

00)
implies

�hT (D) + (1� �)hT (D0) = hT (D
00)

for every h 2 H;
(ii) for each h 2 H and c 2 C, the sequence

�
hT
�
cT
��
T�2 converges to some limit h1 (c);

(iii) for each h 2 H, no three of the vectors in the set (h1 (c))c2C are collinear;
(iv) for each T � 2, and any D 2 DT , [h2HhT (D) = HT (D).

To construct the set of functions H, proceed as follows: �x a D 2 D. Let T be the length

of the database D. Let hT (D) 2 HT (D). If D = (c)T for some c 2 C, pick an element

hT

�
(c0)T

�
2 HT

�
(c0)T

�
for all c0 6= c. For any D0 2 DT , let

hDT (D
0) =

X
c2jCj

�0chT
�
cT
�
,

where �0c are such that:

HT (D
0) =

X
c2jCj

�0cHT
�
cT
�
. (A-4)

If D 6= cT for all c 2 C, let (�c)c2C be such that:

HT (D) =
X
c2jCj

�cHT
�
cT
�
.

It is then possible to choose vectors 2 HT
�
cT
�
for each c 2 C such that:

hT (D) =
X
c2jCj

�chT
�
cT
�
.

Using the so chosen vectors hT
�
cT
�
, construct hT (D0) as in (A-4) for all other sets D0 2 DT

. Let TC = max fTc j c 2 Cg, where Tc are as de�ned in the statement of Lemma A.8. For

T 0 < TC , T 0 6= T , pick any vectors hT 0
�
cT

0� 2 HT 0 �cT 0� and for any D0 2 DT 0 , construct the

vectors hT 0 (D0) as in (A-4).

To complete the construction for T 0 � TC , T 0 6= T , choose vectors ĥ1 (c) 2 H1 (c) such

that no three of these vectors are collinear and sequences
�
ĥT 0
�
cT

0��
T 0�TC

such that for every

c 2 C and T � TC , T 0 6= T , ĥT 0
�
cT

0� 2 HT 0 (c)T 0 and limT 0!1 ĥT 0
�
cT

0�
= ĥ1 (c) (this can be

done by Lemma A.8). Set hT 0
�
cT

0�
= ĥT 0

�
cT
�
for all T 0 � TC , T 0 6= T , and for anyD0 2 DT 0 ,

construct the vectors hT 0 (D0) as in (A-4).
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The same procedure can be repeated for any hT (D) 2 HT (D), giving us a collection of func-

tions HD for a speci�c database D 2 DT . Note that the same sequences
�
ĥT 0
�
cT

0��
T�TC

are

used in the construction of each of these functions. The union of the setsHD over all databases

in D, gives us H = [D2DHD. It is obvious that these functions satisfy all of the conditions

listed above.

Take any two such functions, h1 and h2 2 H. Suppose that h1 was constructed starting from

a database D1 2 DT 1 , while h2 was constructed starting from a database D2 2 DT 2 . Then,

h1T 0 = h
2
T 0 for all T 0 � max fT 1;T 2;TCg.

From Proposition A.2, we conclude, that for each of the functions h 2 H, we can �nd a simi-

larity function sh and probability vectors p̂h;cT = hT
�
cT
�
such that

hT (D) =

P
c2C s

h (c) p̂h;cT fD (c)P
c2C s (c) fD (c)

for all T � 2 and all D 2 DT . We set P̂ cT =
n
p̂h;cT

o
h2H

=
�
hT
�
cT
�	

h2H = HT
�
cT
�
.

We now show that sh does not depend on the speci�c choice of the function h. Take any two

functions h1 and h2 2 H. Let �T 1 be the minimal value of T such that no three of the vectors�
h1T
�
cT
��
c2C are collinear for T � �T 1. From the proof of Lemma A.3, we know that �T 1 is

�nite. De�ne �T 2 analogously. Recall that the similarity functions s1 and s2 are de�ned by

h13 �T 1
�
f fj;k;lg

�
=

P
m2fj;k;lg s

1;fj;k;lg
m p̂1;m

3 �T 1P
m2fj;k;lg s

1;fj;k;lg
m

(A-5)

h23 �T 2
�
f fj;k;lg

�
=

P
m2fj;k;lg s

2;fj;k;lg
m p̂2;m

3 �T 2P
m2fj;k;lg s

2;fj;k;lg
m

(A-6)

where j, k and l is any triplet of cases in C. Since for all T 0 � max fT 1;T 2;TCg, h1T 0 = h2T 0 ,

there exists a k such that 3k �T 1 �T 2 � max fT 1;T 2;TCg and, hence, the equations

h13k �T 1 �T 2
�
f fj;k;lg

�
=

P
m2fj;k;lg s

1;fj;k;lg
m p̂1;m

3k �T 1 �T 2P
m2fj;k;lg s

1;fj;k;lg
m

=

P
m2fj;k;lg s

1;fj;k;lg
m h1

3k �T 1 �T 2

�
c3k

�T 1 �T 2

m

�
P

m2fj;k;lg s
1;fj;k;lg
m

(A-7)

h23k �T 1 �T 2
�
f fj;k;lg

�
=

P
m2fj;k;lg s

2;fj;k;lg
m p̂2;m

3k �T 1 �T 2P
m2fj;k;lg s

2;fj;k;lg
m

=

P
m2fj;k;lg s

2;fj;k;lg
m h2

3k �T 1 �T 2

�
c3k

�T 1 �T 2

m

�
P

m2fj;k;lg s
2;fj;k;lg
m

(A-8)
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are equivalent. By Lemma A.4, the similarity values in equations (A-5) and (A-7) are identical,

and so are the similarity values in equations (A-6) and (A-8). Hence, both h1 and h2 give rise

to identical similarity functions. sh is therefore independent of h.

We conclude that

HT (D) =

�P
c2C s (c) p̂

c
TfD (c)P

c2C s (c) fD (c)
j p̂cT 2 P̂ cT

�
.

�
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