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Abstract

We study a model of war in which the outcome of the war is uncertain from the perspective

of the involved countries not because of luck on the battlefield (as in standard models) but

because of their lack of information about their opponents. In our model there are two

countries characterized by their production and military technologies and their resources.

While technologies are common knowledge, resources are private information. Each coun-

try decides how to allocate its resources to production and warfare. The country with

the stronger military wins and receives aggregate production. In equilibrium the country

with a comparative advantage in warfare allocates its entire resources to warfare for low

resource levels and follows a non-decreasing concave strategy thereafter. In response to

that, the other country allocates a constant fraction of its resources to warfare for rela-

tively low resource levels and follows an increasing non-linear strategy thereafter. Unless

its military technology is much weaker than the opponent’s, the country with a compar-

ative advantage in warfare chooses the stronger military at any resource level. From an

ex ante perspective it is therefore likely to win the war.
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1 Introduction

The outcome of many conflicts and wars is uncertain from the perspective of the involved

parties or countries, as well as from the outsiders’ perspective. Standard models of conflicts

and wars account for this uncertainty by assuming that luck plays a crucial role on the

battlefield. In this paper we study an alternative model in which countries are uncertain

about the outcome not because of luck on the battlefield, but because of a lack of information

about their opponent and, consequently, its endogenous military power.

In this model there are two countries characterized by their production technologies,

their military technologies, and their resources. Each country can choose how to allocate its

resources to production and warfare. The resource allocation and the technologies determine

domestic production and military power. The country with the greater miliary power wins

and can consume all goods that have been produced in the two countries. The loosing country

gets nothing. War is therefore modeled as an all-pay auction in which the winner’s prize is

endogenous and decreasing in the bids of both bidders.

We assume that production and miliary technologies are common knowledge, but each

country only knows the level of its own resources. This assumption of incomplete information

can have various interpretations. First, the two countries can be imperfectly informed about

each other’s labor-force or stock of human and physical capital. We imagine that throughout

history this was often the case when two tribes, possibly from remote forests or mountainous

areas, were fighting against each other. But even nowadays, most countries lack precise

estimates of their opponent’s resources and, therefore, its productive and military potential.1

Second, even countries that know the size of their opponent’s labor-force during peacetime

might not know how many people who are normally out of the labor-force are willing and

able to help out on the home front (i.e. in production) or the battlefield during wartime.2

Finally, a broader understanding of resources does not only include the available labor-force

1One reason is that official figures on, e.g., labor supply and production are often biased, and that the size of
these biases are typically unknown. Shleifer and Treisman (2005) argue that official figures tend to overestimate
true resources and production in communist countries in which managers routinely inflate production figures.
In contrast, official figures may underestimate true resources and production in capitalist countries in which
individuals and businesses may want to evade taxation.

2As an example, many were surprised by the dramatic increase in women’s labor force participation in the
United States during World War II.
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and the stocks of human and physical capital, but also how dedicated and motivated people

are to use their labor and their human capital for the best of their country during wartime.

Even a country that can accurately guess the size of its opponent’s labor-force and capital

stocks during wartime may lack accurate information about the dedication and the morale of

the opponent country’s people on the home front and the battlefield.3

We characterize monotonic equilibrium strategies for all possible values of the parameters

representing the countries’ production and military technologies. Interestingly, these strate-

gies depend on absolute as well as comparative advantages in warfare.4 They are straightfor-

ward if the country with a comparative advantage in warfare has a large absolute disadvantage

in warfare. For any resource level this country then allocates all resources to warfare, while

its opponent only allocates some fraction of its resources to warfare. Because of its better

military technology, the opponent nevertheless has the stronger military at any resource level.

From an ex ante perspective, the opponent is therefore likely to win the war.

Equilibrium strategies are more involved if the country with a comparative advantage in

warfare has also an absolute advantage or only a modest absolute disadvantage in warfare.

This country then allocates all resources to warfare up to some threshold level and follows

a non-decreasing and concave strategy for higher resource levels. Its opponent allocates

a constant fraction of its resources to warfare up to some threshold level and follows an

increasing non-linear strategy for higher resource level. Hence, at low resource levels it is again

the country with a comparative advantage in warfare that allocates more resources to warfare.

However, at high resource levels absolute advantages matter: the country with an absolute

advantage in warfare allocates less resources to warfare in order to avoid diverting many

more resources away from production when already winning the war with high probability.

Nevertheless, it is the country with a comparative advantage in warfare that chooses the

stronger military at any resource level. From an ex ante perspective this country is therefore

likely to win the war.

3As an example, many were surprised by the (initial) reluctance of Iraqis to fight when the United States
and its allies invaded Iraq to overthrow the regime of Saddam Hussein. Many were also surprised by the fierce
resistance of various Iraqi factions in later years.

4It is the country with the better miliary technology that has an absolute advantage in warfare, and the
country with the higher ratio of miliary to production technology that has a comparative advantage in warfare.
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The theoretical literature on conflicts and wars contains two main strands.5 The first

looks at reasons why conflicts emerge, and the second studies how conflicts are fought. Our

model contributes to the second strand. It is closely related to the standard models of

conflicts and wars that go back to Haavelmo (1954) and have been popularized by Garfinkel

(1990), Grossman (1991), Hirshleifer (1991, 2001), and Skaperdas (1992). Typically these

models have three key features: First, each country can choose how to allocate its resources

to production and warfare. Second, the winning country can consume all production. Third,

the mapping from the resources that the different countries allocate to warfare to the outcome

of the war is probabilistic. While keeping the first two features, we assume this mapping is

deterministic. Moreover, we add the assumption that countries are imperfectly informed

about their opponent’s resources. Our model thus offers a complementary view according

to which countries are uncertain about the outcome of the war not because of luck on the

battlefield, but because of a lack of information about their opponent. This view allows us to

study how aggressively countries behave at different resource levels, and how their behavior

depends on absolute and comparative advantages in warfare.

Most other conflict models in which countries have some private information contribute

to the first strand of the literature, i.e. on the emergence of conflicts, and they typically

take military power as given (e.g., Fearon, 1995). Building on these models, Meirowitz and

Satori (2008) present a model with a similar flavor as ours in that war can occur between two

countries that have invested in military power but cannot observe each other’s investment.

In their model private information however follows from countries playing mixed strategies

when deciding how much to invest in military power.6

Our paper further relates to the literature on all-pay auctions with incomplete information.

Contributions to this literature include Amann and Leininger (1996), Krishna and Morgan

(1997), Lizzeri and Persico (2000), Singh and Wittman (2001), Gavious et al. (2002), and

Feess et al. (2008). Our paper mainly differs from these contributions by assuming that the

prize of the auction is endogenous and the winner’s payoff decreasing in its own bid as well

5See Garfinkel and Skaperdas (2007) for a competent review of the theoretical literature on conflicts and
wars, and Blattman and Miguel (2010) for a review of the theoretical and empirical literature on civil wars.

6Jackson and Morelli (2009) present a similar model as Meirowitz and Satori (2008), but assume that
investments in miliary power are observable.
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as the loser’s bid.7

The remainder of the paper is organized as follows: Section 2 introduces the model.

Section 3 presents some preliminary results. Section 4 derives and discusses the equilibrium.

Section 5 concludes. The appendix contains all proofs.

2 The Model

There are two countries that are at war for some exogenous reason. Each country i = 1, 2 acts

as a single player and has one decision to take: How to allocate its resources ri to production

and warfare. We assume that r1 and r2 are independently drawn from a uniform distribution

on the unit interval, and that their realizations are private information while their distribution

is common knowledge.8

The military power of country i is λibi, where λi > 0 is its military technology, and bi

the resources it allocates to warfare. The production of consumption goods of country i is

βi(ri− bi), where βi > 0 is its production technology, and (ri− bi) the resources it allocates to

production. The resource constraint requires bi ∈ [0, ri]. The technology parameters βi and

λi are common knowledge, but may differ across countries.

The outcome of the war is deterministic in that the country with the higher military power

λibi wins for sure. The winning country can consume all goods that have been produced in

the two countries. Therefore, given choices bi and bj, and resources ri and rj , the payoff of

7The most closely related model on all-pay auctions is Feess et al. (2008), where one player may have a
handicap in the same way as one country may have a lower military technology in our model.

8We think of resources as a composite measure that include a country’s labor-force and its stock of human
and physical capital as well as the motivation and dedication of the people to work and fight hard during
wartime. As argued in the introduction, the private information of resource levels can represent a situation in
which each country is uncertain about the labor-force and the stocks of human and physical capital available
to its opponent; or one in which each country is uncertain about how motivated and dedicated the opponent’s
people are to use their labor-force and their capital stocks during wartime.
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country i is9

ũi(bi, bj ; ri, rj) =





0 for λibi < λjbj

βi(ri − bi) for λibi = λjbj

β1(r1 − b1) + β2(r2 − b2) for λibi > λjbj .

In this game, the strategy space is such that country i’s strategies are of the form bi =

fi(ri): [0, 1] → [0, ri]. We look for a Bayesian Nash equilibrium in monotone continuous

strategies that are differentiable almost everywhere.

We define λ ≡ λ1

λ2
and β ≡ β1

β2
, and we assume without loss of generality that β ≤ λ,

which implies β1

λ1
≤ β2

λ2
. That is, we call the country with a comparative advantage in warfare

country 1, and the country with a comparative advantage in the production of consumption

goods country 2. Subsequently we often refer to countries as players, thereby calling player

1 “she” and player 2 “he”. Moreover, we call their choices of bi their bids or real bids, while

referring to λibi as their effective bids. Effective bids play a key role in this game because the

player with the higher effective bid wins the war.

3 Preliminary Results

In this section we first present an important lemma. We then study a simplified version of

the game introduced in the previous section to understand some of the main forces at work.

Lemma 1 In any monotone equilibrium it holds that f1(0) = f2(0) = 0, that f1(.) and f2(.)

are non-decreasing, and that λf1(1) = f2(1).

Lemma 1 already puts some structure on the players’ bidding strategies. It directly follows

from the resource constraint that players with zero resources cannot allocate any resources

to warfare. As a consequence, monotone strategies must be non-decreasing. Moreover, no

9Alternative assumptions could, of course, be made about the winner’s payoff. A first alternative would be
to assume that the winner receives the loser’s resources allocated to warfare rather than produced goods, such
that ũi(bi, bj ; ri, rj) = βi(r1 + r2 − b1 − b2) for λibi > λjbj . In this alternative setting production technologies
play no crucial role and the equilibrium coincides with the equilibrium in our game when β1 = β2. A second
alternative would be to follow war of attrition models and to assume that the winner can relocate to production
all resources that he allocated to warfare, but that were not necessary to win the war. In this alternative setting
equilibrium strategies are straightforward: any country always starts by allocating all resources to warfare.
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player ever bids more than necessary to win with probability one because the winner’s payoff

decreases in the resources he or she has allocated to warfare. Effective bids must thus coincide

at the top, i.e. if r1 = r2 = 1.

We next solve our game assuming that the three properties specified in Lemma 1 hold,

but abstracting from the resource constraint for ri > 0 and i = 1, 2. This simplified version of

the game has a closed-form solution that is easy to interpret and helpful to understand how

the players’ incentives shape their behavior. To avoid confusion, we call the equilibrium of

this simplified version of our game a quasi-equilibrium.

We start by focusing on the bidding strategy chosen by player 1 assuming that player 2

chooses the non-decreasing strategy f2(r2). Player 1 wins if and only if she bids y > f2(r2)
λ

,

i.e., if and only if r2 < f−1
2 (λy). Hence her expected payoff is

u1(y; r1) ≡

∫ 1

0
ũ1(y, f2(r2); r1, r2)dr2 =

∫ f−1

2
(λy)

0
[β1(r1 − y) + β2(r2 − f2(r2))]dr2. (1)

She faces a trade-off as a marginal increase in y increases the probability of winning, but

reduces the prize, i.e. aggregate production of consumption goods. It follows from the first-

order condition that the optimal bid y = f1(r1) must satisfy

−βf−1
2 (λy) + [β(f−1

1 (y) − y) + f−1
2 (λy) − λy]

df−1
2 (λy)

dy
= 0, (2)

or, equivalently,

[β1(f
−1
1 (y) − y) + β2(f

−1
2 (λy) − λy)]df−1

2 (λy) = β1dyf−1
2 (λy). (3)

Condition (3) and Figure 1 illustrate the trade-off that player 1 faces. Consider a type of

player 1 that bids y and thinks about bidding y + dy (such that her effective bid would

increase from λy to λ(y + dy)). The benefit from increasing the bid by dy occurs if this

increase turns her into a winner. This event occurs with probability df−1
2 (λy) and generates

an expected marginal benefit as represented on the left-hand side of (3). The marginal cost

of increasing the bid is borne if player 2 is already a winner when bidding y. This event
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Figure 1: Player 1’s trade-off

occurs with probability f−1
2 (λy). The opportunity cost of increasing the bid is the forgone

production β1dy. Hence the right-hand side of (3) represents the expected marginal cost of

increasing the bid.

Similarly, if player 1 chooses the non-decreasing strategy f1(r1), then player 2’s optimal

bid y = f2(r2) must satisfy

−f−1
1 (y) + [β(f−1

1 (y) − y) + f−1
2 (λy) − λy]

df−1
1 (y)

λdy
= 0, (4)

or, equivalently,

[β1(f
−1
1 (y) − y) + β2(f

−1
2 (λy) − λy)]df−1

1 (y) = (β2λdy)f−1
1 (y). (5)

The left-hand side of (5) is the expected marginal benefit of increasing the bid by λdy and the

right-hand side is the expected marginal cost. Similar to above, f−1
1 (y) is the probability that

player 2 is already a winner with a bid of λy, and df−1
1 (y) the probability that the increase

in the bid by λdy turns him into a winner.

It follows from the system of the two differential equations (2) and (4):

Lemma 2 Disregarding any constraints, the players’ strategies are mutual best responses if
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they are of the form

f1(r1) =
β

β + 2λ
r1 +

1

2β + λ
K0r

β

λ

1 + K1r
−(1+ β

λ)
1 (6)

f2(r2) =
λ

2β + λ
r2 +

λβ

β + 2λ
K

−λ
β

0 r
λ
β

2 + K2r
−

“

1+ λ
β

”

2 , (7)

where K0, K1 and K2 are constants.

Lemmas 1 and 2 imply that the quasi-equilibrium strategies must be of form (6) and (7),

respectively, and satisfy the boundary conditions f1(0) = f2(0) = 0 and λf1(1) = f2(1). It

follows:

Corollary 1 The players’ quasi-equilibrium strategies are

f1(r1) =
β

β + 2λ
r1 +

1

2β + λ
r

β

λ

1 (8)

f2(r2) =
λ

2β + λ
r2 +

λβ

β + 2λ
r

λ
β

2 . (9)

These quasi-equilibrium strategies are increasing. Moreover, they are linear and reduce to

f1(r1) = 1+β
3β

r1 and f2(r2) = β(1+β)
3β

r2 if β = λ. Hence, if none of the players has a comparative

advantage in warfare, the one with lower βi and λi bids so much more than his or her opponent

that their effective bids exactly coincide for any resource level.

The more interesting situation arises if β < λ. Then player 1’s quasi-equilibrium strategy

is strictly concave, and player 2’s quasi-equilibrium strategy strictly convex. Since λf1(0) =

f2(0) and λf1(1) = f2(1), it follows that λf1(r) > f2(r) for all r ∈ (0, 1). That is, in the

absence of resource constraints, player 1 who has a comparative advantage in warfare chooses

the higher effective bid, i.e. the stronger military, at any resource level r ∈ (0, 1). Hence

player 1 wins the war when having weakly more resources than player 2, and even when

having slightly less resources. From an ex ante perspective, i.e. in expectation before nature

draws r1 and r2, player 1 is therefore more likely to win the war than her opponent.

Turning from effective to real bids, it directly follows from λf1(r) > f2(r) for all r ∈ (0, 1)

that f1(r) > f2(r) for all r ∈ (0, 1) if λ ≤ 1. Hence, player 1 chooses a higher real bid and

allocates more resources to warfare than her opponent for any resource level when she has a
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comparative advantage, but an absolute disadvantage in warfare. This is necessary for her

to build the stronger military. However, if λ > 1, there exists a unique threshold r̂ ∈ (0, 1)

such that f1(r) > f2(r) for r ∈ (0, r̂) and f1(r) < f2(r) for r ∈ (r̂, 1).10 That is, when player

1 has a comparative and an absolute advantage in warfare, she allocates more resources to

warfare than her opponent for relatively low resource levels, but less resources for relatively

high resource levels. The former is driven by her incentive to specialize in warfare, and the

latter by her incentive not to allocate many more resources to warfare when already winning

the war with high probability.

The quasi-equilibrium strategies (8) and (9) characterize equilibrium behavior if and only

if they satisfy the resource constraint fi(ri) ≤ ri for ri > 0 and i = 1, 2. This is the case if

and only if β = λ ∈
[

1
2 , 2
]
. If β = λ /∈

[
1
2 , 2
]
, the quasi-equilibrium strategy of the player

with lower βi and λi violates the resource constraint for all resource levels. And if β < λ,

player 1’s quasi-equilibrium strategy and any other strategy of form (6) violate the resource

constraint f1(r1) ≤ r1 for r1 sufficiently close to zero.11

In the next section we characterize the players’ equilibrium behavior for all possible values

of β and λ. The general pattern of this behavior will be similar as in the quasi-equilibrium.

The behavioral differences that will occur are due to the resource constraints that the players

are facing, and not due to changes in their incentives. The insights that we have gained in

this section will therefore be helpful to understand equilibrium behavior.

4 Equilibrium

In this section we first characterize the players’ equilibrium strategies for all possible values

of β and λ. We then compare their real and effective bids.

We know from the previous section that strategies satisfying (6) and (7) are mutual best

responses, and that they are non-linear unless β = λ. Also we know that any strategy of type

10Existence and uniqueness of this threshold can be established using the following observations. First, the
quasi-equilibrium strategy f1(r1) is continuously increasing and concave, while f2(r2) is continuously increasing
and convex. Second, f1(0) = f2(0) and limr→0+ f ′

1(r) > limr→0+ f ′
2(r) since β < λ. Third, f1(1) < f2(1) since

λf1(1) = f2(1) and λ > 1.
11Note that limr1→0+ f ′

1(r1) = ∞ if f1(r1) is characterized by (6) and β < λ. Since f1(0) = 0, it follows that
f1(r1) > r1 for r1 → 0+.
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Figure 2: Regions in the parameter space

(6) violates player 1’s resource constraint for r1 sufficiently close to zero if β < λ. We thus

conjecture that player 1’s equilibrium strategy includes bidding all resources r1 up to some

threshold cl > 0, and possibly to follow a non-linear strategy of type (6) for r1 > cl. The

following result will therefore be useful:

Lemma 3 Suppose player 1 follows a non-decreasing strategy with f1(r1) = r1 for r1 ≤ cl.

Then player 2’s best response that is lower than λcl is f2(r2) = r2

2 .

Suppose player 2 follows a non-decreasing strategy with f2(r2) = r2

2 for r2 ≤ 2λcl. Then

player 1’s best response is f1(r1) = r1 for r1 ≤ cl.

We next derive the equilibrium strategies separately for different regions of the parameter

space. These regions are shown in Figure 2. We focus on regions A, B and C, which are

consistent with our assumption β ≤ λ. We do not explicitly derive equilibrium strategies

for regions A’, B’ and C’ in which β > λ. However it is straightforward to show that these

equilibrium strategies are symmetrical to those in regions A, B and C, respectively.

Region A is defined by β ≤ λ ≤ 1
2 . Hence player 1 has a comparative advantage but a

large absolute disadvantage in warfare. She has therefore little incentive to allocate resources

to production because she can produce relatively little anyway, and because she needs to bid

much more aggressively than her opponent if she ever wants to win the war. We can therefore

explain equilibrium behavior using Lemmas 1 and 3 only.
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Figure 3: Effective equilibrium bids in region A (with β = 0.3 and λ = 0.4)

Proposition 1 Assume λ ≤ 1
2 . Then player 1’s equilibrium strategy is f1(r1) = r1, and

player 2’s equilibrium strategy is f2(r2) = min
{

r2

2 , λ
}
.

Figure 3 illustrates the equilibrium strategies described in Proposition 1. Player 1 bids all

resources for any resource level r1. Player 2’s best response is to bid half his resources, but

never more than necessary to win with probability one. Figure 3 shows that λf1(r) ≤ f2(r)

for all r ∈ [0, 1] despite f1(r) ≥ 2f2(r) for all r ∈ [0, 1]. We will come back to comparisons of

the players’ real and effective bids after characterizing the equilibrium for λ > 1
2 .

The strategies described in Proposition 1 cannot explain equilibrium behavior when λ > 1
2 ,

as player 1 would have an incentive to deviate and to allocate some resources to production

for r1 > 1
2λ

. Nevertheless she has an incentive to bid all resources for low r1. Hence we use not

only Lemmas 1 and 3, but also Lemma 2 to derive the equilibrium strategies. In particular,

we conjecture that player 1’s equilibrium strategy is f1(r1) = r1 for r1 ∈ [0, cl] with cl ∈ (0, 1)

and of type (6) for r1 ∈ (cl, 1], and that player 2’s equilibrium strategy is f2(r2) = r2

2 for

r2 ∈ [0, 2λcl] and of type (7) for r2 ∈ (2λcl, 1]. Given these conjectured equilibrium strategies,

the system of equations (6) and (7) must satisfy the boundary condition

λf1(cl) = f2(2λcl) = λcl. (10)

It follows:

12



Lemma 4 Suppose player 1 follows a non-decreasing strategy with

f1(r1) = clh

(
r1

cl

)
(11)

for r1 > cl, where cl ∈
(
0,max{1, 1

2λ
}
)

and h(x) ≡ β
β+2λ

x + 2λ
2β+λ

x
β

λ + 2λ(β−λ)
(β+2λ)(2β+λ)x

−(1+ β

λ ).

Then player 2’s best response that is higher than λcl is

f2(r2) = λclh

((
r2

2λcl

)λ
β

)
. (12)

Suppose player 2 follows a non-decreasing strategy with f2(r2) given by (12) for r2 ≥ 2λcl.

Then player 1’s best response that is higher than cl is f1(r1) given by (11). It holds that

f ′
1(.) > 0, f ′

1(cl) = 1, f ′′
1 (.) < 0 and f ′

2(.) > 0.

It is straightforward to see that the conjectured equilibrium strategies do not violate the

players’ resource constraints for r1 ≤ cl and r2 ≤ 2λcl. Also player 1’s conjectured equilibrium

strategy does not violate her resource constraint for any r1 > cl, as her strategy described

by (11) satisfies f ′
1(cl) = 1 and is concave for r1 > cl. However it is a priori unclear whether

or not player 2’s conjectured equilibrium strategy violates the resource constraint for some

r2 > 2λcl. We know from Lemma 1 that the strategies described by (11) and (12) must satisfy

the boundary condition λf1(1) = f2(1) if f2(r2) does not violate the resource constraint for any

r2 > 2λcl. This boundary condition and (11) and (12) imply cl = (2λ)
λ

β−λ . An equilibrium

of the type conjectured therefore exists if and only if the strategy described by (12) satisfies

f2(r2) ≤ r2 for all r2 > 2λcl when cl = (2λ)
λ

β−λ . As the following proposition establishes, this

is the case if and only if

λ ≤ Λ(β, λ) ≡
[
(2λ)

λ
β−λ h

(
(2λ)

λ
λ−β

)]−1
. (13)

This proposition thus applies to region B that is characterized by β ≤ λ and 1
2 < λ ≤ Λ(β, λ).

Proposition 2 Assume 1
2 < λ ≤ Λ(β, λ). Then player 1’s equilibrium strategy is f1(r1) = r1

for r1 ∈ [0, cl] and as described by (11) for r1 ∈ (cl, 1], with cl = (2λ)
λ

β−λ < 1. Player 2’s

equilibrium strategy is f2(r2) = r2

2 for r2 ∈ [0, 2λcl] and as described by (12) for r2 ∈ (2λcl, 1],

13



Figure 4: Effective equilibrium bids in region B (with β = 1 and λ = 2)

with 2λcl < 1.

Figure 4 illustrates the equilibrium strategies described in Proposition 2. It shows that player

1’s resource constraint is binding for r1 ≤ cl, while player 2 responds by bidding half his

resources for r2 ≤ 2λcl. For higher resource levels, both players’ strategies are non-linear and

their effective bids coincide at the top.

It remains to explain equilibrium behavior in region C, which is characterized by β ≤ λ

and λ > Λ(β, λ). We know from the definition of Λ(β, λ) that player 2’s resource constraint

must be binding at the top in this region, which of course affects player 1’s strategy for high

resource levels. We conjecture that the strategy profile must satisfy the boundary condition

λf1(ch) = f2(1) = 1. (14)

It then follows from Lemma 1 that player 1 bids f1(r1) = 1
λ

for all r1 ≥ ch. Therefore:

Proposition 3 Assume λ > Λ(β, λ). Then player 1’s equilibrium strategy is f1(r1) = r1

for r1 ∈ [0, cl], as described by (11) for r1 ∈ (cl, ch] and f1(r1) = 1
λ

for r1 ∈ (ch, 1], with cl

being unique and implicitly defined by cl =
(
λh
(
(2λcl)

−λ
β

))−1
and with ch = (2λ)−

λ
β c

β−λ

β

l

satisfying cl < ch < 1. Player 2’s equilibrium strategy is f2(r2) = r2

2 for r2 ∈ [0, 2λcl] and as

described by (12) for r2 ∈ (2λcl, 1], with 2λcl < 1.

Figure 5 illustrates the equilibrium strategies described in Proposition 3. Unlike in Figure

14



Figure 5: Effective equilibrium bids in region C (with β = 1 and λ = 3)

4, player 2’s resource constraint is now binding at the top, and player 1 responds by never

submitting any bid higher than necessary to win with probability one.

Having derived the players’ equilibrium strategies for all possible values of β and λ, we

next compare their real and effective and bids. We start by looking at the case in which β = λ

such that no player has a comparative advantage in warfare:

Proposition 4 Assume β = λ. In equilibrium it then holds for all r ∈ (0, 1) that f1(r) >

f2(r) if λ < 1, f1(r) = f2(r) if λ = 1, and f1(r) < f2(r) if λ > 1, and moreover that

λf1(r) < f2(r) if λ < 1
2 , λf1(r) = f2(r) if λ ∈ [12 , 2], and λf1(r) > f2(r) if λ > 2.

The first part of Proposition 4 states that in equilibrium the weaker player with lower βi

and λi chooses higher real bids fi(r) for any resource level r ∈ (0, 1). As long as λ ∈ [12 , 2],

allocating more resources to warfare allows the weaker player to compensate for his poorer

military technology λi and to end up with the same effective bid λifi(r) for any r ∈ (0, 1).

However if a player’s technologies βi and λi are less than half as good as the opponent’s

technologies, i.e. if λ < 1
2 or λ > 2, then this weaker player ends up with the lower effective

bid for any r ∈ (0, 1). This result, which did not obtain in the quasi-equilibrium, is not due

to the weaker player not wanting to bid more to compensate for his poor military technology,

but due to his or her resource constraint. As Proposition 1 implies, this weaker player is

bidding all of his or her resources, but this is not enough to reach the same effective bid as

the stronger opponent who generally bids half his resources (but never more than necessary

15



to win with probability one). When none of the players has a comparative advantage in

warfare, from an ex ante perspective they are thus equally likely to win the war unless their

technologies are very dissimilar.

We next compare real and effective bids for the more interesting case in which β < λ such

that player 1 has a comparative advantage in warfare.

Proposition 5 Assume β < λ. In equilibrium it then holds that f1(r) > f2(r) for all r ∈

(0, 1) if λ ≤ 1. Otherwise, f1(r) > f2(r) for r below or sufficiently close to 2λcl, and f1(r) <

f2(r) for r sufficiently close to 1. Moreover it holds for all r ∈ (0, 1) that λf1(r) < f2(r) if

λ < 1
2 , λf1(r) = f2(r) if λ = 1

2 , and λf1(r) > f2(r) if λ > 1
2 .

It follows from Proposition 5 that results relating to the players’ real bids are again similar

in equilibrium as in the quasi-equilibrium discussed in section 3. When player 1, who has a

comparative advantage in warfare, has an absolute disadvantage in warfare, she allocates a

higher share of her resource to warfare than her opponent at any resource level. But when

having a comparative as well as an absolute advantage in warfare, she allocates more resources

to warfare than her opponent at low resource levels, but less at high resource levels.

Proposition 5 also states (and Figures 4 and 5 illustrate) that player 1 chooses the higher

effective bid than her opponent for any resource level if her military technology is at least half

as good as her opponent’s. As argued earlier, player 1 has this incentive to build a stronger

military because of her comparative advantage in warfare. But player 1 ends up with the

weaker military at any resource level if her military technology is not even half as good as

her opponent’s. The reason for this result, which did not obtain in the quasi-equilibrium,

is not that player 1 does not want to choose a higher effective bid, but that her resource

constraint rules this out. She can only bid all her resources r1, which she does for any r1 if

λ < 1
2 . She then ends up with the lower effective bid than player 2, because his best response

is to generally bid half of his resources, and because his military technology is more than

twice as good. From an ex ante perspective, the player with a comparative advantage in

warfare consequently wins the war with higher probability than her opponent if and only if

her military technology is at least half as good as her opponent’s military technology.12

12Hirshleifer (1991) discusses the Paradox of Power, i.e. why the weaker players often win in conflicts. Our
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5 Conclusions

We have presented a model of war and conflict that offers a different perspective than standard

models of conflicts. In our model the outcome of the war is uncertain from the countries’

perspective because they lack information about their opponents’ resources, not because luck

plays any role on the battlefield. We have characterized monotone equilibrium strategies

and have shown how they depend on absolute and comparative advantages in warfare. We

have seen that if the country with a comparative advantage in warfare has a large absolute

disadvantage in warfare, then it allocates all resources to warfare, but is still unlikely to win

the war against its much stronger opponent that only allocates some fraction of its resources

to warfare. But if the country with a comparative advantage in warfare has also an absolute

advantage or only a modest absolute disadvantage in warfare, then it chooses the stronger

military at any resource level and is therefore likely to win the war. It is the country with

a comparative advantage in warfare that allocates more resources to warfare at low resource

levels, while absolute advantages matter at high resource levels because no country wants to

divert many more resources away from production when already winning the war with high

probability.

model helps to understand in what circumstances the Paradox of Power emerges. It suggests that the player
with the lower military technology is more likely to win the war if and only if it simultaneously holds that
she has a comparative advantages in warfare, and that her military technology is at least half as good as her
opponent’s.
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Appendix: Proofs

Proof of Lemma 1: It directly follows from the requirement fi(ri) ∈ [0, ri] that f1(0) =

f2(0) = 0. Together with the required monotonicity of fi(ri), this implies that f1(.) and

f2(.) must be non-decreasing. We prove λf1(1) = f2(1) by contradiction. Suppose λifi(1) >

λjfj(1). For ri = 1, player i is then better off by deviating and playing bi =
fj(1)λj

λi
< fi(1),

as this increases the winner’s payoff while i still wins with probability one. Hence it must

hold in any monotone equilibrium that λifi(1) = λjfj(1). �

Proof of Lemma 2: The system of the differential equations (2) and (4), which is defined

for y ∈ A ⊆
[
0,min

{
1
λ
, 1
}]

, characterizes mutual best responses. The terms in the square

brackets on the left-hand sides of (2) and (4) are the same, which implies
(
ln
[
f−1
2 (λy)

])′
=

β
λ

(
ln
[
f−1
1 (y)

])′
and, consequently, f−1

2 (λy) = K0f
−1
1 (y)

β

λ , where K0 is a constant. Substi-

tuting this expression into (2) and (4), we obtain two independent differential equations:

−βf−1
2 (λy) +

[
β

(
K

−λ
β

0 f−1
2 (λy)

λ
β − y

)
+ f−1

2 (λy) − λy

]
df−1

2 (λy)

dy
= 0 (15)

−f−1
1 (y) +

[
β(f−1

1 (y) − y) + K0f
−1
1 (y)

β

λ − λy
] df−1

1 (y)

λdy
= 0 (16)

We rename the variable y = z
λ

in (15) to obtain

−βf−1
2 (z) +

[
β

(
K

−λ
β

0 f−1
2 (z)

λ
β −

z

λ

)
+ f−1

2 (z) − z

]
λdf−1

2 (z)

dz
= 0, (17)

where z ∈ λA. After rewriting (16) and (17) using y = f1(r1) and z = f2(r2), and rearranging

terms, we get

λ
df1(r1)

dr1
= β + K0r

β
λ
−1

1 − (λ + β)
f1(r1)

r1
(18)

β
df2(r2)

dr2
= λ + λβK

−λ
β

0 r
λ
β
−1

2 − (λ + β)
f2(r2)

r2
. (19)

Note that r1 ∈ f−1
1 (A) in (18) and r2 ∈ f−1

2 (λA) in (19). Equations (6) and (7) are the

solution to (18) and (19). �
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Proof of Corollary 1: Equations (6) and (7) satisfy f1(0) = f2(0) = 0 only if K1 = K2 = 0,

and then λf1(1) = f2(1) only if K0 = 1. Inserting K0 = 1 and K1 = K2 = 0 into (6) and (7)

gives (8) and (9). �

Proof of Lemma 3: Given player 1’s strategy characterized in the first statement, player

2’s best response lower than λcl follows from inserting f1(r1) = r1 into condition (5), which

then reduces to f−1
2 (λy) = 2λy, implying f2(r2) = r2

2 .

Given player 2’s strategy characterized in the second statement, it follows that ∂u1(y;r1)
∂y

=

2λ[β1(r1 − 2y) + β2λy] for r1 ≤ cl. The left-hand side is positive since y ≤ r1 and β ≤ λ.

Hence it is optimal for player 1 to bid all resources whenever r1 ≤ cl. �

Proof of Proposition 1: It follows from Lemma 3 that f1(r1) = r1 is player 1’s best

response. It follows from Lemma 3 that f2(r2) = r2

2 is player 2’s best response for r2 ∈ [0, 2λ],

and from Lemma 1 and f1(1) = 1 that player 2 should bid f2(r2) ≤ λ for all r2. Hence player

2’s best response is f2(r2) = min
{

r2

2 , λ
}
. �

Proof of Lemma 4: Evaluate f−1
2 (λy) = K0f

−1
1 (y)

β

λ at y = cl to get K0 = 2λc
1−β

λ

l . Then

substitute K0 into (6) and (7), evaluate (6) at r1 = cl and (7) at r2 = 2λcl, and use boundary

condition (10) to get

K1 =

(
λ

β + 2λ
−

λ

2β + λ

)
2c

2+ β

λ

l (20)

K2 =

(
λ

β + 2λ
−

λ

2β + λ

)
(2λcl)

2+ λ
β . (21)

Then plug K0, K1 and K2 into (6) and (7) to obtain (11) and (12).

It follows from the definition of h(x) that h′(x) > 0, h′′(x) < 0 and h(1) = h′(1) = 1;

and from (11) and (12) that f ′
1(r1) = h′

(
r1

cl

)
, f ′

2(r2) = 1
2h′

((
r2

2λcl

)λ
β

)
λ
β

(
r2

2λcl

)λ−β

β
and

f ′′
1 (r1) = 1

cl
h′′
(

r1

cl

)
. Consequently, f ′

1(r1) > 0, f ′
1(cl) = 1, f ′′

1 (r1) < 0 and f ′
2(r2) > 0. �

Proof of Proposition 2: To avoid confusion, we denote the strategies described by (11)

and (12) by f̃1(r1) and f̃2(r2), respectively.

First, we prove that cl < 1 and 2λcl < 1. Note that 2λcl =
(

1
2λ

) β

λ−β , where 1
2λ

< 1 and
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β
λ−β

> 0 since max{1
2 , β} < λ. Hence 2λcl < 1. It follows from 2λcl < 1 and 1

2 < λ that

cl < 1.

Second, we prove that fi(ri) ≤ ri for all ri ∈ [0, 1] and i ∈ {1, 2}. It is straightforward

that f1(r1) = r1 ≤ r1 for all r1 ∈ [0, cl], and it holds that f1(r1) ≤ r1 for all r1 ∈ (cl, 1]

since f̃ ′
1(cl) = 1 and f̃ ′′

1 (r1) < 0 for r1 > cl. It is also straightforward that f2(r2) = r2

2 ≤ r2

for all r2 ∈ [0, 2λcl]. Hence we only need to identify the region in the parameter space in

which f̃2(r2) ≤ r2 for all r2 ∈ (2λcl, 1] when cl = (2λ)
λ

β−λ , or, equivalently, h
(
ω

λ
β

)
≤ 2ω for

all ω ≡ r2

2λcl
∈
(
1, 1

2λcl

]
=
(
1, (2λ)

β

λ−β

]
. Using the definition of h(x), h

(
ω

λ
β

)
≤ 2ω can be

rewritten as

β

β + 2λ
ω

β+2λ

β −
4β

2β + λ
ω

2β+λ

β ≤
2λ(λ − β)

(β + 2λ)(2β + λ)
. (22)

The first derivative of the left-hand side of (22) is zero only when ω = 4
β

λ−β , and the second

derivative of the left-hand side evaluated at ω = 4
β

λ−β is strictly positive. Hence the left-

hand side of (22) must be U-shaped with respect to ω. Thus, since the resource constraint

is not violated at r2 = 2λcl, we only need to verify that it is not violated at the top, i.e., at

r2 = 1. We therefore substitute r2 = 1 and cl = (2λ)
λ

β−λ into f̃2(r2) ≤ r2 and rearrange to get

λ ≤ Λ(β, λ). Alternatively, we can substitute ω = (2λ)
β

λ−β into h
(
ω

λ
β

)
≤ 2ω and rearrange

to get 2β(2λ)
3β

λ−β (2λβ + λ2 − 2β − 4λ) ≤ λ − β.

Third, we prove that each player’s equilibrium strategy is their global best response against

their opponent’s equilibrium strategy. We start with player 1. It directly follows from Lemma

3 that f1(r1) = r1 is player 1’s best response for r1 ≤ cl. (Note that a deviation to some

y > cl is not feasible in this case.) Now suppose r1 > cl. We know from section 2 and Lemma

4 that f1(r1) = f̃1(r1) is player 1’s best response above cl. Hence we only need to show that

player 1 has no incentive to bid some y ≤ cl. When bidding some y ≤ cl, the payoff of player

1 would be u1(y; r1) =
∫ 2λy

0

[
β1(r1 − y) + β2

r2

2

]
dr2. The first derivative is

∂u1(y; r1)

∂y
= [β1(r1 − y) + β2λy]2λ − β12λy =

2λ

β2
(β(r1 − y) + (λ − β)y), (23)

and it must be positive since β < λ and y ≤ cl < r1. Hence player 1 has an incentive to

increase his bid whenever y ∈ [0, cl] and r1 > cl.
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We now turn to player 2. Given player 1’s equilibrium strategy, the payoff of player 2

when bidding y is

u2(y; r2) =





∫ y

λ

0 β2(r2 − y)dr1 for y ≤ min {λcl, r2}

β1

∫ f̃−1

1 ( y

λ)
cl

(r1 − f̃1(r1))dr1 + β2

∫ f̃−1

1 ( y

λ)
0 (r2 − y)dr1 for λcl ≤ y ≤ r2.

(24)

Suppose r2 ≤ 2λcl. We know from Lemma 3 that player 2’s optimal bid less than min {λcl, r2}

is y = r2

2 . Hence we only need to show that player 1 has no incentive to bid some y ∈ [λcl, r2].

For y ∈ [λcl, r2], it follows from (24) that

∂u2(y; r2)

∂y
=
[
β1

(
f̃−1
1

(y

λ

)
−

y

λ

)
+ β2(r2 − y)

] df̃−1
1

(
y
λ

)

dy
− β2f̃

−1
1

(y

λ

)
. (25)

By construction of f̃2(r2), this derivative is zero when r2 = f̃−1
2 (y). Since r2 ≤ 2λcl ≤ f̃−1

2 (y)

and
df̃−1

1 ( y

λ)
dy

> 0, ∂u2(y;r2)
∂y

must be negative. Hence player 2 has an incentive to reduce his

bid whenever y ∈ [λcl, r2] and r2 ≤ 2λcl. Now suppose r2 > 2λcl. We know from section 2

and Lemma 4 that f2(r2) = f̃2(r2) is player 2’s best response above λcl. Hence we only need

to show that player 1 has no incentive to bid some y ≤ λcl. For y ≤ λcl, it follows from (24)

that

∂u2(y; r2)

∂y
=

β2

λ
(r2 − 2y), (26)

which must be positive since r2 ≥ 2λcl and y ≤ λcl. Hence player 2 has an incentive to

increase his bid whenever y ≤ λcl and r2 > 2λcl.

Proof of Proposition 3: We again denote the strategies described by (11) and (12) by

f̃1(r1) and f̃2(r2), respectively.

First, we derive the thresholds cl and ch, and prove the uniqueness of cl, 2λcl < 1 and

cl < ch < 1. Boundary condition (14) and Lemma 4 imply

λclh

(
ch

cl

)
= λclh

((
1

2λcl

)λ
β

)
= 1. (27)

Since h(·) is strictly increasing, the first equality implies ch = (2λ)
−λ

β c
β−λ

β

l . The second
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equality gives the implicit definition of cl. To prove existence and uniqueness of cl, we rewrite

this second equality as x = φ(x), where x = 2λcl and φ(x) = 2
(
h
(
x−λ

β

))−1
. Note that φ(·)

is not well-defined when x = 0, and that φ : (0, 1] → (0, 2] is a continuous and increasing

function with limx→0+ φ(·) = 0 and φ(1) = 2. Suppose condition (13) is violated and let

ε = (2λ)−
β

λ−β < 1. Then it can be shown that φ(ε) < ε. Hence φ(·) has a fixed point

x∗ ∈ (0, 1) satisfying x∗ = φ(x∗) whenever condition (13) is violated. Moreover, this fixed

point is unique since φ′(x∗) > 1 whenever x∗ = φ(x∗). Hence there exists a unique cl, and

it must hold that 2λcl < 1. It follows from 2λcl < 1 that 1 < (2λcl)
−λ

β and, consequently,

cl < ch; and it follows from λ > max
{

1
2 , β
}

that cl < (2λcl)
λ
β and, consequently, c2 < 1.

Second, we prove that fi(ri) ≤ ri for all ri ∈ [0, 1] and i ∈ {1, 2}. It is straightforward

that f1(r1) = r1 ≤ r1 for all r1 ∈ [0, cl], and it holds that f1(r1) ≤ r1 for all r1 ∈ (cl, 1]

since f̃ ′
1(cl) = 1, f̃ ′′

1 (r1) < 0 for r1 ∈ (cl, ch] and f̃1(r1) = f̃1(ch) for r1 ∈ (ch, 1]. It is also

straightforward that f2(r2) = r2

2 ≤ r2 for all r2 ∈ [0, 2λcl]; and cl is chosen such that player

2’s resource constraint is binding when r2 = 1. It can be shown along the same lines as in

the proof of that player 2 also bids strictly less then his resources for r2 ∈ (2λcl, 1).

Third, we prove that each player’s equilibrium strategy is their global best response against

their opponent’s equilibrium strategy. The corresponding part of the proof of Proposition 2

applies here as well, as the arguments do not assume a value for cl. Hence we only need to

show that player 1 has no incentive to deviate for r1 ∈ (ch, 1]. Therefore, suppose r1 ∈ (ch, 1]

and consider a bid y ∈
[
cl,

1
λ

]
. Differentiating player 1’s payoff with respect to y then yields

∂u1(y; r1)

∂y
=
[
β1(r1 − y) + β2

(
f̃−1
2 (λy) − λy

)] df̃−1
2 (λy)

dy
− β1f̃

−1
2 (λy). (28)

By construction of f̃1(r1), this derivative is zero when r1 = f̃−1
1 (y) ≤ ch. Thus, since

df̃−1

2
(λy)

dy
> 0, ∂u1(y,r1)

∂y
must be positive when r1 ≥ ch, implying that in this case player 1

can profitably increase his bid y. �

Proof of Proposition 4: Results for λ ∈ [12 , 2] directly follow from Corollary 1 and our

discussion thereafter. Results for λ < 1
2 directly follow from Proposition 1. Results for λ > 2

also follow from Proposition 1 after renaming player 1 as player 2, and vice versa. �
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Proof of Proposition 5: We first prove the last statement comparing effective bids. It

directly follows from the equilibrium strategies described in Proposition 1 that λf1(r) < f2(r)

for all r ∈ (0, 1) if λ < 1
2 , and that λf1(r) = f2(r) for all r ∈ (0, 1) if λ = 1

2 . To prove that

λf1(r) > f2(r) for all r ∈ (0, 1) if λ > 1
2 , we first consider the case in which 1

2 < λ ≤ Λ(β, λ).

Proposition 2 characterizes the equilibrium strategies for this case. Consider a particular

ỹ ∈ A such that ỹ = λf1(r1) = f2(r2). We need to show that r2 > r1. For ỹ ≤ λcl, it follows

from f1(r1) = r1 for r1 ∈ [0, cl], f2(r2) = r2

2 for r2 ∈ [0, 2λcl], and λ > 1
2 that r2 ≥ r1 must

hold. For ỹ > λcl, it follows from (11) and (12) and h′(x) > 0 that λf1(r1) = f2(r2) requires

r1 = cl

(
r2

2λcl

)λ
β

= r
λ
β

2 , where the second equality follows from cl = (2λ)
λ

β−λ . Since β < λ

and ri ∈ (0, 1) for i = 1, 2, r1 = r
λ
β

2 implies r2 > r1. Hence λf1(r) > f2(r) for all r ∈ (0, 1)

if 1
2 < λ ≤ Λ(β, λ). It remains to consider the case in which λ > Λ(β, λ). Proposition 3

characterizes the equilibrium strategies for this case. Using the same strategy as above, we

can prove that λf1(r) > f2(r) for all r ∈ (0, ch). Moreover, it directly follows from f1(r1) = 1
λ

for r1 ≥ ch and f2(r2) ≤ r2 that λf1(r) > f2(r) must also hold for all r ∈ [ch, 1).

We next prove the two statements comparing real bids. For λ ≤ 1
2 , it directly follows

from the equilibrium strategies described in Proposition 1 that f1(r) > f2(r) for all r ∈ (0, 1].

We have shown above that λf1(r) > f2(r) for all r ∈ (0, 1) if λ > 1
2 . Hence it must hold

that f1(r) > f2(r) for all r ∈ (0, 1) if λ ∈
(

1
2 , 1
]
. For λ > 1, Propositions 2 and 3 imply

f1(r) > f2(r) for r ∈ (0, 2λcl]. Further it follows from Lemma 1 that f1(1) < f2(1) if λ > 1.

Hence the continuity of f1(r1) and f2(r2) and the intermediate value theorem imply that there

must exists an odd number of thresholds r̂ in the interval (2λcl, 1) that satisfy f1(r̂) = f2(r̂).

It holds that f1(r) > f2(r) for all r below the lowest threshold and f1(r) < f2(r) for all r

above the highest threshold. �
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