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Abstract

Based on the psychological interpretation of conditional non-additive probabil-

ity measures arising in Choquet expected utility theory we introduce a behavioral

model of asset price fluctuations. In this model näıve agents are prone to a confir-

matory bias in the interpretation of new information about economic fundamen-

tals. As a conceptual advantage over rational expectations asset pricing models

our formal approach gives rise to model-endogenous concepts of “overpricing” and

“underpricing”. As another interesting feature our model generates equilibrium

price patterns that reflect underreaction of asset prices with respect to one period

good news as well as overreaction with respect to several periods of good news.

These empirical phenomena have received significant attention in the behavioral

finance literature. In contrast to our approach, however, previous formal explana-

tions have not been derived from decision-theoretic first principles but were rather

ad hoc.
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1 Introduction

1.1 Motivation

Rational asset pricing models derive prices from the portfolio optimization problems of

agents who fully understand the behavior of other economic agents as well as the stochas-

tic processes that drive the economic fundamentals. The common theme of rational

models is the efficient market hypothesis (=EMH) which implies that price fluctuations

should only reflect changes in the agents’ information about economic fundamentals.

Several empirical price patterns,suggest, however, that asset price dynamics cannot be

satisfactorily explained by rational models alone. For example, the persistent empirical

phenomenon that prices tend to underreact to one period of good news whereas they

tend to overreact to several periods of good news is difficult to reconcile with the EMH.

As a formal attempt to describe the occurrence of price fluctuations that are not

based on economic fundamentals, we develop in this paper an asset pricing model based

on sound decision-theoretic foundations. Our approach makes thereby two behavioral

assumptions. Firstly, we assume that the agents’ belief generation process is governed by

a confirmatory bias heuristic according to which the interpretation of new information

depends on the asset’s past performance in terms of dividend payments. Secondly, we

assume that the agents are näıve in the sense that they do not fully understand this

biased belief generation process. As a specific feature of our approach, we formalize these

behavioral assumptions within the axiomatic framework of Choquet expected utility

(CEU) theory. In contrast to standard expected utility theory, the beliefs of CEU agents

are described by non-additive rather than additive probability measures (cf. Schmeidler

1986, 1989; Gilboa 1987). In order to focus our analysis, we further restrict attention

to neo-additive capacities in the sense of Chateauneuf, Eichberger and Grant (2007)

according to which an agent’s non-additive belief about the likelihood of an event is a

weighted average of an ambiguous part and an additive part.

Our formal concept of a confirmatory bias heuristic exploits the fact that there

exist several perceivable Bayesian update rules for non-additive probability measures

expressing different psychological attitudes towards the interpretation of new informa-
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tion (Gilboa and Schmeidler 1993; Sarin and Wakker 1998).1 In particular, we consider

the so-called optimistic and pessimistic (Gilboa and Schmeidler 1993; Sarin and Wakker

1998) as well as the full Bayesian update rule (Pires 2002; Eichberger, Grant, and

Kelsey 2006; Siniscalchi 2006). Depending on the agent’s information about the as-

set’s past performance in terms of dividend payments, three corresponding asset pricing

regimes–the optimistic, the pessimistic, as well as the default pricing scheme–emerge.

Our formal approach thus captures the intuitive notion that good news result in an

optimistic whereas bad news result in a pessimistic bias in the agent’s belief about the

asset’s future prospects. These according biases then give rise to natural definitions of

over- and underpricing, respectively, in our model of asset-price equilibrium.

Whenever the beliefs of our approach reduce to additive probability measures, these

three different pricing regimes collapse into the familiar asset pricing model of expected

utility theory with additively time-separable preferences. However, whenever the non-

additive beliefs of our model express ambiguity attitudes, the existence of the three

different pricing schemes results in a higher fluctuation of equilibrium prices than in

the standard expected utility model. We further illustrate the explanatory power of

our behavioral model of asset-price fluctuations by demonstrating that our equilibrium

price process quite naturally generates the so-called phenomena of “underreaction” and

“overreaction”.

1.2 Underreaction and overreaction

There is by now a rich literature in behavioral finance that addresses the empirical

phenomena of underreaction and overreaction. On the one hand, stock prices tend to

underreact in the short run in the sense that one period of goods news is not fully

reflected in the asset’s price. On the other hand, however, stock prices tend to overreact

if there is a prolonged sequence of good news. Recent empirical evidence on over- and

underreaction is presented, e.g., in Chan (2003) and Antweiler and Frank (2006).

For the purpose of this paper we adapt the formal definitions of underreaction and

1As explained below, this “indeterminacy” of update rules is a direct consequence of the violation

of Savage’s (1954) sure thing principle as elicited in paradoxes of the Ellsberg (1961) type.
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overreaction of Barberis et al. (1998). Consider the adapted process of equilibrium

returns for a given asset (Rt)t≥1 such that

Rt =
p∗t + Yt

p∗t−1

for all t ≥ 1 (1)

whereby p∗t denotes period t’s ex-dividend equilibrium price and Yt period t’s dividend

payment, respectively. Furthermore, let Gt, respectively Bt, denote the event that there

is “good”, respectively “bad”, news in period t.

Definitions.

(i) Underreaction to one period of good news:

E [Rt+1, π (· | Gt)] ≥ E [Rt+1, π (· | Bt)] . (2)

(ii) Overreaction to a sequence of good news: For some j ≥ 2,

E [Rt+j, π (· | Gt, ..., Gt+j−1)] ≤ E [Rt+j, π (· | Bt, ..., Bt+j−1)] . (3)

The interpretation of these definitions is straightforward. In the case of one period

good news the asset is–compared to the case of one-period bad news–underpriced in

period t whereas this underpricing is corrected later-on in period t + 1. A rather low

price p∗t and a rather high price p∗t+1 imply then a rather high return in the case of good

news in period t + 1 as formally expressed by (2). In the case of a sequence of j ≥ 2

periods of good news the opposite effect happens in that the price of the good-news asset

in period t+ j − 1, p∗t+j−1, is rather too high whereas the corrected–rather low–price in

period t+ j, p∗t+j, implies then a rather low return in period t+ j as formally expressed

by (3).

To explain these phenomena, three different scenarios with respect to the nature and

reception of information about a company’s earnings have been considered in the litera-

ture. Daniel et al. (1998) differentiate between public and private information whereby
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they make the behavioral assumption that investors believe too strongly in their own

information and discount public signals. Consequently, there is underreaction to public

information but overreaction to private information. Hong and Stein (1999) base their

theory on the assumption that there exist heterogenous groups of investors which differ in

their reactions to public news. In particular, one of these groups ignores news but reacts

to prices only. As a consequence, there is initial underreaction followed by subsequent

overreaction. Finally, Barberis et al. (1998) consider a representative investor—so that

public and private information coincide—who believes that either one of two—actually

incorrect regimes—correctly describes the firm’s earning process. Barberis et al. pro-

ceed to assume that, firstly, the investor changes his beliefs about the likelihood of either

regime in the light of new information about past dividend payments and, secondly, that

one regime is mean-reverting whereas the other regimes follows a trend. Under these

assumptions, Barberis et. al can generate over-, respectively underreaction whenever

the dividend payment process follows a random walk.

As in Barberis et al. (1998) our approach generates underreaction and overreaction

within a representative agent economy. In contrast to Barberis et al., however, our

model of asset-pricing has been developed from decision-theoretic first principles without

explicitly aiming at any ad hoc explanation of the under- and overreaction phenomena.

We thereby address an important self-criticism of Barberis et al. (1998) who remark:

“The idea that the investor believes that the world is governed by one of the two incorrect

models is a crude way of capturing the psychological phenomena of the previous section.”

(p. 318). The fact that agents may not learn the correct earnings process in the long

run results in our model as a formal consequence of our description of agents’ beliefs

by non-additive probability measures arising in CEU theory whereas Barberis et al.

introduce it by assumption. As a consequence, our approach is therefore not prone to the

standard criticism against the relevance of incorrect beliefs stating that additive beliefs

will converge in the long run to correct probabilities in standard models of Bayesian

learning (cf. Zimper (2009) and Zimper and Ludwig (2009)).

The remainder of our analysis is structured as follows. Section 2 presents the decision
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theoretic framework on which our model is based. In section 3 we then describe our

behavioral assumptions, namely that agents are prone to confirmatory biases and näıve

in the sense that they ignore these biases. Next, section 4 merges our assumptions on

expectations and behavior with a standard Lucas (1978) type asset pricing model and

thereby describes the equilibrium price processes emanating from our model. Based on

these insights, section 5 describes and illustrates how our model gives rice to mispricing

relative to the EMH hypothesis and consequently overpricing, respectively underpricing,

of assets. That our model gives rise to over- and underreaction in correspondence to the

formal definitions given above is shown in section 6. Finally, section 7 concludes. All

proofs are relegated to the appendix.

2 Decision-theoretic preliminaries

The formalism of our behavioral model is not ad hoc but rather based on Choquet

decision theory which we review in this section. In the first subsection we recall basic

elements of CEU (=Choquet expected utility) theory and we introduce neo-additive

capacities as a specific class of non-additive probability measures. In the second subsec-

tion we present different Bayesian update rules for non-additive probability measures

and their psychological interpretation whereby we demonstrate that the existence of

different Bayesian update rules is an immediate consequence of the failure of Savage’s

sure thing principle as demonstrated by experiments of the Ellsberg-type. (The reader

who is familiar with Choquet decision theory may wish to skip this section and proceed

directly to our behavioral model.)

2.1 Choquet decision theory and neo-additive capacities

CEU (=Choquet expected utility) theory was first axiomatized by Schmeidler (1986,

1989) within the Anscombe and Aumann (1963) framework, which assumes preferences

over objective probability distributions. Subsequently, Gilboa (1987) as well as Sarin

and Wakker (1992) have presented CEU axiomizations within the Savage (1954) frame-

work, assuming a purely subjective notion of likelihood. When restricted to the domain
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of gains, CEU theory is formally equivalent to cumulative prospect theory (Tversky and

Kahneman, 1992; Wakker and Tversky, 1993) which generalizes the celebrated prospect

theory of Kahneman and Tversky (1979). Moreover, as a representation of preferences

over lotteries, CEU theory coincides with rank dependent utility theory as introduced by

Quiggin (1981, 1982). Within the context of CEU theory, properties of such capacities

are used in the literature for formal definitions of, e.g., ambiguity and uncertainty atti-

tudes (Schmeidler 1989; Epstein 1999; Ghirardato and Marinacchi 2002), pessimism and

optimism (Eichberger and Kelsey 1999; Wakker 2001), as well as sensitivity to changes

in likelihood (Wakker 2004).

Let us consider a measurable space (Ω,F) with F denoting a σ-algebra on the state

space Ω and a non-additive probability measure (=capacity) ν : F → [0, 1] satisfying

(i) ν (∅) = 0, ν (Ω) = 1

(ii) A ⊂ B ⇒ ν (A) ≤ ν (B) for all A,B ∈ F .

The Choquet integral of a bounded function f : Ω → R with respect to capacity ν

is defined as the following Riemann integral extended to domain Ω (Schmeidler 1986):

E [f, ν (dω)] =

∫ 0

−∞
(ν ({ω ∈ Ω | f (ω) ≥ z})− 1) dz +

∫ +∞

0

ν ({ω ∈ Ω | f (ω) ≥ z}) dz

(4)

whereby we will simply write E [f, ν] for E [f, ν (dω)]. For example, assume that f takes

on m different values such that A1, ..., Am is the unique partition of Ω with f (ω1) >

... > f (ωm) for ωi ∈ Ai. Then the Choquet expectation (4) becomes

E [f, ν] =
m∑
i=1

f (ωi) · [ν (A1 ∪ ... ∪ Ai)− ν (A1 ∪ ... ∪ Ai−1)] . (5)

Our own approach focuses on non-additive beliefs that are defined as neo-additive

capacities in the sense of Chateauneuf, Eichberger and Grant (2007).

Definition. For a given measurable space (Ω,F) the neo-additive capacity, ν, is de-

fined, for some δ ∈ (0, 1) , λ ∈ [0, 1] by

ν (A) = δ · λ+ (1− δ) · π (A) (6)
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for all A ∈ F such that A /∈ {∅,Ω} whereby π is some additive probability measure

on (Ω,F).

Neo-additive capacities can thus be interpreted as non-additive beliefs that stand

in for deviations from additive beliefs such that a parameter δ (degree of ambiguity)

measures the lack of confidence the decision maker has in some subjective additive

probability distribution π. The following proposition extends a result (Lemma 3.1)

of Chateauneuf, Eichberger and Grant (2007) for finite random variables to the more

general case of random variables with a closed and bounded range.

Observation 1. Let f be real-valued function with closed and bounded range. The

Choquet expected value (4) of f with respect to a neo-additive capacity (6) is given

by

E [f, ν] = δ

(
λmax

ω∈Ω
f (ω) + (1− λ)min

ω∈Ω
f (ω)

)
+ (1− δ)E [f, π] . (7)

According to observation 1, the Choquet expected value of a random variable f with

respect to a neo-additive capacity is a convex combination of the expected value of f

with respect to some additive probability measure π and an ambiguity part. If there is

no ambiguity, i.e., δ = 0, then the Choquet expected value (7) reduces to the standard

expected value of a random variable with respect to an additive probability measure.

In case there is some ambiguity, however, the second parameter λ measures how much

weight the decision maker puts on the best possible outcome of f when resolving his

ambiguity. Conversely, (1− λ) is the weight he puts on the worst possible outcome of f .

As a consequence, we interpret λ as an “optimism under ambiguity” parameter whereby

λ = 1, resp. λ = 0, corresponds to extreme optimism, resp. extreme pessimism, with

respect to resolving ambiguity in the decision maker’s belief.
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2.2 Bayesian updating of neo-additive capacities

CEU theory has been developed in order to accommodate paradoxes of the Ellsberg

type which show that real-life decision-makers violate Savage’s sure-thing principle ac-

cording to which preferences over acts shall be unaffected by consequences in states in

which the two acts have the same outcome. In this section we demonstrate that aban-

doning the sure-thing principle bears two important implications for conditional CEU

preferences over Savage-acts. First, in contrast to Bayesian updating of additive prob-

ability measures, there exist several perceivable Bayesian update rules for non-additive

probability measures (cf. Gilboa and Schmeidler 1993, Sarin and Wakker 1998, Pires

2002, Eichberger, Grant and Kelsey 2006, Siniscalchi 2006). Second, any preferences

that (strictly) violate the sure-thing principle cannot be updated in a dynamically con-

sistent way. That is, there does not exist any updating rule for capacities such that

ex-ante CEU preferences that (strictly) violate the sure-thing principle are updated in

a dynamically consistent manner to ex-post CEU preferences.

To see this define the Savage-act fBh : Ω → X such that

fBh (ω) =

{
f (ω) for ω ∈ B

h (ω) for ω ∈ ¬B

where B is some non-empty event. That is, the act fBh gives the same consequences as

the act f in all states belonging to event B and it gives the same consequences as the

act h in all states outside of event B. Recall that Savage’s sure-thing principle states

that, for all acts f, g, h, h′ and all events B ∈ F ,

fBh ≽ gBh implies fBh
′ ≽ gBh

′. (8)

That is, preferences over Savage-acts f and g should be unaffected by any states in which

these acts give the same consequences. Let us now interpret event B as new information

received by the agent. The sure-thing principle then implies a straightforward way for

deriving ex-post preferences ≽B, conditional on the new information B, from the agent’s

original preferences ≽ over Savage-acts. Namely, we have

f ≽B g if and only if fBh ≽ gBh for any h, (9)
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so that an agent’s ex-post preferences over two acts in light of new information B are

given as the agent’s ex-ante preferences over these acts whenever both acts give arbitrary

but identical consequences in states of the world that do not belong to B (i.e., in states

that will be declared impossible by the new information B). Equation (9) implies for a

subjective EU decision-maker

f ≽B g ⇔ E [u (f) , π (· | B)] ≥ E [u (g) , π (· | B)]

where u : X → R is a von Neumann-Morgenstern utility function and π (· | B) is a

conditional additive probability measure defined, for all A,B ∈ F such that π (B) > 0,

by

π (A | B) =
π (A ∩B)

π (B)
.

In case the sure-thing principle does not hold, the specification of act h in (9) is

no longer arbitrary. For CEU preferences there therefore exist several possibilities of

deriving ex post preferences from ex ante preferences. That is, in a CEU framework

there exist several perceivable ways of defining a conditional capacity ν (· | B) such that

f ≽B g ⇔ E [u (f) , ν (· | B)] ≥ E [u (g) , ν (· | B)] .

Let us at first consider so-called h-Bayesian update rules for preferences ≽ over Savage

acts as introduced by Gilboa and Schmeidler (1993). That is, we consider some collection

of conditional preference orderings,
{
≽h

B

}
for all events B, such that for all acts f, g

f ≽h
B g if and only if fBh ≽ gBh (10)

where

h = (x∗, E;x∗,¬E) , (11)

with x∗ denoting the best and x∗ denoting the worst consequence possible and E ∈ F .

For the so-called optimistic update rule h is the constant act where E = ∅. That is,

under the optimistic update rule the null-event, ¬B, becomes associated with the worst

consequence possible. Gilboa and Schmeidler (1993) offer the following psychological

motivation for this update rule:
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“[...] when comparing two actions given a certain event B, the decision maker implicitly

assumes that had B not occurred, the worst possible outcome [...] would have

resulted. In other words, the behavior given B [...] exhibits ‘happiness’ that B

has occurred; the decisions are made as if we are always in ‘the best of all possible

worlds’.”

As corresponding optimistic Bayesian update rule for conditional beliefs of CEU

decision makers we obtain

νopt (A | B) =
ν (A ∩B)

ν (B)
. (12)

Observation 2. An application of the optimistic update rule (12) to a neo-additive

capacity (6) results in the conditional neo-additive capacity

νopt (A | B) = δopt (B) + (1− δopt (B)) · π (A | B) (13)

with

δopt (B) =
δ · λ

δ · λ+ (1− δ) · π (B)
.

For the pessimistic (or Dempster-Shafer) update rule h is the constant act where E =

Ω, associating with the null-event,¬B, the best consequence possible. The psychological

interpretation for this update rule according to Gilboa and Schmeidler (1993) is as

follows:

“[...] we consider a ‘pessimistic’ decision maker, whose choices reveal the hidden as-

sumption that all the impossible worlds are the best conceivable ones.”

The corresponding pessimistic Bayesian update rule for CEU decision makers is

νpess (A | B) =
ν (A ∪ ¬B)− ν (¬B)

1− ν (¬B)
. (14)
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Observation 3. An application of the pessimistic update rule (14) to a neo-additive

capacity (6) results in the conditional neo-additive capacity

νpess (A | B) = (1− δpess (B)) · π (A | B) (15)

with

δpess (B) =
δ · (1− λ)

δ · (1− λ) + (1− δ) · π (B)
.

In addition to the two h-Bayesian update rules described above, we also consider

conditional CEU preferences satisfying, for all acts f, g,

f ≽B g if and only if fBh ≽ gBh

where h is the so-called conditional certainty equivalent of g, i.e., given information B

the agent is indifferent between the act g and the act h that gives in every state of B

the same consequence. The corresponding Bayesian update rule for the non-additive

beliefs of a CEU decision maker is the so-called full Bayesian update rule which is given

by (Eichberger, Grant, and Kelsey 2006)

νFB (A | B) =
ν (A ∩B)

ν (A ∩B) + 1− ν (A ∪ ¬B)
, (16)

where νFB (A | B) denotes the conditional capacity for event A ∈ F given information

B ∈ F .

Observation 4. An application of the full Bayesian update rule (16) to a neo-additive

capacity (6) results in the conditional neo-additive capacity

νFB (A | B) = δFB (B) · λ+ (1− δFB (B)) · π (A | B) (17)

whereby

δFB (B) =
δ

δ + (1− δ) · π (B)
. (18)
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3 The behavioral model

Our behavioral model is based on two main assumptions. Firstly, the agents’ belief

generation process is prone to a confirmatory bias heuristic in case the asset’s per-

formance in terms of dividend-payments, i.e., underlying profits, is regarded as good,

respectively bad. The according heuristic of a performance-driven confirmatory bias

will be introduced in subsection 3.2. Secondly, the agents do not fully understand this

biased belief generation process in the sense that they do not correctly anticipate the

beliefs of their future selves. The agent’s näıve beliefs will be introduced in subsection

3.3. As a consequence of these behavioral assumptions, our model violates the rational

beliefs paradigm in two different ways. On the one hand, the agents of our model have

an incorrect world view because–due to their confirmatory bias–their subjective beliefs

about economic fundamentals do not coincide with the objective distribution of these

fundamentals regardless of how much information the agents receive. On the other hand,

while solving their portfolio optimization problem the agents incorrectly assume that

their future selves interpret new information in the same way a they do.

3.1 Information structure

Let (Yt)t≥0 denote a sequence of random variables whereby the range of Yt is given

by some finite set Yt ⊂ R+ containing at least two elements. We interpret Yt as the

asset’s random period t dividend payments which we identify–by convention–with the

underlying firm’s period t profits. For our purpose it is convenient to consider Yt as

coordinate variable on the state space

Ω = ×∞
t=0Yt, (19)

i.e., for all t ≥ 0, Yt : Ω → Yt such that

Yt (ω) = yt for ω = (y0, y1, ...) . (20)

As period t’s agent information partition we define

Pt =
{
{(y0, ..., yt)} ×

(
×∞

s=t+1Yt

)}
(y0,...,yt)∈×t

s=0Yj
. (21)
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Observe that the agents’ information partitions are getting finer with increasing t, im-

plying that the period t agent can observe any realized stream of past dividend payments

y0, ..., yt. Further denote by Ft the Borel σ-algebra generated by Pt; that is, Ft contains

all sets

A×
(
×∞

s=t+1Ys

)
(22)

in Ω such that A is any subset of ×t
s=0Ys. As in standard asset pricing models we

thus assume perfect memory since the σ-algebras Ft generated by the Pt constitute a

filtration, i.e., F1 ⊆ F2 ⊆ ... ⊆ F whereby F denotes the standard product algebra

generated by F1,F2, ....

3.2 Performance-driven confirmatory bias heuristic

Given a measurable space (Ω,F) we now describe the agents’ belief generation process by

some conditional neo-additive probability measure ν (· | ·). Recall that the information

received by a period t agent is given as the stream of realizations of past profits y0, ..., yt.

Let us formally define this information as the following event in Ft

It = (y0, ..., yt)×
(
×∞

s=t+1Ys

)
whereby we will henceforth speak of “agent It” whenever a period t agent has received

information It.

The key to our behavioral approach is a heuristic assumption according to which the

period t agent might have an optimistic, respectively pessimistic, confirmatory bias in

the evaluation of an asset’s future performance which results from the agent’s observa-

tion of the asset’s past “performance”. As a simplifying but plausible assumption we

suppose that an agent evaluates the asset’s performance in terms of profits, respectively

dividend payments. The following assumptions on the conditional neo-additive proba-

bility measure ν (· | ·) naturally link our heuristic concept of “good” versus “bad” asset

performance to the optimistic versus pessimistic Bayesian update rules for neo-additive

beliefs of subsection 2.2.
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Confirmatory bias heuristic. Fix some number n ≥ 1 and let

It = (y0, ..., yt−n, ..., yt)×
(
×∞

s=t+1Ys

)
∈ F .

Then ν (· | ·) must satisfy the following conditions.

(i) If yt−n < ... < yt, then agent It is optimistically biased in the sense that, for

all A ∈ F ,

ν (A | It) = νopt (A | It) (23)

with νopt (A | It) given by (13).

(ii) If yt−n > ... > yt, then agent It is pessimistically biased in the sense that, for

all A ∈ F ,

ν (A | It) = νpess (A | It) (24)

with νpess (A | It) given by (15).

(iii) If neither yt−n < ... < yt nor yt−n > ... > yt, then, for all A ∈ F ,

ν (A | It) = νFB (A | It) (25)

with νFB (A | It) given by (17).

In words: If the period t agent has observed strictly increasing past profits yt−n, ..., yt

for a fixed number n of periods, he interprets the prospect of future profits in an opti-

mistic way. If, in contrast, he has observed strictly decreasing past profits yt−n, ..., yt,

he interprets the prospect of future profits in a rather pessimistic way.

These heuristic assumptions on ν (· | ·) conclude the construction of (ν (· | ·) ,Ω,F)

as the conditional neo-additive probability space that henceforth governs the agents’

“true” belief process about dividend payments.

3.3 Näıve agents

Whereas (ν (· | ·) ,Ω,F) describes–by definition–the belief generation process for every

agent It about next period’s profits Yt+1, the agents themselves will have an incorrect
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view on this belief generation process. More precisely, we assume that every agent

It is convinced that his and his future-selves’ beliefs are governed by some process(
νIt (· | ·) ,Ω,F

)
whereby ν (· | Is) and νIt (· | Is) coincide whenever s = t but not on

future periods s > t (cf. the remark at the end of this subsection). That is, our agents

are “näıve” in the sense that they do not correctly anticipate that their future selves’

beliefs are governed by ν (· | ·) rather than by νIt (· | ·).
In what follows we impose formal properties on νIt (· | ·) whereby we slightly misuse

notation and simply write ys+1 for the event

(Ys+1 = ys+1) ∈ Fs+1

and y0, ..., ys for the event

(Y0 = y0, ..., Ys = ys) ∈ Fs.

Agent It’s “näıve” belief νIt (· | ·).

(i) Suppose that It is optimistically biased. Then, for all ys+1 ∈ Fs+1 and all

y0, ..., ys ∈ Fs with s ≥ t,

νIt
opt (ys+1 | y0, ..., ys) = δItopt +

(
1− δItopt

)
· π (ys+1 | y0, ..., ys)

whereby

δItopt =
δ · λ

δ · λ+ (1− δ) · π (It)
.

(ii) Suppose that It is pessimistically biased. Then, for all ys+1 ∈ Fs+1 and all

y0, ..., ys ∈ Fs with s ≥ t,

νIt
pess (ys+1 | y0, ..., ys) =

(
1− δItpess

)
· π (ys+1 | y0, ..., ys) (26)

whereby

δItpess =
δ · (1− λ)

δ · (1− λ) + (1− δ) · π (It)
.
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(iii) Suppose that It is neither optimistically nor pessimistically biased. Then, for

all ys+1 ∈ Fs+1 and all y0, ..., ys ∈ Fs with s ≥ t,

νIt
FB (ys+1 | y0, ..., ys) = δItFB · λ+

(
1− δItFB

)
· π (ys+1 | y0, ..., ys) (27)

whereby

δItFB =
δ

δ + (1− δ) · π (It)
.

Remark. Since the näıve agents of our model are not aware of the true nature

of their confirmatory bias, they are not sophisticated in the sense of Strotz (1956) and

Pollak (1968) nor behavioral consistent in the sense of Karni and Safra (1990) nor se-

quentially rational in the sense of Kreps and Wilson (1982). To see this consider, e.g.,

two optimistically biased agents It and Is such that s > t. Then

νIt (ys+1 | y0, ..., ys) = δItopt +
(
1− δItopt

)
· π (ys+1 | y0, ..., ys)

̸= δIsopt +
(
1− δIsopt

)
· π (ys+1 | y0, ..., ys)

= νIs (ys+1 | y0, ..., ys)

= ν (ys+1 | Is)

since

δItopt =
δ · λ

δ · λ+ (1− δ) · π (It)

̸= δ · λ
δ · λ+ (1− δ) · π (Is)

= δIsopt

= δopt (Is)

because of π (It) > π (Is). That is, agent It’s belief about dividend payments in period

s + 1 conditional on the dividend payments y0, ..., ys does not coincide with the belief

of agent Is who has actually observed dividend payments y0, ..., ys. It is in this specific

sense that the agents of our model hold incorrect opinions about the beliefs of their

future-selves.
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4 The equilibrium price process

In the previous section we have developed our behavioral model according to which

agents are prone to a confirmatory bias if they have observed a good, respectively

bad, asset performance in terms of the stochastic dividend payment process (Yt)t≥0. In

this section we derive the corresponding equilibrium prices of an representative agent

economy as an adapted stochastic process (p∗t )t≥0.

Consider the decision situation of a representative agent It who maximizes his Cho-

quet expected utility from an infinite consumption stream with respect to his belief

νIt (· | ·) by deciding about his period t, t+1, ... asset holdings. In line with most of the

literature we assume that the agent’s vNM utility of an infinite consumption stream is

additively time-separable. The agent’s maximization problem is then given as

max
(zt,zt+1,...)

u (ct) + E

[
∞∑

s=t+1

βs−tu (cs) , ν
It (· | ·)

]
subject to

cs = es + Yszs + ps (zs − zs+1) for all s ≥ t.

β ∈ (0, 1) denotes the time-discount factor, u : R → R is a strictly concave, differentiable

function, es ∈ R stands for the agent’s additional income in period s, and ps denotes

the period s asset price. We further assume zs ∈ Z, s > 1, for some open, bounded and

convex Z ⊂ R+ with {1} ∈ Z whereby we set for the initial asset endowment z0 = 1. In

our representative agent economy it must hold for any period t equilibrium allocation

that z∗t = 1. We further assume that the Choquet expected utility

E

[
∞∑

s=t+1

βs−tu (cs) , ν
It (· | ·)

]

is finite for all (zt, zt+1, ...). Define for s > t the following random variable (the so-called

stochastic discount factor)

Mt,s = βs−t · u
′ (cs)

u′ (ct)
.

For the corresponding equilibrium price process of our model, (p∗t )t≥0 we have to consider

three different pricing schemes reflecting the three possibilities that agent It either has
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an optimistic, or a pessimistic or no confirmatory bias. That is, for a fixed n ≥ 1, we

have, for all t,

p∗t =


poptt if yt−n < ... < yt

ppesst if yt−n > ... > yt

pFB
t else.

The following propositions establish for all three pricing regimes the existence of unique

period t equilibrium prices poptt , ppesst , and pFB
t conditional on received information It.

Proposition 1 “Optimistically biased pricing regime”. Suppose that agent It is

optimistically biased. Then there exists a unique period t equilibrium asset price

such that

poptt = δItopt ·
∞∑

s=t+1

minMt,s ·maxYs+
(
1− δItopt

)
·E

[
∞∑

s=t+1

Mt,s · Ys, π (ys | y0, .., ys−1)

]

such that

δItopt =
δ · λ

δ · λ+ (1− δ) · π (It)

whenever the transversality condition

lim
s→∞

(
Mt,s · popts

)
= 0

holds.

Proposition 2 “Pessimistically biased pricing regime”. Suppose that agent It is

pessimistically biased. Then there exists a unique period t equilibrium asset price

such that

ppesst = δItpess ·
∞∑

s=t+1

maxMt,s ·minYs

+
(
1− δItpess

)
· E

[
∞∑

s=t+1

Mt,s · Ys, π (ys+1 | y0, .., ys−1)

]
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such that

δItpess =
δ · (1− λ)

δ · (1− λ) + (1− δ) · π (It)
.

whenever the transversality condition

lim
s→∞

(Mt,s · ppesss ) = 0

holds.

Proposition 3 “Default pricing regime”. Suppose that agent It is neither opti-

mistically nor pessimistically biased. Then there exists a unique period t equilib-

rium asset price such that

pFB
t = δItFB ·

(
λ

∞∑
s=t+1

minMt,s ·maxYs + (1− λ)
∞∑

s=t+1

maxMt,s ·minYs

)

+
(
1− δItFB

)
· Et

[
∞∑

s=t+1

Mt,s · Ys, π (ys+1 | y0, .., ys−1)

]

such that

δItFB =
δ

δ + (1− δ) · π (It)
.

whenever the transversality condition

lim
s→∞

(
Mt,s · pFB

s

)
= 0

holds.

Remark 1. Key to the formal proofs of the above propositions (relegated to the

appendix) is the fact that our assumptions allow us to transform the Choquet expected

utility optimization problems into equivalent expected utility optimization problems for

which standard arguments such as sufficient characterization of global optima by first

order conditions as well as the law of iterated expectations go through. The reader
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should be aware, however, that this formal equivalence would break down if we had

considered a portfolio choice problem with several assets that do not have a comonotonic

payoff-structure. Formally, the corresponding portfolio optimization problem would then

exhibit kinks so that first order conditions are no longer sufficient criteria for global

optima.

Remark 2. While the assumption of näıve agents has–in our opinion–a lot of re-

alistic appeal, it is also technically very convenient. By this assumption, we can solve

for equilibrium prices as a standard single-agent problem with fixed additive proba-

bility measures πIt
opt, π

It
pess and πIt

FB, respectively, to the effect that the law of iterated

expectations can be used. In the case of sequentially rational agents who are able to

correctly anticipate their future agents beliefs we would instead have to solve for equi-

librium prices by attaching modified additive probability measures to every future agent

whereby these changing measures would be determined by the dynamics of the belief

generation process ν (· | ·). As a consequence, the law of iterated expectations, being

formulated for a unique additive probability measure on (Ω,F), were not be applicable

to sequentially rational agents.

5 Underpricing and overpricing

5.1 Definitions

Let us interpret the additive part π of the neo-additive capacity ν as the “true” prob-

ability measure that governs the objective dividend-payment process. In that case, we

can define the resulting expected utility price of the asset, i.e.,

pEU
t = E

[
∞∑

s=t+1

Mt,s · Ys, π (· | It)

]
, (28)

as the “correct” price which properly takes into account the stochastic process of eco-

nomic fundamentals as well as the representative agent’s “tastes” for intertemporal

consumption as expressed by the stochastic discount factor. Consequently, the different

21



pricing regimes of our model’s equilibrium price process (p∗t )t≥0 can thus be expressed

as follows

poptt = δItopt ·
∞∑

s=t+1

minMt,s ·maxYs +
(
1− δItopt

)
· pEU

t

ppesst = δItpess ·
∞∑

s=t+1

maxMt,s ·minYs +
(
1− δItpess

)
· pEU

t

pFB
t = δItFB ·

(
λ

∞∑
s=t+1

minMt,s ·maxYs + (1− λ)
∞∑

s=t+1

maxMt,s ·minYs

)
+
(
1− δItFB

)
· pEU

t .

Observe that all different pricing schemes collapse into the correct pricing scheme (28)

whenever the neo-additive beliefs reduce to additive probability measures since δ = 0

implies

δItopt = δItpess = δItFB = 0.

However, if there is some ambiguity in the agents’ beliefs, i.e., δ > 0, prices in our model

are given as a convex combination between the asset’s correct price and “something

else” whereby this something else depends on the respective pricing regime. Our formal

approach gives therefore rise to the following natural definitions of underpricing and

overpricing.

Definition. We say that the equilibrium price process (p∗t )t≥0 overprices, respectively

underprices the asset, iff p∗t ≥ pEU
t , respectively iff p∗t ≤ pEU

t .

For almost risk-neutral agents, whose stochastic discount factor, Mt,s, is approxi-

mately given by the time-discount factor βs−t, we readily obtain the following result.

Observation 5. Consider (almost) risk-neutral agents.

(i) The optimistic pricing regime always overprices the asset.
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(ii) The pessimistic pricing regime always underprices the asset.

(iii) The default pricing regime overprices the asset iff

∞∑
s=t+1

βs−t · (λmaxYs + (1− λ) ·minYs) ≥
∞∑

s=t+1

βs−t · Et [Ys, π] (29)

According to our behavioral model, overpricing occurs if and only if yj−n < ... < yj+k

for a fixed n. On the one hand, this determination of price deviations from economic

fundamentals in terms of previous performance offers a straightforward link between

the movement of economic fundamentals and price movements via the agent’s belief

generation process. On the other hand, however, the question whether this model-

specific link is sensible or not, is ultimately an empirical question and beyond the scope

of the present paper’s highly stylized analysis.

5.2 An illustrative example

We now consider a calibrated version of our model in order to illustrate the emergence

of overpricing and underpricing. As the model is highly stylized, our exercise is for

illustrative purposes only and we do not attempt to provide a realistic parametrization.

Calibration

We consider a situation with i.i.d. dividends that are distributed as normal with

mean EY and variance σ2
Y , whereby we take discrete realizations of the dividend pro-

cess by drawing from a normal distribution with Gaussian quadrature methods. We

set EY = 1.5, σY = 0.1, and take m = 5 discrete realizations (nodes). Notice that σY is

only a scaling parameter. Table 1 shows the respective probabilities and nodes for our

discretization.

By the i.i.d. assumption the equilibrium price under rational expectations is constant

and given by

pEU
t =

∞∑
s=t+1

βt−sEY =
β

1− β
EY. (30)
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Table 1: Dividends: Probabilities and Nodes

πi Yi

0.0113 1.2143

0.2221 1.3644

0.5333 1.5

0.2221 1.6356

0.0113 1.7857

Consequently, the expected return under rational expectations is also constant and given

by

EREU
t+1 = 1 + ErEU

t+1 = E
pEU
t+1 + Yt+1

pEU
t

=
1

β
. (31)

We interpret the frequency of our model as annual and therefore consider as a realistic

value for the real return on the risky asset under rational expectations ErEU
t+1 = 0.075.

With this target value, the implied value for the annual discount factor is

β =
1

EREU
t+1

= 0.93023

and we therefore have that

pEU
t =

β

1− β
EY =

1

ErEU
t+1

EY = 20.

By the i.i.d. assumption asset prices in the three pricing regimes are history (or

state) dependent and given by

poptt = δtopt ·
β

1− β
·maxY +

(
1− δtopt

)
· pEU

t

with

δtopt =
δ · λ

δ · λ+ (1− δ) ·
∏t

s=0 π(ys)
,

as well as

ppesst = δtpess ·
β

1− β
·minY +

(
1− δtpess

)
· pEU

t
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with

δtpess =
δ · (1− λ)

δ · (1− λ) + (1− δ) ·
∏t

s=0 π(ys)

and

pFB
t = δtFB · β

1− β
· (λ ·maxY + (1− λ) ·minY ) +

(
1− δtFB

)
· pEU

t

with

δtFB =
δ

δ + (1− δ) ·
∏t

s=0 π(ys)
.

As
∏t

s=0 π(ys) → 0, for t → ∞, the limiting asset prices where δFB = δopt = δpess = 1

in the three regimes are given by

poptt =
β

1− β
·maxY

ppesst =
β

1− β
·minY

pFB
t =

β

1− β
· (λ ·maxY + (1− λ) ·minY ) .

As we shall see below, convergence of our model to this limiting case is fast—even for our

chosen extremely low degree of initial ambiguity of δ = 1.0E−10—so that these limits

play a crucial role in our analysis.

We determine the value of λ such that in all periods t the price under rational expec-

tations is the same as in the full Bayesian pricing regime. This means that we rule out

overpricing, respectively underpricing, in the default pricing regime, cf. observation 5.

We accordingly solve

pFB
t = δtFB · β

1− β
· (min(Y ) + λ(max(Y )−min(Y ))) + (1− δFB

t )pEU
t = pEU

t

for λ which, given that the distribution of dividends is symmetric, cf. table 1, results in

λ = 0.5.

Finally, we choose the parameter that determines a switch of pricing regimes accord-

ing to our heuristic as described in subsection 3.2 to be n = 3. We take the simulation

period to be T = 100 years. All calibration parameters of our model are summarized in

table 2.
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Table 2: Calibration

Expected value of dividends, EY 1.5

Standard Deviation of dividends, σY 0.1

Number of nodes, m 5

Expected rate of return, ErEU
t+1 0.075

Discount factor, β 0.93023

Degree of pessimism, λ 0.5

Degree of ambiguity, δ 1.0E − 10

Sequence of good (bad) news, n 3

Time Periods, T 100

Results

Figure 1 summarizes the results of our simulation for T=100 model periods. Panel (a)

shows a random time path of dividends drawn from the distribution displayed in table 1.

Panel (c) of the figure displays the degree of ambiguity for this simulation. Even when

the initial degree of ambiguity is as low as in our case, cf. table 2, convergence to the

limiting case where δFB
t = δoptt = δpesst = 1 occurs within less than 20 model periods.

Convergence of the corresponding equilibrium prices in the three pricing regimes is

shown in panel (d). Given the choice of variance for the dividend process, σ2
Y = 0.01, the

resulting equilibrium prices in the optimistic (pessimistic) pricing regime are about 20%

above (below) the respective level of 20. Recall that this is the equilibrium price under

rational expectations as well as, by our choice of λ, under the full Bayesian pricing

regime. Finally, panel (b) of the figure shows the resulting equilibrium path of prices.

The rational expectations equilibrium is the constant line at an equilibrium price of 20.

The actual equilibrium prices emanating in our model are shown as the dashed blue

line. For the simulation period we observe 6 events of underpricing, i.e., switches to the

pessimistic pricing regime, and 4 event of overpricing, i.e., switches to the optimistic

pricing regime.
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Figure 1: Dividends and Prices
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6 Underreaction and overreaction revisited

We demonstrate in this section that our model naturally generates a pattern of asset

prices that have been discussed in the literature as underreaction and overreaction.

To be more specific let us assume that—as in the previous section—the additive part

π of the agents’ neo-additive beliefs governs the objective dividend-payment process.

Interpreting “good news in period t” as the event of a dividend-payment increase yt−1 <

yt and “bad news in period t” as a dividend-payment decrease yt−1 > yt, we can then

re-formulate the formal (and empirically tested) definitions of underreaction (2) and

overreaction (3) by Barberis et al. (1998) for our model as follows.

Definitions.

(i) Underreaction to one period of good news:

E [Rt+1, π (· | yt−1 < yt)] ≥ E [Rt+1, π (· | yt−1 > yt)] . (32)

(ii) Overreaction to a sequence of good news: For some j ≥ 2,

E [Rt+j, π (· | yt−1 < ... < yt+j−1)] ≤ E [Rt+j, π (· | yt−1 > ... > yt+j−1)] .

(33)

The following proposition—which is proved in detail in the appendix—establishes

sufficient conditions under which our behavioral model of asset-pricing generates under-

reaction and overreaction as defined above.

Proposition 4. Consider a dividend-payment process (Yt)t≥0 such that the Yt ∈
{minY, ...,maxY } are i.i.d. and assume that the agents are (almost) risk-neutral.

Then we have for the equilibrium return process (R∗
t )t≥0 of our behavioral model:

(i) Condition (32), i.e., underreaction to one period of good news, is always sat-

isfied.
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(ii) Condition (33), i.e., overreaction to a sequence of good news, is satisfied for

sufficiently large t whereby our model determines j ≥ n+ 1 with n denoting

the parameter of our confirmatory bias heuristic.

Sketch of the proof of proposition 4(i). The proof of proposition 4 proceeds

by reformulating the inequalities (32) and (33) in terms of equilibrium prices. Under

our confirmatory bias heuristic and the independence assumption (32) is satisfied if the

sufficient condition

E
[
p∗t+1, π (· | yt−1 < yt)

]
≥ E

[
p∗t+1, π (· | yt−1 > yt)

]
holds, i.e., if average future prices are greater for good than for bad news. A sim-

ple stochastic dominance argument–again based on our confirmatory bias heuristic and

independence–gives readily the desired result of underreaction to one period good news.

Intuitively, average future returns are higher for good than for bad news in our model

because good news tend to induce an optimistic pricing regime whereas bad news tend

to induce a pessimistic pricing regime.

Sketch of the proof of proposition 4(ii). The formal argument in the case of

overreaction is more difficult and a long-run argument is required. At first notice that

(33) is satisfied if the sufficient condition

E
[
p∗t+j, π (· | yt−1 < ... < yt+j−1)

]
poptt+j−1

≤
E
[
p∗t+j, π (· | yt−1 > ... > yt+j−1)

]
ppesst+j−1

(34)

holds. To see this let j ≥ n + 1 so that, by our confirmatory bias heuristic, the price

p∗t+j−1 following a sequence of n good news is poptt+j−1 whereas it is p
pess
t+j−1 for a sequence of

n bad news. Combined with the independence assumption we thus obtain the following

period t+ j − 1 expectations of period t+ j returns:

E [Rt+j, π (· | yt−1 < ... < yt+j−1)]

=
E
[
p∗t+j, π (· | yt−1 < ... < yt+j−1)

]
+ E [Yt+j, π]

poptt+j−1
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and

E [Rt+j, π (· | yt−1 > ... > yt+j−1)]

=
E
[
p∗t+j, π (· | yt−1 > ... > yt+j−1)

]
+ E [Yt+j, π]

ppesst+j−1

.

Since poptt+j−1 ≥ ppesst+j−1, (33) is thus satisfied whenever (34) holds.

On the one hand, we have that the return following a sequence of good news is

discounted by a higher price, i.e., poptt+j−1, than under bad news, i.e., ppesst+j−1. On the

other hand, however, expected future prices that follow a sequence of good news are

higher than after a sequence of bad news , i.e.,

E
[
p∗t+j, π (· | yt−1 < ... < yt+j−1)

]
> E

[
p∗t+j, π (· | yt−1 > ... > yt+j−1)

]
. (35)

The non-trivial part in establishing overreaction is therefore to demonstrate that (34)

holds in spite of (35). We conclude this section by illustrating the corresponding formal

argument by a simple example.

Example. Consider an economy with (almost) risk-neutral agents and i.i.d. dividend-

payment process such that any value of Yt is equally likely, i.e.,

π (Yt = y) =
1

m
for all y ∈ Y

with m = #Y. By independence of dividend payments, the correct period t price is

constant over all states of the world, i.e.,

pEU
t = E

[
∞∑

s=t+1

βs−t · Ys, π (· | It)

]

=
β

1− β
·
∑
y∈Y

y

m
.

Observe that for all It, π (It) =
1
mt so that—within a given particular pricing regime—

period t equilibrium prices are constant over all states of the world. In particular, we

have

poptt = δtopt ·
β

1− β
·maxY +

(
1− δtopt

)
· pEU

t
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with

δtopt =
δ · λ

δ · λ+ (1− δ) · 1
mt

,

as well as

ppesst = δtpess ·
β

1− β
·minY +

(
1− δtpess

)
· pEU

t

with

δtpess =
δ · (1− λ)

δ · (1− λ) + (1− δ) · 1
mt

,

and

pFB
t = δtFB · β

1− β
· (λ ·maxY + (1− λ) ·minY ) +

(
1− δtFB

)
· pEU

t

with

δtFB =
δ

δ + (1− δ) · 1
mt

.

Since the prices are constant within each pricing scheme, we obtain as average period

t+ j equilibrium prices for the respective pricing schemes

E
[
poptt+j, π (· | ·)

]
= poptt+j (36)

E
[
ppesst+j , π (· | ·)

]
= ppesst+j (37)

E
[
pFB
t+j, π (· | ·)

]
= pFB

t+j (38)

Observe now that the sufficient condition for overreaction (34) holds if

E
[
poptt+j, π (· | ·)

]
· π (yt+j−1 < Yt+j) + E

[
pFB
t+j, π (· | ·)

]
· π (yt+j−1 ≥ Yt+j)

poptt+j−1

≤
E
[
ppesst+j , π (· | ·)

]
· π (yt+j−1 > Yt+j) + E

[
pFB
t+j, π (· | ·)

]
· π (yt+j−1 ≤ Yt+j)

ppesst+j−1

which is, after substituting the expected values (36)–(38), equivalent to(
poptt+j

poptt+j−1

−
pFB
t+j

ppesst+j−1

)
· π (yt+j−1 < Yt+j) (39)

≤

(
ppesst+j

ppesst+j−1

−
pFB
t+j

poptt+j−1

)
· π (yt+j−1 > Yt+j) +

(
pFB
t+j

ppesst+j−1

−
pFB
t+j

poptt+j−1

)
· π (yt+j−1 = Yt+j) .(40)

31



Now observe that

lim
t→∞

poptt+j

poptt+j−1

= lim
t→∞

ppesst+j

ppesst+j−1

= 1

lim
t→∞

pFB
t+j

ppesst+j−1

=
λ ·maxY + (1− λ) ·minY

minY
≥ 1

lim
t→∞

pFB
t+j

poptt+j−1

=
λ ·maxY + (1− λ) ·minY

maxY
≤ 1

so that, by continuity, there exist sufficiently large t such that the lhs (39) is smaller

equal zero and the rhs (40) is greater equal zero. This establishes overreaction in the

sense of (3) in the long run for this economy.�

7 Concluding remarks and outlook

We introduce a behavioral model of asset price fluctuations. In this model näıve agents

are prone to a confirmatory bias in the interpretation of new information about eco-

nomic fundamentals. Our formal approach gives rise to model-endogenous concepts of

“overpricing”, “underpricing”Ṫhese pricing scenarios are induced by different pricing

regimes—an optimistic, a pessimistic, and an “in between” default pricing regime—and

endogenous switches between there regimes. As another interesting feature our model

generates equilibrium price patterns that reflect underreaction of asset prices with re-

spect to one period good news as well as overreaction with respect to several periods

of good news. These empirical phenomena have received substantial attention in the

behavioral finance literature. In contrast to our approach, however, previous formal

explanations for these phenomena were rather ad hoc and have not been derived from

decision-theoretic first principles.

The key message of this paper is to illustrate how such pricing phenomena emerge

from a non-standard dynamic Bayesian learning model with a sound decision theoretic

basis. On purpose, we develop a parsimonious model and keep the analysis extremely

stylized. Our current work extends this framework to develop a joint model for asset

pricing anomalies such as the equity premium and excess volatility puzzles (Mehra and
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Prescott 1985; Shiller 1981). As such, our current research focuses on a joint theory for

normal times, i.e., periods with standard asset price fluctuations, and exceptional times,

i.e., periods with significant deviations from asset pricing according to fundamentals.
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Appendix

Proof of propositions 1-3.

Observe at first that–independent of the specific choice of (zt, zt+1, ...)–the maximal,

respectively minimal, economic outcome occurs for every portfolio-choice in the same

state (maxY1,maxY2, ...) ∈ Ω resp. (minY1,minY2, ...) ∈ Ω. Because of this fact and

because of our assumption that every agent It assumes that νIt (· | ·) governs the beliefs
of his future-selves, we can transform the neo-additive Choquet expected utility maxi-

mization problem into an equivalent (standard) expected utility maximization problem

for conveniently constructed additive probability measures πIt
opt, π

It
pess and πIt

FB. More

specifically, we obtain the following equivalent maximization problems for the respective

pricing regimes.

Optimistic pricing regime:

max
(zt,zt+1,...)

u (ct) + E

[
∞∑

s=t+1

βs−tu (cs) , ν
It (· | ·)

]

= max
(zt,zt+1,...)

u (ct) + E

[
∞∑

s=t+1

βs−tu (cs) , π
It
opt (ys+1 | y0, .., ys)

]

such that

πIt
opt (ys+1 | y0, .., ys) =

{
δItopt +

(
1− δItopt

)
· π (ys+1 | y0, .., ys) for ys+1 = maxYs+1(

1− δItopt
)
· π (ys+1 | y0, .., ys) for ys+1 < maxYs+1

Pessimistic pricing regime:

max
(zt,zt+1,...)

u (ct) + E

[
∞∑

s=t+1

βs−tu (cs) , ν
It (· | ·)

]

= max
(zt,zt+1,...)

u (ct) + E

[
∞∑

s=t+1

βs−tu (cs) , π
It
pess (ys+1 | y0, .., ys)

]

such that

πIt
pess (ys+1 | y0, .., ys) =

{
δItpess +

(
1− δItpess

)
· π (ys+1 | y0, .., ys) if ys+1 = minYs+1(

1− δItpess
)
· π (ys+1 | y0, .., ys) if ys+1 > minYs+1
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Default pricing regime:

max
(zt,zt+1,...)

u (ct) + E

[
∞∑

s=t+1

βs−tu (cs) , ν
It (· | ·)

]

= max
(zt,zt+1,...)

u (ct) + E

[
∞∑

s=t+1

βs−tu (cs) , π
It
FB (ys+1 | y0, .., ys)

]
such that

πIt
FB (ys+1 | y0, .., ys)

=


δItFB · λ+

(
1− δItFB

)
· π (ys+1 | y0, .., ys) if ys+1 = maxYs+1(

1− δItFB

)
· π (ys+1 | y0, .., ys) if minYs+1 < ys+1 < maxYs+1

δItFB · (1− λ) +
(
1− δItFB

)
· π (ys+1 | y0, .., ys) if ys+1 = minYs+1

Given this transformation of the CEU into an EU maximization problem the above

results follow readily from standard arguments. For the sake of completeness we demon-

strate this for the optimistically biased pricing regime. Consider an optimistically biased

agent so that

E

[
∞∑

s=t+1

βs−tu (cs) , ν
It (· | ·)

]

= δItopt ·max
ω∈It

∞∑
s=t+1

βs−tu (cs) +
(
1− δItopt

)
· E

[
∞∑

s=t+1

βs−tu (cs) , π (ys+1 | y0, .., ys)

]
.

The corresponding period s first order conditions, evaluated at the equilibrium allocation

z∗t = 1 for all t, imply

p∗s = δItopt · β · u
′ (es+1 +maxYs+1)

u′ (es + ys)
·
(
maxYs+1 + p∗s+1

)
+
(
1− δItopt

)
· E
[
β · u

′ (es+1 + Ys+1)

u′ (es + ys)
·
(
Ys+1 + p∗s+1

)
, π (ys+1 | y0, .., ys)

]
= δItopt ·minMs,s+1 ·

(
maxYs+1 + p∗s+1

)
+
(
1− δItopt

)
· E
[
Ms,s+1 ·

(
Ys+1 + p∗s+1

)
, π (ys+1 | y0, .., ys)

]
for all s ≥ t. Notice that

minMs,s+1 = β · u
′ (es+1 +maxYs+1)

u′ (es + ys)
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follows from the concavity of u. As a consequence, any period t equilibrium asset price

poptt is characterized by the following system of equations

popts = E
[
Ms,s+1 ·

(
Ys+1 + popts+1

)
, πIt

opt (ys+1 | y0, .., ys)
]

≡ Eopt
s

[
Ms,s+1 ·

(
Ys+1 + popts+1

)]
for all s ≥ t with πIt

opt (ys+1 | y0, .., ys) defined above. Substitute

poptt+1 = Eopt
t+1

[
mt+1,t+2 ·

(
Yt+2 + poptt+2

)]
in

poptt = Eopt
t

[
Mt,t+1 ·

(
Yt+1 + poptt+1

)]
and observe that

poptt = Eopt
t

[
Mt,t+1 ·

(
Yt+1 + Eopt

t+1

[
Mt+1,t+2 ·

(
Yt+2 + poptt+2

)])]
= Eopt

t [Mt,t+1 · Yt+1] + Eopt
t

[
Mt,t+1 · Eopt

t+1

[
Mt+1,t+2 ·

(
Yt+2 + poptt+2

)]]
= Eopt

t [Mt,t+1 · Yt+1] + Eopt
t

[
Eopt

t+1

[
Mt,t+1 ·Mt+1,t+2 ·

(
Yt+2 + poptt+2

)]]
= Eopt

t [Mt,t+1 · Yt+1] + Eopt
t

[
Eopt

t+1

[
Mt,t+2 ·

(
Yt+2 + poptt+2

)]]
= Eopt

t [Mt,t+1 · Yt+1] + Eopt
t [Mt,t+2 · Yt+2] + Eopt

t

[
Mt,t+2 · poptt+2

]
.

The third line thereby results from the fact that the random variable Mt,t+1 is a con-

stant with respect to any given Eopt
t+1 and the fifth line is implied by the law of iter-

ative expectations for additive probability measures. Applying the same reasoning to

poptt+2, p
opt
t+2, ...gives the desired result whenever the transversality condition is satisfied.�

Proof of proposition 4(i).

Observe at first that

E

[
p∗t+1 + Yt+1

p∗t
, π (· | yt−1 < yt)

]
=

E
[
p∗t+1, π (· | yt−1 < yt)

]
+ E [Yt+1, π (· | yt−1 < yt)]

p∗t

≥
E
[
p∗t+1, π (· | yt−1 < yt)

]
+ E [Yt+1, π (· | yt−1 < yt)]

pFB
t
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since yt−1 < yt implies either p∗t = pFB
t or p∗t = poptt .

Now observe that

E

[
p∗t+1 + Yt+1

p∗t
, π (· | yt−1 < yt)

]
=

E
[
p∗t+1, π (· | yt−1 > yt)

]
+ E [Yt+1, π (· | yt−1 > yt)]

p∗t

≤
E
[
p∗t+1, π (· | yt−1 > yt)

]
+ E [Yt+1, π (· | yt−1 > yt)]

pFB
t

since yt−1 > yt implies either p∗t = pFB
t or p∗t = ppesst .

Consequently,

E [Rt+1, π (· | yt−1 < yt)] ≥ E [Rt+1, π (· | yt−1 > yt)]

is satisfied if

E
[
p∗t+1, π (· | yt−1 < yt)

]
≥ E

[
p∗t+1, π (· | yt−1 > yt)

]
. (41)

In accordance with our confirmatory bias heuristic, for good news p∗t+1is given either by

the optimistic or the default pricing scheme, implying

E
[
p∗t+1, π (· | yt−1 < yt)

]
= E

[
poptt+1, π

(
· | yt−(n−1) < ... < yt

)]
· π
(
yt−(n−1) < ... < yt

)
+E

[
pFB
t+1, π

(
· | yt−(n−1) < ... < yt

)]
·
[
1− π

(
yt−(n−1) < ... < yt

)]
For bad news, p∗t+1 follows either the pessimistic or the default pricing scheme, implying

E
[
p∗t+1, π (· | yt−1 > yt)

]
= E

[
ppesst+1 , π

(
· | yt−(n−1) > ... > yt

)]
· π
(
yt−(n−1) > ... > yt

)
+E

[
pFB
t+1, π

(
· | yt−(n−1) > ... > yt

)]
·
[
1− π

(
yt−(n−1) > ... > yt

)]
Furthermore, by independence

E
[
poptt+1, π

(
· | yt−(n−1) < ... < yt

)]
= E

[
poptt+1, π (yt+1)

]
E
[
pFB
t+1, π

(
· | yt−(n−1) < ... < yt

)]
= E

[
pFB
t+1, π

(
· | yt−(n−1) > ... > yt

)]
= E

[
pFB
t+1, π (yt+1)

]
E
[
ppesst+1 , π

(
· | yt−(n−1) > ... > yt

)]
= E

[
ppesst+1 , π (yt+1)

]
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whereby risk-neutrality implies, by observation 5,

E
[
poptt+1, π (yt+1)

]
≥ E

[
pFB
t+1, π (yt+1)

]
≥ E

[
ppesst+1 , π (yt+1)

]
.

As a consequence the lhs in (41) first-order stochastically dominates the lhs in (41) so

that we obtain the desired result.�

Proof of proposition 4(ii).

Let j ≥ n + 1 so that p∗t+j−1, conditional on yt−1 < ... < yt+j−1, is given as poptt+j−1

whereas it becomes, conditional on yt−1 > ... > yt+j−1, p
pess
t+j−1. By independence,

E [Yt+j, π (· | yt−1 < ... < yt+j−1)] = E [Yt+j, π (· | yt−1 > ... > yt+j−1)]

= E [Yt+j, π] ,

implying

E [Rt+j, π (· | yt−1 < ... < yt+j−1)]

=
E
[
p∗t+j, π (· | yt−1 < ... < yt+j−1)

]
+ E [Yt+j, π]

poptt+j−1

and

E [Rt+j, π (· | yt−1 > ... > yt+j−1)]

=
E
[
p∗t+j, π (· | yt−1 > ... > yt+j−1)

]
+ E [Yt+j, π]

ppesst+j−1

As a consequence, our model generates overreaction (3) whenever the sufficient condition

E
[
p∗t+j, π (· | yt−1 < ... < yt+j−1)

]
poptt+j−1

≤
E
[
p∗t+j, π (· | yt−1 > ... > yt+j−1)

]
ppesst+j−1

(42)

holds. In accordance with our confirmatory bias heuristic, p∗t+j is given for good news

either by the optimistic or the default pricing scheme, implying

E
[
p∗t+j, π (· | yt−1 < ... < yt+j−1)

]
≤ E

[
poptt+j, π (· | yt−1 < ... < yt+j−1 < yt+j)

]
·π (yt+j−1 < Yt+j)

+E
[
pFB
t+j, π (· | yt−1 < ... < yt+j−1 ≥ yt+j)

]
·π (yt+j−1 ≥ Yt+j)
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Accordingly, p∗t+j results for bad news either from the pessimistic or from the default

pricing scheme, implying

E
[
p∗t+j, π (· | yt−1 > ... > yt+j−1)

]
≥ E

[
ppesst+j , π (· | yt−1 > ... > yt+j−1 > yt+j)

]
·π (yt+j−1 > Yt+j)

+E
[
pFB
t+j, π (· | yt−1 > ... > yt+j−1 ≤ yt+j)

]
·π (yt+j−1 ≤ Yt+j)

Substituting in inequality (42) and rearranging gives(
E
[
poptt+j, π (· | yt−1 < ... < yt+j−1 < yt+j)

]
poptt+j−1

−
E
[
pFB
t+j, π (· | yt−1 > ... > yt+j−1 < yt+j)

]
ppesst+j−1

)
(43)

·π (yt+j−1 < Yt+j) (44)

≤

(
E
[
ppesst+j , π (· | yt−1 > ... > yt+j−1 > yt+j)

]
ppesst+j−1

−
E
[
pFB
t+j, π (· | yt−1 < ... < yt+j−1 < yt+j)

]
poptt+j−1

)
·π (yt+j−1 > Yt+j) (45)

+

(
E
[
pFB
t+j, π (· | yt−1 > ... > yt+j−1 = yt+j)

]
ppesst+j−1

−
E
[
pFB
t+j, π (· | yt−1 < ... < yt+j−1 = yt+j)

]
poptt+j−1

)
·π (yt+j−1 = Yt+j) (46)

Observe that, by our iid assumption, limt→∞ π (It) = 0 for all It, which implies

lim
t→∞

δItopt = lim
t→∞

δItpess = lim
t→∞

δItFB = 1.

As a consequence, the respective equilibrium prices of a given regime converge to some

constant, i.e.,

lim
t→∞

poptt =
β

1− β
·maxY ,

lim
t→∞

ppesst =
β

1− β
·minY ,

lim
t→∞

pFB
t =

β

1− β
· (λ ·maxY + (1− λ) ·minY ) .
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By continuity, the expected prices in (43) must therefore approximately satisfy

E
[
poptt+j, π (· | ·)

]
= poptt+j−1

E
[
pFB
t+j, π (· | ·)

]
= pFB

t+j−1

E
[
ppesst+j , π (· | ·)

]
= ppesst+j−1

for sufficiently large t. Substituting in (43) gives, for sufficiently large t,(
1−

pFB
t+j−1

ppesst+j−1

)
· π (yt+j−1 < yt+j) ≤

(
1−

pFB
t+j−1

poptt+j−1

)
· π (yt+j−1 > yt+j)

+

(
pFB
t+j−1

ppesst+j−1

−
pFB
t+j−1

poptt+j−1

)
· π (yt+j−1 = yt+j) ,

which is always satisfied because the lhs is negative and the rhs is positive because of

poptt+j−1 ≥ pFB
t+j−1 ≥ ppesst+j−1.��
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Supplementary appendix

Proof of observation 1: By an argument in Schmeidler (1986), it suffices to restrict

attention to a non-negative valued random variable f so that

E [f, ν] =

∫ +∞

0

ν ({ω ∈ Ω | f (ω) ≥ z}) dz,

which is equivalent to

E [f, ν] =

∫ max f

min f

ν ({ω ∈ Ω | f (ω) ≥ z}) dz

since the range of f is closed and bounded. We consider a partition Pn, n = 1, 2, ..., of

Ω with members

Ak
n = {ω ∈ Ω | ak,n < f (ω) ≤ bk,n} for k = 1, ..., 2n

such that

ak,n = [max f −min f ] · (k − 1)

2n
+min f

bk,n = [max f −min f ] · k

2n
+min f .

Define the step functions an : Ω → R and bn : Ω → R such that, for ω ∈ Ak
n, k = 1, ..., 2n,

an (ω) = ak,n

bn (ω) = bk,n.

Obviously,

E [an, ν] ≤ E [f, ν] ≤ E [bn, ν]

for all n and

lim
n→∞

E [bn, ν]− E [an, ν] = 0.

That is, E [an, ν] and E [bn, ν] converge to E [f, ν] for n → ∞. Furthermore, observe

that

min an = min f for all n, and

max bn = max f for all n.
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Since limn→∞min bn = limn→∞min an and E [bn, π] is continuous in n, we have

lim
n→∞

E [bn, ν] = δ
(
λ lim

n→∞
max bn + (1− λ) lim

n→∞
min bn

)
+ (1− δ) lim

n→∞
E [bn, π]

= δ (λmax f + (1− λ)min f) + (1− δ)E [f, π] .

In order to prove proposition 3, it therefore remains to be shown that, for all n,

E [bn, ν] = δ (λmax bn + (1− λ)min bn) + (1− δ)E [bn, π] .

Since bn is a step function, the Choquet expectation of bn with respect to ν becomes

E [bn, ν] =
∑

Ak
n∈Pn

ν
(
A2n

n ∪ ... ∪ Ak
n

)
· (ak,n − ak−1,n)

=
∑

Ak
n∈Pn

ak,n ·
[
ν
(
A2n

n ∪ ... ∪ Ak
n

)
− ν

(
A2n

n ∪ ... ∪ Ak−1
n

)]
,

implying for a neo-additive capacity

E [bn, ν] = max bn
[
δλ+ (1− δ)π

(
A2n

n

)]
+

2n−1∑
k=2

ak,n (1− δ) π
(
Ak

n

)
+min bn

[
1− δλ− (1− δ)

2n∑
k=2

π
(
Ak

n

)]

= δλmax bn + (1− δ)
2n∑
k=1

ak,nπ
(
Ak

n

)
+min bn [δ − δλ]

= δ (λmax bn + (1− λ)min bn) + (1− δ)E [bn, π] .

�

Proof of observation 2: An application of the full Bayesian update rule to a

neo-additive capacity gives
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νFB (A | B) =
δ · λ+ (1− δ) · π (A ∩B)

δ · λ+ (1− δ) · π (A ∩B) + 1− (δ · λ+ (1− δ) · π (A ∪ ¬B))

=
δ · λ+ (1− δ) · π (A ∩B)

1 + (1− δ) · (π (A ∩B)− π (A ∪ ¬B))

=
δ · λ+ (1− δ) · π (A ∩B)

1 + (1− δ) · (π (A ∩B)− π (A)− π (¬B) + π (A ∩ ¬B))

=
δ · λ+ (1− δ) · π (A ∩B)

1 + (1− δ) · (−π (¬B))

=
δ · λ+ (1− δ) · π (A ∩B)

δ + (1− δ) · π (B)

=
δ · λ

δ + (1− δ) · π (B)
+

(1− δ) · π (B)

δ + (1− δ) · π (B)
π (A | B)

= δFB
B · λ+

(
1− δFB

B

)
· π (A | B)

with δFB
B given by (18).�
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