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Abstract

This article investigates the impact of societal structure on behavior in competi-
tions that can be modeled as all-pay auctions with identity-dependent externalities.
The consideration of identity-dependent externalities, which naturally arise in the
most common applications of all-pay auctions, enables us to define players’ indi-
vidual characteristics in society (in particular radicalism and centrism) not only for
arrangements on the line but more generally. We find that even with a high ratio of
centrists in comparison to radicals extremism, characterised by higher expenditure
by radicals in comparison to centrists, persists. Moreover, for environments with
two radical players we show that there exists a symmetric equilibrium in which all
moderates bid zero with certainty. This equilibrium is the unique symmetric equi-
librium if there is only a single centrist player. Our results suggest that the active
participation of centrists in equilibrium remains characteristic for tullock lottery
success functions in the presence of identity-dependent externalities, and therefore
that the chosen contest success function was crucial for predictions about extremism
and moderation that can be found in the political economy literature.



1 Introduction

It is axiomatic that the nature of conflict depends on the institutions of conflict. In this

paper we examine conflicts in which economic agents expend scarce resources in order

to achieve their preferred outcome among a set of alternatives. If an agent secures his

preferred alternative we say that the agent "wins." Otherwise, the agent "loses." In this

respect the conflicts that we examine are contests as defined, say, in Konrad (2009). Our

approach differs from much of the literature on contests in that agents are not indifferent

to the identity of the winning agent in the event that they themselves lose. That is, we

examine contests with identity-dependent externalities.

In much of the theoretical work on conflict to date the institutions of conflict have been

black-boxed by the application of a contest success function - a function that maps the

vector of agents’ resource expenditures in the conflict into their respective probabilities

of winning their preferred outcome. Two prominent types of contest success functions

(henceforth, CSFs) employed in the literature are the "lottery" CSF, in which the proba-

bility that an agent wins his preferred outcome equals the ratio of the agent’s expenditure

to the sum of all agents’ expenditures, and the "auction" CSF, in which the agent with

the greatest expenditure wins his preferred outcome with certainty. The lottery CSF is

a popular method of modeling conflicts in which the outcome is determined not just by

the respective expenditures of resources, but also a substantial random component. An

auction CSF may be viewed as approximating environments in which random exogenous

factors play little role in influencing the outcome of the conflict. Because of the dis-

continuity in the auction CSF when agents are tied for the highest expenditure, small

differences in (positive) expenditure may lead to large differences in the probability of

winning. That is, in contests, the auction CSF represents cutthroat competition in sunk

expenditure, much the way that classical Bertrand competition is cutthroat competition

in price. With the lottery CSF competition is softened by randomness in the outcome,
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conditional on the profile of expenditures.

Contests with identity-dependent externalities utilizing a lottery CSF have been examined

by Linster (1993) and Esteban and Ray (1999). Linster (1993) demonstrates that with a

constant unit cost of expenditure, pure strategy Nash equilibrium profiles of expenditures

may be obtained as the solution to a nonlinear system of equations.1 He analyzes two

three-player environments in more detail, including a comparative statics analysis that

links total conflict and social surplus to the extent of the externalities. Esteban and Ray

(1999) extend Linster’s (1993) model by considering groups of agents, with heterogeneous

preferences across groups but homogeneous preferences within each group. Each agent

has an identical strictly convex cost of expenditure function, and free-rider problems are

assumed away by requiring that each group of agents acts as a single agent with the

group’s aggregate cost of expenditure function (and dividing the resulting expenditure

equally). Hence, larger groups have lower costs. The current contribution reexamines

several of the issues addressed in these papers applying the auction CSF. That is, we

examine all-pay auctions with identity-dependent externalities.

To the best of our knowledge, we are the first to study equilibria of the all-pay auc-

tion with identity-dependent externalities.2 In this sense we provide a bridge between

models of conflict such as Linster (1993) and Esteban and Ray (1999) that utilize a

lottery CSF and the growing literature on winner-pay auctions with identity-dependent

externalities in which agents place bids, an auction CSF is employed, but generally all

bids except for the winner’s are refunded. Jehiel and Moldovanu(2006) review this lit-

erature and note that the endogeneity of valuations in winner-pay auctions is the main

driving force behind many new, and interesting phenomena that arise even in complete
1Linster (1993) argues that such a solution exists unless the contest is degenerate in the sense that

players are indifferent to the outcome.
2Konrad(2006) examines the effect of silent shareholdings in an all-pay auction framework with com-

plete information and finds that the social value may increase or decrease depending on the identity of
the firm that holds a share in its competitor. However, Konrad does not further analyze settings in which
three firms are active in equilibrium and allows only one player’s valuation to be endogenous.
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information settings. A comprehensive treatment of the (first-price) winner-pay auction

with identity-dependent externalities and complete information appears in Funk (1996).

As noted by Esteban and Ray (1999) identity-dependent externalities can, under cer-

tain conditions, impart a natural "metric" measuring the distance between players. If,

for every i = 1,2, . . . , n, vi = (vi1, vi2, . . . , vin) is the vector of payoffs received by player i

when players 1,2, . . . , n, respectively, win their preferred option, it is natural to extend

the definition of "reach" due to Siegel (2009) to account for the identity-dependent ex-

ternalities. More precisely, let rij = vii − vij be player i’s reach with respect to player j.

That is, rij is the maximum amount that player i would be willing to expend in order to

win with certainty rather than have player j win with certainty. Under the assumption

of symmetry players’ reaches may be interpreted as a distance betweeen players with

two players being close if they value the success of one another in terms similar to their

own. Generally, this interpretation sheds light on the societal order amongst players.

Intuitively, a player who favors a radical outcome will generally face stronger opposition

from his rivals, and in turn be willing to expend high effort to support it. Based on this

idea, we provide a definition of players’ societal characteristics which is established upon

players’ willingness to outbid each other.

In the following section we describe a model which embeds societal order in all-pay auc-

tions. We analyze simple, symmetric, three player scenarios similar to those in Esteban

and Ray (1999), and find that centrist players in general either completely stay out of the

contest or at least on average expend lower effort than radical players, thus, extremism

drives out moderation3 if an all-pay auction rather than a lottery CSF is employed.
3Following the definitions of "extremism" and "moderation" in Esteban and Ray (1999)
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2 The Model

We examine all-pay auctions with identity-dependent externalities under complete infor-

mation. In an all-pay auction all players make their bids simultaneously, the player with

the highest bid wins the prize, and all players pay their bid. In order to capture the

idea that a player is not indifferent to who wins the prize if he does not, we represent

a player’s valuation of the prize as an n-dimensional vector rather than a scalar. Each

player’s valuation of the prize is a vector vi = (vi1, vi2, . . . , vin), i ∈ I = {1, . . . , n}, where vij

is the value to player i if player j wins the prize. Externalities are not restricted to being

positive or negative only, but we assume that players strictly prefer to win the prize, i.e.

∀i ∈ I ∶ vii > vij∀j ∈ I, j ≠ i.

We aim to analyze the effects that the presence of radicals has on strategic behavior in

all-pay auctions and for this purpose focus on three-player environments (I = {1,2,3})
and for those environments define radicalism and centrism based on players’ valuations.

More precisely, let rij ∶= vii − vij, i, j ∈ I, be player i’s reach4 with respect to player j,

meaning that rij is the maximum player i would be willing to bid in order to outbid

player j, if players i and j were the only actively competing players.

Definition 1. A player i ∈ I is called radical, if

i ∈ ⋂
rst=maxi maxj rij

{s, t}

Definition 2. A player i ∈ I is called centrist, if i is not radical.

If we assume that inter-agent antagonism is symmetric, i.e. rij = rji ∀i, j ∈ I, then

d(i, j) ∶= rij can be interpreted as some distance between players that reflects preferences

over outcomes in the sense that player i (weakly) prefers the outcome where j wins over

the outcome where k wins if and only if d(i, j) ≤ d(i, k), i, j, k ∈ I.

Following Esteban and Ray(1999), we refer to extremism as a situation where radical
4This definition is based on Siegel(2009) but accounts for the identity-dependent externalities.
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players expend more effort, in the sense of first-order stochastic dominance, in order to

reach their preferred outcome. Alternatively, a situation in which centrists compete more

aggressively would be referred to as moderate. In the following paragraphs we separately

consider the cases of (A)two radical players and one centrist, (B)one radical player and

two centrists, and (C)the all-pay auction without radical players.

2.1 Two Radicals

Let players 1 and 3 be radical and player 2 be the centrist. That is, the players are

arranged either on the line or in an obtuse triangle as illustrated in Figure 1. Without

loss of generality we consider the case where d(2,1) = d(2,3).
● ● ●

●

1 2 3

2′
!!

!!
!!

!!
!!

!!
!!

!!
!! """"""""""""""""""

!!

Figure 1:Diagram to illustrate the case of two radical players and one centrist.

We find that in any equilibrium both radicals will compete, while there exists a symmetric

equilibrium, which is unique and has the property that the centrist player does not

actively take part in the all-pay auction. This stands in contrast to a first-price winner-

pay auction in this environment. Funk(1996) shows that there exists a pure-strategy

equilibrium in the environment described above, in which player 2 wins the price with a

bid of r2j, j ∈ {1,3}.
Proposition 1 (Moderation does not drive out extremism). In any equilibrium of the

environment described above, both radicals will participate in the auction with strictly

positive probability.

Proof. By way of contradiction, assume that one of the radical players stays out, without

loss of generality let that player be player 1, i.e. F1(0) = 1. Given player 1’s strategy
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player 2 and 3 would randomize up to r23 = r32 < r31 = r13. Player 1’s payoff if he stays

out of the competition will be in the interval (v13, v12) and he could strictly improve by

bidding r23 which would guarantee him a payoff of v11 − r23 = v11 − r12 = v12.

Proposition 2 (Cut-throat Competition). 1. (Existence) There exists an equilibrium

in which the centrist stays out, i.e. bids zero with probability one, and the radical

players randomize up to their common reach, r13 = r31.

2. (Uniqueness) This "cut-throat" competition is the only symmetric equilibrium (in

the sense that identical players apply identical strategies).

Proof. The outline of a proof can be found in the Appendix.

Lemma 3. The equilibrium described in Proposition 2.1. persists if more players, who

are centrists in comparison with players 1 and 3, are added to the environment.

Proof. Let player m be an additional player, who is centrist in comparison with players

1 and 3, i.e. rmj ≤ rjk for all j, k ∈ {1,3}, j ≠ k and it exists j ∈ {1,3} such that the

inequality is strict. If player m bids zero and all other players follow the equilibrium

strategies described in proposition 2, then m’s expected payoff is 1
2(vm1 + vm3). If player

m made a strictly positive bid, b ≤ rjk, his expected payoff would be

um(b) = F (b)2vmm + (1 − F (b)2) [vm1 + vm3

2
] − b

= vm1 + vm3

2
+ F (b)2 [rm1 + rm3

2
] − b

= vm1 + vm3

2
+ ( b

rjk
)2 [rm1 + rm3

2
] − b

= vm1 + vm3

2
+ b

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
b

rjk(≤1
( 1

2(rm1 + rm3)
rjk

)
)*****************************************+*****************************************,<1

−1
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦)******************************************************************************+******************************************************************************,<0

< vm1 + vm3

2
.
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If player m bids more than rjk, then his payoff is

um(b) = vmm − b < vmm − rjk < vmm − 1

2
(rm1 + rm3) = vm1 + vm3

2
.

Before proceeding to the next setting, we provide an example which illustrates the

results above and allows us to compare the all-pay auction with a different form of all-pay

contest, namely a Tullock-type model with a lottery contest success function.

For the purpose of comparison we consider an example given by Linster(1993) which

applies to this setting.

Example 1. Consider three players and normalize the value of the prize to one, such that

we can think of the contributions as fractions of the common "own value" for winning the

prize. Players’ valuations are v1 = (1,γ,γ2), v2 = (γ,1,γ), v3 = (γ2,γ,1) where γ ∈ [0,1).
The order of players’ reaches is illustrated in the following diagram, which shows that

player 2 is a centrist player and players 1 and 3 are radical.

● ● ● ●
r21 = r12
r23 = r32

r13 = r31

1 − γ20 1 − γ 1

Figure 2:Diagram to illustrate players preferences in Example 1.

By Proposition 2 in the unique symmetric equilibrium player 2 stays out, i.e. F2(x) = 1

for all x ≥ 0, and players 1 and 3 randomize symmetrically over [0, r13] using cdf

F1(x) = F3(x) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 x < 0

x
1−γ 0 ≤ x ≤ 1 − γ

1 x > 1 − γ

.

Note that in the equilibrium of the all-pay auction described above, the socially optimal

outcome will be achieved with probability zero as compared to (1−γ)/(3−γ) in the Tullock
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game with lottery contest success function as considered by Linster(1993). Moreover, the

expected sum of bids, which Esteban and Ray(1999) use to measure societal conflict, is

strictly greater in the all-pay auction (1 − γ > 2
3−γ ⋅ (1 − γ)), although the moderate bids

2 (1−γ)2(3−γ)2 in the lottery contest, which is strictly greater than zero under our assumption

that players prefer winning to losing. The socially optimal outcome will be realized with

strictly positive probability only in the lottery contest.

2.2 One Radical

Now consider a three player setup with only one radical player. Given our assumptions,

players must be arranged on an acute-angled triangle. Without loss of generality assume

player 2 is the radical player and that the two centrist players, 1 and 3, are symmetric5.

Figure 3 below illustrates players’ preferences over outcomes.

●

●

●

●

1

2

3

2′
##

##
##

##
##

##
##

##
##

##
##

##
## $$$$$$$$$$$$$$$$$$$$$$$$$$

%%
%%

%%
%%

%%
%%

%%
%%

%%
%% &&&&&&&&&&&&&&&&&&&&

""

Figure 3: Diagram to illustrate the case of one radical player and two centrists.

We find that there exists an equilibrium in this environment where one of the centrist

players does not actively participate in the contest, while the radical player never stays

out in equilibrium. Moreover, even in a symmetric equilibrium (in which all players

participate) extremism persists.

Proposition 4 (Moderation does not drive out extremism). In the environment described

above, player 2 always participates in equilibrium.
5If players 1 and 3 were not symmetric, the identity of the player who stays out in the equilibrium

described in Proposition 3 would be determined.
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Proof. Assume that player 2 would stay out of the contest, then his expected payoff

would be v2j, j ∈ {1,3} and players 1 and 3 would randomize uniformly over [0, rjk],
j, k ∈ {1,3}, j ≠ k. Thus, if player 2 would bid x = rjk, he would win with certainty and

receive expected payoff v22 − rjk > v22 − r2j = v2j.

Proposition 5 (Extremism drives out moderation). In the environment described above,

there exists an equilibrium in which one of the centrist players stays out, i.e. ∃i ∈ {1,3} ∶
Fi(x) = 1 for all x ≥ 0.

Proof. Without loss of generality assume that F1(x) = 1 for all x ≥ 0. Then players 2 and

3 randomize uniformly over [0, r23]. Both players must earn their equilibrium payoff at

the upper bound of the support of their equilibrium strategies. Thus, player 3’s expected

payoff from a bid x ∈ [0, r23] must be v32 and player 2’s expected payoff from a bid

x ∈ [0, r23] must be v23. Their equilibrium strategies are

F2(x) = F3(x) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 x < 0

x
r23

0 ≤ x ≤ r23

1 x > r23

.

Given these strategies it is optimal for player 1 to bid zero and receive expected payoff
1
2(v12 + v13), because any bid x ∈ (0, r13) would yield an expected payoff of

u1(x,F−1) = − x + v11F2(x)F3(x) + v13F2(x)(1 − F3(x)) + v12F3(x)(1 − F2(x))
+ v13∫ r13

x
(1 − F3(s))f2(s)ds + v12∫ r13

x
(1 − F2(s))f3(s)ds

=v12 + v13

2
− x [1 − x

r2
31

(v11 − v12 + v13

2
)] < v12 + v13

2
.

In the environment with one radical player, it is not necessary that a centrist player

completely stays out of the contest. However, even in the symmetric equilibrium in which

both centrists actively participate, extremism is present.
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Proposition 6 (Extremism). In the environment described above, there exists a sym-

metric equilibrium (in the sense that identical players use identical strategies). This

equilibrium exhibits extremism, i.e. a radical player expends more effort than a centrist

player in the sense of first order stochastic dominance.

Proof. See Appendix.

Linster’s (1993) second example takes on exactly this setup. Let us compare the

all-pay auction once more to the Tullock-Lottery contest.

Example 2. Consider three players and normalize the value of the prize to one, players’

valuations are v1 = (1,0,γ), v2 = (0,1,0), v3 = (γ,0,1) where γ ∈ [0,1). The order of

players’ reaches is illustrated in the diagram below, showing that player 2 is a radical

player and players 1 and 3 are centrists.

● ● ●
r13 = r31

r32 = r23
r12 = r21

0 1 − γ 1

Figure 4:Diagram to illustrate players preferences in Example 2.

Linster(1993) computes for this example that the moderates bid 2(3+γ)2 each and the ex-

tremist bids (1+γ) 2(3+γ)2 , the expected sum of bids is 2/(3+γ) ∈ (1
2 ,

2
3), and player 2 wins

with probability 1+γ
3+γ ∈ (1

2 ,
1
3) which is increasing in γ.

On the other hand, in the all-pay auction in the asymmetric equilibrium (described in

Proposition 5) players expend on average higher effort (the expected sum of bids is 1) and

the least socially desirable outcome, i.e. player 2 wins, is more likely to occur (2 wins

with probability 1
2). The symmetric equilibrium yields higher payoffs to the players who

participate in the asymmetric equilibrium in which one moderate stays out. In this ex-

ample all players have equal expected payoff, (γ
2) 2

2−γ , in the symmetric equilibrium, while

both active players in the asymmetric equilibrium have an expected payoff of zero. The

moderate who stays out receives on average γ
2 > (γ

2) 2
2−γ in the asymmetric equilibrium.

However, the sum of expected payoffs is strictly greater in the symmetric equilibrium.
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2.3 No Radicals

Under the assumption of symmetric antagonism, there is only one three-player environ-

ment without any radical players. All reaches rij, i, j ∈ I, i ≠ j, must coincide. This case

is illustrated in Figure 5 below.

● ●

●

1

3

2

%%
%%

%%
%%

%%
%%

%%
%%

%%
%%

% &&&&&&&&&&&&&&&&&&&&&

Figure 5: Diagram to illustrate the case without radical players and with symmetric

antagonism.

Note that all players are equidistant from each other, thus rij = rkl, ∀i, j, k, l ∈ I, i ≠ j,

k ≠ l. This case is equivalent to a three player all-pay auction without identity-dependent

externalities in which players are symmetric and value the prize at rij, i, j ∈ I, i ≠ j. Baye,

Kovenock and DeVries (1996) show that there exists a unique symmetric equilibrium as

well as a continuum of asymmetric equilibria. All equilibria however yield the same

expected payoff (vij, i ≠ j after rescaling) for each player and the same expected revenue

to the auctioneer.

3 Conclusion

In the previous section we demonstrated that societal order highly influences players’

behavior in all-pay auctions. Specifically, extremism drives out moderation in the sense

that whenever at least one player is in a radical position there exists an equilibrium in

which at least one centrist player does not actively take part in the contest. This type

of strategic behavior typically results in a less efficient outcome, i.e. total conflict is high

and the socially optimal outcome will not be achieved. Two examples illustrated simi-

larities (e.g. the existence of extremism), as well as major differences (e.g. participation
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versus non-participation of moderates), that resulted from the mechanism we employed

in comparison to the lottery success function which is predominantly found in the litera-

ture.

We were able to generalize the findings in Osborne et al.(2000) from an environment

where players’ choice sets consist only of two choices (zero and the fixed cost, c) and the

outcome is determined by a tie-breaking rule (compromise) to one in which expenditure

is variable and influences the outcome.

We leave it to future research to analyze social conflict in the all-pay auction with dif-

ferently sized groups and identity-dependent externalities for a direct comparison with

Esteban and Ray(1999). However, our results that moderation does not drive out ex-

tremism even with only a single extremist, and on the other hand, that the presence of

one extremist is sufficient for driving out moderation in one equilibrium, suggest that the

specific CSF (lottery) assumed by Esteban and Ray(1999) and Linster(1993) was crucial

for the active participation of moderates in equilibrium (if all players face identical cost

structures). In conclusion, we need to be aware that the differences between ratio and

difference-form success functions, which were found in pure contests (Hirshleifer (1989)),

persist in contests with identity-dependent externalities.
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Appendix

Proof. (Proposition 2)

1. (Existence)The strategy profile in which 2 stays out completely (puts mass 1 on

zero) and players 1 and 3 randomize uniformly over [0, rjk] (j, k ∈ {1,3}, j ≠ k) is

a Nash equilibrium. Assume that 2 uses the strategy F2(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 for x < 0

1 for x ≥ 0
.

Then it is optimal for players 1 and 3 to randomize over [0, rjk] according to

F (x) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for x < 0

x
rjk

for 0 ≤ x ≤ rjk

1 for x > rjk

.

Given that 1 and 3 apply this strategy player 2’s payoff if he would make a strictly

positive bid x ∈ (0, r2j] is:

u∗2(x) = [F (x)]2v22 + (1 − [F (x)]2)v2j − x

= v2j + F (x)2r2j − x

= v2j − x(1 − x

rjk

r2j

rjk
)

< v2j.

2. (Uniqueness) Before we show the uniqueness of the symmetric equilibrium described

under (1.), we make the following observations regarding symmetric equilibria:

(a) s1 = s2 = s3 = 0

Assume ∃i, j such that si < sj. For every bid xi ∈ [si, sj) i loses with certainty.

⇒ si = 0 and player i does not put mass anywhere over (si, sj). ⇒ player j

would improve by moving mass down.
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(b) Not all three players can have a mass point at zero

Otherwise a player could increase his profit by moving mass up slightly.

(c) s̄j > s̄2, j ∈ {1,3}
Assume s̄1 = s̄2 = s̄3 = s̄. u∗j (0) = αvj2 + (1 − α)vjk for some α ∈ (0,1) (j ∈
{1,3}, k ∈ {1,3}/{j}).⇒ u∗j < vj2. On the other hand, u∗j (s̄) = vjj − s̄.⇒ s̄ > rj2.

Contradiction (s̄2 ≤ r2j)⇒ s̄j ≠ s̄2⇒ s̄j > s̄2.

(d) s̄2 < r2j

By (b) player 2 loses with strictly positive probability at s̄2. Suppose s̄2 ≥ r2j,

then player 2’s equilibrium payoff at s̄2 is

u∗2(s̄2) = [F (s̄2)]2v22 + (1 − [F (s̄2)]2)v2j − s̄2 ≤ v2j − (1 − [F (s̄2)]2)r2j < v2j.

(e) F (player 1’s and 3’s c.d.f.) is strictly increasing over [0, s̄j]
1 and 3 use identical cdf (symmetric equilibrium). If F had a flat spot then so

would F2, but then no player would make a bid in this interval and a player

could improve by moving mass down from the upper end of the interval.

(f) There are no point masses on the open interval (0, s̄j)
Suppose player i ∈ I has a mass point at x ∈ (0, s̄2], then a player l ≠ i

could improve by moving mass from an ε-neighborhood below x to some δ

neighborhood above x (remember that s̄2 < r2j by (d) ). Thus, there would

be an ε-neighborhood below x in which no other player would put mass. But

then it is not optimal for i to put mass at x. Suppose 1 and 3 have a mass

point at y ∈ (s̄2, s̄j), then either would improve by moving his mass point up

slightly (note that s̄j ≤ rjk).

Assume that player 2 randomizes continuously over a finite number of disjoint

intervals. Player 2’s support can be written as ⋃k̄
k=1[tn−2k, tn−2k+1] ∪ [tn, s̄2] where

k̄ =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

n
2 if n even

n−1
2 otherwise

, t0 = s2 = 0. Let [t, t̄] be one of these intervals over which
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all three players randomize continuously. Player j’s (j ∈ {1,3}) expected payoff for

a bid, x ∈ [t, t̄], is

u∗j (x) =vjjF (x)F2(x) + vjkF2(x)(1 − F (x)) + vj2F (x)(1 − F2(x))
+ vjk ∫ s̄2

x
(1 − F (s))f2(s)ds + vj2∫ s̄2

x
(F (s) − F (x))f2(s)ds − x

=rjkF (x)F2(x) + vjk + (vj2 − vjk)∫ s̄2

x
f2(s)F (s)ds − x

⇒du∗j (x)
dx

= rjk (F ′2(x)F (x) + F2(x)F ′(x)) − (vj2 − vjk)F ′2(x)F (x) − x

⇒F ′2(x)F (x)rj2 + F2(x)F ′(x)rjk = 1

⇒F2(x) = 2rj2

rj2 + rjk
F (x) + [F (t)] rjk

rj2 (F2(t) − 2rj2

rj2 + rjk
F (t)) [F (x)]− rjk

rj2

By assumption rjk > rj2, thus ∃ε > 0 such that rjk = (1 + ε)rj2 and we can rewrite

F2(x) = 2

2 + ε><1
F (x) + ( F (t)

F (x))
1+ε

)***********************+***********************,>0

(F2(t) − 2

2 + ε
F (t)) (★)

From (★) we can derive

F ′2(t) = 2

2 + ε
F ′(t) − (1 + ε))*****+*****,>0

F ′(t)?>0
( F (t)
F (x))

1+ε

)***********************+***********************,>0

(F2(t) − 2

2 + ε
F (t)) 1

F (t)?>0
. (★★)

By (c) F2(s̄2) = 1 > F (s̄2), a necessary condition for this to hold is that

F2(tn) − 2

2 + ε
F (tn) > 0.

It follows that F ′2(t) < F ′(t) for t ∈ [tn, s̄2] ⇒ F2(tn) > F (tn). By assumption F2 is

15



constant over (tn−1, tn) and F is increasing over the same interval

⇒F2(tn−1) > F (tn−1)
⇒F2(tn−2) − 2

2 + ε
F (tn−2) > 0

⇒(By (★★))F ′2(t) < F ′(t) for t ∈ [tn−2, tn−1]
⇒F2(tn−1) > F (tn−1)

After a finite number of iterations of the argument above follows that F2(t0 = 0) >
F (t0 = 0) which implies that 2 has a mass point at zero and (by b) players 1 and 2

do not have a mass point at zero. Altogether F2(t) > F (t) for all t ∈ [0, s̄2].
We distinguish two cases:

(a) n is even, i.e. player 2 distributes mass strictly greater than zero over [0, t1].
In this case for t ∈ [0, t1] (★) simplifies to

F2(t) = 2

2 + ε
F (x) < F (t)☇

(b) n is odd, i.e. player 2 has does not make bids in the interval (0, t1).
In this case only players 1 and 3 randomize over (0, t1). Player j’s (j ∈ {1,3})
expected payoff for a bid, x ∈ (0, t1) is:

u∗j (x) =vjjF (x)F2(x) + vjkF2(x)(1 − F (x)) + vj2F (x)(1 − F2(x))
+ vj2∫ s̄2

t0
(F (s) − F (x))f2(s)ds + vjk ∫ s̄2

t0
(F2(s) − F2(x))f(s)ds − x

=vjjF (x)F2(0) + vjkF2(0)(1 − F (x)) + vj2F (x)(1 − F2(0)) − vj2F (x)[1 − F2(0)]
+ vj2∫ s̄2

t0
F (s)f2(s)ds − vjkF2(0)[F (s̄2) − F (t0)] + vjk ∫ s̄2

t0
F2(s)f(s)ds − x

=rjkF (x)F2(0) + vjkF2(0)[1 − F (s̄2) + F (t0)] + vj2∫ s̄2

t0
F (s)f2(s)ds

+ vjk ∫ s̄2

t0
F2(s)f(s)ds − x

16



du∗j (x)
dx = rjkF2(0)F ′(x) − 1, thus F ′(x) = 1

F2(0)rjk
for x ∈ (0, t0). By F (0) = 0

players 1 and 3 randomize uniformly over [0, t1] according to

F (x) = x

F2(0)rjk
, x ∈ [0, t1].

All three players randomize continuously over [t1, t2]. Player 2’s expected

payoff if he bids x ∈ [t1, t2] is:

u∗2(x) =[F (x)]2v22 + [1 − (F (x))2]v2j − x

=v2j + [F (x)]2r2j − x

=v2j

⇒ F (x) =( x

r2j
)

1
2

for x ∈ [t1, t2]

F is continuous at t1 (by (f)), therefore

( t1
r2j
)

1
2 = t1

F2(0)rjk
⇒ t1 = F2(0)2 (rjk)2

r2j

By (★) for t ∈ [t1, t2]

F2(t) = 2

2 + ε
F (t)

)******************+******************,<1
+(F (t1)

F (t) )
1+ε

)************************+************************,>0

(F2(0)?>0
(1 − 2(1 + ε)

2 + ε)************+************,>1)*************************+*************************,<0

))

)**************************************************************************************************************+**************************************************************************************************************,<0
< F (t)☇

Altogether, player 2 does not randomize over any finite number of intervals. Hence,

the equilibrium described in (1.) is the unique symmetric equilibrium.

Proof. (Proposition 5)
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Under the assumption that all three players make positive bids with strictly positive

probability and players 1 and 3 use identical strategies, i.e. F1 = F3 =∶ F , we know that

s1 = s2 = s3 = 0 and s̄2 = s̄1 = s̄3 =∶ s̄. Moreover, s̄ ∈ (rjk, r2j), j, k ∈ {1,3}, j ≠ k, and player

2 cannot have a masspoint at zero. Assume that all players randomize continuously over

[0, s̄]. All players must earn their equilibrium payoff at s̄, therefore player 2’s expected

payoff from a bid b ∈ (0, s̄], u2(b,F ) = v22[F (b)]2 + v2i(1− [F (b)]2), must be v22 − s̄. This

yields

F (x) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 x < 0

[(1 − s̄
r2j
) + x

r2j
] 1

2
0 ≤ x ≤ s̄

1 x > x̄

.

Player j’s payoff must be vjj − s̄. Moreover, player j chooses his equilibrium strat-

egy such that his expected payoff, uj(b,F2, F ) = −b + vj2 + [vjj − vj2]F (x)F2(x) + [vjk −
vj2] ∫ s̄

b F2(s)F ′(s)ds, is maximized. The first order condition yields the first order differ-

ential equation

0 = F (x)F ′2(x)rj2 + F ′(x)F2(x)rjk − 1.

Using the boundary conditions F2(0) = 0 and F2(s̄) = 1 this yields

F2(x) = κF (x) − (κ − 1)F1(x)− rjk
rj2

with κ = 2rj2

rj2+rjk
> 1 and s̄ = rj2 [1 − (1 − 1

κ)κ]. Note that s̄ ∈ (rjk, rj2) and F2 is strictly

increasing.

In order to show that this equilibrium exhibits extremism, we need to show that F2(x) ≤
F1(x)∀x. All players’ cdfs coincide for x < 0 and x ≥ x̄. The centrist players put strictly

positive mass on zero, thus F2(0) < F1(0). For x ∈ (0, x̄),

F2(x) = κF1(x) − (κ − 1)F1(x)− r13
r12 = F1(x) [κ − (κ − 1)

>1D*******************************E*******************************F
F1(x)−(1+ r13

r12
)])*********************************************************************************+**********************************************************************************,<κ−(κ−1)=1
< F1(x).
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Altogether, F2 first order stochastically dominates F1.
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