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Abstract

The so-called Cauchy estimator uses the sign as instrument for the first lag in autoregres-
sions, and the resulting t-type statistic has a standard normal distribution even in the unit
root case. Thus, nonstandard asymptotics of the usual unit root tests such as the augmented
Dickey-Fuller [ADF] test can be avoided. Moreover, the ADF test is affected by unconditional
heteroskedasticity asymptotically; but the paper shows that, by using as instruments nonlinear
transformations asymptotically homogenous of order 0 (of which the sign is one), asymptotic
normality of the IV t-type statistic is maintained under unconditional heteroskedasticity when
the series to be tested has no deterministic trends. No estimation of the so-called variance
profile and no bootstrap application are required to this end, unlike for the ADF test. When
adjusting the differences for deterministic components, however, the null distribution of the
Cauchy test for a unit root becomes non-standard, reminiscent of the ADF test. In fact,
an examination of the asymptotic distribution of the Cauchy test under a sequence of lo-
cal alternatives reveals that it has power in the same 1/T neighborhoods as the the ADF
test, irrespective of whether a deterministic trend is present in the data or not. The stan-
dard normality of the examined Cauchy test can be exploited to build a panel unit root test
under cross-sectional dependence with an orthogonalization procedure. The panel test does
not require any N asymptotics to establish the limiting distribution, but the paper’s anal-
ysis of the joint N,T asymptotics for the panel statistic suggests that N should be smaller
than T . To render the test applicable when the number of cross-sectional units is larger than
the number of time observations, shrinkage estimators of the involved covariance matrix are
used. The performance of the discussed procedures is found to be satisfactory in finite samples.
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1 Motivation

Instrumental variable [IV] estimation is typically used to deal with regressor endogeneity. But,

provided that the instrument is suitably chosen, it has turned out to be a valuable tool in unit

root econometrics as well. Focusing on nonlinear transformations of variables used as instruments

for the very same variables, So and Shin (1999) or Phillips et al. (2004) have established inter-

esting properties of the nonlinear IV estimation procedure. So and Shin deal with the so-called

Cauchy estimator, where the sign of the first lag is used as an instrument; Phillips et al. examine

several other types of transformations of the first lag: (regularly) integrable and asymptotically

homogenous (with the sign being a function homogenous of order 0).

The t-type statistic based on the Cauchy estimator has a standard normal limiting distribu-

tion irrespective of the type of autoregressive root (stationary, unit, or explosive) in the series

examined; this leads to a simple way of obtaining confidence intervals, as the pivotal standard

normal distribution holds for stationary as well as nonstationary cases. See So and Shin (1999) for

a discussion. Chang (2002) examines IV estimation where the instrument is a regularly integrable

transformation. For unit, and stationary, roots, a standard normal distribution arises as well.

For both tests, asymptotic normality is established under the null of a unit root by resorting to

variants of martingale difference central limit theorems [CLT]; hence, the deterministic component

in levels has to be adaptively (recursively) removed (So and Shin, 1999).1 Using recursive adjust-

ment is an advantage rather than a drawback: recursive removal of deterministic components has

been proven to be power-effective when testing for unit roots (Leybourne et al., 2005).

Moreover, in panels exhibiting correlation across the N units with T observations each, the

joint distribution of individual Cauchy tests (with a slight relaxation of the transformation) is

multivariate normal, and a panel test can be obtained by an orthogonalization procedure (Shin

and Kang, 2006). Even without orthogonalization, multiple testing or combination of significance

levels are greatly simplified by multivariate normality. No N -asymptotics is required in estab-

lishing the limiting distribution of the panel unit root test. Moreover, the Cauchy test can be

easily used in a nonlinear time series framework, following Shin and Lee (2001); in contrast, this

is difficult to do for OLS estimation. In cross-correlated panels, Chang’s (2002) individual test

statistics are asymptotically independent.

This paper takes a closer look at the IV test based on the Cauchy estimator (or asymptotically

equivalent choices of the instrument) in the unit root case. We are able to contribute to the

literature on unit root and panel unit root testing in several important respects.

Our analysis in Section 2 will show the properties of the Cauchy unit root test to hinge on

the type of deterministic component present in the data. As long as the deterministic component
1See Demetrescu (2010) for a unified treatment of recursive adjustment for deterministic components, as well as

Taylor (2002) and Kuzin (2005) for dealing with seasonally varying means.
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is not “too trending” (e.g. a constant non-zero mean), all the nice properties above, and some

more, hold: we establish here the Cauchy test’s robustness to unconditional heteroskedasticity

of unknown shape. In such cases, the augmented Dickey-Fuller [ADF] tests are affected even

asymptotically, having asymptotic distributions expressed in terms of time-transformed, rather

than standard, Wiener processes, and require either resampling (using the i.i.d./wild bootstrap),

or the estimation of the so-called variance profile, as proposed by Cavaliere and Taylor (2007a,b).

Moreover, it has local power in the same type of 1/T neighborhoods of the unity like the ADF

test in spite of exhibiting standard asymptotics under the null. If the differenced series require,

however, adjustment for deterministic components (as would be the case when the data exhibit a

linear trend), the asymptotic null distribution is not standard normal anymore, but a functional

of (time-transformed) Wiener or Ornstein-Uhlenbeck [OU] processes, similar to the ADF case.

In Section 3, we examine panel unit root testing based on the Cauchy test and establish

standard normality of the orthogonalization procedure proposed by Shin and Kang (2006) under

joint N,T -asymptotics. Accounting for unconditional heteroskedasticity is relevant for panel unit

root tests just like it is for univariate tests; see Hanck (2009). He demonstrates that several

popular second-generation panel unit root tests cease to work reliably under unconditional het-

eroskedasticity, with some tests exhibiting empirical size as high as 60%. Here, the robustness to

unconditional heteroskedasticity is shown to carry over from the univariate to the panel test. The

admissible rates for N , however, turn out to be slower than T 0.25, also because Shin and Kang’s

procedure requires orthogonalization with an estimated N×N covariance matrix. In any case the

orthogonalization procedure induces the need of having larger T than N . The slight drawback of

requiring N to be small compared to T can be easily overcome: we use shrinkage estimators of

the covariance matrix such that the test works reliably for larger N .

Section 4 provides an application of the procedures to testing for stationarity of GDP prices,

highlighting the differences in inferences provided by tests that are, or are not, robust to uncon-

ditional heteroskedasticity.

Before proceeding to the main derivations, we establish some notation. Let boldface symbols

denote column vectors and boldface capital symbols matrices, and denote diag(a1, . . . , aN ) =

diag(ai) the diagonal matrix with ai on its main diagonal. Let ‖·‖ denote the Euclidean vector

norm and the induced matrix norm, and ‖·‖r both the Lr vector norm, r
√∑

|·|r, and the Lr norm

of a random variable, r
√

E |·|r or vector. The probabilistic Landau symbols Op(·) and op(·) have

their usual meaning, and C denotes a generic constant.
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2 The univariate unit root test

2.1 Model and assumptions

Let us begin by examining the univariate case. The data generating process [DGP] is as follows

yt = dt + xt, t = 1, . . . , T,

i.e. the usual additive component representation. The deterministic component dt is assumed to

be known up to multiplicative constants (covering e.g. an intercept, a linear trend, or a break at

known time). To ease the exposition, we consider only the two standard situations where dt is a

constant, or dt is a linear trend plus constant. On the one hand, they are the most common in

econometric practice, and, on the other hand, they point out the limitations of the Cauchy test

in relation to the deterministic component; the test’s behavior turns out to be quite different for

the two types of deterministics.

The purely stochastic part of the model is given by the following assumption.

Assumption 1. Let

∆xt = φxt−1 +
p∑
j=1

aj∆xt−j + εt,

with x0 = op(T 0.5), stable roots of the lag polynomial A(L) = 1 −
∑p

j=1 ajL
j, and white noise

innovations εt.

The null hypothesis of a unit root is parameterized in the above error-correction representation

by φ = 0, and we test against stationary alternatives, −2 < φ < 0.

The Cauchy test is based on IV estimation of the model using the sign of the lagged level

as instrument for the lagged level and the untransformed ∆yt−j , j = 1, . . . , p, as instruments for

themselves. If xt were observed, a standard normal t-type statistic would result asymptotically

under the null given finite-variance i.i.d. innovations, see So and Shin (1999). Actually, they use a

slightly different version involving the IV regression of the prewhitened differences on the lagged

level. It is equivalent to our version under the null and the local alternative (cf. the proof of

Proposition 1), although not under a fixed alternative. But ours is the “textbook” IV estimation

procedure, and has been extensively used in this form before; see Chang (2002) and Demetrescu

(2009).

In the following subsection, we show that adjusting for deterministic components is the most

important issue with IV tests of the examined type. Using the sign as an instrument, however, is

not necessary; transformations of the lagged level behaving for integrated processes like the sign

in the limit are allowed for; see Shin and Kang (2006) and Assumption 2 below. Still, for lack of

a better denomination, we shall call the resulting IV tests “Cauchy tests” as well, even if they are
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only asymptotically equivalent to the test based on the sign instrument under the null, see the

discussion following Assumption 2.

Denoting with tildes the adjusted levels and differences (see below), the test regression becomes

in the general form

∆̃yt = φ̂ỹt−1 +
p∑
j=1

âj∆̃yt−j + ε̂t,

estimated by IV with instrument h (ỹt−1) for ỹt−1, where the so-called instrument generating

function h(·) is specified in Assumption 2. The IV t-type statistic for testing the null of a unit

root is given in the above error correction representation by

tIV =
φ̂− 0

s.e.
(
φ̂
) ,

with φ̂ the IV estimator of φ and

s.e.
(
φ̂
)

=

√√√√√
σ̂2

 T∑
t=p+2

vt−1v′t−1

−1
1,1

,

where vt−1 =
(
h (ỹt−1) , ∆̃yt−1, . . . , ∆̃yt−p

)′ is the vector of instruments and the index 1, 1 denotes

the first diagonal element of a square matrix. In what concerns the instruments for the lagged

level, we are able to relax the instrument generating function h (·) to a particular case of functions

asymptotically homogenous of order 0 (cf. Park and Phillips, 1999).

Assumption 2. Let h (x) = g (x) I (|x| ≤ m) + sgn (x) I (|x| > m) where g (x) is odd and contin-

uous, m ≥ 0 is fixed and I (·) is the indicator function.

Basically, when xt is integrated of order one, it becomes increasingly improbable as t grows

that xt takes values within ±m from the origin. Thus, the sign part dominates asymptotically;

see also Lemma 4B in the Appendix. Letting m → ∞ at small rates would likely not affect the

argument, but there is little value added in pursuing this topic. With xt integrated of order zero,

however, the asymptotic equivalence is not given anymore. In the stationary case, sgn(ỹt−1) and

h(ỹt − 1) are different (although dependent) processes, and the small-sample performance of the

Cauchy test may be improved by judicious choice of g; see the Huber-type instruments approach

of Shin and Kang (2006) and the section on small-sample behavior.

We shall primarily examine the behavior of the Cauchy test under the null φ = 0 as well

as in 1/T neighborhoods of the unit root. Local power is an important attribute of unit root

tests, as it gives some indication regarding the behavior of the test when the alternative is true,

but close to the null, and we shall prove that the Cauchy test has power in the same type of

1/T -neighborhoods of the unity as the ADF test.
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Assumption 3. Let φ = −c/T with c ≥ 0.

Under standard assumptions for the innovations, e.g. i.i.d. sampling and a suitable mo-

ment condition, the normalized process xt converges weakly to an OU process (see e.g. Phillips,

1987). Let Jc denote the standard OU process, the solution of the stochastic differential equation

dJc (s) = −cJc (s) ds+ dW (s) where W is a standard Wiener process. Note that J0 (s) = W (s).

Here, however, the innovations εt are allowed to be unconditionally heteroskedastic. Many

potentially integrated time series exhibit such behavior. Following e.g. Cavaliere and Taylor

(2007b), we require a multiplicative component structure for the innovations; but we relax their

i.i.d. assumption to martingale differences [md] with weak moment conditions. We are actually

closer to the setup of Cavaliere and Taylor (2009a), but keep the deterministically varying variance

for comparability with the earlier literature. Our results arguably hold under Cavaliere and

Taylor’s (2009a) assumptions as well.

Assumption 4. The innovations εt are variance-modulated, εt = σtεt, such that

1. εt is an md sequence with E ε2t = 1 having uniformly continuous marginal density functions

such that ∃r > 4 with supt ‖εt‖r < C <∞.

2. σt = ω (t/T ) where ω (·) is a bounded positive function on [−∞; 1], piecewise continuous.

Requiring the innovations εt to have no atoms (or poles of the density function) is not uncom-

mon, see the literature on convergence to local time (used e.g. for Chang’s 2002 IV panel unit root

test). It could most likely be relaxed here, as it is employed for examining some characteristics of

cumulated sums in the neighborhood of the origin and we do not require a “full” weak convergence

result. But the assumption simplifies the proofs so we stick to it. The moment condition is also

standard in the unit root literature; see e.g. Chang and Park (2002).

Variance modulation has become a topic in the unit root and panel unit root testing liter-

ature; see the recent surge of contributions discussing unconditional heteroskedasticity (besides

the authors mentioned above, Kim et al. (2002) and Hamori and Tokihisa (1997) contribute to

this literature, among others). Under the DGP implied by Assumption 4, weak convergence still

holds, but to a time-transformed OU process (the stochastic differential equation describing the

limit becomes dJηc (s) = −cJηc (s) ds+ ω (s) dW (s)). In order to describe the solution, define the

so-called variance profile,

η (s) =
(ˆ 1

0
ω2 (r) dr

)−1 ˆ s

0
ω2 (r) dr,

and let ω2 =
´ 1
0 ω

2 (r) dr. If ω(s) is constant, η(s) = s and the standard case is recovered. The

limiting behavior of the partial sums is described by the following lemma.
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Lemma 1. It holds under Assumptions 1, 3, and 4 that

1√
T
x[sT ] ⇒

ω

A(1)
Jc (η (s))

as T →∞.

Proof: Along the lines of Cavaliere (2004, Lemma 3).

Before proceeding to the asymptotic analysis, the recursive adjustment schemes are examined

in more detail, as they are essential to the asymptotics of the Cauchy test.

Under the null, the lagged levels require an adjustment scheme that does not affect the mar-

tingale difference property of the cross-product of instrument and innovation (see So and Shin,

1999, and the proofs in the Appendix); hence the use of recursive adjustment for the lagged level.

Recursive adjustment implies OLS fitting of the deterministic component at time t− 1 using the

sample up to t− 1. Shin and So (2001) analyze the unit root test with recursive demeaning, for

recursive detrending see Taylor (2002) (in a seasonal framework) or Rodrigues (2006).

Adjusting the differences ∆yt for deterministic components poses quite some problems because

of the way the adjustment influences the asymptotic properties of the Cauchy test. We shall

prove that, if the trend component of the differences is weak enough (such as a non-zero mean

in the levels, which is differenced away), the asymptotics are not affected when not accounting

for the weak trend component. If not, one has to adjust (for which one can resort to usual OLS

adjustment), and there is an asymptotic effect.

If only a constant is to be removed, dt = µ, the recursive scheme for the lagged levels becomes

ỹµt−1 = yt−1 −
1

t− 1

t−1∑
j=1

yj = x̃µt−1

The differences are not affected and do not require deterministic adjustment. The implications of

recursive demeaning on the DGP are analyzed in the following lemma.

Lemma 2. Define J̃µc (s) to be the recursively demeaned OU-Process, J̃µc = Jc − 1
s

´ s
0 Jcdr with

J̃µc (0) = 0 a.s.; then
1√
T
x̃µ[sT ] ⇒

ω

A(1)
J̃µc (η (s))

under the assumptions of Lemma 1.

Proof: Since the OU process has integrable paths, Proposition 2 in Demetrescu (2010) applies,

leading to the desired result.

With no need to adjust the differences, the test regression becomes

∆yt = φ̂ỹµt−1 +
p∑
j=1

âj∆yt−j + ε̂t, (1)
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estimated by IV with h
(
ỹµt−1

)
as an instrument for ỹµt−1. Denote tµIV the t-type statistic resulting

from IV estimation of (1).

If, on the other hand, a linear trend is present in the data, the recursive scheme delivers for

the lagged levels

ỹτt−1 = yt−1 +
2

t− 1

t−1∑
j=1

yj −
6

t (t− 1)

t−1∑
j=1

jyj = x̃τt−1;

The implications of recursive adjustment on the DGP are analyzed in the following lemma.

Lemma 3. Define J̃τc (s) the recursively detrended OU-Process, J̃τc (s) = Jc (s) + 2
s

´ s
0 Jc (r) dr −

6
s(s−1)

´ s
0 rJc (s) dr with J̃τc (0) = 0 a.s.; then

1√
T
x̃τ[sT ] ⇒

ω

A(1)
J̃τc (η (s))

under the assumptions of Lemma 1.

Proof: Analogous to the proof of Lemma 2.

The differences have a non-zero mean and do require adjustment (i.e. demeaning), see Propo-

sition 3 below. So one has to work with

∆̃yt−j = φ̂ỹτt−1 +
p∑
j=1

âj∆̃yt−j + ε̂t, (2)

with h
(
ỹτt−1

)
as instrument for ỹτt−1 and ∆̃yt−j as instruments for themselves, where ∆̃yt−j are

suitably adjusted differences. Usual demeaning is good enough to this end, leading to

∆̃yt = ∆yt −
1
T

T∑
t=2

∆yt;

denote by tτIV the resulting t-type statistic.

Another possibility would be to include the deterministic component in the test regression,

∆yt = m̂+ φ̂ỹτt−1 +
p∑
j=1

âj∆yt−j + ε̂t, (3)

and use for testing the t-type statistic from instrumental variable estimation of the above equation,

say tτIV . This does make a difference, though not a substantial one; see Proposition 4.

Recursive adjustment of the differenced series is not an option, since it leads to inconsistent

filtering of the stochastic component at the beginning of the sample. See e.g. Demetrescu (2010)

for details.
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2.2 Asymptotic results

We examine the case with a constant mean first. Here, the t-type statistic behaves nicely, as

summarized in the following proposition.

Proposition 1. With yt = µ+ xt, it holds under Assumptions 1 through 4 that

tµIV
d→
ˆ 1

0
sgn

(
J̃µc (η (s))

)
dW (η (s))− c

A(1)

ˆ 1

0
sgn

(
J̃µc (η (s))

)
Jc (η (s)) ds

as T →∞.

Proof: See the Appendix.

Corollary 1. If c = 0, it holds that

tµIV
d→ N (0, 1).

Proof: For c = 0, tµIV converges in distribution to
´ 1
0 sgn

(
W̃µ (η (s))

)
dW (η (s)), which in turn

has the same distribution as
´ 1
0 dW (η (s)) = W (η(1)). And the latter is standard normal by

construction, as η(1) = 1.

Remark 1. The robustness to unconditional heteroskedasticity is only given under the null of a

unit root. This was the case analyzed by So and Shin (1999) and, implicitly, by Shin and Kang

(2006). Remarkably, heteroskedasticity-consistent standard errors are not required.

Remark 2. The above expression highlights the nonstandard nature of the situation even for

c = 0. In particular, it is shown in the proof that φ̂ is superconsistent. See also Theorem 1(ii)

in So and Shin (1999). Moreover, a distribution that does depend on the the variance profile

emerges under the local alternative, as is the case of the ADF test too.

Examining the proof one finds that lag augmentation with p → ∞ such that p < CT κ for

some κ ∈
(
0,min{1

2 −
2
r ; 1

4}
)

(including logarithmic rates) does not affect the asymptotic normality

under the null (nor the distribution under the local alternative). Data dependent lag choice should

work like in the ADF case; see the proof of the proposition, where the asymptotic covariance

matrix of the estimators is shown to be lower triangular, as well as the subsection containing the

Monte Carlo examination of the test’s small-sample behavior. The finding can immediately be

extended to the case where the short run component is a finite-order invertible ARMA process

and the AR(p) process is only an approximation. It is not clear, however, whether the rate for p

to which information criteria based on the IV residuals lead is still logarithmic. Generalizations

for s-summable AR(∞) processes (see Chang and Park, 2002, for the ADF case) require e.g. a

tighter proof of Lemma 4 E in the Appendix and is not pursued here.

The analogy to the locally best invariant [LBI] test for a unit root (see Tanaka, 1996), based on

the squared difference between the last and the first observation, is striking. Up to the normalizing
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factor (which includes a suitable long-run variance estimator), the LBI test basically consists of

the square of the cumulated innovations, while the IV test can be reduced to the sum of the same

innovations, but weighted with different signs (see the proof of Proposition 1). When squared,

the IV test has the same asymptotic null distribution as the LBI test, and both are robust to

unconditional heteroskedasticity under the null; see Cavaliere (2004) for the discussion of the LBI

test.

However, the locally best invariant test and the IV test are not asymptotically equivalent

under the null or the local alternative, and the behavior is also different under a fixed alternative

φ < 0. For the IV test for instance, standard instrumental regression asymptotics apply under

the alternative, leading to
√
T -consistent estimation of the parameter φ and thus to consistency

of the IV unit root test. See the following proposition and also So and Shin (1999, Theorem 1(ii)).

Proposition 2. With yt = µ+ xt and −2 < φ < 0, it holds under Assumptions 1, 2 and 4 that

tµIV
p→ −∞

as T →∞.

Proof: Obvious and omitted.

If a linear trend is indeed present in the data, it has to be dealt with, as pointed out by the

following proposition.

Proposition 3. With yt = µ+ τ t+ xt and τ 6= 0, it holds under Assumptions 1 through 4 that∣∣tµIV ∣∣ p→∞

as T →∞.

Proof: See the Appendix.

The result holds as well if yt−1 is recursively detrended in (1): the critical issue is ignoring the

non-zero mean of the differences, E ∆yt = τ .

Remark 3. The ADF test behaves nicer in this respect. Namely, the t-type statistic is standard

normal if there is a neglected linear trend and the ADF regression includes a constant (West,

1988); this can be exploited to build union of rejections when one is not sure about the presence

of a linear trend in the data (Harvey et al., 2009). The above Proposition gives incentive to rather

detrend when one is not sure there about the nature of the deterministic component.

Moving on to the analysis of the detrended test, note that the two choices for demeaning the

differences mentioned in the previous subsection are slightly different in the resulting distributions

(see Proposition 4 below), but not in their implications for the asymptotic behavior: when c = 0,

limiting standard normality is not given for either of the two.
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Proposition 4. With yt = µ+ τ t+ xt, it holds under Assumptions 1 through 4 that

tτIV
d→
ˆ 1

0
sgn

(
J̃τc (η (s))

)
dW (η (s))− c

A(1)

ˆ 1

0
sgn

(
J̃τc (η (s))

)
Jc (η (s)) ds

−
(
W (1)

ˆ 1

0
sgn

(
J̃τc (η (s))

)
ds− c

A(1)

ˆ 1

0
sgn

(
J̃τc (η (s))

)
ds

ˆ 1

0
Jc (η (s)) ds

)
and

t
τ
IV

d→
tτIV√

1−
(´ 1

0 sgn
(
J̃τc (η (s))

)
ds
)2

as T →∞, irrespective of whether τ 6= 0 or not.

Proof: See the Appendix.

Remark 4. The result analogous to Proposition 2 holds as well, guaranteeing consistency under

a fixed alternative.

Remark 5. In the detrending case, the Cauchy estimator looses its good properties under the

null of a unit root even when there is actually no linear trend in the data. The problem is

that demeaning differences induces a component of order Op
(
T−0.5

)
which affects the asymptotic

distribution, although in a predictable manner (i.e. a distribution free of nuisance parameters).

Chang (2002) does not face this problem. From her work it can be seen that square-root consistent

estimation of the mean of the differences does not affect the asymptotics: essentially, her choice

of an instrument leads to standard normality through a martingale difference CLT requiring

normalization lower than
√
T .

Other schemes for demeaning the differences can be used, of course (e.g. GLS demeaning). The

above proposition suggests, however, that the asymptotic distributions will change accordingly.

We are not aware of a demeaning scheme for the differences that does not affect the result in the

sense that asymptotic normality of tµIV for c = 0 is maintained: any
√
T -consistent demeaning

scheme will lead to a nonstandard distribution, which is slightly disappointing considering the

nice behavior under demeaning.

2.3 Monte Carlo examinations

This section investigates the size and power of the Cauchy unit root test with demeaning only,

with a special emphasis on the robustness to unconditional heteroskedasticity.

Following Cavaliere and Taylor (2008), we use the following simple DGP:

yt = µ+ xt

xt = ρxt−1 + ut t = 1, . . . , T
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Table 1: Size of the Cauchy and bootstrap M tests

τ = 0.1 τ = 0.5 τ = 0.9
T 30 50 100 150 200 30 50 100 150 200 30 50 100 150 200

ψ = −0.5

δ = 1/5 MZbα .144 .081 .087 .071 .063 .130 .081 .074 .069 .058 .139 .095 .070 .067 .050

MSBb .133 .076 .082 .071 .059 .110 .076 .068 .066 .057 .122 .093 .079 .067 .050

MZbt .147 .083 .087 .070 .063 .133 .082 .076 .069 .058 .135 .088 .068 .068 .049
tµIV .025 .027 .044 .042 .051 .022 .027 .041 .053 .056 .020 .028 .023 .016 .023

δ = 1 MZbα .135 .072 .072 .077 .059 .126 .084 .076 .077 .063 .135 .080 .075 .075 .064

MSBb .122 .068 .072 .075 .055 .118 .076 .072 .074 .062 .122 .077 .073 .073 .064

MZbt .138 .075 .073 .077 .059 .129 .083 .074 .078 .063 .138 .079 .076 .075 .063
tµIV .022 .024 .040 .043 .044 .028 .028 .034 .050 .045 .026 .028 .038 .049 .048

δ = 5 MZbα .082 .028 .042 .047 .037 .109 .058 .055 .061 .052 .128 .079 .075 .079 .064

MSBb .077 .027 .039 .045 .035 .104 .057 .053 .061 .052 .125 .077 .072 .076 .063

MZbt .084 .029 .043 .048 .037 .110 .060 .055 .062 .054 .131 .082 .076 .081 .064
tµIV .028 .046 .054 .042 .017 .013 .010 .016 .019 .031 .027 .029 .034 .045 .048

ψ = 0

δ = 1/5 MZbα .060 .052 .052 .053 .050 .056 .057 .054 .051 .053 .062 .057 .058 .060 .055

MSBb .058 .046 .051 .051 .049 .052 .057 .053 .055 .053 .037 .042 .050 .058 .053

MZbt .061 .054 .052 .051 .052 .056 .061 .055 .051 .054 .073 .061 .060 .062 .058
tµIV .072 .067 .067 .065 .056 .111 .105 .092 .080 .086 .092 .085 .073 .076 .073

δ = 1 MZbα .056 .053 .050 .049 .049 .051 .056 .051 .051 .054 .059 .058 .053 .046 .050

MSBb .052 .051 .050 .047 .047 .052 .056 .050 .056 .052 .056 .058 .053 .045 .049

MZbt .056 .053 .051 .048 .048 .052 .056 .050 .049 .052 .061 .059 .052 .047 .050
tµIV .059 .056 .057 .052 .050 .057 .062 .058 .061 .053 .065 .064 .060 .053 .059

δ = 5 MZbα .072 .066 .058 .053 .054 .062 .054 .055 .052 .049 .057 .050 .052 .049 .050

MSBb .069 .066 .058 .055 .054 .061 .055 .056 .052 .048 .057 .049 .050 .048 .047

MZbt .072 .067 .059 .054 .055 .062 .056 .056 .051 .048 .058 .049 .053 .047 .051
tµIV .044 .054 .047 .047 .057 .062 .061 .060 .057 .053 .060 .053 .055 .056 .055

ψ = 0.5

δ = 1/5 MZbα .050 .060 .059 .055 .055 .061 .065 .071 .067 .056 .190 .173 .110 .097 .071

MSBb .049 .062 .057 .056 .054 .062 .065 .070 .066 .054 .190 .182 .118 .099 .074

MZbt .046 .060 .058 .057 .054 .056 .064 .068 .065 .057 .182 .163 .105 .092 .069
tµIV .006 .014 .032 .035 .042 .008 .018 .026 .033 .038 .011 .014 .017 .018 .016

δ = 1 MZbα .048 .063 .056 .052 .052 .040 .062 .061 .052 .048 .045 .056 .056 .056 .051

MSBb .050 .065 .054 .050 .053 .043 .060 .060 .054 .047 .043 .056 .053 .055 .051

MZbt .046 .061 .057 .050 .052 .039 .062 .060 .052 .048 .043 .060 .056 .055 .051
tµIV .007 .017 .025 .026 .037 .006 .015 .024 .031 .036 .007 .019 .029 .029 .034

δ = 5 MZbα .019 .018 .028 .036 .030 .016 .032 .054 .057 .041 .030 .049 .053 .055 .050

MSBb .021 .019 .027 .035 .030 .015 .030 .054 .057 .043 .033 .050 .054 .054 .051

MZbt .019 .017 .027 .035 .031 .017 .033 .054 .057 .043 .030 .049 .052 .056 .049
tµIV .011 .014 .017 .012 .015 .009 .004 .011 .015 .018 .004 .014 .024 .030 .034

Nominal 5% level. 5000 replications, 500 bootstrap replications for the M tests. ψ defines an MA(1) error
term process for the errors εt.
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Table 2: Size of the Cauchy and bootstrap M tests

τ = 0.1 τ = 0.5 τ = 0.9
T 30 50 100 150 200 30 50 100 150 200 30 50 100 150 200

η = −0.5

δ = 1/5 MZbα .044 .032 .033 .033 .035 .048 .032 .033 .030 .034 .101 .092 .051 .051 .051

MSBb .038 .029 .031 .033 .035 .043 .030 .029 .030 .035 .098 .099 .058 .051 .049

MZbt .044 .032 .035 .035 .035 .049 .034 .034 .031 .035 .095 .084 .050 .049 .047
tµIV .051 .040 .046 .057 .055 .054 .067 .069 .077 .076 .054 .046 .036 .035 .039

δ = 1 MZbα .035 .027 .036 .037 .045 .031 .029 .037 .040 .040 .036 .028 .033 .038 .042

MSBb .032 .025 .033 .038 .044 .026 .026 .034 .040 .040 .033 .025 .031 .034 .041

MZbt .035 .030 .037 .037 .042 .035 .030 .039 .042 .041 .037 .029 .033 .041 .043
tµIV .048 .041 .036 .047 .047 .043 .045 .043 .047 .051 .042 .038 .038 .044 .050

δ = 5 MZbα .010 .011 .022 .020 .029 .032 .024 .034 .030 .034 .036 .025 .032 .040 .038

MSBb .010 .010 .020 .022 .027 .029 .023 .032 .030 .034 .032 .021 .032 .040 .036

MZbt .011 .013 .022 .021 .029 .034 .024 .034 .030 .035 .037 .027 .033 .040 .038
tµIV .061 .043 .033 .037 .023 .034 .038 .040 .039 .042 .045 .038 .043 .050 .046

η = 0.5

δ = 1/5 MZbα .093 .071 .055 .053 .046 .117 .086 .061 .056 .057 .252 .211 .123 .092 .078

MSBb .094 .073 .055 .055 .050 .120 .086 .062 .058 .055 .242 .213 .131 .102 .082

MZbt .088 .068 .055 .052 .045 .114 .081 .060 .054 .055 .246 .202 .118 .086 .076
tµIV .017 .032 .047 .050 .052 .023 .037 .055 .059 .054 .022 .028 .030 .027 .028

δ = 1 MZbα .079 .072 .058 .051 .060 .083 .071 .054 .054 .051 .084 .070 .050 .056 .054

MSBb .082 .073 .056 .051 .059 .085 .077 .054 .052 .053 .084 .068 .049 .056 .054

MZbt .073 .070 .060 .049 .058 .078 .068 .056 .056 .051 .081 .069 .049 .054 .053
tµIV .016 .033 .045 .050 .052 .016 .036 .040 .047 .055 .015 .032 .042 .047 .042

δ = 5 MZbα .028 .014 .019 .019 .025 .023 .034 .039 .041 .042 .060 .050 .050 .049 .049

MSBb .029 .015 .019 .019 .026 .022 .034 .038 .041 .042 .066 .052 .051 .050 .049

MZbt .027 .013 .019 .021 .026 .023 .035 .039 .041 .043 .056 .050 .048 .048 .049
tµIV .013 .015 .020 .023 .019 .007 .011 .028 .034 .042 .012 .028 .040 .044 .043

Nominal 5% level. 5000 replications, 500 bootstrap replications for the M tests. η defines an AR(1) error
term process for the errors εt.

To gauge the effect of serial correlation, we let ut be an MA(1) process, obtained by applying the

filter ψ(L) = 1 + ψL to the possibly heteroskedastic innovations εt, where ψ ∈ {−0.5, 0, 0.5}. We

alternatively also consider the scenario ut = ηut−1 + εt.

To introduce nonstationary volatility into the DGP, we generate a permanent break in the inno-

vation variance of standard normal variates εt at time bτT c, where Var(εt) = 1 for t = 1, . . . , bτT c
and Var(εt) = 1/δ2 for t = bτT c + 1, . . . , T . We consider τ ∈ {0.1, 0.5, 0.9}, corresponding to

early, middle and late breaks, and δ ∈ {1/5, 1, 5} to generate positive (δ = 1/5) and negative

(δ = 5) breaks, respectively. The case δ = 1 covers the benchmark homoskedastic case. (Such a

design ensures that neither regime dominates asymptotically.)

In all simulations a constant is removed as described above. Since all tests considered are then

invariant to the value of µ we set µ = 0. The instrument generating function (cf. Assumption 2)
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is specified as m = 1 and g(x) = x.2 When ψ 6= 0 we choose the number of lagged differences

p using Akaike’s criterion. To study size, we let ρ = 1 corresponding to φ = 0. In the power

experiments we take ρ = 0.8.

To gauge the effectiveness of the Cauchy test under nonstationary volatility, we compare it

to Cavaliere and Taylor’s (2008) recent wild bootstrap version of theM tests of (Ng and Perron,

2001). We refer to Cavaliere and Taylor (2008) for a detailed description of their approach.

Table 1 reports the size of the tests for the case of MA error terms. We see that both the

Cauchy test tµIV and the bootstrap M tests control size very well for T sufficiently large and

any pattern of variance break and serial dependence. Further, tµIV is level α throughout. It

can however be rather undersized for small T , e.g. for ψ = 0.5, δ = 1/5 and τ = 0.1. On the

other hand, the bootstrap M tests can be severely oversized for small T , with the empirical size

sometimes almost four times the nominal one for ψ = 0.5, δ = 1/5 and τ = 0.9. In either case,

the distortions vanish as T → ∞. All tests are also capable of handling the baseline case of no

heteroskedasticity, δ = 1, although a larger T is required for the bootstrap tests. Table 2 reports

analogous results for an AR(1) error process. Again, the bootstrap tests are mostly oversized for

small T . For η = 0.5, δ = 1/5 and τ = 0.9, the bootstrap tests have empirical size five times

the nominal one. The Cauchy test can again be somewhat undersized. All in all, we believe it

is consistent with most analysts’ loss functions to argue that tµIV offers an improvement in small

sample size over the bootstrap M tests.

Tables 3 and 4 report power of the tests for the MA and AR error cases. Given that size-

adjusted critical values are not available in practice we do not report size-adjusted power (Horowitz

and Savin, 2000). All tests considered are consistent in that power tends to one as T →∞. Prima

facie, the bootstrapM tests mostly appear to be much more powerful. For instance, for T = 200,

ψ = −0.5, δ = 1/5 and τ = 0.1, the bootstrap M tests have power almost equal to one whereas

tµIV only achieves a power of 0.41. However, cases where all tests control the nominal size reveal

that these power gains are entirely driven by the size distortion. For instance, for ψ = 0, δ = 1

and τ = 0.1 all tests have empirical size close to 5% and nearly identical power. The choice of

one of the tests in a given application could therefore depend on a specific loss function attaching

weights to false rejections and acceptances. Other considerations, such as the computational ease

of tµIV relative to the bootstrap tests may also play a role.

3 Panel unit root tests

For the panel analysis, we shall focus on the unit root case with no deterministic trends, as

it is the one with normality and heteroskedasticity-robustness. Otherwise, all problems due to
2Experimentation with other choices yielded results slightly inferior to those to be reported below.
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Table 3: Power of the Cauchy and bootstrap M tests

τ = 0.1 τ = 0.5 τ = 0.9
T 30 50 100 150 200 30 50 100 150 200 30 50 100 150 200

ψ = −0.5

δ = 1/5 MZbα .498 .598 .947 .998 .998 .354 .402 .756 .936 .956 .276 .242 .421 .619 .632

MSBb .455 .562 .939 .999 .998 .301 .362 .727 .927 .952 .214 .220 .415 .624 .639

MZbt .510 .606 .947 .997 .998 .363 .409 .758 .933 .954 .250 .238 .403 .601 .619
tµIV .046 .087 .207 .322 .411 .038 .065 .137 .199 .279 .030 .041 .073 .098 .145

δ = 1 MZbα .362 .399 .680 .825 .813 .363 .415 .695 .828 .812 .361 .393 .689 .822 .819

MSBb .333 .372 .665 .812 .799 .332 .382 .676 .812 .802 .327 .359 .663 .806 .806

MZbt .370 .409 .688 .829 .820 .379 .421 .695 .831 .814 .372 .404 .696 .828 .821
tµIV .036 .071 .195 .296 .397 .037 .079 .197 .306 .395 .036 .074 .207 .301 .386

δ = 5 MZbα .111 .061 .168 .257 .253 .206 .212 .446 .597 .588 .373 .416 .690 .811 .803

MSBb .103 .055 .160 .250 .247 .199 .204 .440 .592 .584 .343 .391 .673 .802 .798

MZbt .116 .065 .177 .262 .260 .215 .220 .451 .599 .592 .390 .431 .704 .817 .807
tµIV .025 .061 .173 .236 .198 .023 .033 .077 .132 .204 .040 .082 .205 .319 .390

ψ = 0

δ = 1/5 MZbα .338 .669 .990 1.00 1.00 .238 .437 .879 .992 1.00 .233 .408 .714 .874 .954

MSBb .289 .615 .984 1.00 1.00 .198 .391 .853 .988 .999 .132 .344 .715 .887 .964

MZbt .347 .674 .988 1.00 1.00 .241 .440 .873 .989 .999 .239 .386 .662 .829 .927
tµIV .363 .611 .938 .994 1.00 .385 .572 .886 .981 .998 .284 .421 .696 .889 .972

δ = 1 MZbα .273 .550 .905 .964 .988 .257 .529 .891 .957 .979 .273 .533 .889 .956 .978

MSBb .231 .505 .893 .960 .984 .226 .490 .871 .951 .974 .235 .480 .872 .952 .977

MZbt .275 .555 .906 .964 .986 .263 .538 .893 .957 .978 .280 .537 .889 .956 .978
tµIV .270 .510 .912 .995 1.00 .261 .494 .905 .992 1.00 .276 .503 .915 .994 1.00

δ = 5 MZbα .115 .203 .366 .471 .554 .156 .313 .664 .793 .869 .268 .530 .881 .948 .970

MSBb .100 .186 .356 .460 .547 .153 .305 .657 .793 .869 .239 .492 .871 .946 .970

MZbt .122 .210 .372 .477 .557 .160 .320 .661 .793 .866 .279 .550 .886 .949 .971
tµIV .069 .151 .397 .630 .792 .163 .318 .691 .905 .982 .269 .507 .908 .990 1.00

ψ = 0.5

δ = 1/5 MZbα .076 .290 .889 .995 .999 .071 .150 .593 .893 .953 .172 .165 .365 .611 .683

MSBb .066 .245 .869 .991 .999 .058 .130 .549 .873 .950 .173 .171 .356 .615 .697

MZbt .082 .301 .890 .994 .999 .074 .159 .596 .892 .951 .167 .155 .355 .581 .658
tµIV .024 .085 .292 .492 .599 .023 .067 .161 .268 .376 .016 .032 .042 .056 .098

δ = 1 MZbα .072 .214 .707 .868 .902 .070 .210 .693 .848 .869 .065 .218 .684 .842 .874

MSBb .059 .192 .681 .857 .895 .057 .187 .670 .834 .861 .051 .190 .659 .830 .864

MZbt .077 .225 .709 .873 .903 .076 .227 .697 .849 .870 .067 .222 .694 .842 .873
tµIV .021 .072 .251 .454 .583 .014 .067 .242 .432 .582 .016 .060 .253 .450 .574

δ = 5 MZbα .013 .047 .182 .300 .311 .044 .124 .420 .618 .658 .055 .209 .681 .837 .864

MSBb .012 .041 .170 .289 .304 .040 .119 .409 .615 .655 .048 .185 .656 .827 .857

MZbt .013 .049 .189 .307 .318 .046 .131 .426 .620 .657 .060 .220 .695 .840 .867
tµIV .011 .029 .108 .177 .157 .011 .017 .070 .149 .223 .020 .065 .267 .439 .573

Nominal 5% level. 5000 replications, 500 bootstrap replications for the M tests. ψ defines an MA(1) error
term process for the errors εt.
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Table 4: Power of the Cauchy and bootstrap M tests

τ = 0.1 τ = 0.5 τ = 0.9
T 30 50 100 150 200 30 50 100 150 200 30 50 100 150 200

η = −0.5

δ = 1/5 MZbα .224 .367 .869 .983 .999 .169 .211 .555 .797 .937 .168 .152 .308 .506 .593

MSBb .194 .327 .850 .978 .999 .140 .181 .516 .773 .929 .138 .153 .296 .516 .600

MZbt .234 .387 .872 .980 .998 .174 .216 .562 .796 .933 .159 .148 .296 .483 .569
tµIV .132 .309 .780 .946 .978 .133 .267 .613 .809 .892 .096 .128 .215 .321 .391

δ = 1 MZbα .145 .230 .647 .773 .847 .140 .228 .639 .767 .838 .138 .220 .627 .800 .841

MSBb .121 .199 .621 .757 .835 .124 .197 .612 .746 .824 .118 .194 .598 .784 .831

MZbt .155 .239 .654 .776 .851 .146 .239 .646 .769 .841 .146 .232 .632 .803 .842
tµIV .108 .231 .736 .924 .980 .103 .228 .726 .937 .976 .095 .219 .717 .927 .976

δ = 5 MZbα .030 .043 .136 .192 .273 .082 .102 .335 .494 .610 .145 .234 .636 .794 .833

MSBb .025 .038 .127 .183 .264 .078 .094 .325 .488 .607 .126 .208 .609 .782 .827

MZbt .034 .045 .142 .198 .280 .086 .109 .343 .498 .614 .157 .252 .652 .801 .835
tµIV .058 .095 .318 .433 .399 .065 .121 .381 .647 .799 .105 .234 .722 .923 .973

η = 0.5

δ = 1/5 MZbα .110 .264 .829 .976 .999 .101 .154 .523 .793 .939 .207 .184 .332 .572 .663

MSBb .095 .234 .799 .973 .998 .094 .138 .494 .778 .931 .200 .201 .334 .575 .671

MZbt .113 .273 .827 .973 .998 .102 .157 .527 .792 .936 .199 .173 .327 .545 .633
tµIV .073 .239 .652 .888 .976 .060 .169 .490 .713 .856 .035 .059 .139 .239 .328

δ = 1 MZbα .101 .241 .701 .848 .923 .097 .212 .666 .814 .875 .089 .221 .660 .845 .887

MSBb .092 .222 .675 .829 .912 .089 .191 .639 .796 .868 .079 .204 .633 .826 .877

MZbt .104 .247 .705 .851 .925 .098 .218 .666 .816 .877 .094 .228 .669 .846 .887
tµIV .051 .181 .586 .848 .957 .053 .168 .580 .854 .958 .048 .165 .568 .839 .954

δ = 5 MZbα .024 .054 .167 .250 .347 .059 .119 .388 .549 .669 .078 .219 .655 .832 .867

MSBb .021 .050 .157 .239 .338 .057 .115 .379 .545 .666 .071 .201 .628 .824 .862

MZbt .027 .060 .176 .254 .350 .059 .123 .388 .552 .668 .083 .230 .671 .836 .870
tµIV .015 .044 .203 .301 .295 .013 .061 .252 .489 .702 .047 .164 .571 .827 .949

Nominal 5% level. 5000 replications, 500 bootstrap replications for the M tests. η defines an AR(1) error
term process for the errors εt.

nonstandard distribution appear, and in particular lack of invariance to the variance profile.

Hence, in the detrending case, one rather ought to use the ADF test with some fix along the lines

of Cavaliere and Taylor (2007a,b). See Hanck (2009) for a panel version of heteroskedasticity-

robust unit root tests.

In the case requiring detrending, the ALM test for fractional integration due to Demetrescu

et al. (2008) could also be used for panel unit root testing (i.e. integration of order one), see

Hassler et al. (2007), similar in spirit to this paper’s approach. The ALM test’s standard normal

asymptotic null distribution is affected neither by detrending (Demetrescu et al., 2008) nor by

deterministic heteroskedasticity: (Kew and Harris, 2009) show that heteroskedasticity-robust

standard errors ensure the robustness to unconditional heteroskedasticity as well.
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3.1 Model and assumptions

Let yi,t be the observed series, generated as

yi,t = µi + xi,t, i = 1, . . . , N, t = 1, . . . , T,

The stochastic component xi,t is generated unit-wise by an autoregressive process of order pi + 1

with a possible unit root,

(1− ρiL)Ai (L)xi,t = εi,t

where the pi characteristic roots of the polynomials Ai all belong to the stability region. The

model written in error correction form is

∆xi,t = φixi,t−1 +
p∑
j=1

aij∆xi,t−j + εi,t, (4)

with φi = ρi − 1. Under the null of a unit root it holds ρi = 1 or φi = 0.

Throughout the section, we shall assume the DGP and the instruments to satisfy the univariate

assumptions individually. The lag orders, for instance, may be heterogenous, but we assume the

maximal lag order to be finite (and set the “missing” autoregressive parameters in units with

lower actual order to zero).

Assumption 5. The unit-specific dynamics satisfy each Assumption 1 with supi pi < p, i =

1, . . . , N and the unit-specific instrument generating functions each satisfy Assumption 2 with

supimi < M and sup|x|≤m,i gi(x) < G, i = 1, . . . , N , for some p, G and M not depending on T

or N .

Hanck (2009) demonstrates that many popular second-generation panel unit root tests (e.g.,

Pesaran, 2007; Breitung and Das, 2005; Demetrescu et al., 2006; Moon and Perron, 2004) fail un-

der these assumptions. Specifically, some tests attain an empirical size of over 60% at a nominal

5% level. As such, they cannot be recommended for empirical application whenever e.g. vari-

ance breaks are a relevant concern. On the contrary, the Cauchy test’s univariate robustness to

unconditional heteroskedasticity prevents such failure in the panel case as well

Under cross-sectional independence, a panel test statistic can be constructed immediately

based on the single-unit Cauchy tests due to their standard asymptotics. The simplest statistic is

obtained by summing the individual ones and dividing by
√
N , leading to a standard normal panel

test statistic. This holds true when allowing for N →∞; but N →∞ is not a necessary condition

for normality. As a peculiarity of the IV estimation, there is no difference between the two tests

obtained by assuming homogeneity, and heterogeneity, of the single-unit autoregressive roots. For

panel unit root tests based on ADF statistics, see Levin et al. (2002) and Im et al. (2003), the

assumption does make a difference in terms of local power; see Westerlund and Breitung (2009).3

3In the ADF case, the denominators of the two panel test statistics are different, whereas in the IV case they
are asymptotically the same, as can be easily checked.
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Under cross-correlation, the Cauchy panel unit root test requires orthogonalization, since the

individual test statistics are correlated. See Shin and Kang (2006), who conduct their analysis

under a fixed-N assumption. They propose several test statistics, all ultimately based on the

joint distribution of the statistics τ̂i,IV resulting from an IV regression of the prewhitened and

orthogonalized differences on the lagged levels. Concretely, let

εi,t = ∆yi,t −
p∑
j=1

aij∆yi,t−j

and εt = (ε1,t, . . . , εN,t)
′ be the prewhitened differences; as estimates aij , Shin and Kang (2006)

suggest the use of the OLS estimates under the null ρi = 1. Then, compute the sample covariance

matrix

Σ̂ε =
1

T − p

T∑
t=p+2

εtε
′
t

and let Σ̂−1
ε = Γ̂ Γ̂ ′ be a suitable LU decomposition. Denote the orthogonalized, prewhitened

differences by

ε∗t = Γ̂ ′εt.

Finally, the orthogonalized statistics τ̂i,IV are given by

τ̂i,IV =

∑T
t=p+2 hi

(
ỹµi,t−1

)
ε∗i,t√∑T

t=p+2 h
2
i

(
ỹµi,t−1

) ,
where ε∗i,t are the N elements of ε∗t .

Define τIV = (τ̂1,IV , . . . , τ̂N,IV )′ the vector stacking the individual orthogonalized statistics of

Shin and Kang (2006). Assuming a fixed N (after which sequential asymptotics, first T → ∞
followed by N →∞, applies trivially), the resulting joint distribution of τIV is multivariate normal

with zero mean and unity covariance matrix under their conditions. The result holds under our

assumptions as well, in particular under unconditional heteroskedasticity; see Proposition 5 below.

Proposition 5 also examines the the joint distribution of the N individual Cauchy tests as

studied in the previous section. We include it for the following reason. With macropanels,

there is information to be gained from single-unit tests as well and thus it may be of interest to

check these first, followed by an overall panel analysis based on their joint distribution.4 Define

tµIV =
(
tµ1,IV , . . . , t

µ
N,IV

)′ and let Ξ̂ be the sample correlation matrix of ε̂t, where the vector

ε̂t contains the N stacked residuals at time t from IV estimation of the N unit-specific error-

correction models in (4).

Proposition 5. Under Assumption 5 with εt = (ε1,t, . . . , εN,t)
′ such that εt = Ω0.5 (t/T ) εt,

where εt is an N -dimensional md sequence with uniformly continuous N -dimensional marginal
4This would be the standard procedure in multiple testing situations.
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density functions and unity covariance matrix such that ∃r > 4 with supt ‖εt‖r < C < ∞, and

Ω(·) is an N ×N matrix of piecewise continuous functions on [−∞; 1], Ω(s) positive definite ∀s,
it holds under the null ρi = 1, i = 1, . . . , N , that

τIV
d→ NN (0N , IN ),

with IN the N ×N identity matrix, and that

tIV
d→ NN (0N ,plim Ξ̂)

as T →∞, where the probability limit exists and is positive definite.

Proof: By multivariate extension of Proposition 1.

Remark 6. The assumed DGP allows for time-varying correlation as well, so the probability

limit of Ξ̂ is only the “average” correlation; see the discussion following Assumption 6.

Remark 7. The panel tests are consistent against the alternative of at least one stationary unit,

as the straightforward multivariate extension of Proposition 2 indicates.

Under the simplifying assumption of a fixed N , however, the discussed asymptotics could be

seen as rather a time series problem. While we do not share the view that such assumptions–

destined to make the asymptotics more tractable–render the tests unusable, it is obvious that they

do not cover the entire spectrum of possible N,T combinations, and we provide a joint asymptotic

analysis. But we now require panel-specific assumptions regarding the innovations; in particular,

we assume a factor structure of the panel innovations.

Assumption 6. Let εt := Λ′νt + ε̃t, where the common factors νt and the idiosyncratic factors

ε̃t are such that

1. Λ = {λ′i}i=1,...,N is an N × L matrix, 1 ≤ L fixed, such that λi 6= 0L ∀i and supi,j λij <

C <∞;

2. νt and ε̃i,t, i = 1, . . . , N , are independent sequences;

3. ε̃i,t satisfy each Assumption 4 with supi T−1.5
∑T

t=1

∑T
s=1 E

∣∣∣ε2i,s − 1
∣∣∣ ∣∣∣ε2i,t − 1

∣∣∣→ 0 as T →∞
and some uniformly bounded variance function ωi;

4. νt satisfies the heteroskedastic md assumption in Proposition 5, νt = Ω0.5υt, such that, for

each pair 1 ≤ k, l ≤ L, T−1.5
∑T

t=1

∑T
s=1 E |υk,sυl,s − I(k = l)| |υk,tυl,t − I(k = l)| → 0 as

T →∞.

Under the assumed factor structure, the innovations εt have at time t a covariance matrix

E εtε′t = ΛΩ (t/T )Λ′ + diag
(
ω2
i (t/T )

)
);
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Moreover, their “average” covariance matrix is, following the univariate case,

Ω = Λ

ˆ 1

0
Ω (s) dsΛ′ + diag

(ˆ 1

0
ω2
i (s) ds

)
The covariance matrix depends on t, hence orthogonalization is never exact; but the sample co-

variance approaches in a certain sense Ω as T →∞, so the orthogonalization procedure will work

asymptotically; see the proof of Proposition 6 for details. The panel exhibits strong correlation

in the sense that
∥∥Ω∥∥ = O(N) under Assumption 6.

The uniform higher-order cross-product moment conditions implied by independence of the

idiosyncratic factors and the assumed summability conditions ensure the minimal degree of ho-

mogeneity across the panel that is required for joint asymptotics (such as convergence at the

same rate of the cross-covariances). The summability of 4th order cumulants even allows for some

degree of long-memory in the variance of the factors and ensures e.g. 4
√
T -consistency of their

sample variances. Sequential, or fixed-N , asymptotics do not resort to such assumptions since

T →∞ leads to joint normality, and correlation (taken care for by orthogonalization) is the only

form of cross-sectional dependence.

Finally, we shall focus in the remainder of the paper on the IPS-type statistic τ IV proposed

by Shin and Kang (2006). Shin and Kang’s Wald-type statistic WIV , for instance, for which

they show WIV
d→ χ2

N under H0 is a two-sided test, and one-sided versions that focus on the

relevant alternative φi < 0 for some i are likely to be more powerful.5 Other tests proposed

by Shin and Kang (2006) are as follows. Defining pi = Φ(τi,IV ) for Φ the cdf of the standard

normal distribution, Proposition 5 guarantees that pi
d→ U [0, 1] (with U the uniform distribution)

under H0, where pi and pj are independent for i 6= j. Hence, the Fisher-type meta statistics

PIV = −2
∑N

i=1 ln(pi) and ZIV = N−1/2
∑N

i=1 Φ−1(pi) are available. The asymptotic (as T →∞)

null distributions are well-known to be PIV
d→ χ2

2N and ZIV
d→ N(0, 1). Note that, due to

standard asymptotics of the Cauchy test (at least for a fixed N), ZIV = τ IV .

3.2 Joint N, T asymptotic results

We discuss the joint asymptotics of the τ IV test only; the result holds for the orthogonalized

Cauchy test as well, as is the case for finite N .

Proposition 6. Under Assumptions 5 and 6, it holds as N,T →∞ such that N2/
√
T → 0 that

τ IV
d→ N (0, 1)

Proof: See the Appendix.

5Unreported simulations that are available upon request confirm this conjecture.
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Remark 8. If letting p→∞, there will be some trade-off between the rate of p and the rate of N :

the less approximation error (cf. the proof of Proposition 1) is present in each single-unit statistic,

the smaller their cumulated effect across the panel, and the more units (i.e. higher N -rates) can

be considered without affecting τ IV ’s asymptotic standard normality under the null.

Remark 9. With N → ∞, a fixed fraction of the units should exhibit stationarity to ensure

consistency of the panel tests.

The upper bound N = o
(
T 0.25

)
suggests that T should be much larger than N ; this is the

consequence of having to estimate N(N − 1)/2 covariances. Anyway, N must be smaller than

T to ensure positive definiteness of the sample covariance matrix. Should N be indeed larger

than T , it suggests itself to make simplifying assumptions about the covariance matrix to ensure

a positive definite estimate. Hartung (1999) assumes equicorrelation, and gives an algorithm on

how to estimate it based on as little as one time observation. Hartung’s method is easily applied

to combine standard normal individual t-type statistics, and it is only natural to do so with the

dependent single unit Cauchy tests tµi,IV .

The simplification is extreme, although the method is quite robust to deviations from the

equicorrelation, here Cov(tµi,IV , t
µ
j,IV ) = c for i 6= j, i, j = 1, . . . , N ; see Hartung (1999) and

Demetrescu et al. (2006). See the following subsection for details. Alternatively, we can use

shrinkage covariance estimators; again see below.

3.3 Small-sample behavior

We now augment the DGPs from Section 2.3 to investigate the panel case. The interesting issue

is the behavior of the orthogonalization procedure, and we hence simulate without short-run

dynamics; their effect has been discussed extensively for the univariate case. Following Chang

(2002), we shall include one lagged difference to account for the fact that the true lag order is not

known in practice.

Assuming, like for the univariate Monte Carlo experiments, the expectation of the observed

process to be zero, we have directly

yi,t = ρiyi,t−1 + εi,t i = 1, . . . , N, t = 1, . . . , T

The variance-breaking error processes are now standard normal variates ε̃i,t, where Var(ε̃i,t) = 1

for t = 1, . . . , bτiT c and Var(ε̃i,t) = 1/δ2 for t = bτiT c + 1, . . . , T . We again consider τi = τ ∈
{0.1, 0.5, 0.9} and δ ∈ {1/5, 1, 5} but now also allow for heterogeneous break dates. Specifically,

we introduce the variance break δ for i = 1 . . . , N/2 at τ = 1/4 and at τ as specified above for

i = N/2 + 1, . . . , N .6 Finally, we consider two patterns of cross-sectional correlation among the

error terms εi,t.
6We waive to analyze whether consistent estimation of the break date could lead to better panel unit root tests

and instead only view the variance breaks as a nuisance parameter against which robustness is to be achieved.
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A. Independence: Let εi,t = ε̃i,t and ε̃t = (ε̃1,t, . . . , ε̃N,t)′ ∼ N (0, IN ).

B. Factor Structure: Let εi,t := λi · νt + ε̃i,t, where νt are i.i.d. N (0, 1) and λi ∼ U(−1, 3).

When φ := (φ1, . . . , φN )′ = 0N , the panel null is true, such that we study the size of the tests.

To analyze power of the tests, we draw the φi from the uniform distribution on [−0.1, 0].

In this section we additionally experiment with the Hartung (1999)-Demetrescu et al. (2006)

approach to capture cross-sectional dependence between the panel units. They propose to consis-

tently estimate the off-diagonal element of the correlation matrix ξ by ξ̂∗ = max(−1/(N − 1), ξ̂),

where ξ̂ = 1− 1/(N − 1)
∑N

i=1

(
tµi,IV −N−1

∑N
i=1 t

µ
i,IV

)2 to form the following panel test statistic:

tξ̂∗,κ =

∑N
i=1 t

µ
i,IV√

N + (N2 −N)
(
ξ̂∗ + κ

√
2

N+1(1− ξ̂∗)
)

Here, κ = 0.1·(1+1/(N+1)−ξ̂∗) is a parameter designed to improve the small sample behaviour of

the test statistic. If, as is the case here, the tµi,IV are asymptotically jointly normal, tξ̂∗,κ
d→ N (0, 1)

under H0. The test rejects for large negative values.

Table 5 reports rejection rates for Shin and Kang’s (2006) ZIV and PIV as well as Demetrescu

et al.’s (2006) tξ̂∗,κ tests under nonstationary volatility. Here, we report the case τ = 0.1. Tables

B.1 and B.2 in Appendix B provide results for τ = 0.5 and τ = 0.9. Size is well-controlled

throughout under both independence and cross-sectional dependence, with a few exceptions for

the PIV test, e.g. for δ = 1/5 and τ = 1/2. More generally, the size of ZIV is somewhat more

accurate than that of PIV or tξ̂∗,κ, which prompts us to recommend its use in practice. As regards

power, all tests are consistent as T →∞ for any configuration of τ and δ. Power increases in N

provided T is sufficiently large. Once more, ZIV emerges as the most attractive choice in that its

power tends to be higher th an that of the other tests, although there are some cases where PIV
is more powerful. The tξ̂∗,κ test appears to have slightly lower power.

Additionally, Table 6 reports results for the case of a heterogenous break in variances. We

again report results for τ = 0.1 here and provide the remaining cases in the Appendix. (It would

be redundant and it is therefore omitted to report δ = 1 again.) We notice that the tests also

provide reasonable size control under this scenario, with once more ZIV as the best-performing

variant. Power is good and comparable to the homogenous case.

As pointed out above, the drawback of Shin and Kang’s (2006) panel unit root test is the

requirement that T > N in order to obtain an invertible variance-covariance matrix Σ̂ε. This

may not be the case in practice. Moreover, if T is only moderately larger than N , the finite-sample

performance of the test will suffer. We therefore employ a recent proposal by Ledoit and Wolf

(2004) to obtain an estimate Σ̂ε that allows for a panel statistic for any configuration of T and

N . They propose to construct a weighted version of Σ̂ε and the identity matrix I, written as
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ST = κ1T I + κ2T Σ̂ε. Specifically, κ1T and κ2T are constructed as follows. Define

b̄2T =
1
N

[
T∑
t=1

(
y′tyt
T

)2

− 1
T

tr(Σ̂2
ε )

]
,

where yt = (y1,t, . . . , yN,t)′. Further, mT = tr(Σ̂ε)/N , d2
T = tr[(Σ̂ε − mT I)(Σ̂ε − mT I)′]/N ,

b2T = min(b̄2T , d
2
T ) and a2

T = d2
T − b2T . Then, κ1T = mT · b2T /d2

T and κ2T = a2
T /d

2
T . The full-rank

matrix I ensures that ST is invertible even if T < N . The (generally misspecified, but invertible)

structure imposed by adding κ1T I to the unbiased estimator Σ̂ε introduces a finite-sample bias

in ST . Yet, the weights κ1T and κ2T are shown to lead to the optimality property that ST
asymptotically (for N,T →∞ jointly) minimizes expected loss in the class of (possibly random)

linear combinations of I and Σ̂ε, including infeasible ones that use hindsight knowledge of the

true covariance matrix in the construction of κ1T and κ2T . Ledoit and Wolf (2004) show that

these joint asymptotics are an excellent guide to finite samples for which N and T are of the same

order of magnitude, including the case T < N .

We therefore now present some additional simulations gauging the effectiveness of Shin and

Kang’s (2006) tests using shrinkage, allowing us to also consider the case T < N . In particular

we now take N ∈ {16, 26, 56, 106}. Table 7 reports rejection rates for τ = 0.1; Tables B.5

and B.6 in the Appendix provide the cases τ = 0.5 and τ = 0.9. The PIV test is now sometimes

drastically undersized especially for cases where N is much larger than T . On the other hand, ZIV
mostly performs quite well even with shrinkage and in cases where N > T , although predictably

somewhat less accurately than when one can use an estimator Σ̂ε that unbiasedly estimates

the true covariance matrix. In terms of size, tξ̂∗,κ that does not require shrinkage emerges as

a serious competitor when N > T . However, ZIV is substantially more powerful than tξ̂∗,κ for

small and intermediate T whenever size is comparable. These results further strengthen the above

recommendation to employ ZIV in practice. Reassuringly, we observe that the undersizedness of

the shrinkage versions of PIV does not destroy its consistency in that PIV remains powerful at

least for sufficiently large T .

All in all, we conclude that the applicability of Shin and Kang’s (2006) tests in practical

applications is much wider than was previously recognized.

4 An empirical application

We now apply the tests to investigate whether panel time series of price levels of GDP can be

treated as stationary. Price Level of GDP is the Purchasing Power Parity over GDP divided by

the exchange rate times 100. The PPP of GDP is the national currency value divided by the real

value in international dollars. The PPP and the exchange rate are both expressed as national

currency units per US dollar (Heston et al., 2009). The data is taken from Heston et al. (2009),
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Figure 1: OECD GDP prices

item [8]. The reference country is the United States.

Figure 1 plots the price of GDP for all OECD countries for which a complete record of

observations from 1950 to 2007 is available.7 Overall, the series do not appear to mean-revert,

and as such one would not expect well-designed unit root tests to reject the null hypothesis. It is

readily apparent that most series were characterized by relatively tranquil behavior until the early

1970s. Afterwards, the volatility of the series is markedly larger. Hence, the panel has undergone

a variance break after around a third of the available observations. The break can easily be dated

as the breakdown of the Bretton Woods system, after which exchange rates were no longer fixed,

which translated into higher volatility of GDP prices. It is therefore us eful to model the panel as

driven by unconditionally heteroskedastic innovations. As discussed in previous sections, standard

(panel) unit root tests are likely to produce misleading inference in the presence of such variance

breaks. Moreover, the time series clearly comove. This pronounced effect is due to common

global macroeconomic shocks, but also the common reference country. Hence, panel tests that

can handle cross-sectional dependence are required in this application. Finally, the series do not

exhibit trending behavior, such that the assumptions underlying the Cauchy test will be met in

this application.

Figure 2 reports sorted Cauchy (solid) and standard augmented Dickey-Fuller (dashed) unit

root test statistics for the OECD countries, along with 5% critical values displayed as horizontal

lines. We observe that none of the Cauchy tests rejects the unit root null. On the other hand,
7These countries are Australia, Austria, Belgium, Canada, Denmark, Finland, France, Iceland, Ireland, Italy,

Japan, Luxembourg, Mexico, Netherlands, New Zealand, Norway, Portugal, Spain, Sweden, Turkey and the United
Kingdom.

24



Solid: Cauchy, Dashed: ADF. The horizontal lines are 5% critical values.

Figure 2: Unit Root Test Statistics for OECD GDP Prices

there is one country (Canada) for which a standard ADF test would have provided evidence

against nonstationarity of the price level of GDP. That the ADF tests are more rejective under

variance breaks is consistent with the Monte Carlo evidence of among others Hanck (2009) (see

above) who demonstrates that standard ADF tests reject too frequently under unconditional

heteroskedasticity.

We now turn to the panel analysis. We calculate the heteroskedasticity-robust versions derived

above and contrast the findings with those provided by popular second-generation panel unit

root tests. Consistent with the eyeball analysis of Figure 1, none of the robust tests rejects.

Hartung’s tρ̂∗.κ yields a p-value of 0.308, the ZIV statistic equals −1.11 and PIV = 47.53, where

the appropriate critical value is 58.12. The panel tests trob from Breitung and Das (2005), t∗a
by Moon and Perron (2004), tξ̂∗,κ based on standard ADF statistics and CIPS ∗ by Pesaran

(2007) have test statistics −0.044, −1.20, 0.51 and −2.36, respectively. Hence, consistent with

the undersizedness reported in Hanck (2009) we do not observe a rejection for t∗a. trob and tξ̂∗,κ do

not reject, either. On the other hand, the oversizedness of CIPS ∗ translates into a rejection. We

interpret this rejection to be an artefact of the Bretton Woods upward variance break rather than

as evidence for the stationarity of GDP prices. The more suitable, in our view, heteroskedasticity-

robust panel tests support the notion of GDP price nonstationarity.

We next consider all countries in the Penn World Tables for which a complete record of

observations from 1960 to 2007 is available. This yields N = 111 countries and T = 48 time

series observations. It would therefore not be possible to calculate the standard Shin and Kang

(2006) panel statistic. We therefore now employ the shrinkage method. This wider dataset is not

obviously characterized by a variance break, as the many developing countries now contained in

the panel were less affected by the breakdown of Bretton Woods (plots are available upon request).
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Solid: Cauchy, Dashed: ADF. The horizontal lines are 5% critical values.

Figure 3: Unit Root Test Statistics for Penn World Table GDP Prices

Hence, it is difficult to a priori advocate adoption of any particular test here. For this panel, a

mixed result arises, with ZIV rejecting with a statistic of −2.46 but PIV and tξ̂∗,κ accepting with

a test statistic and p-value of 217.50 (the critical value is 257.76) and 0.14, respectively. Only

one of the second generation tests reject, viz. trob with a test statistic of −3.96. The other tests

accept with test statistics of −1.43 (t∗a), −0.58 (tξ̂∗,κ based on standard ADF statistics) and −2.05

(CIPS ∗). Such mixed signals call for combination procedures for panel unit root tests along the

lines of Harvey et al. (2009) or Bayer and Hanck (2009), a topic left for further research. Inspecting

the single country test statistics (cf. Figure 3), we however observe that both the robust and the

standard approach only declare few (10 for the Cauchy test and 8 for ADF) single time series

to be stationary. These numbers are roughly consistent with the rejections one would expect

to see if all single null hypotheses are true in a multiple testing situation such a present one,

viz. 0.05 · 111 ≈ 6. Hence, evidence for stationarity of GDP prices appears to be weak.

5 Concluding remarks

We analyzed nonlinear instrumental unit root and panel unit root tests. The focus was on the

so-called Cauchy estimator, where the sign of the lagged level is taken as an instrument for the

lagged level itself.

In spite of the Cauchy test having a standard normal distribution under the null, our analysis

showed the test to have power in the same 1/T neighborhood of the unit root as the ADF test.

Moreover, we established the result under unconditional heteroskedasticity, with the byproduct

that the asymptotic null distribution is invariant to the variance profile.

Our findings apply to the case where the series to be tested exhibits at most a non-zero mean.
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If the differences require adjustment for deterministic components, the standard asymptotics is

lost. Still, the Cauchy test with detrending has power in 1/T neighborhoods of the unit root as

well.

The standard asymptotics and robustness to unconditional heteroskedasticity were exploited

to establish a robust panel unit root test robust to unconditional heteroskedasticity. The panel test

is based on an orthogonalization procedure with an estimated covariance matrix. The assumptions

under which joint N,T asymptotics hold suggested that N should be smaller than T . To extend

the applicability of the panel test to situations where T is comparable to, or smaller than, N , we

suggested the use of shrinkage covariance matrix estimators. The test performed well in small

samples.

An empirical application to price levels of GDP in OECD and other countries shows the

differential inference heteroskedasticity robust (panel) unit root tests may provide in practice.
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Table 5: Size and Power of the Shin and Kang and Demetrescu et al. Panel Tests

Independence Factor Structure
Size Power Size Power

T N 6 16 26 46 6 16 26 46 6 16 26 46 6 16 26 46

δ = 1/5
50 .048 .047 .039 .033 .363 .648 .738 .701 .056 .046 .040 .030 .342 .647 .748 .695

ZIV 100 .053 .060 .053 .047 .775 .990 .999 1.00 .045 .054 .049 .048 .769 .985 .998 1.00
200 .056 .062 .057 .057 .988 1.00 1.00 1.00 .059 .069 .058 .054 .979 1.00 1.00 1.00

50 .033 .033 .032 .039 .255 .456 .546 .576 .044 .035 .034 .034 .231 .456 .542 .580
PIV 100 .046 .044 .047 .044 .681 .966 .996 1.00 .040 .048 .039 .050 .679 .955 .993 1.00

200 .059 .054 .059 .068 .982 1.00 1.00 1.00 .055 .059 .059 .065 .969 1.00 1.00 1.00

50 .035 .030 .022 .015 .130 .130 .104 .063 .044 .033 .026 .017 .116 .136 .096 .069
tρ̂∗.κ 100 .044 .043 .034 .028 .396 .496 .575 .632 .044 .046 .030 .032 .399 .524 .565 .625

200 .062 .051 .045 .038 .885 .984 .998 1.00 .067 .053 .043 .039 .869 .983 .997 1.00

δ = 1
50 .043 .044 .041 .033 .333 .587 .688 .639 .049 .055 .043 .045 .282 .452 .501 .461

ZIV 100 .056 .050 .051 .041 .727 .975 .998 1.00 .051 .053 .056 .052 .596 .869 .945 .990
200 .053 .052 .054 .052 .964 1.00 1.00 1.00 .052 .068 .049 .052 .919 .997 1.00 1.00

50 .032 .034 .036 .039 .218 .418 .492 .533 .044 .042 .037 .040 .200 .344 .384 .410
PIV 100 .051 .045 .042 .044 .620 .929 .985 .999 .043 .050 .045 .046 .526 .829 .924 .978

200 .051 .047 .050 .052 .948 1.00 1.00 1.00 .051 .063 .050 .049 .911 .997 1.00 1.00

50 .037 .031 .027 .015 .116 .121 .104 .059 .048 .057 .053 .054 .126 .104 .090 .077
tρ̂∗.κ 100 .052 .044 .033 .025 .334 .432 .461 .483 .059 .062 .062 .068 .332 .390 .394 .430

200 .052 .044 .035 .031 .813 .957 .988 .999 .058 .078 .067 .086 .776 .919 .952 .978

δ = 5
50 .044 .041 .038 .031 .058 .071 .068 .072 .054 .048 .046 .053 .129 .114 .112 .083

ZIV 100 .052 .050 .051 .048 .085 .096 .130 .187 .049 .052 .048 .050 .233 .217 .188 .199
200 .036 .031 .038 .040 .365 .689 .859 .971 .039 .039 .047 .037 .438 .491 .548 .603

50 .037 .035 .028 .035 .054 .060 .065 .083 .048 .045 .036 .043 .205 .223 .194 .106
PIV 100 .045 .041 .048 .047 .097 .121 .175 .237 .049 .051 .046 .041 .437 .545 .553 .517

200 .032 .029 .032 .036 .338 .674 .844 .965 .029 .032 .035 .031 .659 .856 .920 .956

50 .039 .028 .025 .012 .056 .053 .049 .051 .052 .058 .053 .052 .110 .125 .132 .126
tρ̂∗.κ 100 .041 .039 .033 .027 .083 .094 .103 .080 .059 .059 .059 .057 .252 .284 .318 .306

200 .032 .021 .011 .008 .277 .442 .545 .645 .065 .058 .064 .064 .565 .643 .666 .674

Nominal 5% level. 5000 replications. τ = 0.1.
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Table 6: Size and Power of the Shin and Kang and Demetrescu et al. Panel Tests, heterogenous
variance breaks

Independence Factor Structure
Size Power Size Power

T N 6 16 26 46 6 16 26 46 6 16 26 46 6 16 26 46

δ = 1/5
50 .062 .056 .053 .039 .454 .741 .826 .737 .063 .054 .050 .040 .464 .765 .832 .723

ZIV 100 .067 .067 .063 .058 .811 .992 .999 1.00 .064 .075 .057 .055 .808 .989 1.00 1.00
200 .072 .078 .072 .062 .980 1.00 1.00 1.00 .063 .067 .059 .058 .979 1.00 1.00 1.00

50 .061 .062 .072 .063 .365 .628 .739 .690 .058 .064 .070 .061 .367 .650 .735 .681
PIV 100 .071 .084 .086 .091 .747 .980 .998 1.00 .065 .082 .082 .082 .734 .972 .998 1.00

200 .070 .093 .095 .104 .973 1.00 1.00 1.00 .073 .080 .082 .086 .976 1.00 1.00 1.00

50 .063 .069 .064 .061 .238 .304 .332 .294 .069 .059 .060 .058 .238 .296 .292 .272
tρ̂∗.κ 100 .071 .066 .062 .060 .518 .691 .770 .866 .070 .074 .059 .049 .487 .677 .760 .850

200 .066 .076 .066 .055 .897 .988 .998 1.00 .072 .069 .065 .048 .876 .986 .998 1.00

δ = 5 50 .030 .038 .036 .040 .094 .132 .146 .133 .040 .054 .051 .038 .152 .158 .149 .120
ZIV 100 .036 .043 .030 .032 .254 .452 .594 .719 .047 .037 .034 .043 .318 .375 .404 .441

200 .047 .042 .040 .044 .611 .932 .987 1.00 .047 .053 .044 .041 .610 .742 .822 .907

50 .024 .034 .032 .037 .059 .100 .116 .117 .028 .038 .036 .026 .164 .210 .206 .133
PIV 100 .031 .037 .031 .042 .202 .375 .492 .610 .036 .027 .023 .033 .369 .592 .666 .716

200 .042 .033 .036 .048 .552 .902 .983 .999 .046 .034 .028 .026 .740 .922 .974 .996

50 .023 .011 .005 .001 .051 .039 .016 .008 .048 .052 .046 .055 .101 .109 .105 .107
tρ̂∗.κ 100 .029 .022 .016 .008 .150 .188 .183 .153 .062 .064 .064 .068 .267 .306 .290 .314

200 .036 .031 .024 .016 .402 .614 .686 .774 .067 .075 .081 .079 .622 .738 .758 .788

Nominal 5% level. 5000 replications. τ = 0.1.

29



Table 7: Size and Power of the Shin and Kang and Demetrescu et al. Panel Tests with shrinkage

Independence Factor Structure
Size Power Size Power

T N 16 26 56 106 16 26 56 106 16 26 56 106 16 26 56 106

δ = 1/5
50 .066 .079 .093 .106 .879 .976 1.00 1.00 .075 .065 .093 .083 .869 .978 1.00 1.00

ZIV 100 .069 .067 .088 .107 .997 1.00 1.00 1.00 .070 .073 .076 .086 .995 1.00 1.00 1.00
200 .069 .069 .081 .094 1.00 1.00 1.00 1.00 .075 .072 .070 .080 1.00 1.00 1.00 1.00

50 .047 .054 .052 .054 .733 .886 .997 1.00 .045 .036 .035 .017 .704 .877 .989 .999
PIV 100 .061 .066 .073 .094 .990 1.00 1.00 1.00 .064 .060 .056 .041 .984 .999 1.00 1.00

200 .076 .079 .098 .112 1.00 1.00 1.00 1.00 .067 .071 .068 .048 1.00 1.00 1.00 1.00

50 .045 .047 .033 .019 .229 .212 .155 .111 .051 .042 .032 .020 .220 .206 .150 .097
tξ̂∗,κ 100 .051 .052 .040 .032 .633 .726 .840 .934 .061 .047 .040 .036 .637 .710 .833 .920

200 .057 .056 .046 .030 .990 .999 1.00 1.00 .062 .055 .048 .036 .988 .999 1.00 1.00
δ = 1

50 .057 .072 .088 .106 .838 .965 1.00 1.00 .043 .034 .020 .004 .528 .633 .713 .654
ZIV 100 .055 .055 .068 .087 .995 1.00 1.00 1.00 .051 .047 .042 .022 .902 .973 .997 .998

200 .058 .065 .079 .088 1.00 1.00 1.00 1.00 .057 .056 .058 .042 .996 1.00 1.00 1.00

50 .039 .036 .034 .027 .638 .835 .989 1.00 .022 .011 .001 .000 .324 .367 .257 .007
PIV 100 .045 .045 .045 .053 .975 .999 1.00 1.00 .034 .029 .020 .002 .854 .954 .992 .990

200 .050 .058 .063 .066 1.00 1.00 1.00 1.00 .053 .043 .046 .026 .997 1.00 1.00 1.00

50 .037 .027 .016 .010 .162 .131 .066 .025 .049 .047 .047 .045 .136 .112 .098 .073
tξ̂∗,κ 100 .042 .034 .021 .014 .507 .569 .632 .726 .070 .063 .073 .074 .471 .481 .511 .533

200 .044 .037 .028 .017 .969 .996 1.00 1.00 .076 .071 .088 .093 .933 .971 .992 .997

δ = 5 50 .025 .033 .023 .028 .103 .168 .270 .383 .013 .010 .003 .001 .085 .076 .044 .025
ZIV 100 .036 .037 .051 .050 .428 .604 .898 .990 .024 .022 .012 .007 .302 .312 .336 .354

200 .042 .043 .049 .057 .895 .982 1.00 1.00 .032 .031 .026 .017 .611 .688 .801 .918

50 .006 .004 .000 .000 .029 .037 .019 .002 .001 .000 .000 .000 .047 .021 .001 .000
PIV 100 .013 .014 .011 .004 .289 .389 .638 .818 .005 .003 .000 .000 .470 .488 .403 .131

200 .026 .022 .018 .016 .850 .965 1.00 1.00 .017 .010 .003 .000 .881 .939 .982 .985

50 .006 .001 .000 .000 .012 .007 .000 .000 .040 .043 .044 .045 .099 .104 .109 .103
tξ̂∗,κ 100 .016 .008 .003 .000 .136 .129 .103 .060 .062 .053 .058 .061 .282 .291 .299 .312

200 .024 .012 .006 .004 .590 .678 .797 .898 .072 .066 .063 .063 .708 .741 .753 .757

Nominal 5% level. 5000 replications. τ = 0.1.
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Appendix A Proofs

Note: C stands for a generic constant not depending on either T or N . Sums run from p+ 2 to T unless
specified otherwise.

Lemma 4. Let either x̃t = x̃µt or x̃t = x̃τt . It holds under Assumptions 1 through 4 as T →∞ that

A. E
∣∣∣∑k≥0 bkεt−k

∣∣∣r < C ∀t ≤ T if
∑
k≥0 |bk| < C <∞;

B. E |h (x̃t−1)− sgn (x̃t−1)|β ≤ Ct−0.5 ∀β > 0;

C.
∑

(h (x̃t−1)− sgn (x̃t−1)) εt = Op(T 0.25);

D.
∑
h (x̃t−1) x̃t−1 = Op

(
T 1.5

)
;

E.
∑
h (x̃t−1) ∆xt−j = op

(
T 0.75

)
uniformly for 0 ≤ j ≤ KT where KT = CT δ for some 0 < δ <

1/2− 2/r;

F.
∑
x̃t−1∆xt−j = Op (T ) uniformly for 0 ≤ j ≤ KT .

Proof of Lemma 4

A. Note that uniform boundedness of the expectation is equivalent to uniform boundedness of the Lr norm
of
∑
k≥0 bkεt−k. Then, by using the Minkowski inequality and the properties of the Lr norm, it follows

that ∥∥∥∥∥∥
∑
k≥0

bkεt−k

∥∥∥∥∥∥
r

≤
∑
k≥0

|bk| ‖εt−k‖r ,

whose r.h.s. is uniformly bounded due to absolute summability of {bk} and uniform boundedness of E |εt|r.

B. Note that the joint density of the innovations ε1, . . . , εT does not have any poles or atoms, otherwise
the marginal densities would themselves exhibit some; as a consequence, x̃t−1/

√
T – which, thanks to the

Beverige-Nelson decomposition, can be written as a linear combination of ε’s with bounded variance and
a vanishing term – has itself probability density function gt uniformly bounded in T . This implies that
P (|x̃t−1| < m) ≤ CT−0.5. The result follows with

E |h (x̃t−1)− sgn (x̃t−1)|β ≤ max
|x̃|<m

gβt E |I (|x̃t−1| < m)| ≤ Ct−0.5

because E |I (|x̃t−1| < m)| = P (|x̃t−1| < m) and gt, being continuous, is bounded on the compact interval
[−m,m]. Note that weak convergence of x̃t−1/

√
T is not strong enough as it cannot guarantee the rate at

which P (|x̃t−1| < m) vanishes, cf. the proof of Lemma A.1(i) in Shin and So (2000).

C. Use the md property, the Cauchy-Schwarz inequality, and item B to derive the result.

D. Write with E
∣∣T−1x̃2

t−1

∣∣ < C

E

∣∣∣∣∣
T∑

t=p+2

h (x̃t−1) x̃t−1

∣∣∣∣∣ ≤
√√√√E

T∑
t=p+2

h2 (x̃t−1) E
T∑

t=p+2

x̃2
t−1

≤ CT 1.5

since E
∑T
t=p+2 h

2 (x̃t−1) ≤ C
∑T
t=p+2 E sgn2 (x̃t−1) = O(T ).

E. Note first that A(L)∆xt = εt−c/Txt−1. With
∑
k≥0 bkL

k = A−1(L), where b0 = 1 and the coefficients bk
decay exponentially, it follows that, ∀j, ∆xt−j =

∑
k≥0 bkεt−j−k− c/T

∑
k≥0 bkxt−j−k−1. But xt−j−k−1 =
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Op(T 0.5), see Lemmas 1 and 2, and the coefficients bk are absolutely summable; as a consequence, it holds
that

T∑
t=p+2

sgn (x̃t−1) ∆xt−1 =
T∑

t=p+2

sgn (x̃t−1)
∑
k≥0

bkεt−j−k +Op
(
T 0.5

)
.

Using Lemma 4 B with arguments similar to those in the proof of item C , the result follows from examining
the quantity

∑
sgn (x̃t−1)

∑
k≥0 bkεt−j−k instead of

∑
h (x̃t−1)

∑
k≥0 bkεt−j−k. To this end, write for some

s > max {j, p+ 2}

T∑
t=p+2

sgn (x̃t−1)
∑
k≥0

bkεt−j−k

=
s∑

t=p+2

sgn (x̃t−1)
∑
k≥0

bkεt−j−k +
T∑

t=s+1

sgn (x̃t−1)
∑
k≥0

bkεt−j−k

which further equals

s∑
t=p+2

sgn (x̃t−1)
∑
k≥0

bkεt−j−k

+
T∑

t=s+1

sgn (x̃t−s)

s−j−1∑
k=0

bkεt−j−k +
∑
k≥s−j

bkεt−j−k


+

T∑
t=s+1

(sgn (x̃t−1)− sgn (x̃t−s))
∑
k≥0

bkεt−j−k.

Now, we obviously have that E
∣∣∣∑s

t=p+2 sgn (x̃t−1)
∑
k≥0 bkεt−j−k

∣∣∣ ≤ Cs. Furthermore, note that

T∑
t=s+1

sgn (x̃t−s)
s−j−1∑
k=0

bkεt−j−k = Op
(
T 0.5

)
since it can be written as a sum of md terms having uniformly bounded variance. Moreover,

E
∑

sgn (x̃t−s)
∑
k≥s−j

bkεt−j−k = O

T ∑
k≥s−j

bk


or O

(
Te−(s−j)) due to the fact that the coefficients bk have exponential decay. So the result follows by

letting s→∞ as T →∞ at an appropriate rate, higher than K, if

T∑
t=s+1

(sgn (x̃t−1)− sgn (x̃t−s))
∑
k≥0

bkεt−j−k = op
(
T 0.75

)
uniformly in 0 ≤ j ≤ K. To this end, apply Hölder’s inequality with 1 = (r − 1)/r + 1/r to obtain∣∣∣∣∣∣

T∑
t=s+1

(sgn (x̃t−1)− sgn (x̃t−s))
∑
k≥0

bkεt−j−k

∣∣∣∣∣∣
≤ r

r−1

√√√√ T∑
t=s+1

(sgn (x̃t−1)− sgn (x̃t−s))
r
r−1 r

√√√√√ T∑
t=s+1

∑
k≥0

bkεt−j−k

r

.

32



Given finiteness of rth order moments of εt and item A of this lemma, the second term of the r.h.s. is of
order Op

(
T 1/r

)
, and we only have to examine the rate of

∑
|sgn (x̃t−1)− sgn (x̃t−s)|r/(r−1). Note that,

for suitable C,

E
T∑

t=s+1

|sgn (x̃t−1)− sgn (x̃t−s)|r/(r−1)

= C

T∑
t=s+1

E |sgn (x̃t−1)− sgn (x̃t−s)|

= C

T∑
t=s+1

P (|sgn (x̃t−1)− sgn (x̃t−s)| = 2) .

Each probability on the r.h.s. is given by the (unconditional) probability of a change of sign from t− s to
t. To assess this probability, write

P (|sgn (x̃t−1)− sgn (x̃t−s)| = 2)
≤ 2P (|x̃t−1 − x̃t−s| > |x̃t−s|)
= 2E (P ( |x̃t−1 − x̃t−s| > |x̃t−s|| x̃t−s))

≤ 2E
(

1
|x̃t−s|α

E ( |x̃t−1 − x̃t−s|α| x̃t−s)
)

where the generalized Markov inequality with some 0 < α < 1 was used in the last step (conditional on
x̃t−s). Moreover,

x̃t−1 − x̃t−s = xt−1 − xt−s +
s

(t− s)(t− 1)

t−s∑
j=1

xj −
1

t− 1

t−1∑
j=t−s+1

xj ,

so the expected value of |x̃t−1 − x̃t−s|α is of order sα/2. If T−0.5x̃t−s has bounded pdf in the neighborhood
of the origin (uniformly in t), as argued in the proof of item B , it can be shown that E

(
Tα/2

|x̃t−s|α
)

is bounded
uniformly in s (and t) as follows.

Let gt(x) be the relevant density functions; since ∃C > 0 such that sup|x|≤C,∀t gt(x) < C∗∞, write

E
1
|x|α

=
ˆ C

−C

1
|x|α

f(x)dx+
ˆ ∞
C

1
|x|α

(f(x) + f(−x))dx

≤ C∗f(x)
ˆ C

−C

1
|x|α

dx+
2
Cα

.

The uniform bound of the expectation follows due to finiteness of the improper integral for 0 < α < 1.
Hence, there exists a constant C such that

P (|sgn (x̃t−1)− sgn (x̃t−s)| = 2) ≤ C
( s
T

)α/2
;

note also that ∃κ > 0 such that
(

1
4 + 1

r

)
2

1−κ < 1, so choose α in between. Take now e.g. s = [Tκ] to obtain
after some algebra

T∑
t=p+2

|sgn (x̃t−1)− sgn (x̃t−s)|r/(r−1) = op

(
T 0.75−1/r

)
leading to the desired bound uniformly: one can always choose κ ∈ (δ; 1/2− 2/r).
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F. We shall only prove this for the demeaning case; the proof for detrending is established by a straight-
forward modification of the arguments. Recall, x̃t−1 = xt−1 − 1

t−1

∑t−1
j=1 xj . Then,

∆x̃t−1 = ∆xt−1 −
1

t− 1

t−1∑
j=1

xj +
1

t− 2

t−2∑
j=1

xj

= ∆xt−1 −
xt−1

t− 1
+
(

1
t− 2

− 1
t− 1

) t−2∑
j=1

xj

Hence, E |∆x̃t−1 −∆xt−1| ≤ Ct−0.5 since E |xt−1| ≤ Ct0.5. Then, write

x̃2
t = x̃2

t−1 + 2x̃t−1∆x̃t + ∆x̃2
t ;

by summing over t = 1, . . . , T and rearranging the terms, it follows that

T∑
t=2

x̃t−1∆x̃t =
1
2

(
x̃2
T − x̃2

1 −
T∑
t=2

∆x̃2
t

)
= Op (T ) .

At this point, note that
∑
x̃t−1∆xt−j =

∑(
x̃t−j−1 +

∑t−1
i=t−j ∆x̃i

)
∆xt−j . The result follows if

∑ t−1∑
i=t−j

∆x̃i∆xt−j


is Op (T ). We know from Chang and Park (2002, Lemma 3.2(b)) that

∑(∑t−1
i=t−j ∆xi∆xt−j

)
is Op (T ),

magnitude holding uniformly in j for j < KT even when KT = o
(
T 0.5

)
; and it is straightforward to check

that it holds under the local alternative as well. Moreover, the difference between ∆x̃t−1 and ∆xt−1 is
easily shown to be negligible given our moment conditions, thus completing the proof.

Proof of Proposition 1

After recursively demeaning the levels and building differences, it holds that ỹµt = x̃µt and ∆yt = ∆xt.
Then, denoting zt−1 = (∆xt−1, . . . ,∆xt−p)

′, we have for the IV estimator and IV t-type statistic(
φ̂
â

)
=

( ∑
h
(
x̃µt−1

)
x̃µt−1

∑
h
(
x̃µt−1

)
z′t−1∑

zt−1x̃
µ
t−1

∑
zt−1z′t−1

)−1( ∑
h
(
x̃µt−1

)
∆xt∑

zt−1∆xt

)
.

Usual IV algebra leads to(
φ̂

â− a

)
=

( ∑
h
(
x̃µt−1

)
x̃µt−1

∑
h
(
x̃µt−1

)
z′t−1∑

zt−1x̃
µ
t−1

∑
zt−1z′t−1

)−1( ∑
h
(
x̃µt−1

)
εt∑

zt−1εt

)
− c
T

( ∑
h
(
x̃µt−1

)
x̃µt−1

∑
h
(
x̃µt−1

)
z′t−1∑

zt−1x̃
µ
t−1

∑
zt−1z′t−1

)−1( ∑
h
(
x̃µt−1

)
xt−1∑

zt−1xt−1

)
.

Premultiply now both sides of the above equation by the diagonal matrix LT = diag
(
T,
√
T , . . . ,

√
T
)
, and

“insert” RTR
−1
T , RT = diag

(√
T ,
√
T , . . . ,

√
T
)

in the two terms on the r.h.s; given the magnitude orders
of the involved sample cross-product moments, it is immediately seen that φ̂ is superconsistent, and that
â is
√
T -consistent, just like in the ADF case. In fact, the matrix

L−1
T

( ∑
h
(
x̃µt−1

)
x̃µt−1

∑
h
(
x̃µt−1

)
z′t−1∑

zt−1x̃
µ
t−1

∑
zt−1z′t−1

)
R−1
T

converges in distribution to a lower triangular matrix.
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This also implies “consistency” of the residual variance estimator

σ̂2 =
1
T

T∑
t=p+2

(
∆yt − φ̂ỹµt−1 − â′zt−1

)
as follows. With ∆yt− φ̂ỹµt−1− â′zt−1 = εt + op(1) and thus σ̂2 = 1

T

∑
ε2t + op(1), it follows from Cavaliere

and Taylor (2009a, Corollary A.1) that
σ̂2 = ω2 + op(1).

Then, the same standard algebra leads to

tIV =
1√
T
AT

σ̂
√

1
T BT

,

with

AT =
T∑

t=p+2

h
(
x̃µt−1

) (
εt −

c

T
xt−1

)

−
T∑

t=p+2

h
(
x̃µt−1

)
z′t−1

(
T∑

t=p+2

zt−1z′t−1

)−1 T∑
t=p+2

zt−1

(
εt −

c

T
xt−1

)
and

BT =
T∑

t=p+2

h2
(
x̃µt−1

)
−

T∑
t=p+2

h
(
x̃µt−1

)
z′t−1

(
T∑

t=p+2

zt−1z′t−1

)−1 T∑
t=p+2

zt−1h
(
x̃µt−1

)
.

It is relatively straightforward to show that BT = T + op (T ) as follows. First, the probability of x̃µt−1 to
belong to [−m,m] is of order t−0.5, and as such h

(
x̃µt−1

)
= sgn

(
x̃µt−1

)
+Op

(
t−0.5

)
. See also Lemma 4 B .

Second,
∑

zt−1z′t−1 is of exact order Op (T ) , and third,
∑
h
(
x̃µt−1

)
z′t−1 = op

(
T 0.75

)
which is proved in

Lemma 4 item F above.
Using item C of Lemma 4, we obtain that

T∑
t=p+2

h
(
x̃µt−1

) (
εt +

c

T
xt−1

)
=

T∑
t=p+2

sgn
(
x̃µt−1

) (
εt +

c

T
xt−1

)
+Op(T 0.25).

Then, item F of the lemma can also be used to show that

AT =
T∑

t=p+2

sgn
(
x̃µt−1

) (
εt +

c

T
xt−1

)
+Op

(
T 0.25

)
=

T∑
t=p+2

sgn
(
A(1)
ω

x̃µt−1√
T

)
εt

+
ω

A(1)
c√
T

T∑
t=p+2

sgn
(
A(1)
ω

x̃µt−1√
T

)
A(1)
ω

1√
T
xt−1 + op

(√
T
)
.

The numerator AT /
√
T converges to the desired limit due to Theorem 2.2 of Kurtz and Protter (1991)

and the CMT, while BT /T
p→ 1; the convergence of σ̂2 to ω completes the result.

Note that, under the null c = 0, σ̂2tIV = T−0.5
∑T
t=p+2 sgn (yt−1) εt +Op(T−0.25). Standard normality

can also be established using a standard md CLT.
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Proof of Proposition 3

If a linear trend is present in the data, i.e. dt = µ+ τ t and τ 6= 0, recursive demeaning does not remove it.
In fact,

ỹµt = x̃µt + τ

(
t

2
− 1
)
,

so ỹµt /t = Op(1) uniformly in 1 ≤ t ≤ T , with the linear trend dominating the stochastic one. Also,
E ∆yt = τ . This affects of course the quantities AT and BT from the proof of Proposition 1, but not the
magnitude order of the residual variance estimator.

More precisely, we have with z∗t−1 = (τ + ∆xt−1, . . . , τ + ∆xt−p)
′ that(

φ̂
â

)
=
( ∑

h
(
ỹµt−1

)
ỹµt−1

∑
h
(
ỹµt−1

)
z∗t−1

′∑
z∗t−1ỹ

µ
t−1

∑
z∗t−1z

∗
t−1
′

)−1( ∑
h
(
ỹµt−1

)
∆yt∑

z∗t−1∆yt

)
. (5)

Note that the following exact magnitude orders for cross-products hold true (due to τ 6= 0 and the linear
trend dominating the behavior of ỹµt ):

T∑
t=p+2

h
(
ỹµt−1

)
z∗t−1 = Op (T )

T∑
t=p+2

z∗t−1ỹ
µ
t−1 = Op

(
T 2
)

T∑
t=p+2

z∗t−1z
∗
t−1
′ = Op (T )

T∑
t=p+2

z∗t−1∆yt = Op (T )

and in particular

T∑
t=p+2

h
(
ỹµt−1

)
ỹµt−1 = Op

(
T 2
)

T∑
t=p+2

h
(
ỹµt−1

)
∆yt = Op (T ) .

Similarly to the proof of Proposition 1, premultiply both sides of Equation (5) with the (suitably redefined)
diagonal matrix LT = diag (T, 1, . . . , 1), and insert RTR

−1
T , RT = diag

(
T, T, . . . , T

)
, in its r.h.s., to obtain

that T φ̂ = Op(1) and â = Op(1), which ensures that σ̂2 = Op(1). Furthermore, it is straightforward to
show that

BT = Op(T );

but AT now contains, due to the non-removal of the mean of ∆yt, a term of the type C
∑
h
(
ỹµt−1

)
which

is of exact order Op(T ) and the t-type statistic diverges even under the null hypothesis of a unit root.

Proof of Proposition 4

The result is obtained along the lines of the proof of Proposition 1. In fact, one has to show that the terms
involving differences vanish asymptotically and then resort to the same weak convergence arguments, but
now accounting for the effects of demeaning the differences ∆xt.

For that, we need to check the validity of results analogous to Lemma 4, items E and F when demeaning
∆xt. This is indeed the case when

√
T -consistent demeaning is applied. Item E reduces to∑

sgn (x̃t−1)
(
∆xt −∆x

)
=
∑

sgn (x̃t−1) ∆xt −∆x
∑

sgn (x̃t−1) ;
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the second term on the r.h.s. is Op(T 0.5), and the first term dominates, as required. For item F , write∑
x̃t−1∆̃xt−j =

∑
x̃t−1∆xt−j −∆x

∑
x̃t−1 = Op (T )

since x̃t−1 = Op(T 0.5). The first part follows.
The second part is itself immediately established with the CMT by noting that, when including an

intercept in the error correction model, BT =
∑(

sgn
(
x̃τt−1

)
− sgn (x̃τ )

)2

+ op(T ) instead of T + op(T ).

Proof of Proposition 6

Let us first analyze the behavior of the sample covariance matrix of εt. Namely, we shall prove that∥∥∥∥∥ 1
T

T∑
t=p+2

εtε
′
t −Ω

∥∥∥∥∥ = Op
(
NT−0.25

)
.

It actually suffices to show that T−1
∑
εi,tεj,t is 4

√
T -consistent at an uniform rate over i, j; the norm of

an N ×N matrix with bounded elements is known to be O (N). In order to establish the consistency at
a uniform rate of the sample covariances, we make use of the factor structure of the innovations. We have
namely that

1
T

T∑
t=p+2

εi,tεj,t =
1
T

T∑
t=p+2

(λ′iνt + ε̃i,t)
(
λ′jνt + ε̃j,t

)
=

1
T

T∑
t=p+2

λ′iνtν
′
tλj +

1
T

T∑
t=p+2

λ′iνtε̃j,t +
1
T

T∑
t=p+2

ε̃i,tλ
′
jνt +

1
T

T∑
t=p+2

ε̃i,tε̃j,t.

The sample variance of the cross-products νtε̃j,t and ε̃i,tε̃j,t for i 6= j vanishes at rate T−1 due to the
independence of the factors; their expectation is 0. Furthermore,

1
T

T∑
t=p+2

ε̃2i,t
p→ ω2

i

and
1
T

T∑
t=p+2

νtν
′
t
p→
ˆ 1

0

Ω (s) ds

along the lines of Corollary A.1 of Cavaliere and Taylor (2009b). The uniform boundedness of ωi across the
panel ensures a uniform rate of convergence to ω2

i , but it is the summability condition from Assumption
6 that guarantees the variance of the above sample variances to vanishe at rate T 0.5 uniformly in i. Thus
the sample covariances of εt are T−0.25-consistent for the respective elements of Ω.

Moving on to the main part of the proof, we have that

τ IV =
1√
N

N∑
i=1

∑T
t=p+2 hi

(
ỹµi,t−1

)
ε∗i,t√∑T

t=p+2 h
2
i

(
ỹµi,t−1

) .
Just like in the proof of Proposition 1 (see the remark at the end of the proof), it follows that

τ IV =
1√
TN

N∑
i=1

T∑
t=p+2

hi
(
ỹµi,t−1

)
ε∗i,t +Op

(
T−0.25N0.5

)
=

1√
TN

N∑
i=1

T∑
t=p+2

hi
(
ỹµi,t−1

)
ε∗i,t + op (1)

=
1√
TN

T∑
t=p+2

h′tΓ̂
′εt + op (1)
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with obvious notation ht =
(
hi
(
ỹµi,t−1

))′
i=1,...,N

. The effect of the difference between Γ̂ ′ and Γ ′ (the LU

decomposition of Ω
−1

) is quantified as follows:

1√
TN

T∑
t=p+2

h′tΓ̂
′εt =

1√
TN

T∑
t=p+2

h′tΓ
′εt +

1√
TN

T∑
t=p+2

h′t
(
Γ̂ ′ − Γ ′

)
εt.

Since the instruments are uniformly bounded, and defining ι̃′ = ı′N

(
Γ̂ ′ − Γ ′

)
, we have that∥∥∥∥∥ 1√

TN

T∑
t=p+2

h′t
(
Γ̂ ′ − Γ ′

)
εt

∥∥∥∥∥ ≤ C
∥∥∥∥∥ 1√

TN

T∑
t=p+2

ι̃′εt

∥∥∥∥∥ ≤ C 1√
N
‖ι̃′‖

∥∥∥∥∥ 1√
T

T∑
t=p+2

εt

∥∥∥∥∥ .
The latter norm on the r.h.s. of the above inequality is Op

(
N0.5

)
, and the former is Op

(
N0.5T−0.25

)
(the T−0.25-consistency at a uniform rate of the sample covariance matrix translate into the same uniform
convergence rate for the elements of Γ̂ , and Γ̂ is the LU decomposition of a matrix whose norm is O(N)
so ‖Γ ′‖ = O

(√
N
)

and
∥∥∥Γ̂ ′∥∥∥ = Op

(√
N
)

). Summing up,

1√
TN

T∑
t=p+2

h′t
(
Γ̂ ′ − Γ ′

)
εt = Op

(
N
4
√
T

)
= op (1) .

For the term 1√
TN

∑T
t=p+2 h′tΓ

′εt we can use again the approximation rates of Proposition 1 to conclude
that

τ IV =
1√
TN

T∑
t=p+2

ı′NΓ
′εt + op

(
N0.5T 0.25

)
.

The quantity N−0.5ı′NΓ
′εt is a md array; given the finiteness of its 4th order moments (building on our

Assumption 6), the CLT for md arrays, e.g. Theorem 2.3 in McLeish (1974), applies to establish standard
normality since it is easily shown that T−1

∑T
t=p+2

(
N−0.5ı′NΓ

′εt
)2 p→ 1 as follows. The trick is to write

this as
1
N
ι′NΓ

′ 1
T

T∑
t=p+2

εtε
′
tΓιN

and to recall that
∥∥∥ 1
T

∑T
t=p+2 εtε

′
t − (Γ ′Γ )−1

∥∥∥ = Op
(
T−0.25N

)
from which the result follows.
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Appendix B Additional Simulation Results

Table B.1: Size and Power of the Shin and Kang and Demetrescu et al. Panel Tests

Independence Factor Structure
Size Power Size Power

T N 6 16 26 46 6 16 26 46 6 16 26 46 6 16 26 46

δ = 1/5
50 .086 .075 .056 .038 .430 .659 .668 .571 .073 .063 .064 .041 .420 .637 .663 .556

ZIV 100 .081 .084 .068 .057 .761 .970 .996 1.00 .083 .078 .081 .061 .757 .970 .992 .999
200 .070 .072 .078 .069 .967 1.00 1.00 1.00 .073 .080 .078 .066 .963 1.00 1.00 1.00

50 .108 .124 .126 .056 .382 .639 .690 .537 .087 .110 .123 .052 .372 .596 .659 .511
PIV 100 .096 .136 .142 .167 .728 .956 .992 1.00 .098 .112 .130 .147 .713 .948 .985 .998

200 .091 .112 .144 .148 .958 1.00 1.00 1.00 .082 .116 .123 .136 .955 1.00 1.00 1.00

50 .114 .116 .106 .095 .312 .464 .559 .638 .097 .107 .111 .111 .275 .424 .481 .537
tρ̂∗.κ 100 .090 .109 .102 .097 .562 .773 .848 .929 .098 .098 .108 .106 .519 .720 .809 .888

200 .089 .094 .099 .070 .869 .987 .998 1.00 .081 .090 .090 .084 .856 .978 .993 1.00

δ = 5
50 .044 .033 .035 .040 .104 .137 .103 .073 .041 .030 .032 .031 .135 .152 .133 .092

ZIV 100 .044 .042 .041 .038 .412 .718 .834 .852 .049 .043 .039 .041 .406 .566 .629 .656
200 .048 .054 .052 .042 .847 .997 .999 1.00 .049 .056 .050 .046 .778 .938 .979 .995

50 .036 .033 .035 .032 .069 .105 .107 .057 .026 .026 .030 .030 .106 .163 .172 .092
PIV 100 .041 .041 .042 .043 .299 .552 .684 .760 .041 .030 .028 .035 .366 .562 .674 .770

200 .045 .047 .047 .048 .768 .988 .999 1.00 .046 .045 .043 .036 .797 .967 .988 .999

50 .037 .022 .016 .010 .060 .037 .016 .005 .042 .054 .058 .050 .090 .070 .079 .067
tρ̂∗.κ 100 .045 .033 .034 .019 .164 .167 .141 .097 .059 .071 .076 .077 .238 .265 .259 .253

200 .048 .042 .030 .025 .507 .685 .764 .863 .058 .089 .103 .093 .647 .773 .825 .857

Nominal 5% level. 5000 replications. τ = 0.5.
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Table B.2: Size and Power of the Shin and Kang and Demetrescu et al. Panel Tests

Independence Factor Structure
Size Power Size Power

T N 6 16 26 46 6 16 26 46 6 16 26 46 6 16 26 46

δ = 1/5
50 .071 .077 .070 .064 .236 .402 .514 .512 .071 .058 .059 .060 .233 .330 .415 .381

ZIV 100 .064 .073 .068 .070 .465 .817 .949 .993 .063 .065 .067 .057 .465 .731 .849 .943
200 .067 .059 .045 .075 .830 .993 1.00 1.00 .067 .062 .073 .057 .829 .986 .999 1.00

50 .086 .102 .099 .095 .235 .372 .464 .492 .073 .079 .081 .079 .218 .315 .396 .382
PIV 100 .075 .094 .093 .108 .440 .779 .912 .984 .068 .084 .083 .084 .426 .710 .835 .933

200 .076 .068 .067 .107 .811 .992 1.00 1.00 .064 .077 .090 .087 .810 .983 1.00 1.00

50 .087 .103 .104 .103 .203 .344 .427 .559 .077 .099 .102 .132 .193 .266 .324 .355
tρ̂∗.κ 100 .076 .087 .088 .084 .372 .596 .679 .783 .076 .084 .100 .116 .355 .513 .580 .642

200 .078 .066 .054 .056 .662 .892 .948 .991 .069 .089 .099 .110 .675 .877 .932 .977

δ = 5
50 .042 .045 .034 .031 .338 .623 .732 .668 .044 .046 .042 .043 .290 .452 .500 .436

ZIV 100 .054 .049 .060 .046 .748 .983 .998 1.00 .061 .044 .050 .051 .616 .875 .942 .981
200 .052 .048 .068 .048 .972 1.00 1.00 1.00 .052 .052 .062 .055 .913 .996 .999 1.00

50 .033 .034 .028 .033 .227 .411 .521 .546 .037 .036 .037 .046 .213 .334 .376 .402
PIV 100 .044 .040 .053 .047 .624 .940 .990 .998 .046 .046 .050 .047 .541 .826 .923 .973

200 .051 .048 .059 .049 .954 1.00 1.00 1.00 .047 .047 .046 .054 .906 .997 .999 1.00

50 .035 .037 .021 .016 .113 .094 .076 .033 .048 .044 .052 .052 .119 .107 .077 .067
tρ̂∗.κ 100 .045 .040 .036 .026 .343 .418 .421 .442 .059 .068 .068 .066 .324 .378 .385 .399

200 .056 .043 .043 .027 .798 .954 .987 1.00 .059 .075 .077 .087 .772 .913 .940 .974

Nominal 5% level. 5000 replications. τ = 0.9.
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Table B.3: Size and Power of the Shin and Kang and Demetrescu et al. Panel Tests, heterogenous
variance breaks

Independence Factor Structure
Size Power Size Power

T N 6 16 26 46 6 16 26 46 6 16 26 46 6 16 26 46

δ = 1/5
50 .077 .069 .058 .036 .441 .685 .781 .711 .073 .076 .052 .045 .425 .682 .750 .695

ZIV 100 .075 .068 .064 .056 .778 .983 .997 1.00 .075 .077 .062 .062 .770 .978 .998 1.00
200 .068 .074 .071 .068 .970 1.00 1.00 1.00 .065 .069 .074 .068 .970 1.00 1.00 1.00

50 .088 .098 .096 .050 .388 .634 .736 .630 .076 .101 .082 .059 .345 .606 .693 .641
PIV 100 .090 .110 .109 .126 .722 .972 .997 1.00 .082 .102 .101 .116 .719 .960 .994 .999

200 .078 .104 .116 .124 .968 .999 1.00 1.00 .068 .086 .114 .122 .960 1.00 1.00 1.00

50 .088 .090 .094 .087 .302 .443 .531 .582 .078 .098 .090 .094 .253 .393 .429 .473
tρ̂∗.κ 100 .094 .093 .091 .080 .537 .744 .826 .926 .084 .095 .080 .090 .510 .701 .787 .866

200 .080 .084 .080 .070 .882 .986 .998 1.00 .073 .078 .082 .089 .863 .982 .998 1.00
δ = 5

50 .038 .042 .031 .036 .101 .174 .187 .139 .041 .038 .038 .043 .154 .193 .196 .158
ZIV 100 .050 .042 .042 .041 .355 .647 .793 .880 .045 .037 .050 .041 .366 .515 .580 .631

200 .054 .050 .045 .045 .740 .984 1.00 1.00 .056 .058 .042 .040 .723 .878 .944 .976

50 .034 .039 .032 .040 .072 .120 .146 .127 .026 .020 .033 .039 .122 .200 .236 .175
PIV 100 .041 .040 .042 .046 .267 .480 .642 .754 .032 .028 .034 .037 .347 .580 .687 .774

200 .047 .045 .042 .047 .680 .960 .995 1.00 .045 .042 .037 .027 .762 .942 .982 .998

50 .026 .022 .012 .005 .058 .036 .020 .011 .046 .050 .043 .048 .088 .098 .078 .074
tρ̂∗.κ 100 .039 .031 .026 .015 .179 .188 .171 .141 .057 .073 .083 .078 .248 .270 .292 .282

200 .046 .035 .030 .018 .484 .642 .724 .839 .069 .090 .086 .078 .645 .764 .791 .836

Nominal 5% level. 5000 replications. τ = 0.5.
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Table B.4: Size and Power of the Shin and Kang and Demetrescu et al. Panel Tests, heterogenous
variance breaks

Independence Factor Structure
Size Power Size Power

T N 6 16 26 46 6 16 26 46 6 16 26 46 6 16 26 46

δ = 1/5
50 .068 .066 .056 .050 .348 .602 .699 .680 .056 .065 .055 .045 .345 .578 .658 .639

ZIV 100 .067 .084 .066 .052 .654 .959 .988 .999 .075 .065 .058 .066 .684 .942 .984 .998
200 .066 .082 .080 .058 .941 1.00 1.00 1.00 .063 .072 .068 .057 .935 .999 1.00 1.00

50 .072 .069 .065 .065 .271 .516 .594 .628 .055 .065 .059 .051 .276 .474 .552 .588
PIV 100 .074 .089 .093 .084 .618 .932 .980 .997 .069 .080 .080 .083 .635 .916 .973 .997

200 .078 .095 .102 .101 .930 .999 1.00 1.00 .070 .080 .087 .082 .922 .999 1.00 1.00

50 .073 .080 .064 .062 .196 .304 .356 .378 .062 .060 .058 .069 .197 .258 .251 .267
tρ̂∗.κ 100 .080 .085 .069 .069 .464 .664 .756 .842 .078 .082 .075 .089 .450 .620 .678 .766

200 .075 .080 .071 .055 .795 .962 .992 .999 .072 .085 .081 .082 .806 .957 .984 .999
δ = 5

50 .034 .032 .036 .035 .099 .155 .188 .154 .051 .048 .044 .045 .173 .210 .212 .200
ZIV 100 .046 .045 .044 .038 .390 .755 .893 .970 .050 .046 .050 .045 .438 .589 .689 .800

200 .050 .050 .054 .044 .853 .995 1.00 1.00 .058 .056 .054 .044 .782 .942 .977 .998

50 .028 .025 .032 .036 .080 .130 .168 .176 .040 .036 .040 .042 .152 .234 .260 .235
PIV 100 .042 .037 .034 .040 .324 .635 .798 .926 .042 .032 .037 .038 .408 .636 .774 .884

200 .054 .047 .039 .042 .818 .990 1.00 1.00 .052 .048 .040 .031 .816 .972 .996 1.00

50 .026 .010 .011 .006 .067 .069 .064 .054 .041 .047 .055 .046 .102 .098 .091 .090
tρ̂∗.κ 100 .039 .030 .020 .017 .235 .326 .334 .329 .066 .078 .088 .094 .268 .320 .318 .316

200 .055 .044 .027 .022 .641 .840 .909 .976 .064 .080 .098 .082 .705 .833 .870 .896

Nominal 5% level. 5000 replications. τ = 0.9.
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Table B.5: Size and Power of the Shin and Kang and Demetrescu et al. Panel Tests with shrinkage

Independence Factor Structure
Size Power Size Power

T N 16 26 56 106 16 26 56 106 16 26 56 106 16 26 56 106

δ = 1/5
50 .107 .110 .131 .156 .775 .930 .996 1.00 .091 .101 .109 .093 .753 .887 .984 .998

ZIV 100 .096 .096 .104 .132 .989 .998 1.00 1.00 .097 .092 .096 .088 .981 .998 1.00 1.00
200 .085 .097 .094 .112 1.00 1.00 1.00 1.00 .072 .083 .082 .080 1.00 1.00 1.00 1.00

50 .157 .180 .247 .300 .729 .893 .991 1.00 .100 .121 .104 .045 .667 .804 .933 .947
PIV 100 .143 .168 .228 .330 .977 .997 1.00 1.00 .112 .113 .101 .054 .966 .994 1.00 1.00

200 .123 .143 .187 .266 1.00 1.00 1.00 1.00 .092 .107 .094 .054 1.00 1.00 1.00 1.00

50 .131 .129 .121 .110 .523 .647 .791 .903 .109 .120 .126 .136 .447 .550 .671 .738
tξ̂∗,κ 100 .118 .104 .088 .085 .772 .873 .964 .995 .108 .108 .115 .124 .713 .809 .916 .965

200 .100 .094 .073 .063 .982 .996 1.00 1.00 .092 .098 .095 .101 .977 .995 1.00 1.00

δ = 5
50 .055 .064 .082 .103 .550 .765 .978 1.00 .027 .021 .003 .001 .235 .236 .169 .069

ZIV 100 .053 .069 .076 .096 .927 .990 1.00 1.00 .041 .036 .016 .008 .658 .771 .837 .835
200 .060 .065 .076 .088 .999 1.00 1.00 1.00 .049 .054 .038 .033 .964 .990 1.00 1.00

50 .030 .022 .023 .013 .274 .404 .679 .873 .007 .003 .000 .000 .105 .079 .005 .000
PIV 100 .042 .048 .044 .039 .784 .929 .999 1.00 .023 .018 .000 .000 .585 .714 .750 .439

200 .056 .053 .050 .053 .995 1.00 1.00 1.00 .039 .036 .025 .006 .974 .995 1.00 1.00

50 .027 .015 .006 .002 .046 .032 .006 .000 .061 .055 .054 .051 .074 .070 .077 .062
tξ̂∗,κ 100 .039 .033 .019 .011 .215 .201 .144 .079 .072 .081 .089 .076 .301 .287 .302 .298

200 .042 .036 .022 .014 .752 .821 .942 .985 .085 .096 .098 .097 .805 .854 .888 .903

Nominal 5% level. 5000 replications. τ = 0.5.
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Table B.6: Size and Power of the Shin and Kang and Demetrescu et al. Panel Tests with shrinkage

Independence Factor Structure
Size Power Size Power

T N 16 26 56 106 16 26 56 106 16 26 56 106 16 26 56 106

δ = 1/5
50 .094 .106 .128 .141 .498 .655 .920 .993 .062 .059 .041 .023 .391 .485 .655 .780

ZIV 100 .076 .097 .107 .140 .843 .960 1.00 1.00 .064 .048 .035 .025 .765 .894 .981 .997
200 .072 .076 .093 .110 .994 1.00 1.00 1.00 .060 .060 .042 .030 .986 .998 1.00 1.00

50 .096 .095 .104 .060 .421 .541 .766 .877 .032 .019 .001 .000 .218 .206 .104 .026
PIV 100 .082 .102 .119 .143 .780 .930 .999 1.00 .040 .022 .002 .000 .635 .737 .818 .821

200 .075 .083 .120 .138 .990 1.00 1.00 1.00 .047 .043 .011 .000 .980 .996 1.00 1.00

50 .081 .088 .092 .088 .306 .384 .506 .582 .082 .095 .119 .136 .240 .263 .295 .300
tξ̂∗,κ 100 .073 .086 .069 .065 .544 .662 .804 .895 .093 .097 .120 .144 .491 .555 .666 .730

200 .068 .058 .058 .042 .883 .944 .990 1.00 .084 .098 .122 .147 .877 .932 .983 .994

δ = 5
50 .052 .060 .070 .095 .760 .935 .999 1.00 .039 .031 .013 .001 .459 .539 .584 .509

ZIV 100 .058 .063 .069 .092 .994 1.00 1.00 1.00 .058 .045 .039 .018 .883 .951 .989 .998
200 .054 .061 .063 .074 1.00 1.00 1.00 1.00 .056 .049 .048 .041 .996 .999 1.00 1.00

50 .033 .032 .027 .026 .506 .734 .964 .999 .019 .008 .000 .000 .250 .271 .111 .001
PIV 100 .047 .042 .042 .048 .963 .997 1.00 1.00 .047 .032 .013 .000 .821 .915 .972 .964

200 .046 .051 .054 .056 1.00 1.00 1.00 1.00 .046 .037 .035 .023 .997 1.00 1.00 1.00

50 .028 .023 .011 .006 .095 .083 .025 .005 .050 .050 .054 .039 .091 .092 .060 .043
tξ̂∗,κ 100 .038 .029 .018 .015 .418 .426 .454 .450 .068 .065 .065 .066 .379 .403 .400 .407

200 .042 .036 .025 .014 .960 .988 1.00 1.00 .065 .075 .078 .077 .913 .951 .977 .991

Nominal 5% level. 5000 replications. τ = 0.9.
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