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IntrodutionMost industrialized ountries have large governmental debt. In the U.S., total outstand-ing debt amounted to a little less than 60% of GDP in 2002 and rose moderately to about66% in 2007. Largely due to the giganti �sal stimuli in response to the reent eonomirisis, the past two years have seen a dramati inrease of this ratio to more than 85%as of 2009. Similar �gures apply for other ountries suggesting that the sustainabilityof governmental debt is - or should be - a highly relevant issue for poliy making.From a theoretial perspetive, it is well-known that an inrease in governmental debtmay stimulate aggregate demand in the short run but rowds out apital investment inthe long run, f. Elmendorf & Mankiw (1999). The latter e�et is partiularly importantin overlapping generations (OLG) eonomies where the �rst welfare theorem need nothold and ompetitive equilibria may be ineÆient due to an overaumulation of ap-ital. In suh a situation, as �rst shown by Diamond (1965), introduing governmentaldebt leads to a welfare improvement by implementing a dynamially eÆient alloation.Subsequent studies to investigate the role of governmental debt in deterministi OLGeonomies may be found, e.g., in de la Croix & Mihel (2002, Ch.4), Farmer (1986),Rankin & RoÆa (1999) and in Bullard & Russell (1999) for onsumers with multiperiodlives.There is a lose relationship between the sustainability of governmental debt and theemergene of a bubble. The latter orresponds to an intrinsially worthless asset thatis traded at a positive prie suh as �at money or a private asset that does not paydividends. The di�erenes between debt and a bubble are thoroughly exhibited in dela Croix & Mihel (2002, p.212). Starting with the work by Tirole (1985), a large bodyof the literature disusses the emergene of bubbles in deterministi OLG models. Ex-amples may be found, e.g., in Bertohi & Wang (1994), Kunieda (2008), or Mihel &Wigniolle (2003). Due to the strutural similarities between debt and a bubble, theresults by Tirole (1985) are diretly appliable to haraterize sustainable levels of gov-ernmental debt in deterministi OLG models, f. de la Croix & Mihel (2002, Ch.4). Itis shown there that steady states with positive debt are saddle-path stable whih impliesthat sustainable levels of debt are required to lie on a lower-dimensional subset (the so-alled stable manifold) of the state spae. This determines a unique debt-to GDP ratiounder whih the eonomy onverges to the golden-rule steady state with positive debt.Debt smaller than the ritial level leads to an asymptotially debtless (and ineÆient)situation while larger values imply an unsustainable situation with explosive debt.Starting with the work of Wang (1993), the literature has inreasingly foused on OLGeonomies with aggregate risk due to random prodution shoks. It is not yet known,however, how the previous �ndings arry over to a stohasti setting and under whatonditions equilibria with positive debt exist. A �rst approah in this diretion is putforward in Bertohi (1994), who analyzes possible equilibrium senarios in a stohastiOLG model with riskless debt. The present paper provides a re�nement of her results.If there is aggregate risk, another funtion of governmental debt is to provide a possi-bility of risk-sharing between generations. If interest payments on outstanding debt are1



�naned by issuing new debt to the next generation, the implied risk sharing is essen-tially determined by the interest on debt. This motivates the question of how di�erentinterest poliies on debt a�et intergenerational risk-sharing and onsumer welfare.The present paper extends the model of Wang (1993) to study the role of governmentaldebt in a stohasti OLG framework whih has not been done in the literature. Follow-ing above's motivation, two issues are at the enter of interest: 1.Whih levels of debtare sustainable in the presene of random shoks? 2.Whih interest poliy is favorableand indues optimal risk sharing between generations? To quantify the welfare e�etsof di�erent debt poliies, the paper develops a long-run welfare onept on the basis ofwhih the optimum quantity of debt and an optimal interest poliy an be determined.The paper is organized as follows. Setion 1 introdues the model. Setion 2 analyzesequilibria with apital-equivalent debt where the return on debt oinides with the ap-ital return. This struture is generalized in Setion 3 whih allows for general interestpoliies inluding riskless debt. Setion 4 demonstrates how the level of debt an bestabilized against unfavorable shoks through a labor inome tax. The welfare proper-ties of stabilized equilibria under di�erent debt poliies are investigated in Setion 5.Setion 6 onludes, all proofs are plaed in the Mathematial Appendix.1 The ModelThe framework to be introdued in this setion generalizes the stohasti overlappinggenerations model in Wang (1993) to inlude governmental debt and a tax system.Population. The onsumption setor onsists of overlapping generations of homogeneousonsumers who live for two periods. The index j 2 fy; og identi�es the young and oldgeneration in eah period. Eah young onsumer is endowed with one unit of labor timesupplied inelastially to the market. Old onsumers are retired and do not supply labor.Abstrating from population growth, eah generation onsists of N > 0 onsumers suhthat LSt � N denotes aggregate labor supply at time t � 0. Old onsumers in period town the existing stok of apital Kt whih they supply to the prodution proess.Prodution. Labor and apital are employed by a single �rm whih produes Yt unitsof a onsumption good using labor Lt and apital Kt as inputs in period t. In addition,the prodution proess in period t is subjeted to random shoks orresponding to therandom variable "t. The tehnology is represented by the linear homogeneous produtionfuntion F (�; "t) : R2+ �! R+ produing gross output (inluding depreiated apital) asYt = F (Kt; Lt; "t): (1)The noise proess f"tgt�0 onsists of independent, identially distributed random vari-ables de�ned on a ommon probability spae (
;F ;P). Eah "t is distributed aordingto the probability measure � supported on E � ["min; "max℄ � R++ . The proess isadapted to a suitable �ltration fFtgt�0 of inreasing sub �-algebras of F suh that eah"t : 
 �! E is Borel-measurable with respet to Ft.1 Let E t [�℄ := E [�jFt ℄ denote the1 The underlying probability spae may be onstruted by de�ning 
 := EN0 whih may be endowedwith the produt topology to beome a topologial spae on whih the Borel-�-algebra F := B(
)2



expetations operator onditional on the information represented by Ft. Throughout,the notion of an adapted stohasti proess f�tgt�0 taking values in some set � � RMrefers to the probability spae and the �ltration de�ned. It implies that eah randomvariable �t : 
 �! � is Borel- measurable with respet to Ft and hene observable inperiod t. All equalities or inequalities involving random variables are assumed to holdP-almost surely without further notie.De�ne yt := YtN and kt := KtN as output respetively apital per labor fore. By the linearhomogeneity of F (�; "t), the tehnology (1) may be written in intensive form asyt = f(kt; "t) := F (kt; 1; "t): (2)The funtion f is ontinuous and twie di�erentiable with respet to its �rst argumentwith ontinuous derivatives satisfying fkk(k; ") < 0 < fk(k; ") for all k > 0 and " 2 Eas well as the Inada onditions limk!0 fk(k; ") = 1 and limk!1 fk(k; ") < 1. Pro�tmaximization and linear homogeneity of the tehnology (1) imply that market learingpries for labor and apital in period t � 0 are given by their marginal produts, i.e.,wgt = W(kt; "t) := f(kt; "t)� ktfk(kt; "t) (3)rt = R(kt; "t) := fk(kt; "t): (4)Government. The in�nitely-lived government taxes onsumers and issues debt to �naneits de�it. For the purpose of this paper, debt may be thought of as a one-period livedbond whih pays a (possibly random) return r?t+1 > 0 per unit invested at time t � 0.Negative debt will not be onsidered in this paper. Let bt � 0 be the number of bonds peryoung onsumer issued at time t and � yt an � ot be the taxes levied on a young onsumer'slabor inome and old onsumer's apital inome, respetively. Negative taxes orrespondto subsidies on the inome of the respetive group. It follows that debt evolves asbt = r?t bt�1 � � yt � � ot ; t � 0: (5)Consumers. At time t � 0 a young onsumer earns net labor inome wt := wgt � � yt > 0that an be onsumed and invested in bonds and apital. Let st and bt be the investmentsin apital and bonds at time t � 0. These hoies de�ne urrent onsumption asyt = wt � bt � st (6)while next period's onsumption is given by the random variableot+1 = bt r?t+1 + st rt+1 � � ot+1: (7)Here the randomness enters through the unertain returns on both investments andunertain tax payments whih are treated as given random variables in the deision.Young onsumers evaluate the expeted utility of di�erent onsumption plans (yt ; ot+1)de�ned by (6) and (7) aording to the von-Neumann Morgenstern utility funtionU(y; o) := u(y) + v(o): (8)may be de�ned. The measure P orresponds to the produt measure P := 
t�0� while the sub-�-algebra Ft is generated by the lass of measurable retangular sets A =Q1n=0An where eah An isa Borel-measurable subset of E and An = E for n > t.3



Both funtions u and v are C2 with derivatives z00() < 0 < z0() for  > 0 and satisfylim!0 z0() =1 for z 2 fu; vg: (9)Eah young onsumer hooses investment to maximize her expeted utility of lifetimeonsumption. The deision problem reads:maxb;s nu(wt � b� s) + E t�v�r?t+1 b+ rt+1 s� � ot+1���� s � 0; b+ s � wt � � yt o: (10)Note that no short-selling onstraints on b are imposed at the individual level. Theinvestment in apital st determines next period's per-apita apital stok askt+1 = st: (11)Old onsumers in period t � 0 onsume the proeeds on their investments in bonds andapital during the previous period - net of taxes - as de�ned by (7).Equilibrium. Combining the assumptions of market learing, individual optimality andrational expetations the following de�nition of an equilibrium is straightforward.De�nition 1.1Given initial values b0 � 0, k0 > 0, and "0 2 E , an equilibrium is an adapted stohastiproess �wgt ; rt; r?t ; � yt ; � ot ; bt; st; yt ; ot ; kt+1	t�0 whih satis�es the following for eah t � 0:(i) Wages wgt > 0 and returns rt > 0 are determined by (3) and (4) and the returnson debt satisfy r?t > 0.(ii) Taxes satisfy � yt < wgt and � ot < btr?t + ktrt while debt bt � 0 evolves as in (5).(iii) The pair (bt; st) solves the deision problem (10) at the given wage, returns, andtaxes while yt , ot , and kt+1 are determined by (6), (7), and (11).Indeterminay of �sal poliy. The following result shows that without further restri-tions on taxes f� yt ; � ot gt�0, any debt proess is onsistent with equilibrium. This is astraightforward generalization of the deterministi ase in de la Croix & Mihel (2002).Lemma 1.1Given k0 > 0, let an interior alloation fst; yt ; ot ; kt+1	t�0, and pries fwgt ; rt; r?t gt�0satisfy (3), (4), and (11), the feasibility ondition yt + ot + kt+1 = f(kt; "t) for all "t 2 Eand the intertemporal eÆieny onditions u0(yt ) = E t [rt+1v0(ot+1)℄ = E t [r?t+1v0(ot+1)℄for all t � 0. Then, for any non-negative debt proess fbtgt�0 there is a feasible taxproess f� yt ; � ot gt�0 suh that �wgt ; rt; r?t ; � yt ; � ot ; bt; st; yt ; ot ; kt+1	t�0 is an equilibrium.In light of the last result, investigating the sustainability of governmental debt requiresfurther restritions on tax poliies. As in Diamond (1965), the subsequent analysistherefore assumes that there is no taxation of apital inome suh that � ot � 0 for allt � 0. Sine the ultimate goal is to analyze the long-run welfare e�ets of debt poliies,this restrition is also in line with the �ndings of Chari & Kehoe (1999), who showthat optimal poliies in OLG models are haraterized by zero apital taxation in thelong-run. 4



2 Equilibria with Capital-Equivalent DebtThe next two setions study dynami equilibria in the absene of taxation (� yt � 0) underdi�erent assumptions on the return on debt, i.e., on the proess fr?t gt�0 . In the sequelwe denote by Eh(x) := xh0(x)h(x) the elastiity of a di�erentiable funtion h : R++ �! R++ .The following additional restritions on f in (2) and v in (8) will be used frequently:(P1) Ev0() � �1 8 > 0 (P2) lim!1  v0() =1 (P3) Efk(k; ") � �1 8k > 0; " 2 E :While (P1) and (P3) are standard, (f. de la Croix & Mihel (2002) and Wang (1993)),(P2) is more restritive as it exludes several popular parameterizations suh as logutility. Examples satisfying (P1) and (P2) are power utility v() = ��1�, 0 < � < 1, orCES utility v() = [1� � + ��℄ 1� , 0 < � < 1, � > 0.As a �rst senario, suppose the government ommits itself to paying the apital returnon debt suh that r?t � rt for eah t � 0. This ase will be alled apital-equivalent (CE)debt and the remainder of this setion will study the existene and properties of equilibriaunder this assumption. To unveil the reursive struture of equilibria for the eonomy,onsider an arbitrary period t. Let urrent apital kt > 0 and the shok "t 2 E begiven whih determine the wage wt = wgt > 0 and the return rt > 0 on apital and debtaording to (3) and (4). Then, urrent debt bt � 0 orresponding to the supply of bondsfollows from its previous value bt�1 and (5). Assume that wt > bt. Sine investment indebt and apital are perfet substitutes and the number of bonds traded is determinedby the supply side, the equilibrium problem is to determine next period's apital stok0 < kt+1 < wt � bt in a way onsistent with an optimal savings deision derived from(10) and rational, self-on�rming expetations. Let E � [�℄ denote the expeted value withrespet to the distribution � of next period's prodution shok. Using (4), (11), and the�rst order onditions of (10), de�ne the map H(�;w; b) : ℄ 0; w � b [�! R,H(k;w; b) := u0(w � b� k)� E � �R(k; �)v0�R(k; �)(b+ k)��: (12)Then, given wt > bt � 0, the expetations-onsistent solution kt+1 is determined byH(kt+1;wt; bt) = 0. Existene and uniqueness of suh a zero are established next.Lemma 2.1Let v satisfy (P1). Then for eah w > 0 there exists an upper bound 0 < bmax(w) � wsuh that H(�;w; b) has a zero (whih is unique) in ℄0; w� b[ if and only if b < bmax(w).If, in addition, (P2) holds, then bmax(w) = w.In the sequel we assume that the hypotheses of Lemma 2.1 are satis�ed permitting us tode�ne the set V := f(w; b) 2 R2+ jw > 0; b < bmax(w)g and the mapping K : V �! R++whih determines the unique zero of H(�;w; b). Invoking the Impliit Funtion Theorem(IFT), this map is ontinuously di�erentiable with derivatives satisfying the following.Lemma 2.2Let v satisfy (P1). Then, at eah point (w; b) 2 V (f. Remark A.1) the partialderivatives of the map K are ontinuous and satisfy�bK(w; b) < 0 and 0 < �wK(w; b) < j�bK(w; b)j � 1:5



Combining equations (3) to (5), and (11) de�nes a C1 map � = (�w;�b) : V�E �! R2+whih determines the evolution of wages and debt under the exogenous noise proess aswt+1 = �w(wt; bt; "t+1) :=W(K(wt; bt); "t+1) (13a)bt+1 = �b(wt; bt; "t+1) := R(K(wt; bt); "t+1)bt: (13b)Given initial values (w0; b0) 2 V, the equilibrium proess fwt; btgt�0 is therefore gen-erated by randomly mixing the family of mappings f�(�; ")g"2E , i.e., the realization ofnext period's shok selets a map that determines the next state from the urrent one.Struturally, this orresponds to a two-dimensional version of the one-dimensional dy-namis in Wang (1993). The endogenous state variables fwt; btgt�0 together with theexogenous noise proess f"tgt�0 ompletely determine the other equilibrium variables ofthe model. Therefore, existene of a dynami equilibrium is equivalent to determining(w0; b0) 2 V suh that the proess generated by (13a), (13b) satis�es (wt; bt) 2 V for allt � 0 under P-almost all paths of the noise proesses. Sine b0 = 0 implies bt = 0 for allt > 0, it is lear that a trivial equilibrium with no debt exists for all w0 > 0. In this ase,the dynamis redue to the evolution of wages de�ned by the map �0 : R++�E �! R++wt+1 = �0(wt; "t+1) :=W(K(wt; 0); "t+1): (14)The next assumption ensures existene and rules out multipliity of steady states of �0.Assumption 2.1For eah " 2 E , the map �0(�; ") possesses a unique �xed point �w0" > 0 whih is stable.In the sequel, let V+ := V\R 2++ and �t(�; ") := �(�; ")Æ: : :Æ�(�; ") the t-fold ompositionof the map �(�; ") for t > 0. From above's struture, it is lear that the existene andproperties of equilibrium depend ruially on the dynami properties of the mappings(�(�; "))"2E and whether these exhibit ontrative or expansive behavior. We thereforebegin by �xing a value " 2 E to study the dynami properties of the map �(�; "). Thenext result shows that the return R(K( �w0" ; 0); ") at the trivial steady state ( �w0" ; 0) fromAssumption 2.1 determines whether �(�; ") displays stable - along a ertain diretion - orexplosive behavior. In antiipation of this result, let Es := f" 2 E jR(K( �w0" ; 0); ") < 1gand Ex := f" 2 E jR(K( �w0"; 0); ") > 1g.2 Sine the ase R(K( �w0" ; 0); ") = 1 is non-generi, E0 := En(Es [ Ex) is assumed to have measure zero, i.e., �(E0) = 0.Lemma 2.3Let (P1) and Assumption 2.1 be satis�ed. Then, the following holds true:(i) For " 2 Es the map �(�; ") possesses a unique non-trivial �xed point ( �w";�b") 2 V+ .This �xed point is saddle-path stable, i.e., the Eigenvalues of the Jaobian matrixD�( �w";�b"; ") are real and satisfy 0 < j�1j < 1 < j�2j.(ii) For " 2 Ex the map �(�; ") is explosive, i.e., for eah (w; b) 2 V+ there exists at0 2 N suh that (wt0 ; bt0) := �t0(w; b; ") =2 V, that is, wt0 � bt0 .2 If E is in�nite, ontinuity of " 7�! R(K( �w0" ; 0); ") ensures (Borel-) measurability of Es, Ex, and E0.6



Result (i) implies that for " 2 Es the dynamis generated by �(�; ") onverge to a non-trivial steady state for ertain initial values. These are de�ned by the stable manifoldM" := n(w; b) 2 V j�n(w; b; ") 2 V 8n � 1 ^ limn!1�n(w; b; ") = ( �w";�b")o; " 2 Es: (15)The setM" will play a key-role throughout this paper. Note thatM" is self-supportingunder �(�; "), i.e., �(M"; ") � M". For eah " 2 Es, Theorem A.1 in the appendixestablishes existene of a map  " : R++ �! R++ whih is stritly inreasing suh thatM" = graph( "). Based on this representation, the next result shows thatM" separatesinitial points whih diverge from those whih onverge to the trivial steady state.Lemma 2.4Let (P1) and Assumption 2.1 be satis�ed and w > 0 be arbitrary. Then, for eah " 2 Es:(i) b <  "(w) ) �t(w; b; ") 2 V+ 8t > 0 ^ limt!1 �t(w; b; ") = ( �w0" ; 0):(ii) b >  "(w) ) 9t0 > 0 suh that �t0(w; b; ") =2 V:Geometrially, Lemma 2.4 implies that if (w; b) is below the urveM", then the sequene�t(w; b; ") stays below M" for all t � 0 and onverges to the trivial steady state withzero debt. Conversely, any state above M" stays above and leaves V in �nite time.Based on the properties of the mappings �(�; ") " 2 E , we are now in a position to stateonditions for the existene of equilibrium with positive debt. Let w0 :=W(k0; "0) > 0be given. First observe that if �(Ex) > 0, any initial value in V+ will leave this setin �nite time with positive probability. Hene, �(Ex) = 0 is a neessary ondition fornon-trivial equilibria to exist. For w > 0, let  min(w) := min"2Esf "(w)g whih is well-de�ned, if either Es is �nite or ompat and " 7�!  "(w) ontinuous. By Lemma 2.4,b0 �  min(w0) is neessary for an equilibrium to exist. SuÆieny requires the followingassumption that initial states below graph( min) stay below this urve under all shoks.Assumption 2.2For all w > 0 one has b �  min(w) ) �b(w; b; ") �  min(�w(w; b; ")) 8" 2 Es.Combining the results from Lemma 2.3 and 2.4 leads to the following theorem whihextends and, if the noise is degenerate reover the �ndings of Tirole (1985).Theorem 2.1Under (P1) and Assumptions 2.1 and 2.2, suppose �(Ex) = 0. Then, any b0 2℄0;  min(w0)℄de�nes an equilibrium with positive debt bt > 0 8t > 0.While equilibria exist under the hypotheses of Theorem 2.1 for any initial value b0suÆiently small, typially the level of debt onverges to zero with probability one. Thisis illustrated in Figure 1 for the ase with only two shoks where E = f"; "0g. The dottedarrow represents the ase exluded by Assumption 2.2. For any b0 � �b0 :=  min(w0) thestate remains in V and below the M"-urve but bt onverges to zero P-almost surely.Conversely, for any b0 > �b0 the state leaves V in �nite time with positive probabilityimplying no-existene of equilibrium in this ase.The following example, however, shows that equilibria with persistent debt may exist.7
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Figure 1: State dynamis under di�erent initial values and noise paths.Let U(y; o) = ln y+o,  > 0 and f(k; ") = "k�, 0 < � < 1. The bound from Lemma2.1 omputes bmax(w) = 1+w suh that V = f(w; b) 2 R2+ jb < 1+wg. Moreover,�w(w; b; ") = "(1� �)( 1+w� b)� and �b(w; b; ") = "�( 1+w� b)��1b implying Es 6= ;,i� 1+ > �1�� . The next result shows that the stable sets in (15) are independent of ".Lemma 2.5Under the previous parametrization, suppose 1+ > �1�� . Then Es = E andM" �M := n(w; b) 2 R2++ �� b = � 1 +  � �1� ��wo 8" 2 E :SineM is self-supporting for the family (�(�; "))"2E , (w0; b0) 2 M implies (wt; bt) 2 Mfor t � 0 and debt is bounded away from zero under all possible sequenes of shoks.3 Equilibria with General DebtTo extend the previous analysis to the ase with more general interest poliies on debt,the remainder on�nes attention to the ase with multipliative shoks, i.e., f(k; ") ="g(k) in (2) where g := f(�; 1) : R+ �! R+ inherits the properties of f(�; "). While underthe previous senario the return on debt o�ered at time t would be r?t+1 = "t+1g0(kt+1),the present setion generalizes this struture by supposing that3r?t+1 = R?#(zt; "t+1) := zt #("t+1); t � 0: (16)3 The multipliative form (16) seems natural under multipliative shoks. Under more general teh-nologies (2), one ould generalize (16) to some ontinuous funtion R? : R++ � E �! R++ wherez 7�! R?(z; ") is a bijetion. While Lemma 3.1 and the dynami equations (18a,b) below would stillbe valid under this extension, a theoretial haraterization of the dynamis seems impossible.8



The value zt > 0 is determined in period t and # : E �! R++ is a time-invariant4interest poliy that determines the risk to whih debt investments are subjeted. If# � �#, debt is riskless while # = idE reovers the ase with CE debt.In the sequel we �x some interest poliy # and assume that in eah period t � 0 thereturn on debt is of the form (16). To derive the reursive equilibrium struture of theeonomy, onsider an arbitrary period t. Let urrent apital kt and the shok "t 2 E begiven whih determine the wage wt = wgt > 0 aording to (3). Given previous valuesbt�1 � 0 and zt�1 > 0, the urrent shok determines the return on debt r?t = zt�1#("t)and urrent debt/supply of bonds bt � 0 aording to (5). In addition to �nding anexpetations-onsistent apital stok kt+1, the equilibrium problem for period t is todetermine the return o�ered on debt by �xing a value zt > 0 suh that onsumers arewilling to absorb the predetermined supply of bonds. Sine there are no short-sellingrestritions on debt, any solution s > 0 and b � 0 to (10) satis�es the orresponding �rstorder onditions. Given w > b � 0, let H#i (�; �;w; b) : R++�℄0; w � b[�! R, i 2 f1; 2g,H#1 (z; k;w; b) := u0(w � b� k)� E � �R(k; �)v0�bR?#(z; �) + kR(k; �)�� (17a)H#2 (z; k;w; b) := u0(w � b� k)� E � �R?#(z; �)v0�bR?#(z; �) + kR(k; �)��: (17b)Then, given wt > bt � 0 the previous problem redues to solving H#1 (zt; kt+1;wt; bt) =H#2 (zt; kt+1;wt; bt) = 0. Existene and uniqueness of suh a solution is established next.Lemma 3.1Let (P1){(P3) be satis�ed and # : E �! R++ be ontinuous. Then, for eah w > b � 0there exist unique z > 0, 0 < k < w � b to satisfy H#1 (z; k;w; b) = H#2 (z; k;w; b) = 0.Based on this result, let V := f(w; b) 2 R2+ jw > bg denote the set of feasible wage-debtombinations. By Lemma 3.1 and the Impliit Funtion Theorem, there exist mappingsK# : V �! R++ and Z# : V �! R++ whih are C1 on V (f. Remark A.1) andwhih determine the unique zeros of (17a) and (17b) for eah (w; b) 2 V. Before statingproperties of these mappings in Lemma 3.2, we introdue additional restritions on theelastiities of preferenes and the prodution tehnology that will be used subsequently:(P4) jEv0()j = � 8 > 0 (P5) jEu0()j � 1 8 > 0 (P6) Eg(k) + jEg0(k)j � 1 8k > 0:Under (P4), seond period utility v exhibits onstant relative risk aversion. Property(P5) is automatially satis�ed if (P1) holds and v() = �u(), � > 0. Finally, (P6) isneessary and suÆient for the elastiity Eg(k) to be a non-dereasing funtion of k,whih holds, e.g., if g is Cobb-Douglas or CES with elastiity of substitution � � 1.Lemma 3.2Let (P1){(P3) be satis�ed and # : E �! R++ be ontinuous. Then, K# and Z# areontinuously di�erentiable at eah point (w; b) 2 V. Moreover, the following holds true:(i) The derivatives of K# satisfy 0 < �wK#(w; b) < ��bK#(w; b).4 A straightforward generalization would be to onsider dynami risk-sharing rules by making # statedependent. Lemma 3.1 below would ontinue to hold under this extension.9



(ii) If, in addition, (P4) holds, then Z# satis�es 0 < ��wZ#(w; b) < �bZ#(w; b).5Combining equations (3) to (5) and (11) de�nes a map �# = (�#w;�#b ) : V � E �! R2+whih determines the evolution wages and debt under the exogenous shoks aswt+1 = �#w(wt; bt; "t+1) :=W(K#(wt; bt); "t+1) (18a)bt+1 = �#b (wt; bt; "t+1) := #("t+1)Z#(wt; bt)bt: (18b)As before, an equilibrium exist if and only if the proess fwt; btgt�0 generated by (18a,b)satis�es (wt; bt) 2 V P-almost surely for all t � 0. Sine the equilibrium proess isgenerated by randomly mixing the family (�#(�; "))"2E , we proeed as in the previoussetion and �x a value " 2 E to study the dynami properties of the map �#(�; ").Note that �#(�; ") is independent of # for b = 0 and idential to the map �0 in (14).In partiular, there exists a trivial equilibrium and, under Assumption 2.1 eah map�#(�; ") possesses a unique stable trivial steady state ( �w0"; 0) whih is independent of #.In the sequel, the following slightly stronger version of Assumption 2.1 will be neessary.Assumption 3.1For eah " 2 E , the map �0(�; ") from (14) possesses a unique �xed point �w0" > 0 whihis stable. Moreover, the orresponding apital stok �k0" := K( �w0" ; 0) satis�es Eg(�k0") � 12 .As in the previous setion, the dynami behavior of �#(�; ") depends ruially on thereturn on debt at the trivial steady state. The latter is given by �z0"#(") where�z0" := Z#( �w0" ; 0) = E � [R(�k0" ; �)v0(�k0"R(�k0" ; �))℄E � [#(�)v0(�k0"R(�k0" ; �))℄ : (19)Using (19), let E#s := f" 2 E j �z0"#(") < 1g and E#x := f" 2 E j �z0"#(") > 1g. As before,the set E#0 where �z0"#(") = 1 is assumed to have measure zero, i.e., �(E#0 ) = 0. The nextresult extends Lemma 2.3 to the present ase with general interest poliies. The proofdraws heavily on ideas put forward in Galor (1992).Lemma 3.3Under Assumption 3.1 and properties (P1){ (P6), the following holds for any poliy #:(i) For all " 2 E#s the mapping �#(�; ") possesses a unique non-trivial steady state( �w#" ;�b#" ) 2 V+ . This steady state is saddle path-stable.(ii) For all " 2 E#x the mapping �#(�; ") is explosive.Given poliy #, the previous result permits to de�ne for eah " 2 E#s the stable manifoldM#" := n(w; b) 2 V j(�#)n(w; b; ") 2 V 8n � 1 ^ limn!1(�#)n(w; b; ") = ( �w#" ;�b#" )o: (20)By Theorem A.1,M#" an be represented as the graph of a map  #" : R++ �! R++ and,as shown in the appendix, Lemma 2.4 ontinues to hold in the present setup. It follows5 Numerial experiments with utility funtions v not satisfying (P4) have throughout displayed thesame properties of Z# as in Lemma 3.2(ii) suggesting that this restrition ould probably be relaxed.10



that all �ndings from the previous setion about existene of equilibria and the persis-tene of debt inluding Theorem 2.1 arry over to the ase with general interest poliies.Under the restrition imposed in Assumption 2.2 { whih an be shown to hold auto-matially under riskless debt { equilibria exist if �(E#x ) = 0 and b0 � min"2E#s f #" (w0)gbut are generially asymptotially debtless with probability one.Lemma 3.3 also entails important insights onerning the disussion in Bertohi (1994)about stable sets under safe debt. Referring to the ases disussed there, it shows thatsteady states whih are asymptotially stable and give rise to stable sets with positivedebt do not exist. In partiular, exploiting that the shoks in (18a),(18b) enter in amultipliative fashion, it is possible to show that a senario as in the example of Setion2 where the set M" was independent of " is not possible under safe debt. The reasonis that for this to happen the stable manifold (20) would have to be a horizontal line inV+ . This, however, is impossible sine eah  #" is stritly inreasing by Theorem A.1(ii).4 Debt Stabilization through TaxationTo analyze the long-run welfare e�ets of debt, it seems natural to formulate a riterionthat measures onsumer welfare at some stationary solution of the state dynamis. Inthe stohasti ase, the latter orresponds to an invariant probability distribution on thestate spae V whih extends the deterministi onept of a steady state. The previousanalysis revealed, however, that even if they exist, equilibria are generially asymptot-ially debtless. Therefore, neither the optimum quantity of debt nor the risk-sharinge�ets of di�erent interest poliy an be analyzed beause, asymptotially, equilibria areindependent of #. Struturally, the reason is that stable subsets of the state spae V+(whih an be assoiated with invariant distributions, f. Wang (1993)) fail to exist.The present setion investigates whether this may be overome by a tax on labor inomewhih stabilizes debt against unfavorable shoks. More spei�ally, given a subset ofV+ to be stabilized, the idea is to design a tax poliy to ounterat shoks under whihthe state would leave the set. In this regard, the goal is to keep stabilization taxes asminimal as possible. In partiular, taxes should be zero if no stabilization is required, asin the example of Setion 2. The poliy to be developed satis�es all these requirements.We onsider the senario of Setion 3 with multipliative noise and some interest poliy# with E#s 6= ;. Note that we permit E#x 6= ;, i.e., some maps �#(�; ") may be explosive.To motivate the approah, suppose for a moment that the shoks are degenerate, i.e.,"t � " or, equivalently, E = f"g. In this ase, the deterministi ase studied in Tirole(1985) is reovered and a stable set would be given by (a subset of) the stable manifoldM#" de�ned in (20). For any initial value (w0; b0) 2 M#" the system onverges to thegolden rule steady state ( �w";�b") 2 M#" . In the non-degenerate ase, the stable manifoldM#" in (20) assoiated with some shok " 2 E#s is self-supporting under the map �#(�; "),i.e., �#(M#" ; ") �M#" but, in general, not under �#(�; "0) where "0 6= ". Nevertheless, ifstabilization taxes are to be small, it seems natural to exploit the system's inherent sta-bility fores by stabilizing the state along the setM#" assoiated with some " 2 E . In thisase, taxes are zero whenever realization " ours and, by ontinuity, small for shoks11



lose to this value. Therefore, stabilization expenditures should remain small at leastif the variane of shoks is not too large. As an example, suppose E = f"min; �"; "maxgwhere �(f"ming) = �(f"maxg) = :05 and �" 2 E#s . In this ase, stabilizing the set M#�"requires governmental intervention on average every ten periods only. By ontrast, anyother objetive suh as stabilizing the absolute level of debt (bt � �b, f. Diamond (1965))or the debt-to output ratio (bt=yt � ��, f. de la Croix & Mihel (2002)) is essentiallyarbitrary and not related to the system's stability properties. It stands to reason that,in general, suh a stabilization objetive requires muh higher stabilization taxes.To formalize the previous ideas, let wgt > 0 denote the gross wage de�ned by (3) and�t := � yt < wgt the tax levied on labor inome wgt in period t � 0. Then, wt := wgt � �tis the net wage and bt = r?t bt�1 � �t is the debt de�ned by (5) orresponding to thenumber of bonds issued in period t. If �t > 0, the revenues generated from taxation areused to pay part of the return on outstanding debt. If �t < 0, young onsumers reeivea subsidy on their wage inome whih is �naned by issuing additional debt. The statespae V onsists of all pairs (wt; bt) 2 R2+ suh that wt > bt. De�ne a feasible poliyas a pair � := (#; "ref) onsisting of interest poliy # : E �! R++ and some refereneshok "ref 2 E#s whih identi�es the set M� :=M#"ref to be stabilized. By Theorem A.1,there exists a map  � :=  #"ref : R++ �! R++ suh that M� = graph( �). Using thisrepresentation, we onstrut a stabilization poliy suh that (wt; bt) 2 M� for all t withprobability one. Consider an arbitrary period t � 0. Let the previous net wage wt�1 andprevious debt bt�1 together with the urrent realization of the shok "t 2 E be given.These values de�ne the gross wage and debt before taxation (wgt ; bgt ) := �#(wt�1; bt�1; "t)with �# de�ned as in (18a,b). Assuming that (wgt ; bgt ) 2 V we look for a value �t < wgtsuh that (wgt � �t; bgt � �t) 2 M� or, equivalently, bgt � �t =  �(wgt � �t).Lemma 4.1Given �, let the map  � : R++ �! R++ that representsM� satisfy limw!1  � 0(w) 6= 1.Then, for eah (w; b) 2 V there exists a unique � < w suh that b� � =  (w � �).By Theorem A.1,  � is stritly inreasing with derivative  � 0(w) � �wK#(w; �(w))��bK#(w; �(w)) < 1for all w > 0. Hene, the additional requirement in Lemma 4.1 should generially besatis�ed. Then, given � there exists a map T � : V �! R that de�nes for eah point(w; b) 2 V the orresponding tax adjustment � = T �(w; b) suh that (w��; b��) 2 M�.Letting V� := f(w; b) 2 V j�#(w; b; ") 2 V 8" 2 Eg, the stabilized dynamis aredetermined by the mapping 	� = (	�w;	�b ) : V� � E �!M�wt+1 = 	�w(wt; bt; "t+1) := �#w(wt; bt; "t+1)� T �(�#(wt; bt; "t+1)) (21a)bt+1 = 	�b (wt; bt; "t+1) := �#b (wt; bt; "t+1)� T �(�#(wt; bt; "t+1)): (21b)The following �gure illustrates how the proposed tax-poliy stabilizes the set M�.Given a feasible poliy �, any initial value an be tax-adjusted to lie on the setM� andthe state (wt; bt) remains in M� for all t � 0. Hene, for (w0; b0) 2 M� the dynamis(21a,b) are essentially one-dimensional and governed by the map �� : R++ �E �! R++wt+1 = ��(wt; "t+1) := 	�w(wt;  �(wt); "t+1) (22)while debt is given by bt+1 =  �(wt+1). The next result establishes properties of ��.12
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Figure 2: Tax-stabilization of the set M�.Lemma 4.2Suppose that poliy � is feasible and (a)  � 0(w) < ""ref #("ref)#(") and (b) # is di�erentiablewith derivative #0(") � #("ref)"ref for w > 0 and " 2 E . Then, the following holds:(i) The map w 7�! ��(w; ") is stritly inreasing at all (w; ") whih satisfy (a).(ii) The map " 7�! ��(w; ") is stritly inreasing at all (w; ") whih satisfy (b).Condition (a) is automatially satis�ed in the CE ase where # = idE while (b) holds,e.g., if #(") = �"+ (1� �)�" 8" 2 E , � 2 [0; 1℄, �" := E � ["t℄. For this lass, (a) is satis�edif the range of noise is not too large suh that  � 0(w) < "min"max for w > 0. Assuming thatboth (a) and (b) are satis�ed, we seek to study the long-run properties of the dynamisde�ned by (22) and the existene of invariant distributions orresponding to stable setsof ��. For a formal de�nition of these onepts, the reader is referred to Brok & Mirman(1972) and Wang (1993). The following �nal result draws heavily on their �ndings.Theorem 4.1Let � be a feasible poliy under whih (a) and (b) in Lemma 4.2 hold. In addition,suppose limw!1 ��(w; "max)=w < 1 < limw!0 ��(w; "min)=w. Then, the following holds:(i) There exists a unique stable set �W � � R++ for the family �� = (��(�; "))"2E .(ii) There exists a unique invariant distribution �� of the dynamial system (22) whihis supported on �W � and whih is stable in the weak onvergene sense.5 Optimal Debt PoliiesBased on the previous results this setion develops a welfare riterion that allows to seletan optimal poliy. Let � = (#; "ref) satisfy the hypotheses of Theorem 4.1. For (w; b) 2 Vand "+ 2 E , denote �rst and planned seond period onsumption as y(w; b;#) :=w�b�K#(w; b) and o(w; b; "+;#) := bZ#(w; b)#("+)+K#(w; b)R(K#(w; b); "+) de�ning13



ex-ante lifetime utility V (w; b;#) := u(y(w; b;#)) + E � [v(o(w; b; �;#))℄. By Theorem4.1, there exists a unique probability distribution �� supported on �W � � R++ whih isinvariant under (22) and determines long-run expeted utilityU(#; "ref) := ZR++ V (w;  �(w);#)��(dw): (23)Note that U is well-de�ned by ontinuity of the integrand and ompatness of �W �. Thevalue U(#; "ref) an be interpreted as the average utility that onsumers attain underpoliy �. With referene to the introdution, the interest poliy # determines the risk-sharing of debt while the level of debt relative to the net wage obtains as bt =  �(wt) forall t. Moreover, the domain of U an be extended to arbitrary poliies by setting  � � 0if � = (#; "ref) is non-feasible, i.e., "ref 2 E#x . In this ase, (23) yields utility at the trivialequilibrium whih is independent of �. With this extension, the riterion (23) is suitableto investigate the long-run welfare e�ets of arbitrary debt poliies � = (#; "ref).The remainder of the paper reports simulation results for a simple parametrization of themodel.6 We assume the senario in Setion 3 with power utilities u() = �, v() = u(),CES tehnology g(k) = [1�A+Ak�℄ 1� , and three possible shoks E = f"min; "med; "maxgdrawn with probabilities pmin, pmed, and pmax. Table 1 lists the parameter values.Parameter Value Parameter Value Parameter Value"min 0.9 "max 1.1  1"med 1 pmin, pmed 1/3 A, �, � 0.5Table 1: Parameter set used in the simulations.We on�ne attention to the lass of interest poliies #�(") := �" + (1 � �)�", " 2 Eparameterized in � 2 [0; 1℄. In partiular, debt is apital equivalent if � = 1 and risklessif � = 0. Under the previous parametrization, Assumption 3.1 holds and all poliies arefeasible, i.e., E#�s � E . Hene, an optimal poliy exists if U is ontinuous.To quantify the welfare e�ets of di�erent poliies, Table 2 reports the utilities de�nedin (23) expressed as perentage deviations from utility at the trivial equilibrium. Thelatter exists and is unique by the results of Wang (1993) and Assumption 3.1.7� = 0 (safe debt) 0.25 0.5 0.75 1 (CE debt)"min 0.7508% 0.8071% 0.8196% 0.7838% 0.6944%"ref = "med 0.8175% 0.8197% 0.8210% 0.8212% 0.8204%"max 0.7326% 0.8058% 0.8185% 0.7753% 0.6799%Table 2: Long-run utilities under di�erent debt poliies.6 To repliate and verify the subsequent results, the reader is invited to download the C++ simulation�les from my homepage http://www.marten-hillebrand.de/researh/TC/TC.htm.7 The utilities de�ned in (23) were alulated as time averages of ex-ante utilities Vt := V (wt; bt;#).Sine the state proess follows an ergodi Markov proess, these averages onverge to the orre-sponding expeted utility by means of the ergodi theorem.14



The values in Table 2 identify a unique optimal poliy �? given by "?ref = "med and�? = :75. Additional simulations permit to re�ne the latter value to �? � :7. Note thatfor any �xed referene shok there exists a unique optimal interest poliy determinedby an interior value of �. As a onsequene, a riskless debt return is never optimal.Sine the stabilization poliy was designed to keep taxation as minimal as possible, itseems worthwhile to on�rm this property for the present ase. In this regard, Table 3displays the absolute values of taxes expressed as a perentage of debt.� = 0 (safe debt) 0.25 0.5 0.75 1 (CE debt)"min 4.23% 1.88% 0.65% 3.41% 6.44%"ref = "med 3.12% 1.31% 0.49% 2.29% 4.09%"max 5.21% 2.05% 0.83% 3.46% 5.89%Table 3: Average absolute stabilization taxes expressed as a perentage of debt.For any referene value, taxes are least for � = :5 < �?. Again, this value may furtherbe re�ned to � � :4. Moreover, for all senarios onsidered in Table 3 taxes remainsmall (< 13%) throughout the entire sample. Nevertheless, note that the interest poliyhas a ruial impat on the size of stabilization taxes for any referene shok.To provide some intuition for the last result, Figure 3 portrays the stable manifolds (20)under di�erent interest poliies. The bold setions represent the support of the invariantdistribution whih is bordered by the (smallest and largest) �xed points of 	�(�; ")respetively ��(�; ") whih are also depited. Intuitively, if the shok "t = " ours at
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in 'good times' ("t = "max) and reeive a subsidy (�t < 0) in 'bad times' ("t = "min) whilethe opposite holds if debt is riskless (� = 0). Moreover, ifMmax is stabilized, taxes areuniformly positive if � = 0 and negative if � = 1 while the opposite holds for Mmin.6 ConlusionsThe results obtained in this paper suggest that any sustainable debt poliy must be a-ompanied by a stabilizing tax-poliy that prevents debt from exploding or onvergingto zero due to unfavorable random shoks. Based on this insight, a stabilization poliywas developed designed to keep taxation as minimal as possible by exploiting the inher-ent stabilizing fores of the underlying dynamial system. A golden-rule type welfareriterion was suggested whih measures onsumer welfare at the stationary solution ofthe stabilized equilibrium and permits to simultaneously determine the optimal level ofdebt and an optimal interest poliy. First simulation results indiate that (i) a uniqueoptimal poliy an be determined, (ii) o�ering a riskless return on debt is never optimal,(iii) taxes remain small under the proposed stabilization onept and depend ruiallyon the interest poliy (iv) the latter an be hosen suh that taxes beome negligible.The �nding that a riskless return on debt is not optimal on�rms existing results in theliterature, f. Bohn (1991). Nevertheless, a better theoretial understanding of the pre-vious numerial results seems neessary and is the primary objetive of future researh.In addition, reent researh in the literature (e.g., Kunieda (2008)) has attempted toexplain the emergene of bubbles in dynamially eÆient eonomies by hypothesizingertain imperfetions in the redit market. Another objetive of future researh is to an-alyze whether suh imperfetions ould also explain the existene of non-trivial equilibriawith governmental debt even if the trivial equilibrium is eÆient.A Mathematial AppendixA.1 Proof of Lemma 1.1For t � 0, de�ne taxes � yt := wgt � yt � kt+1 � bt < wt and � ot := bt�1r?t + ktrt � ot whihare feasible in the sense of De�nition 1.1(ii). Using the orresponding expressions for ytand ot together with (3) and (4) in the aggregate feasibility ondition shows that debtevolves aording to equation (5). Sine De�nition 1.1(i) is satis�ed by assumption,it remains to show that (bt; st) solves (10). Sine st > 0 and there are no short-saleonstraints, it suÆes to show that the �rst-order onditions are satis�ed. This followsfrom the intertemporal eÆieny ondition and (11) by diret substitution. �A.2 Proof of Lemma 2.1Given w > b � 0, de�ne �k := w � b > 0 and, for brevity, o(k; b; ") := R(k; ")(b + k).We show that H(�;w; b) is stritly inreasing and an, therefore, have at most one zero16



in the interval ℄0; �k[. By (P1), the partial derivative8 of (12) takes the form�kH(k;w; b) = �u00(w � b� k)� E � �fk(k; ")2v00�o(k; b; �)���E �hfkk(k; ")�v0�o(k; b; �)�+ o(k; b; �)v00�o(k; b; �)��i > 0:(A.1)We show that H(�;w; b) has a zero in the interval ℄0; �k[. As existene of a zero for thease b = 0 is established in Wang (1993), suppose b > 0. Sine there exists a uniquezero for b = 0 and �kH(k;w; 0) > 0, there exists a zero also for b > 0 suÆiently smallby virtue of the impliit funtion theorem. De�ne the ritial value 0 < bmax(w) � w asbmax(w) := supnb 2℄0; w[ jH(k;w; b) = 0 for some k 2℄0; w � b[o:Sine the supremum is taken over a non-empty set bounded by w, bmax(w) is well-de�ned. We laim that H has a zero for eah b 2℄0; bmax(w)[ whih, by the previousresults, is unique. By way of ontradition, suppose that for, say, 0 < b0 < bmax(w) thereis no zero of H(�;w; b0). The Inada-assumption in (9) implies limk!�kH(k;w; b0) = 1suh that H(k;w; b0) > 0 for all 0 < k < w�b0. The derivative with respet to b satis�es�bH(k;w; b) = �u00(w � b� k)� E � �R(k; ")2v00�o(k; b; ")�� > 0:Let b00 > b0. Then, H(k;w; b00) > H(k;w; b0) > 0 for all 0 < k < w� b00 < w� b0. Hene,H(�;w; b00) has no zero for any b00 > b0. But then b0 � bmax(w), whih is a ontradition.Finally, limk!0 o(k; b; ") = limk!0(bfk(k; ")+kfk(k; ")) � limk!0 bfk(k; ") =1 for eah�xed " 2 E . Hene, if (P3) holds, the left limit omputeslimk!0H(k;w; b) = u0(w � b)� limk!0� 1b + kE � �o(k; b; �)v0�o(k; b; �)��� = �1: (A.2)In this ase, there exists a zero for all 0 < b < w implying that bmax(w) = w. �A.3 Proof of Lemma 2.2De�ne o(k; b; ") as in the previous proof. The laim follows by applying the impliitfuntion theorem. The partial derivatives of the map H de�ned in (12) ompute�wH(k;w; b) = u00(w � b� k) < 0 (A.3)�bH(k;w; b) = ��wH(k;w; b)� E � �R(k; �)2v00�o(k; b; �)�� > ��wH(k;w; b): (A.4)Moreover, by (A.1) the derivative with respet to k may be written as�kH(k;w; b) = �bH(k;w; b)� E � �fkk(k; �)(v0(o(k; b; �)) + (o(k; b; �) v00(o(k; b; �)))�(A.5)showing that �kH(k;w; b) � �bH(k;w; b) by (P1). Combining (A.3) { (A.5) yields0 < �wK(w; b) = ��wH(k;w; b)�kH(k;w; b) < ��bK(w; b) = �bH(k;w; b)�kH(k;w; b) � 1: �8 Note that interhanging di�erentiation with the expetations operator E� ��� is legitimate sine theintegrand is ontinuously di�erentiable and integration is over a ompat set.17



A.4 Proof of Lemma 2.3Let " 2 Es be �xed. For brevity, we omit the subsript " suh that �w0 > 0 denotes thetrivial steady state. In addition, de�ne w :=W(0; ") � 0 and �k0 := K( �w0; 0).(i) We determine unique values �k > 0 and 0 < �b < �w solving k = K(w; b), w =W(k; "),and R(k; ") = 1. Sine limk!0R(k; ") = 1 and R(�k0; ") < 1, the last onditionhas a solution �k 2℄0; �k0[ whih is unique by strit onavity of f(�; ") and determines�w :=W(�k; ") < �w0. We determine �b as a solution to �w =W(K( �w; b); "). By Lemma 2.2,there an be at most one suh solution. By uniqueness and stability of �w0, �0(w; ") > wfor all w 2℄w; �w0[. Hene, �w < �w0 implies limb!0W(K( �w; b); ") = W(K( �w; 0); ") > �w.Sine K( �w; b) < �w� b, limb! �wW(K( �w; b); ") = w < �w proving that a unique non-trivialsteady state exists. The Jaobian at the steady state omputes�J := D�( �w;�b; ") = � ��kfkk(�k; ")�wK( �w;�b) ��kfkk(�k; ")�bK( �w;�b)bfkk(�k; ")�wK( �w;�b) 1 + bfkk(�k; ")�bK( �w;�b) � :By Lemma 2.2, the determinant and trae satisfy det �J = ��kfkk(�k; ")�wK( �w;�b) > 0and tr �J = 1 + det �J + bfkk(�k; ")�bK( �w;�b) > 1 + det �J . The latter inequality implies0 � (1 � tr �J=2)2 = 1 � tr �J + (tr �J)2=4 < � det �J + (tr �J)2=4 ensuring real and distintEigenvalues of �J . By Galor (2007, p.88), these properties imply saddle-path stability.(ii) Let " 2 Ex be �xed. By ontradition, suppose there exists (w; b) 2 V+ suh that( ~wt;~bt) := �t(w; b; ") 2 V for all t � 0. De�ning ŵt := �t0(w; "), Lemma 2.2 implies ~wt <ŵt and ~bt > 0 for all t. By stability, limt!1 ŵt = �w0. This and ontinuity ofR(�; ") implyexistene of T > 0 suh that R(K(ŵt; 0); ") > 1 for all t � T implying that ~bt+1=~bt =R(K( ~wt;~bt); ") > R(K(ŵt; 0); ") > 1. Hene, (~bt)t�0 is eventually stritly inreasingand, therefore, either diverges or onverges. But onvergene to some �nite value, sayb1 > 0 would imply limt!1R(K( ~wt;~bt); ") = 1 requiring by the strit monotoniity ofw 7! R(K(�; b); "), b > 0 that limt!1 ~wt = w1 � �w0 and R(K(w1; b1); ") = 1, whih isimpossible. Hene, limt!1 ~bt =1 whih ontradits ~bt < ~wt < ŵt for all t. �A.5 Properties of the Stable ManifoldThis setion establishes properties of the stable manifoldM#" de�ned in (20). Many ofthe employed onepts and a somewhat related analysis may be found in Galor (1992).While the formal arguments adopt the setup and notation of Setion 3, neither the mul-tipliative struture of f nor the additional assumptions (P2){(P6) are used. Therefore,Theorem A.1 also applies for the senario of Setion 2 under the (weaker) hypotheses ofLemma 2.3 with the stable manifoldM" de�ned as in (15). The main result isTheorem A.1Given some interest poliy #, let the hypotheses of Lemma 3.3 be satis�ed. In addition,suppose lim!1 u0() = 0. Then, for eah " 2 E#s the following holds:(i) The set M#" de�ned in (20) is the graph of a C1-map  #" : R++ �! R++ .(ii) The map  #" is stritly inreasing and satis�es limw!0  #" (w) = 0.18



(iii) For all "̂ 2 E the map w 7�! W(K#(w;  #" (w)); "̂) is stritly inreasing as well.In what follows �x # and " 2 E#s and suppress these parameters writing � = �#(�; "),et. For ease of notation, the restrition of F : X �! R to A ( X is denoted by the sameletter F instead FjA . Furthermore, let w0 :=W(0; ") � 0, �w1 := limk!1W(k; ") � 1,W + :=℄w0; �w1[, U := W + � R++ , and �V := f(w; b) 2 V j�n(w; b) 2 V 8n � 1g � V.Obviously, � : �V �! �V and the stable setM := f(w; b) 2 �V j limn!1�n(w; b) = ( �w;�b)gis a subset of �V ontaining ( �w;�b). The proof is prefaed by the following results.Lemma A.1Let (ŵ; b̂) 6= ( ~w;~b) 2 �V be suh that ŵ � ~w and b̂ � ~b with at leat one strit inequality.Then the sequenes f�n(ŵ; b̂)gn�0 and f�n( ~w;~b)gn�0 an not onverge to the same limit.Proof of Lemma A.1. Let (ŵn; b̂n) := �n(ŵ; b̂) and ( ~wn;~bn) := �n( ~w;~b), n > 0. Byindution and Lemma 3.2, ŵn > ~wn, b̂n < ~bn and �n := b̂n=~bn satisfy �n+1 = Z(ŵn;b̂n)Z( ~wn;~bn)�n <�n for n � 0. Sine f�ngn�0 is stritly dereasing and bounded by zero, the limit�1 := limn!1 �n exists and 0 � �1 < �1 < 1. If (ŵn; b̂n)n�1 and ( ~wn;~bn)n�1 bothonverge, then limn!1 b̂n~bn = �1 < 1 whih implies limn!1 b̂n 6= limn!1 ~bn. �Lemma A.2Suppose lim!1 u0() = 0. Then the map � : V+ �! U is a C1-di�eomorphism.Proof of Lemma A.2. Given some (w0; b0) 2 U we determine a unique (w; b) 2 V+ suhthat �(w; b) = (w0; b0). The ondition w0 = �w(w; b) determines a unique k0 = K(w; b)suh that w0 = W(k0; "). The value z0 = Z(w; b) then follows from the �rst or-der onditions E � [z0#(�)v0(b0 + k0R(k0; �))℄ = E � [R(k0; �)v0(b0 + k0R(k0; �))℄ from whihb = b0z0#(") an be inferred. Finally, w is the unique solution to u0(w � b � k0) =E � [z0#(�)v0(b0+k0R(k0; �))℄. Hene, ��1 is a well-de�ned funtion. � is learly C1 by theIFT. To see that ��1 is C1, it is straightforward to show that the Jaobian D�(w; b)has determinant detD�(w; b) > 0 for eah (w; b) 2 V+ . This yields the derivative ofthe inverse D��1(w0; b0) = [D�(w; b)℄�1 whih is a ontinuous funtion. �Proof of Theorem A.1.Step 1: We show thatM is a C1 manifold. Sine ( �w;�b) is saddle-path stable under �, theso-alled Stable Manifold Theorem (f. Niteki (1971)) implies existene of the loallystable manifoldMlo := f(w; b) 2 V+ j�n(w; b) 2 U 8n � 1 ^ limn!1�n(w; b) = ( �w;�b)gfor some open neighborhood U � V+ of ( �w;�b) where Mlo is as smooth as �. It iswell-known (f. Niteki (1971, p.89) or Galor (1992)) that the globally stable manifoldobtains as M = [n�0��n(Mlo). The result from Lemma A.2 implies that M inheritsthe smoothness of Mlo and is hene a C1-manifold in V+ . Therefore, the projetionW := fw > 0 j 9b > 0 : (w; b) 2 Mg is an interval ontaining �w as an interior point.Step 2: We show that M = graph( ) for some C1-funtion  : W �! R++ . It suÆesto show that for eah w0 2 W there exists a unique 0 < b0 < w0 suh that (w0; b0) 2 M.Suppose there are two suh values, say b̂0 < ~b0 < w0. Then, by Lemma A.1, thesequenes generated from (w0; b̂0) and (w0;~b0) under � an not onverge to the samelimit whih is a ontradition to (20). The smoothness ofM then implies that  is C1.19



Step 3: We show that  is stritly inreasing. Let ŵ < ~w be two points in W and supposethat b̂ :=  (ŵ) �  ( ~w) =: ~b. By Lemma A.1, the sequenes generated from both pointsunder � an not onverge to the same limit whih ontradits (ŵ; b̂); ( ~w;~b) 2 M.Step 4: We show that w 7�! K̂(w) := K(w;  (w)) is stritly inreasing. We �rst laimthat  0(w) � �wK(w; (w))�bK(w; (w)) for all interior w 2 W . Suppose this fails to hold at someinterior ŵ 2 W . Then, by (A.16),  0(ŵ) > �wK(ŵ; (ŵ))��bK(ŵ; (ŵ)) � ��wZ(ŵ; (ŵ))�bZ(ŵ; (ŵ)) . By ontinuity,�̂w(w) :=W(K(w;  (w)); ") is loally dereasing while w 7! Z(w;  (w)) and, by Step 3,�̂b(w) :=  (w)Z(w;  (w))#(") are non-dereasing and inreasing, respetively aroundŵ. Let ŵ < ~w 2 W be an interior point lose to ŵ. Set ~b :=  ( ~w) > b̂ :=  (ŵ).Then, (ŵ; b̂); ( ~w;~b) 2 M and ŵ1 := �w(ŵ; b̂) = �̂w(ŵ) < �̂w( ~w) = �w( ~w;~b) =: ~w1 andb̂1 := �b(ŵ; b̂) = �̂b(ŵ) < �̂b( ~w) = �b( ~w;~b) =: ~b1. But M being self-supporting under�, (ŵ1; b̂1) = �(ŵ; b̂) 2 M and ( ~w1;~b1) = �( ~w;~b) 2 M and, therefore, b̂1 =  (ŵ1)and ~b1 =  ( ~w1) whih ontradits that  is stritly inreasing proving the laim. Tosee that K̂ resp. �̂w are even stritly inreasing, suppose there are ŵ > ~w suh that�̂w(ŵ) = �̂w( ~w). Then, �̂w must be onstant on the interval [ ~w; ŵ℄ implying by (A.16) 0(w) = �wK(w; (w))�bK(w; (w)) � ��wZ(ŵ; (ŵ))�bZ(ŵ; (ŵ)) . By the same argument as before, w 7! �̂b(w) isstritly inreasing on [ ~w; ŵ℄. De�ning ŵ1 := �̂w(ŵ) = ~w1, b̂1 := �̂b(ŵ) > �̂b( ~w) =: ~b1,both (ŵ1; b̂1) and ( ~w1;~b1) must lie on M whih ontradits that M = graph( ). Thisproves that K̂ and, therefore, w 7�! W(K̂(w); "̂) are stritly inreasing for all "̂ 2 E .Step 5: We show that W = R++ . Note from (20) that � :M�!M and ��1(M) �M.Lemma A.2 implies that � : M �! M \ U is a homeomorphism, i.e., a ontinuousbijetion with ontinuous inverse ��1 : M \ U �! M. De�ne �̂w as above andW ? := W \ W + . The next results follow from the previous observations, monotoniityof �̂w, and uniqueness and stability (on M) of ( �w;�b).Lemma A.3The map �̂w : W �! W ? is a homeomorphism with inverse �̂�1w : W ? �! W satisfying:(i) �(w; b) = (�̂w(w);  (�̂w(w))) for all (w; b) 2 M.(ii) ��1(w; b) = (�̂�1w (w);  (�̂�1w (w))) for all (w; b) 2 M\ U.(iii) w T �w) �̂w(w) S w for all w 2 W .(iv) w T �w) �̂�1w (w) T w for all w 2 W ? .Let wmin := inf(W ) < �w < wmax := sup(W ) � 1 and w?min := inf(W ?) < �w < w?max :=sup(W ?) � 1. Note that w?min = maxfwmin; w0g and w?max = minfwmax; �w1g.We show that W is open, i.e., W =℄wmin; wmax[. By ontradition, suppose wmin 2 W .Let (wn)n�0 be a stritly dereasing sequene in [wmin; �w[� W onverging to wmin.Sine �̂w is a stritly inreasing bijetion, the sequene w?n := �̂w(wn) in W ? is stritlydereasing and onverges to w?min. Suppose w?min 2 W ? . Sine W + is open, this re-quires wmin > w0 in whih ase w?min = wmin. Hene, limn!1wn = wmin 2 W andlimn!1 �̂w(wn) = wmin whih implies �̂w(wmin) = wmin < �w and ontradits Lemma20



A.3(iii). Conversely, suppose w?min =2 W ? , i.e., W ? is left open. Sine �̂w is a bijetionbetween W and W ? , let ~w := �̂w(wmin). Sine ~w is an interior point, ~w � Æ 2 W ? forÆ > 0 small. But, sine �̂w is stritly inreasing, �̂w(w) � ~w for all w 2 W ontraditing�̂w being a bijetion. Hene, wmin =2 W . An analogous argument shows that wmax =2 W .Hene, W =℄wmin; wmax[ and also W ? = W \ W + =℄w?min; w?max[ are open intervals.We show that wmin � w0 and wmax � �w1. By ontradition, suppose �rst thatwmin > w0 � 0 suh that �̂w :℄wmin; wmax[�!℄wmin; w?max[. Choose ~w0 2℄wmin; �w[�W and de�ne ~wn+1 := �̂�1w ( ~wn) and ~bn :=  (wn) for n � 0. By Lemma A.3(iv),~wn 2℄wmin; �w[� W ? \ W for all n. Hene, both sequenes are well-de�ned and stritlydereasing suh that ~w1 := limn!1 ~wn � wmin > 0 and ~b1 := limn!1 ~bn � ~w1 bothexist. By onstrution and Lemma A.3(ii), ( ~wn;~bn) = ��1( ~wn�1;~bn�1) or, equivalently,�( ~wn;~bn) = ( ~wn�1;~bn�1) for all n. Therefore, limn!1( ~wn;~bn) = limn!1�( ~wn;~bn) =( ~w1;~b1). Suppose ~b1 = ~w1, i.e., ~wn & ~b1 > 0. Then, by Lemma 3.2 and A.5(iii)limn!1�b( ~wn;~bn) � limn!1�b( ~wn;~b1) = 1 ontraditing limn!1�b( ~wn;~bn) = ~b1.Conlude from this that ( ~w1;~b1) 2 V whih implies ( ~w1;~b1) = �( ~w1;~b1) by theprevious properties and ontinuity of �, i.e., ( ~w1;~b1) must be a �xed point of �. Butthis is impossible sine 0 < ~w1 < �w < �w0" . This ontradition proves wmin � w0. Ananalogous argument shows wmax � �w1. Hene, W ? =℄w0; �w1[. This proves the laimif w0 = 0 and �w1 = 1. To see that wmin = 0 and wmax = 1 also if w0 > 0 and /or�w1 <1, suppose by ontradition that wmin > 0. Let (wn)n�0 be a stritly dereasingsequene in ℄wmin; �w[� W onverging to wmin > 0. Sine �̂w :℄wmin; wmax[�!℄w0; �w1[ isa stritly inreasing bijetion, this implies that limn!1 �̂w(wn) = w0 =W(0; ") requir-ing limn!1K(wn;  (wn)) = 0. At the same time, (wn; bn) 2 M for all n whih, using thesame argument as in the previous paragraph, implies bmin := limn!1  (wn) < wmin suhthat (wmin; bmin) 2 V. But then, by ontinuity limn!1K(wn; bn) = K(wmin; bmin) > 0,a ontradition. Conlude that wmin = 0. A similar argument shows that wmax = 1ompleting the proof. �A.6 Proof of Lemma 2.4Again we show the laim for the general senario of Setion 3 under the hypotheses ofLemma 3.3. The laim of Lemma 2.4 follows from the remarks made in Setion A.5. Let# be given and " 2 E#s be �xed. Dependene on these parameters will be suppressed.(i) Given w0 > 0, let b̂0 <  (w0) =: b0. Lemma 3.2 resp. 2.2 and an indution argumentyield that (ŵt; b̂t) := �t(w0; b̂0) and (wt; bt) := �t(w0; b0) satisfy ŵt > wt > bt > b̂t � 0for all t > 0. De�ning �t := b̂t=bt gives �0 < 1 and �t+1 = �tZ(ŵt; b̂t)=Z(wt; bt) < �tfor all t � 0. Hene, limt!1 �t = �� < 1 and limt!1 bt = �b" > 0 imply limt!1 b̂t =limt!1�b(ŵt; b̂t) = b̂1 < �b". The latter implies either limt!1Z(ŵt; b̂t) = 1=#(") orlimt!1 b̂t = 0. But the �rst limit, supposing it exists, satis�es limt!1Z(ŵt; b̂t) <limt!1Z(wt; bt) = 1=#("). Conlude that b̂1 = 0 whih, by ontinuity of � implies thatthe evolution of the sequene (ŵt)t�0 is asymptotially governed by (14) whih onvergesto the trivial steady state for any initial value w0 > 0. Conlude that limt!1 ŵt = �w0" .(ii) Given w0 > 0, let ~b0 >  (w0) =: b0. By ontradition, let ( ~wt;~bt) := �t(w0;~b0) 2 V21



for all t � 0. De�ne (wt; bt) as in (i) and � 0t := ~bt=bt > 1, t � 0. By analogousreasonings, bt < ~bt < ~wt < wt and limt!1 � 0t = �� 0 > 1. Hene, limt!1 ~bt = �� 0�b" =:~b1 > �b". Sine ~bt < wt for all t, ( ~wt;~bt) 2 V requires ~b1 < 1 and limt!1Z( ~wt;~bt) =1=#("). Monotoniity of w 7�! Z(�; b) then requires limt!1 ~wt = ~w1. Sine ~wt > ~btimplies ~w1 � ~b1 and ~w1 = ~b1 would imply limt!1Z( ~wt;~bt) =1 by Lemma A.5(iii),( ~w1;~b1) 2 V and must be a steady state of �. But no steady state satisfying ~b1 > �b"exists and the laim follows. �A.7 Proof of Lemma 2.5For t � 0, let �t := btwt . Using �w, �b gives �t+1 = �(�t) := �1�� [ 1+ � �t℄�1�t, t � 0.The map � has a unique non-trivial �xed point �� := 1+ � �1�� whih is unstable.Moreover, �0 < �� implies limt!1 �t = 0 and �0 > �� implies that �t0(�0) > 1+ for �nitet0. Hene, b0 = ��w0 is neessary for limt!1 �t(w0; b0; ") = ( �w";�b"). SuÆieny followsfrom Theorem A.1 whih implies existene of a orresponding b0 =  (w0) for w0 > 0. �A.8 Proof of Lemma 3.1Given (w; b) 2 V, let �k := w � b > 0. The argument o(z; k; b; ") := b z #(") + kR(k; ")will be suppressed when onvenient. Suppose b = 0. Then, H#1 is independent of z and# and H#1 (z; k;w; 0) = H(k;w; 0) for all k 2℄0; �k[ with H de�ned as in (12). Hene,existene of k+ 2℄0; �k[ to satisfy H#1 (z; k+;w; 0) = 0 is due to Lemma 2.1. Using k+ondition H#2 (z; k+;w; 0) = 0 an be solved expliitly for z > 0 proving the ase b = 0.Suppose b > 0. The strategy is to use (17b) to eliminate z reduing (17a) to a one-dimensional problem. Fixing k̂ 2℄0; �k[ we determine ẑ > 0 to satisfy H#2 (ẑ; k̂;w; b) = 0.Noting that limz!1 o(z; k; b; ") =1 for eah �xed " 2 E . Therefore, (P2) implieslimz!1 z #(") v0(�) = b�1 limz!1 o(z; k̂; b; ")v0(�)� b�1k̂R(k̂; ") limz!1v0(�) =1:This being true for all " 2 E implies H#2 (z; k̂;w; b) < 0 for z suÆiently large. SineH#2 (0; k̂;w; b) = u0(w � b � k̂) > 0 this proves existene of ẑ. To show uniqueness, weprove that z 7�! H#2 (z; k;w; b) is stritly dereasing. Using (P1), the derivative satis�es�zH#2 (z; k;w; b) = �E �h#(�) v0�o(z; k; b; �)�+ b z #(�)2 v00�o(z; k; b; �)�i (A.6)< �E �h#(�)�v0�o(z; k; b; �)�+ o(z; k; b; �)v00�o(z; k; b; �)��i � 0:These results imply the existene of a map Ẑ(�;w; b) :℄0; �k[�! R++ whih determines avalue ẑ for eah k̂ 2℄0; �k[ suh that H#2 (ẑ; k̂;w; b) = 0. Using (4) yields the derivative�kH#2 (z; k;w; b) = u00(w � b� k)� E �hR(k; �) z #(�)v00(�)�1 + Eg0(k)�i > 0 (A.7)where the seond term is positive by (P3). By the IFT, Ẑ(�;w; b) is C1 and stritlyinreasing on ℄0; �k[ sine �kẐ(k;w; b) = ��kH#2 (z; k;w; b)=�zH#2 (z; k;w; b) > 0.22



Using these results, let Ĥ1(�;w; b) :℄0; �k[�! R, Ĥ1(k;w; b) := H#1 (Ẑ(k;w; b); k;w; b). Wedetermine a unique k+ 2℄0; �k[ that solves Ĥ1(k+;w; b) = 0. Sine v0 is stritly dereasing,R(k; ")v0�b Ẑ(k;w; b)#(") + kR(k; ")� < R(k; ")v0�kR(k; ")� for all " 2 E whih impliesĤ1(k;w; b) > u0(w� b� k)� E � �R(k; �)v0�kR(k; �)�� for all k 2℄0; �k[. Therefore, by (9)limk!�k Ĥ1(k;w; b) � limk!�k�u0(w � b� k)� E � �R(k; �)v0�kR(k; �)��� =1: (A.8)Let (kn)n�1 be a sequene in ℄0; w � b[ with limn!1 kn = 0. Sine k 7! Ẑ(k;w; b) and,by (P3), k 7! kR(k; ") are inreasing, n(") := b Ẑ(kn;w; b)#(")+knR(kn; ") is boundedfrom above for all " 2 E whih implies limn!1R(kn; ") v0�n(")� =1. This being truefor all " 2 E gives limn!1 E � �R(kn; �)v0�n(�)�� = 1 and limn!1 Ĥ1(kn;w; b) = �1.Sine (kn)n�1 was arbitrary, limk!0 Ĥ1(k;w; b) = �1. This and (A.8) yields existeneof a zero of Ĥ1(�;w; b). Finally, using (P2) the partial derivatives of H#1 (�;w; b) ompute�kH#1 (z; k;w; b) = �u00(�)� E � �fkk(k; �) v0(�) + (1 + Eg0(k))R(k; �)2 v00(�)� > 0(A.9)�zH#1 (z; k;w; b) = �E �hR(k; �) b #(�) v00(�) > 0: (A.10)Combining (A.9) and (A.10) with the monotoniity of Ẑ(�;w; b) yields �kĤ1(k;w; b) =�kH#1 (z; k;w; b) + �zH#1 (z; k;w; b)�kẐ(k;w; b) > 0 where z = Ẑ(k;w; b). Hene, k+ isthe unique zero of Ĥ1(�;w; b) on ℄0; �k[. Setting z = Ẑ(k+;w; b) ompletes the proof. �A.9 Proof of Lemma 3.2As in the previous proof, the argument o(z; k; b; ") de�ned as before is omitted whenonvenient. We prefae the proof by the following tehnial result.Lemma A.4For the senario of Setion 3, let (P1){(P4) hold and # : E �! R++ be ontinuous.Then, for all (w; b) 2 V, z := Z#(w; b) and k := K#(w; b) the following holds:(i) kE � [(R(k; �)� z#(�))R(k; �)jv00(�)j℄ = �bE � [(R(k; �)� z#(�))z#(�)jv00(�)j℄.(ii) E � [(R(k; �)� z#(�))R(k; �)jv00(�)j℄ � 0 � E � [(R(k; �)� z#(�))z#(�)jv00(�)j℄.Proof of Lemma A.4.(i) Equations (17a) and (17b) give H#1 (z; k;w; b) = H#2 (z; k;w; b) = 0 and, therefore, 0 =H#1 (z; k;w; b)�H#2 (z; k;w; b) = E � [(R(k; �)� z#(�))v0(�)℄. By (P4), v0() = ��1jv00()jfor all  = bz#(") + kR(k; ") > 0 whih implies (i).(ii) We have 0 � E � [(R(k; �)� z#(�))2jv00(�)j℄ whih an equivalently be written asE � [R(k; �)(R(k; �)� z#(�))jv00(�)j℄ � E � [z#(�)(R(k; �)� z#(�))jv00(�)j℄. Sine, by (i),one of the terms must be non-positive, the laim follows immediately. 2Let (w; b) 2 V be arbitrary and set z := Z#(w; b) and k := K#(w; b) noting that z > 0and 0 < k < w � b. Write H# = (H#1 ; H#2 ) and � = (z; k). The signs of the derivativesin (A.6), (A.7), (A.9), and (A.10) imply that the Jaobian matrixD�H#(z; k;w; b) = � �zH#1 (z; k;w; b) �kH#1 (z; k;w; b)�zH#2 (z; k;w; b) �kH#2 (z; k;w; b) � :23



has determinant detD�H#(z; k;w; b) > 0 and is hene invertible. The inverse omputes[D�H#(z; k;w; b)℄�1 = 1detD�H#(z; k;w; b) � �kH#2 (z; k;w; b) ��kH#1 (z; k;w; b)��zH#2 (z; k;w; b) �zH#1 (z; k;w; b) � :The partial derivatives with respet to w and b take the form�wH#1 (z; k;w; b) = �wH#2 (z; k;w; b) = u00(w � b� k) < 0 (A.11)�bH#1 (z; k;w; b) = �u00(w � b� k)� E � �R(k; �) z #(�)v00���� > 0 (A.12)�bH#2 (z; k;w; b) = �u00(w � b� k)� E � �(z #(�))2v00���� > 0: (A.13)By the impliit funtion theorem, omitting the arguments for notational onveniene�wZ#(w; b) = ��wH#1 [�kH#2 � �kH#1 ℄detD�H# ; �bZ#(w; b) = �kH#1 �bH#2 � �kH#2 �bH#1detD�H#�wK#(w; b) = ��wH#1 [�zH#1 � �zH#2 ℄detD�H# ; �bK#(w; b) = �zH#2 �bH#1 � �zH#1 �bH#2detD�H# :(i) As detD�H# = �zH#1 �kH#2 � �kH#1 �zH#2 > 0, �zH#2 < 0 < �zH#1 by (A.6) and(A.10), and ��wH#1 < �bH#i , i = 1; 2, it follows that0 < �wK#(w; b) = ��wH#1 [�zH#1 � �zH#2 ℄detD�H# < �zH#1 �bH#2 � �zH#2 �bH#1detD�H# = ��bK#(w; b):(ii) If, in addition, (P4) holds, straightforward alulations and Lemma A.4 imply�kH#1 � �kH#2 = E � [(R(k; �)� z#(�))R(k; �)jv00(�)j(1 + Eg0(k))� fkk(k; �)v0(�)℄ > 0(A.14)�bH#1 � �bH#2 = E � [(R(k; �)� z#(�))z#(�)jv00(�)j℄ � 0: (A.15)By (A.11) and (A.14), �wZ#(w; b) < 0 and, by (A.12) { (A.15), �bZ#(w; b) > 0. Finally,�wK#(w; b)�bZ#(w; b)� �bK#(w; b)�wZ#(w; b) = ��wH#1detD�H# (�bH#2 � �bH#1 ) � 0 (A.16)whih follows from diret alulations and shows that ��wZ#(w;b)�bZ#(w;b) � �wK#(w;b)��bK#(w;b) < 1. �Remark A.1Sine Z# and K# are well-de�ned and the matrix D�H#(z; k;w; b) is non-singular also atany boundary point (w; 0) of V, the impliit funtion theorem implies that the mappingsZ# and K# an loally be extended to an open neighborhood around (w; 0). Hene,their derivatives are well-de�ned and ontinuous also on the boundary of V where b = 0.Hene, Lemma 3.2 and also Lemma 2.2 indeed hold on the entire set V.A.10 Proof of Lemma 3.3Given #, let " 2 E be �xed. To alleviate the notation, these parameters will subsequentlybe suppressed. With this onvention, denote the trivial steady state as �w0 > 0 and letwk :=W(0; ") � 0. By the monotoniity of K# (f. Lemma 3.2) andW(�; "), any steadystate ( �w;�b) 2 V+ satis�es wk < �w < �w0. Further results are olleted in the next lemma.24



Lemma A.5Under Assumption 3.1 and the hypotheses of Lemma 3.3, the following holds true:(i) w >W(K#(w; 0); ") for all w 2℄wk; �w0[.(ii) W(k; ") � kR(k; ") for all 0 < k � �k0 := K#( �w0; 0).(iii) For any b̂ � 0: limw&b̂Z#(w; b̂) =1.Proof of Lemma A.5(i) Uniqueness of �w0 gives w 6=W(K#(w; 0); ")8w 2℄wk; �w0[. Stability implies the laim.(ii) By (3) and (4), the laim is equivalent to Eg(k) � 12 for all k 2℄0; �k0℄. By Assumption3.1, Eg(�k0) � 12 . The derivative E 0g(k) = (Eg0(k))2=(kEg(k))(1 � Eg(k) � jEg0(k)j) isnon-negative by (P5) implying that Eg is non-dereasing from whih the laim follows.(iii) By (17a), (17b), for any (w; b) 2 V, de�ning z := Z#(w; b) and k := K#(w; b)and o(z; k; b; ") as above one has E � [R(k; �)v0(o(z; k; b; �))℄ = E � [z#(�) v0(o(z; k; b; �))℄.This implies that there exists some ~" 2 E suh that z#(~") � ~"g0(k). Setting � :=min"f"=#(") j " 2 Eg > 0 (whih is well-de�ned by ontinuity of # and ompatness ofE) gives the inequality Z#(w; b) � �g0(K#(w; b)) for all (w; b) 2 V. Hene, for any b̂ � 0,limw&b̂K(w; b̂) = 0 implies limw&b̂Z#(w; b̂)) � � limw&b̂ g0(K(w; b̂)) =1. 2(i) Existene. De�ne Hw : V �! R, Hw(w; b) := w � W(K#(w; b); ") and the w-isoline H w := f(w; b) 2 V jHw(w; b) = 0; w 2℄wk; �w0[g. Any interior steady statesatis�es ( �w;�b) 2 H w . For eah ŵ 2℄wk; �w0[ we laim there exists a unique b̂ 2℄0; ŵ[suh that Hw(ŵ; b̂) = 0. By Lemma A.5(i), limb!0Hw(ŵ; b) = ŵ �W(K#(ŵ; 0); ") < 0and limb!ŵK#(ŵ; b) = 0 gives limb!ŵHw(ŵ; b) = ŵ � wk > 0 implying existene of b̂.Uniqueness follows from Lemma 3.2 whih implies that Hw(w; �) is stritly inreasing.This result permits to de�ne the solution b̂ as a map hw :℄wk; �w0[�! R++ implyingH w = graph(hw). By the impliit funtion theorem, hw is C1 with derivativeh0w(w) = ��w(Hw(w; b))�b(Hw(w; b)) = �1 + kfkk(k; ")�wK(w; b)kfkk(k; ")�bK(w; b) ; b = hw(w); k = K(w; b): (A.17)As Hw( �w0; 0) = 0 and limw&wk K#(w;wk) = 0 yields Hw(wk; wk) = 0, ontinuity of Hwimplies the boundary behavior limw! �w0 hw(w) = 0 and limw!wk hw(w) = wk � 0.Analogously, let Hb : V �! R, Hb(w; b) := Z#(w; b)� 1#(") . Note �rst that " 2 E#s implieslimw! �w0Hb(ŵ; 0) = Z#( �w0; 0)� 1#(") < 0. By Lemma A.5(iii), limw!0Hb(ŵ; 0) =1. Asw 7! Z#(w; 0) is stritly dereasing by Lemma 3.2(ii), a unique 0 < wz < �w0 satisfyingHb(wz; 0) = 0 exists. De�ne the b-isoline H b := f(w; b) 2 V jHb(w; b) = 0; w 2℄wz; �w0[g.Any interior steady state satis�es ( �w;�b) 2 H b . Given ŵ 2℄wz; �w0[ we determine b̂ 2℄0; ŵ[suh that Hb(ŵ; b̂) = 0. Lemma 3.2(ii) implies limb!0Hb(ŵ; b) = Z#(ŵ; 0) � 1=#(") <Z#(wz; 0)� 1=#(") = 0. Lemma A.5(iii) yields limb!ŵHb(ŵ; b) =1 implying existeneof b̂. Uniqueness follows from Lemma 3.2(ii) and monotoniity of b 7! Z#(ŵ; b). Thispermits the solution b̂ to be de�ned as a map hb :℄wz; �w0[�! R++ and H b = graph(hb).By the IFT, hb is C1 with derivativeh0b(w) = ��wHb(w; b)�bHb(w; b) = ��wZ(w; b)�bZ(w; b) > 0; b = hb(w): (A.18)25



Reall that Hb(wz; 0) = 0 and Hb( �w0; 0) < 0. By Lemma A.5(iii), the latter impliesexistene of a unique value �b0 satisfying Hb( �w0;�b0) = 0. By ontinuity of Hb, thisimplies the boundary behavior limw! �w0 hb(w) = �b0 and limw!wz hb(w) = 0.Let w := maxfwk; wzg > 0 and the map � :℄w; �w0[�! R, �(w) := hw(w) � hb(w).Sine ( �w;�b) 2 V is an interior steady state i� ( �w;�b) 2 H w \ H b , steady state values�w are zeros of � while �b = hw( �w) = hb( �w). By the boundary behavior of hw and hb,limw! �w0 �(w) = � limw! �w0 hb(w) = ��b0 < 0. As for the left limit, suppose w = wk >wz. Then, limw!w�(w) = limw!wk hw(w)� hb(wk) = wk � hb(wk) > 0. This also holdsif wk = wz. Conversely, if w = wz > wk, then limw!w�(w) = hw(wz)�limw!wz hb(w) =hw(wz) > 0. Conlude that limw!w�(w) > 0 and a zero exists.Uniqueness. Let ( �w;�b) � 0 be an interior steady state. We show that �0( �w) < 0implying uniqueness by ontinuity of �0. Let �k := K#( �w;�b) < �k0 and �z := Z#( �w;�b). By(A.17) and (A.18),�0( �w) = ��bZ#( �w;�b) + "�kg00(�k) ��wK#( �w;�b)�bZ#( �w;�b)� �bK#( �w;�b)�wZ#( �w;�b)�"�kg00(�k)�bK#( �w;�b)�bZ#( �w;�b) :(A.19)Sine the denominator is stritly positive by Lemma 3.2, it suÆes to show that thenumerator is stritly positive as well. Using (A.16) and the de�nition of �bZ#( �w;�b)from Lemma 3.2 and realling that detD�H# > 0, this is equivalent to showing thatM := �kH1�bH2 � �kH2�bH1 � "�kg00(�k)�wH1(�bH2 � �bH1) > 0 (A.20)where the arguments of the funtion have been omitted for onveniene. In what follows,let M1 := E � [�z#(�) jv0(�)j℄ = E � [R(�k; �) jv0(�)j℄ > 0, M2 := E � [R(�k; �)2 jv00(�)j℄ > 0,M3 := E � [(�z#(�))2 jv00(�)j℄ > 0 and M4 := E � [R(�k; �) �z#(�) jv00(�)j℄ > 0. Using thefuntional forms of the derivatives from (A.7), (A.9), and (A.11) { (A.13), tedious butstraightforward alulations imply that M an be written as M = A+B + C whereA := ju00(�)jh�g00(�k)g0(�k)M1 +m(M3 �M4) + (1 + Eg0(�k))(M2 �M4)im := 1 + "�kg00(�k); B := �g00(�k)g0(�k)M1M3; C := (1 + Eg0(�k))hM2M3 � �M4�2i:By Lemma A.4(ii), M2 � M4 and M3 � M4 whih implies C � 0 by (P3). Obviously,B > 0. Suppose m � 0. Then, A > 0 whih implies M > 0. Conversely, supposem < 0 suh that �mM4 > 0. By (P3), (1 + Eg0(�k))(M2 �M4) � 0. By (P4), M1 =��1(�kM2 + �bM3) > �bM3. By (P5) and the �rst order onditions, M1 = u0( �w � �b� �k) �ju00( �w � �b� �k)j( �w � �b� �k) whih implies B � ju00(�)jg00(�k)g0(�k)M3( �w � �b� �k). Hene,A+B > ju00(�)jM3h(1 + Eg0(�k))� g00(�k)g0(�k) ( �w � "�kg0(�k))i:Both terms in brakets are non-negative due to (P3) and Lemma A.5(ii), respetively.Hene, M > 0 also in this ase, proving uniqueness of the steady state.Stability. The argument is similar to the one in Lemma 2.3. Computing the determinantand trae of the Jaobian �J at the steady state gives, using Lemma 3.2 and (A.16)det �J = �"�kg00(�k)h�wK#( �w;�b)+ �b�z��wK#( �w;�b)�bZ#( �w;�b)��bK#( �w;�b)�wZ#( �w;�b)�i > 026



tr �J = 1+det �J+�b�z��bZ#( �w;�b)+"�kg00(�k) ��wK#( �w;�b)�bZ#( �w;�b)� �bK#( �w;�b)�wZ#( �w;�b)��:As shown before, the numerator in (A.19) is positive whih implies tr �J > 1+det �J . Thesame reasoning as in the proof of Lemma 2.3 gives the laim.(ii) Replaing R(K(w; b); ") by #(")Z#(w; b) and using Lemma 3.2 the proof is identialto the one of Lemma 2.3(ii). �A.11 Proof of Lemma 4.1We look for a zero of the funtionH(� ;w; b) := b��� (w��), � < w. SineH is C1 andTheorem A.1 implies 0 <  0(w) < 1, ��H(� ;w; b) = �(1� 0(w��)) < 0 suh that thereis at most one suh zero. Using Theorem A.1(ii) gives lim�!wH(� ;w; b) = b � w < 0.Moreover, lim�!�1H(� ;w; b) = b + lim�!1 �(1 �  (w+�)� ). If lim�!1  (w + �) < 1,then lim�!�1H(� ;w; b) = 1. If lim�!1  (w + �) = 1, then lim�!1(1 �  (w+�)� ) =1� lim�!1  0(w+ �) > 0 by l'Hopital's rule. Hene, lim�!�1H(� ;w; b) =1 again. �A.12 Proof of Lemma 4.2Let � = (#; "ref) be given. For w > 0 and " 2 E , de�ne �̂�w(w; ") :=W(K#(w;  �(w)); ")whih is stritly inreasing by Theorem A.1 and linear in ". Let w > 0 be arbitrarybut �xed and de�ne (wref ; bref) := �#(w;  �(w); "ref). Sine M� is self-supporting un-der �#(�; "ref), bref =  �(wref). Moreover, the multipliative struture implies that�#(w;  �(w); ") = � ""refwref ; #(")#("ref ) ��wref�� for eah " 2 E . Using these relations, thestabilizing tax an be written as a funtion T̂ �(wref; ") de�ned impliitly by the ondi-tion G(� ;wref ; ") :=  ��wref�#(")=#("ref)� � �  ��wref "="ref � �� = 0. By the IFT, thederivatives of ��(w; ") = �̂�w(w; ")� T̂ �(�̂�w(w; "ref); ") ompute�w��(w; ") = �w�̂�w(w; ")1� "ref" #(")#("ref) � 0(��(w; "ref))1�  � 0(��(w; ")) (A.21a)�"��(w; ") = �̂�w(w; 1)� #0(")#("ref ) �(�̂�w(w; "ref))1�  � 0(��(w; ")) : (A.21b)Under (a), the fration in (A.21a) is stritly positive suh that ��(�; ") inherits themonotoniity properties of �̂�w(�; "). Moreover, sine w >  �(w) and �̂�w(w; �) is linear,the numerator in (A.21b) is stritly positive under (b). This proves the laim. �A.13 Proof of Theorem 4.1First note that �� is stritly inreasing suh that both limits are well-de�ned. By theresults from Theorem A.1, the map ��(w; "ref) = W(K#(w;  �(w)); "ref) has a unique�xed point �w�ref > 0 and ��(w; "ref) T w i� w S �w�ref . Sine " 7�! ��(w; ") is stritlyinreasing, this implies ��(w; "min) < w for all w � �w�ref and ��(w; "max) > w for all w ��w�ref . Hene, non-trivial �xed points of ��(�; "min) an only exist in ℄0; �w�ref [ and do exist if27
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