
Prieto, Esteban; Buch, Claudia M.; Eickmeier, Sandra

Conference Paper

Macroeconomic Factors and Bank Risk

Beiträge zur Jahrestagung des Vereins für Socialpolitik 2010: Ökonomie der Familie - Session:
Macroeconomics of Banking, No. G12-V2

Provided in Cooperation with:
Verein für Socialpolitik / German Economic Association

Suggested Citation: Prieto, Esteban; Buch, Claudia M.; Eickmeier, Sandra (2010) : Macroeconomic
Factors and Bank Risk, Beiträge zur Jahrestagung des Vereins für Socialpolitik 2010: Ökonomie der
Familie - Session: Macroeconomics of Banking, No. G12-V2, Verein für Socialpolitik, Frankfurt a. M.

This Version is available at:
https://hdl.handle.net/10419/37304

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/37304
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Preliminary version, please do not quote! Comments are welcome. 

 

Macroeconomic Factors and Bank Risk* 
Claudia M. Buch (University of Tübingen, CESifo, and IAW) 

Sandra Eickmeier (Deutsche Bundesbank) 

Esteban Prieto (University of Tübingen) 

 

Friday, February 26, 2010 

 

Abstract 

The interplay between banks and the macroeconomy is of key importance for 
financial and economic stability. We analyze this link using a Factor Augmented 
Vector Autoregressive Model (FAVAR) which extends a standard VAR for the 
U.S. macroeconomy with a set of factors summarizing conditions in the banking 
sector. We use the model to analyze bank risk, bank returns, and bank lending. 
We take data of more than 2,000 commercial banks from the U.S. Call Reports. 
We assess the importance of common versus idiosyncratic risk at the bank level 
and the heterogeneous transmission of macroeconomic and asset price shocks to 
individual banks. Our paper has four main findings. First, average bank risk 
declines following expansionary shocks. Results for individual banks reveal that 
1/3 of all banks increase risk after a monetary loosening. In this sense, our results 
are partly in support of the risk-taking channel. Second, bank lending increases 
following expansionary shocks. Third, the correlation between bank risk and 
return depends on the underlying macroeconomic shock. Fourth, banks’ responses 
to macroeconomic shocks exhibit a high degree of heterogeneity. We find that 
riskiness and internationalization are determinants of banks’ risk and lending 
exposure to monetary policy shocks, and that liquidity, in addition, determines 
banks’ lending exposure.  
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1 Motivation 

The interplay between macroeconomic factors and risks in banking is of importance for 

financial and economic stability. For example, the bubble on housing markets and loose 

monetary policy are often cited as main origins of the crisis that started in 2007, and monetary 

policy has reacted to problems in the banking sector by injecting liquidity. In this paper, we 

analyze the feedback between the banking sector and the macroeconomy for the pre-crisis 

period. We empirically model individual banks’ risk, return, and lending together with 

macroeconomic factors in a Factor Augmented Vector Autoregressive Model (FAVAR) in the 

tradition of Bernanke et al. (2005). In our model, developments in the banking sector can have 

an impact on macroeconomic dynamics, and macroeconomic developments can affect 

individual banks.  

The FAVAR extends a standard macroeconomic VAR which comprises GDP growth, 

inflation, house prices, stock price inflation, and monetary policy interest rates with a set of 

factors which we extract from a large set of individual bank-level data. The banking data 

comprise non-performing loans to total loans, equity capital to total capital, return on assets, 

and loans to assets for a balanced panel of more than 2,000 U.S. banks. Data are taken from 

the U.S. Call Reports. We decompose the banking data in common and idiosyncratic (i.e. 

bank-specific) components. We identify a set of macroeconomic (and asset price) shocks and 

assess their transmission through the banking system. We also make use of the rich 

information on individual banks incorporated in the dataset (also available to regulators) and 

assess how individual banks react to macroeconomic shocks. We thus address the issue that, 

in the presence of frictions on financial markets, effects of macroeconomic shocks should 

exhibit a substantial degree of heterogeneity. 

We answer the following questions. First, what is the role of macroeconomic shocks for the 

banking sector? Second, what is the role of the banking sector for the macroeconomy? Third, 

what are the sources of bank heterogeneity? How important are idiosyncratic shocks and how 

important is the asymmetric transmission of common (banking and macro) shocks to 

individual banks, and which bank-level features explain the exposure of individual banks to 

macroeconomic factors?  

The answers to the above questions have important implications also for regulatory policy. 

The exposure of banks to macroeconomic factors (and thus the procyclical impact of capital 

regulations) features prominently in recent proposals for regulatory reforms. Rochet (2008), 

for instance, argues that banks with a large exposure to macroeconomic shocks should be 

denied access to emergency assistance by the central bank. According to his proposal, banks 

with a low exposure to macroeconomic shocks should have access to the lender of last resort 

facilities. Banks should face a capital requirement and a deposit insurance premium that 
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increases with their exposure to macroeconomic factors. Similarly, Farhi and Tirole (2009) 

argue that banks which react more to macroeconomic factors should be regulated more 

tightly. Gersbach and Hahn (2009) propose a regulatory framework under which a bank's 

required level of equity capital depends on the equity capital of its peers and, in this sense, on 

the macroeconomic environment. If an adverse shock hits the economy and drives down 

equity ratios for all banks, capital requirements will be relaxed. Implementing these proposals 

requires information about individual banks’ exposures to macroeconomic factors. Our results 

inform this debate. 

Our paper contributes to recent literature analyzing the link between bank risk and the 

macroeconomic environment. According to the so-called risk-taking channel (Rajan 2005, 

Borio and Zhu 2008), low policy interest rates may trigger increased risk-taking either by 

increasing net worth and thus encouraging lending to high-risk borrowers and/or by inducing 

a “search for yield”. Therefore, the risk-taking channel is closely related to the lending 

channel of monetary policy. Recent empirical work using bank-level data finds some 

evidence that lower interest rates increase banks’ risk (Altunbas et al. 2009, Jiménez et al. 

2007, Ioannidou et al. 2009, Eickmeier and Hofmann 2009). While the focus of these papers 

is on bank-specific risk, Tarashev et al. (2009a) show that banks’ exposure to macroeconomic 

risk also increases the degree of systemic risks in banking, i.e. the probability that the entire 

financial system is in distress.1  

Our set-up allows us to make several contributions. First, the FAVAR model allows analyzing 

the dynamic interaction between bank-specific and macroeconomic developments in a 

flexible way while taking into account the endogeneity of both, macro- and banking factors. 

Several VAR-studies allow for the interaction between credit and macroeconomic factors (e.g. 

Eickmeier et al. 2007, Ciccarelli et al. 2009), but these studies do not focus on bank-specific 

effects. The above bank-level studies on the risk-taking channel, in contrast, allow 

macroeconomic factors to affect bank risk, but macroeconomic factors are not allowed to be 

influenced by bank risk or other banking variables. We find both, effects of macroeconomic 

(and asset price) shocks on banks, and effects of shocks occurring in the banking sector on the 

macroeconomy. 

Second, the FAVAR model allows including a large number of bank-level variables. We can 

explicitly exploit the interconnectedness of banks and the impact of macroeconomic 

developments on different banking variables. The need to account for the interconnectedness 

of financial institutions is one key insight of the recent crisis (Brunnermeier 2008, IMF 2009). 

Moreover, we simultaneously model the risk and the return of banks, thus accounting for the 

                                                 
1 Additional determinants of systemic risk include banks’ probabilities of default and the degree of size 
concentration in banking (Tarashev et al. 2009a). 
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fact that, in “search for yield”, banks may increase risk (Rajan 2006, Hellwig 2008).2 We find 

that the correlation between the risk and the return of banks depends on the underlying 

macroeconomic shock. In addition, we can assess the exposure of each individual bank to 

macroeconomic shocks. We find that banks react in a very heterogeneous way to common 

shocks and assess the reasons between the heterogeneous reactions.   

Third, previous papers analyzing the risk-taking channel regress bank-level risk on variables 

such as the monetary policy interest rate, GDP growth, and asset prices (Altunbas et al. 2009, 

Jiménez et al. 2007, Ioannidou et al. 2009).3 The latter are reduced-form constructs, and their 

developments may reflect the pass-through of possibly very different types of shocks. Instead, 

we consider (loosely) identified orthogonal macroeconomic and asset price shocks which 

allow us to better disentangle the common drivers of banking developments. One finding is 

that bank risk tends to decline in response to expansionary shocks while lending increases. 

The shapes of impulse response functions and the fraction of the variation accounted for 

depend, however, on the type of the shock.  

Fourth, FAVAR models have previously been fitted to large macroeconomic datasets.4 The 

methodology, however, allows exploiting even richer information, and its application also to 

micro-level data is the natural next step. To the best of our knowledge, our study is the first 

linking a FAVAR model to a micro dataset.5 

In the remainder of the paper we proceed as follows. In Section 2 we relate our paper to the 

existing theoretical and empirical literature. In Sections 3 and 4 we present the data and the 

methodology, respectively. In Section 5 we provide and discuss the empirical results and 

conclude in Section 6. 

2 Theoretical Background and Previous Empirical Literature6 

2.1 Theoretical Background 

Theoretical contributions explaining the exposure of banks to macroeconomic risk need to 

assume some degree of frictions on financial markets. In a complete markets setting, banks 

should be exposed to idiosyncratic but not to macroeconomic risks (Hellwig 1997). Moreover, 

                                                 
2 See Beck (2008) for a discussion of previous empirical literature on banks’ risk-return trade off. 
3 These papers address the issue that monetary policy is endogenous by either approximating monetary policy of 
the countries studied by foreign policy rates or by Taylor rule gaps, i.e. deviations of the policy rate from the rate 
implied by the Taylor rule (Altunbas et al. 2009). 
4 See, e.g., De Nicolò and Lucchetta (2010) for an application to systemic risk. 
5 Den Reijer (2007) applies a principal components-based factor model to a micro dataset of Dutch staffing 
employment and carries out forecasts but no structural analysis.  
6 See Freixas and Rochet (1998, Chapter 6) for a review of the bank lending channel and the financial 
accelerator model and Degryse et al. (2009, Chapter 6) for the corresponding empirical evidence. 
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models assuming financial contracts that isolate banks from macroeconomic shocks miss 

important interactions between banks and the macroeconomy during financial crises (Zhang 

2009). In this section, we summarize implications of recent models modeling such financial 

frictions (see also Table 1). 

Most previous work linking banks and the macroeconomy focuses on monetary policy shocks 

and the lending channel. Walsh (2003) distinguishes two aspects. According to the bank 

lending channel, policies that affect the reserves of the banking system influence the 

transmission of monetary impulses. If access to uninsured funding is limited due to financial 

friction, banks cut their lending in response to tighter monetary policy. Hence, if close, 

uninsured substitutes to bank deposits are missing, bank credit affects aggregated activity. 

According to the financial-accelerator mechanism, the availability of cash flow and the net 

worth of firms affect the availability of external finance. If a recession weakens firms’ internal 

resources, the volume supply of credit declines, and the negative effects of the downturn are 

aggravated. 

If the financial accelerator is operating, changes in interest rates may have countervailing 

effects on bank risk and lending. On the one hand, lower interest rates reduce the interest rate 

burden for firms, lower the risk of outstanding flexible loan contracts, thereby increasing the 

probability of repayment and the value of the underlying collateral. On the other hand, the 

borrowing capacity of high-risk firms increases with the availability and the volume of 

pledgeable assets (Bernanke et al. 1996). Risk might increase. Conversely, higher interest 

rates increase the agency costs of lending, banks reduce the amount of credit to monitoring-

intensive firms, and they invest a greater share of their assets in safe assets (“flight-to-

quality”) (Bernanke et al. 1996: p. 4).7  

Recent macroeconomic models extend the menu of shocks when analyzing the link between 

banks and the macroeconomy. Angeloni and Faia (2009) analyze the impact of monetary, 

technology, and asset price shocks in the context of a DSGE model with banks. In their 

model, banks use equity and deposits to finance lending to entrepreneurs. Entrepreneurs have 

no internal funds and require financing from banks as relationship lenders. Banks have special 

skills in redeploying assets that are liquidated early, and the economy is prone to bank runs.  

The model also yields testable hypotheses concerning the impact of different shocks for the 

banking sector. Following a positive productivity shock, inflation and interest rates fall, and 

output increases. Since investment increases, bank lending increases as well. The decline in 

interest rates lowers banks’ return on assets, but banks also take on more risks because they 

raise more deposits (the capital-asset ratio falls). An expansionary monetary policy shock 

increases inflation and output on impact, and lower interest rates have a negative impact on 

                                                 
7 Similar mechanisms are stressed in Matsuyama (2007) or Dell’Ariccia and Marquez (2006). 
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banks’ profits. Banks replace deposits with equity, hence bank risk increases.8 Following a 

positive shock to the marginal return to capital,9 output and inflation rise on impact. Due to an 

increased demand for loans, bank interest rates and thus profits increase. Bank risk declines.  

In Angeloni and Faia (2009), the focus is on banks’ role as liquidity providers. Zhang (2009) 

focuses on an interaction between credit friction on the demand side (net worth of firms) and 

the supply side (bank capital).  In her model, banks and firms share macroeconomic risks 

because banks cannot write contracts isolating them from macroeconomic risk. The 

implications of this model differ from those in Angeloni and Faia (2009) since expansionary 

monetary or technology shocks lower risk.10 The reason for this difference is that 

expansionary shocks increase firms’ net worth, which has a positive impact on the borrowing 

capacity of firms. Implications for lending are qualitatively the same. 

Recent literature has also discussed the exposure of banks to macroeconomic factors as a 

determinant of systemic risks in banking. In Farhi and Tirole (2009), the probability of 

success of projects financed by banks depends on macroeconomic shocks. Banks are allowed 

to choose the correlation of their portfolio risk with that of other banks. There is a strategic 

complementarity in the choices of banks – the higher the number of banks holding similar 

portfolios, the more likely is a (monetary) bail out in case of a negative shock. Banks want to 

fail when the largest possible number of other banks is failing. Predictions of the model differ 

from standard predictions of the CAPM model, which would imply that investors minimize 

their correlation of aggregate risk. One implication of the model is that a low (policy) interest 

rate increases risk because of increased bank leverage (a lower capital-asset-ratio). This would 

be in line with the model by Angeloni and Faia (2009). 

In our empirical model, we will also account for housing price shocks. Goel et al. (2009) 

show how leverage decisions of borrowers and banks can feedback into macroeconomic 

stability. In their model, bank loans are secured with houses, and the probability distribution 

of value of collateral is affected by the aggregate lending behavior of banks. An increase in 

the probability that the house price is positive in the second period increases both, consumers’ 

and banks’ leverage. The fact that all bank loans are backed by the same collateral leads to an 

interconnectedness of otherwise independent banks. 

The macroeconomic models reviewed so far have implications for the link between risk and 

return, which partly depend on the nature of the underlying shock. The banking literature has 

                                                 
8 Bank risk in the model by Angeloni and Faia (2009) is the probability of a bank run occurring, and this 
probability is determined by the distribution of the returns on lending and the liquidation value of long-term 
assets. In our empirical model, the proxy for bank risk will be the share of non-performing loans in total loans 
and the capital-asset ratio, which are positively correlated with the definition of risk in their theoretical model.   
9  This shock can be interpreted as an asset price shock, which we will model as a stock price shock. 
10 See Meh and Moran (2008) for a similar conclusion in a DSGE model featuring a double moral hazard 
problem between banks and investors, on the one hand, and banks and firms, on the other hand. 
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discussed the link between bank risk (as a proxy for financial stability) and return (as a proxy 

for the degree of competition) from a different angle. Allen and Gale (2004) suggest a 

negative relationship because more concentrated banking systems reduce incentives of 

bankers to lend recklessly. Boyd and de Nicolo (2005) argue that increasing market power of 

banks increases risk taking because banks can roll-over the higher risk associated with lower 

quality loans by charging higher interest rates to customers. If borrowers endogenously 

choose the risk of their project, an increase in lending rates increases risk due to an adverse 

selection effect. Martinez-Miera and Repullo (2008) show that this risk shifting effect is due 

to the assumption that loan default rates are perfectly correlated. They introduce imperfect 

correlation of loan default rates and show that there is an additional margin effect: More 

competition lowers loan rates, revenues from non-defaulting loans decline, and banks become 

riskier. Despite this general ambiguity, the impact of a lower risk-free rate on the probability 

of bank failure is negative (i.e. risk falls) since the margin and the risk-shifting effect 

reinforce each other in this case. The risk-taking channel would imply the opposite 

correlation.  

In sum, theoretical literature has quite clear-cut implications with regard to the impact of 

different macroeconomic shocks on the volume of lending and the profitability of banks. 

Expansionary shocks should increase lending; returns of banks mirror the interest rate 

response. Implications for the impact of these shocks on the risk-taking of banks are less 

clear-cut. While some papers suggest a positive correlation between expansionary shocks and 

bank risk, this correlation might also be negative if a financial accelerator mechanism is at 

work and if banks “flee to quality”. 

2.2 Previous Empirical Literature 

Previous empirical literature on the exposure of banks to macroeconomic factors falls into 

three main categories: evidence on the lending channel, evidence on the risk-taking channel, 

and evidence on systemic risks in banking. One key finding of this literature is that the 

response of banks to macroeconomic factors shows a substantial degree of heterogeneity. 

Lending Channel 

Kashyap and Stein (2000) have suggested testing the bank lending channel by analyzing how  

bank lending responds to liquidity and how this response depends on the stance of monetary 

policy. One important lesson drawn from their result is that the effect of the bank lending 

channel of monetary policy depends on the degree of funding constraint a bank faces.  

Subsequent studies on the bank lending channel have identified different sources of bank 

heterogeneity which might affect the reaction to monetary policy shocks. Kishan and Opiela 

(2000) and Gambacorta and Mistrulli (2004) find that capitalization is an important 

determinant of the ability of a banks ability to shield their loan portfolio from a tightening of 

monetary policy. Cetorelli and Goldberg (2008) suggest that earlier evidence on the 
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importance of the lending channel has overlooked cross-border lending. Using quarterly 

information for U.S. banks between 1980 and 2005, they find that large globally-oriented 

banks reduce their exposure to domestic liquidity shocks by using internal capital markets 

with their foreign affiliates. 

Overall, evidence from the U.S. suggests that there is no strong bank lending channel 

operating (Walsh 2003). In contrast to the bank lending channel, the credit channel assigns 

importance to imperfections in economy-wide financial markets. If agency costs drive a 

wedge between the costs of internal and external finance, developments of net worth, cash 

flow, and collateral should affect lending over the business cycle. In fact, there is evidence 

that downturns differentially affect access to credit for high-agency-cost borrowers (Bernanke 

et al. 1996). 

Risk-Taking Channel 

The risk-taking channel (Rajan 2006, Borio and Zhu 2008) has been tested by Altunbas et al. 

(2009) who regress banks’ expected default frequency on a monetary policy indicator, and 

nominal GDP growth. Results are based on a sample of listed banks. They show that the 

overall quality of loan portfolio increases if interest rates fall and at the same time banks take 

on more risk if the interest rate is below a Taylor-rule-benchmark (i.e. if a monetary 

tightening is expected). This is interpreted as evidence in favor of the risk taking channel. In 

addition, they find that higher GDP growth lowers bank risk, and that asset prices have no 

clear-cut impact. 

Similar findings are reported in Jimenez et al. (2009). Using Spanish loan data, they find that 

lower interest rates have two effects. In the short run, lower interest rates reduced the 

probability of default of outstanding, flexible-rate loans. In the medium run, however, lower 

interest rates increase bank risk. Lower interest rates raise the value of collateral and induce 

banks to search for yield, banks extend more (new) risky loans (Gambacorta 2009). In 

addition, there is a large degree of heterogeneity across banks. Small banks, banks that are net 

lenders in the interbank market, and savings and cooperative banks take on more extra risk 

Systemic Risk 

A final related strand of empirical research analyzes the exposure of banks to macroeconomic 

developments and shows how this contributes to systemic risk. Tarashev et al. (2009a, 2009b) 

develop a measure of systemic risk which is based on the game-theoretic concept of the so-

called Shapley value. This measure ascribes to individual players the average marginal 

contribution each makes to each possible subgroup in which they participate. They find that 

the number of banks’, their relative size, their probabilities of default, and their exposures to 

macroeconomic risk factors are drivers of systemic risk. However, the feedback between the 

banking sector and the macro-economy is not modeled explicitly. As an alternative approach 

to measure systemic risk, Adrian and Brunnermeier (2009) propose a so-called CoVar model 
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which determines the value at risk (VaR) of a financial system, given that the individual 

institution is in distress. The determinants of this risk measure include macroeconomic state 

variables such as the policy rate or the yield spread which shift the conditional mean and 

volatility of the CoVar measure.  

3 Macroeconomic and Bank-Level Data 

3.1 Macroeconomic Data 

Our set of macroeconomic variables comprises log differences of real GDP, the GDP deflator, 

real house prices and real stock prices and the level of the effective Federal Funds rate. House 

prices are measured as the Freddie Mac Conventional Mortgage. Stock prices are measured as 

the S&P 500, observed at the end of the quarter. House price and stock prices are divided by 

the GDP deflator to obtain real values. The data are retrieved from the FreeLunch.com, a free 

internet service provided by Moody’s Economy.com.  

3.2 Bank-Level Data  

Our source for bank-level data is the Consolidated Report of Condition and Income (Call 

Reports) that all insured banks in the United States submit to the Federal Reserve each 

quarter. A complete description of all variables and data sources is provided in the data 

appendix (Table A.1). 

The reason for using these data is three-fold. First, the Call Report data have been used 

frequently in empirical work in banking allowing us to compare our results. Second, the Call 

Report data are publicly available supervisory data, and we thus need not restrict our analysis 

to market data which are available for only a relatively small sub-set of (listed) banks. Third, 

the data are available for a large panel of banks for at least two decades and thus allow 

analyzing longer-run tendencies. 

From the Call Reports, we compile a dataset consisting of quarterly income statements and 

balance sheet data over the period 1991Q1–2008Q2. We begin our analysis in the year 1991 

for the following reasons. First, we exclude the period of the savings and loans crisis of the 

1980s which cumulated in the credit crunch of the late-1980s and early-1990s. Second, since 

we use a balanced dataset, the shorter the time period covered, the more representative the 

dataset is for today’s banking landscape.  

A first set of banking variables measuring bank risk, return, and lending is included in a 

dataset from which we estimate the banking factors. These banking factors, in turn, serve as 

an input for the FAVAR model that is described in Section 4. A second set of banking 

variables is used to explain differences in response of banks to macroeconomic factors (see 

Section 5.3). 
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The series which are used for the construction of the first type of measures are total assets, 

total loans, equity capital, non-performing loans, and net income of commercial banks. 

Following previous literature, we apply a number of screens to exclude implausible and 

unreliable observations. In particular, we exclude observations with (i) negative or missing 

values for total assets, (ii) negative total loans, (iii) observations with loan to assets ratios 

larger than one, (iv) observations with capital to asset ratios larger than one, and (v) banks 

with gross total assets below $25 million.11  Overall, these corrections reduce the sample from  

13,375 banks in the unbalanced panel to 2,734 banks  in the balanced panel. We use only 

banks that are in business during the entire period under study.12   

Our measure of banks’ returns is return on asset, defined as net income to total assets. Our 

main risk measure is the share of non-performing in total loans. In addition, we use the 

(unweighted) capital-asset ratio, measured as equity capital to total assets, since banks with a 

higher capital ratio are less likely to fail, ceteris paribus. Compared to the non-performing 

loan ratio, the capital-asset ratio has advantages and disadvantages as a risk measure. An 

advantage is that the capitalization of banks affects the banks’ ability to absorb 

macroeconomic shocks and enhance the stability of the banking system (Angeloni and Faia 

2009, Kishan and Opiela 2000, van den Heuvel 2002, Gambacorta and Mistrulli 2004, Meh 

and Moran 2008). A disadvantage of the capital-asset ratio is that it is, to some extent, 

determined by regulatory requirements. Also, the degree of capitalization is used by banks as 

a signaling devise, and banks might avoid adjustments in response to macroeconomic shocks. 

In addition to risk and return, we include the loans-to-asset ratio to account for changes in 

bank lending activities. We scale loans by total assets to control for the size of banks  

The bank-level data are treated in the usual manner for factor analysis. They are seasonally 

adjusted. We assume that all variables we include are stationary, so there is no need to 

difference them. Outliers are removed.13 Finally, the data are standardized to have a zero 

mean and a unit variance.  

In addition to these variables, we consider several bank-level characteristics which may 

influence the exposure of banks to macroeconomic factors: the size of banks, 

internationalization (i.e. whether a bank has foreign affiliates or not), the interconnectedness 

with other banks, and liquidity.  

                                                 
11 As Berger and Bouwmann (2009) state, banks with total assets below $25 millions are not likely to be viable 
commercial banks.  
12 This procedure implies that any bank engaged in a merger is finally dropped from the sample since it includes 
a missing observation at the time the merger occurred.  
13 Outliers are defined as observations of the stationary data with absolute median deviations larger than six 
times the interquartile range. They are replaced by the median value of the preceding five observations. See also 
Stock and Watson (2005). 
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The size of banks is measured by the (log) volume of banks’ total assets, i.e. assets divided by 

the GDP deflator. Internationalization is measured by the presence of foreign affiliates. We 

label a bank “international” if it reports the existence of a foreign affiliate in at least one 

period (Cetorelli and Goldberg 2008). This procedure results in about 300 international active 

banks or a little more than 10 percent of the total (balanced) dataset. The degree of 

interconnectedness of banks is measured using the share of federal funds purchased in total 

assets as a proxy for the exposure to the interbank market. Finally, liquidity is measured by 

the ratio of securities to assets, where we follow Kashyap and Stein (2000) as closely as 

possible. These variables are also seasonally and outlier-adjusted. In addition, the riskiness of 

banks will be considered as bank-level feature which may influence the exposure of risk (and 

lending) to macroeconomic factors. 

Table 2 compares the unbalanced and the balanced panel since balancing the dataset might 

result in an unrepresentative description of the banking industry. The medians for the 

balanced and unbalanced data are close enough to be confident that balancing the panel does 

not induce a strong bias. As expected, the coefficient of variation in the unbalanced dataset is 

higher for all variables except for the loans-to-asset ratio. The reason is that balancing drops 

all banks which defaulted during the time period considered. That is, we exclude banks with 

presumably high realizations in these risk measures. The same reasoning explains the 

differences in the measure of liquidity. Considering the descriptive statistics for total assets, 

balancing reduces the degree of skewness in the data. This result is driven by the interplay of 

merger treatment and balancing.14 Finally, Federal Funds purchased exhibits a higher 

coefficient of variation in the balanced panel since we exclude very small banks which are in 

general less active in the interbank market. 

For our factor model to provide a good description of the data, there needs to be a strong 

factor structure among the series included, i.e. factors can be accurately estimated if the series 

strongly commove (Boivin and Ng 2006). We thus assess to what extent the different types of 

banking variables (risk, return, lending) are correlated. Table 3 shows the correlation 

coefficients between the medians of the four variables. The medians are, in general, highly 

correlated. Only return on assets is rather loosely related to the other variables. When 

removing banks’ return on assets from the sample, results for the other variables are not 

affected. We next examine to what extent banks are related. Table 4 shows the variance shares 

explained by the first 10 principal components extracted separately from bank-level datasets 

associated with each of the four variables. The table reveals that there is strong comovement 

among banks for all banking variables. 

                                                 
14 This interplay of merger treatment and balancing eliminates some of the largest banks in the U.S., since 
especially very large banking institutions merged with other banks (or became large due to mergers) during these 
years. This drawback of our data treatment procedure is our main concern. To check the robustness of our 
results, we conducted the analysis without merger treatment but a careful outlier treatment only. The results are 
qualitatively the same. 
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Finally, we account for specific regional developments by including regional dummies in the 

cross-sectional regressions of banks’ exposure to macroeconomic factors (Section 5.3). An 

alternative approach would be to directly model regional aspects by decomposing bank-level 

variables into nation-wide, regional, and bank-specific components (Kose et al. 2003, Mönch 

et al. 2009, Beck et al. 2009). To test how relevant regional factor are, we separately extract 

factors from risk, return, and loans to asset ratios associated with each region. We then pool 

the factors and estimate the first few principal components from the pooled set. These factors 

are highly correlated with the principal components estimated directly from the entire dataset. 

4 The FAVAR methodology 

We start from a small-scale macroeconomic VAR model which includes GDP growth ( ty∆ ), 

the GDP deflator inflation ( tp∆ ), the Federal Funds rate (tffr ), and real asset price (house 

price thp∆ and stock price tsp∆ ) inflation as endogenous variables. These variable can be 

summarized in an ( 5) 1M = × -dimensional vector [ ]tttttt spffrhppyG ∆∆∆∆= . GDP growth, 

inflation and an interest rate represent the standard block of variables included in 

macroeconomic VARs (Schorfheide and Del Negro 2003, Peersman 2005, Christiano et al. 

1996), fewer studies include also assets prices in such a VAR (Jarocinski and Smets 2008, 

Bjørnland and Leitemo 2009, Bjørnland and Jacobsen 2008).  

We augment the vector Gt  with a set of “banking factors” Bt  which yields the 1r × -

dimensional vector of [ ]F G ' B ' '=t t t  where 1r M− ×  is the dimension of the vector of 

banking factors. The vector of banking factors [ ]1B '−= Lt t r Mtb b  is unobserved and needs 

to be estimated, as will be explained below.  

We model the joint dynamics of macroeconomic variables and banking factors as a VAR(p ) 

process: 

 A( )F c Pw= +t tL , (1) 

where 1A( ) A ... A p
pL I L L= − − −  is a lag polynomial of finite order p , c  comprises 

deterministic terms,15 and w t  is a vector of structural shocks which can be recovered by 

imposing restrictions on P.  

Let the elements of Ft  be the common factors driving the 1×N  vector X t  which summarizes 

our four banking variables, i.e. loans to assets, non-performing loans to total loans, return on 

assets, and equity capital to assets, of 2,734 individual banks. To assess the impact of 

                                                 
15 We include constants and linear trends. 
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macroeconomic shocks on the “average” bank we also include in X t  the medians of the four 

banking variables.16 Hence, the cross-section dimension is N =  10,944 (= 2,734×4+4).  

It is assumed that X t  follows an approximate dynamic factor model (Bai and Ng 2002, Stock 

and Watson 2002): 

 X 'F= Λ + Ξt t t , (2) 

where [ ]'1 Nttt ξξ Λ=Ξ  denotes a 1×N  vector of idiosyncratic components.17 The matrix 

of factor loadings [ ]1 Nλ λλ λλ λλ λΛ = L  has dimension r N×  and , 1,...,i i Nλλλλ =  are of 

dimension 1r × . Typically, r N<< . Common and idiosyncratic components are orthogonal, 

the common factors are mutually orthogonal, and idiosyncratic components can be weakly 

mutually and serially correlated in the sense of Chamberlain and Rothschild (1983). 

Equations (1) and (2) represent a FAVAR model as has been introduced by Bernanke et al. 

(2005).18  

The model is estimated in five steps. First, the dimension of Ft , i.e. the number of common 

(latent and observable) factors r  is determined to be 8, which explain about 70 percent of the 

variation in the banking data and thus represents a reasonable degree of comovement between 

the banking variables. 

Second, the latent factors summarized in Bt  span the space spanned by Ft  after removal of 

the five observable factors. Bt  is estimated as follows. We extract the first r  principal 

components from X t  and summarize them in F̂t . Next, we estimate a regression of the form 

ˆG γF et t t= +  where γ  is of dimension M r× . Bt  is then estimated as ˆ ˆˆB γ Ft t⊥=  where ̂γ⊥  is 

the orthogonal complement of γ̂ . The matrix of factor loadings Λ  is estimated by an OLS 

regression of X t  on ˆG ' B ' ' 
 t t .19  

Third, a VAR(1) model is fitted to ˆG ' B ' ' 
 t t . The lag length of 1p =  is suggested by the 

Schwarz information criterion. 

                                                 
16 To save time and capacity, we will compute confidence bands only for these median variables but will focus 
on point estimates for individual banks’ responses. Point estimates of median impulse response functions are 
very similar to point estimates of impulse response functions of the median bank. 
17 Note that Ft

 can contain dynamic factors and lags of dynamic factors. Insofar, equation (2) is not restrictive.  

18 Bernanke et al. (2005) are interested in a monetary policy shock and include the Federal Funds rate as the only 
observable in the FAVAR. Our model most closely resembles the one used in Eickmeier and Hofmann (2009) 
which models a set of latent financial factors estimated from a large set of asset prices, interest rates and spreads, 
and non-financial sector balance sheet items. 
19 Due to the very large cross-section, we do not follow Boivin and Giannoni (2008) who suggest removing the 
observable from the set of latent factors based on an iterative procedure. One difference between the procedure 
used here and the one used in Boivin and Giannoni (2008) is that the our procedure yields latent factors which 
are orthogonal to the observables whereas the method by Boivin and Giannoni procedure yields latent factors 
that can be (weakly) correlated with the observables. 
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Fourth, we (loosely) identify macroeconomic (and financial) shocks via a Cholesky 

decomposition of the covariance matrix of the reduced for VAR residuals. We impose the 

following ordering: B̂t t t t t ty p hp ffr sp∆ → ∆ → ∆ → → → ∆ . We label the shocks GDP 

shocks, price shocks, house price shocks, “banking shocks” (i.e. the Cholesky shocks to the 

banking factors), monetary policy shocks, and stock price shocks.  

The ordering implies that GDP and prices (aggregate prices and real house prices) do not react 

contemporaneously to financial and monetary shocks, which is fairly standard in SVAR 

studies. GDP and aggregate prices react with a delay to house price movements (e.g. 

Jarocinski and Smets 2008). Moreover, we allow the monetary policy instrument to respond 

contemporaneously to all but stock price shocks. Ordering the policy instrument below the 

banking factors is probably the most controversial restriction. Reasons for sluggish 

adjustment could be the need to renegotiate existing contracts or close customer relationships 

that banks do not want to interrupt. Consistent with this assumption, the empirical banking 

literature finds that interest rate spells of banks are sticky and do not react quickly to market 

interest rates (Berger and Hannan 1991). By imposing this restriction, we follow most of the 

SVAR literature which models macroeconomic and banking variables together (Ciccarelli et 

al. 2009).20 In future work, we plan to assess the robustness of our results with respect to the 

ordering of the Federal Funds rate and B̂t . Stock price inflation is ordered last which is 

implied by the fact that we use stock prices measured at the end of the quarter.  

In the fifth and final step of the estimation, confidence bands of the impulse response 

functions are constructed using the bootstrap-after-bootstrap technique proposed by Kilian 

(1998). This technique allows removing a possible bias in the VAR coefficients which can 

arise due to the small sample size. The number of bootstrap replications equals 1,000. Notice 

that, since TN > , we neglect the uncertainty involved with the factor estimation, as 

suggested by Bernanke et al. (2005).  

5 Empirical Results 

We organize the presentation of our empirical results along our three main questions.  

First, what is the role of macroeconomic shocks for the banking sector? To answer this 

question, we focus on a “representative” (median) bank and assess the dynamic transmission 

and the importance of different macroeconomic shocks for bank risk, return, and lending 

based on an impulse response analysis and a forecast error variance decomposition.  

Second, what is the role of the banking sector for the macroeconomy? We assess the 

contribution of banking shocks to the variation of macroeconomic variables based on variance 

                                                 
20 Bernanke et al. (2005), in contrast, assume that credit aggregates are fast-moving variables with respect to the 
monetary policy instrument. 
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decompositions. Moreover, we plan to carry out a counterfactual experiment to quantify the 

role of the banking sector for the transmission of macroeconomic shocks. This allows us to 

quantify the degree of procyclicality of the banking sector. 

Third, what are the sources of heterogeneity across banks? How important are idiosyncratic 

shocks compared to the asymmetry in the propagation of common shocks to individual 

banks? Which bank-level features affect the exposure of banks to macroeconomic factors? To 

answer the latter question, we will use the rich cross-sectional information contained in our 

dataset and explain banks’ exposure to macroeconomic factors in bank-level regressions.  

5.1 What is the Role of Macroeconomic Shocks for the Banking Sector? 

Before responding to the first question, it is useful to have a look at how macroeconomic 

shocks are transmitted to macroeconomic variables. Figure 1 presents impulse response 

functions of GDP, the GDP deflator, the Federal Funds rate, house and stock prices to GDP, 

price, monetary policy, and asset price shocks. We show median responses together with one 

standard deviation confidence bands to shocks of the size of one standard deviation. After a 

GDP shock, GDP rises permanently and the GDP deflator falls. The shock thus resembles a 

supply shock. Unexpectedly higher prices dampen economic activity. The monetary authority 

reacts by raising interest rates. An expansionary monetary policy shock leads to persistent 

increases in prices and economic activity. An unexpected increase in real house prices triggers 

an increase in general prices, but has only a short-lived positive impact on GDP. After about 

two years, GDP declines. Unexpectedly higher stock prices have no significant impact on 

GDP. While house prices react significantly, sluggishly and persistently to macroeconomic 

shocks, stock prices tend to respond more quickly and in a short-lived manner.21  

To assess the dynamic transmission of macroeconomic (and asset price) shocks to the banking 

sector, we look at impulse response functions of the median bank (Figure 2). Risk, measured 

through the ratio of non-performing to total loans, tends to decline following expansionary 

shocks (i.e. shocks that increase GDP), including monetary policy shocks.22 Hence, for the 

median bank, there is no evidence for the risk-taking channel. After asset price shocks, the 

negative effect peaks on impact and vanishes rather quickly (after roughly two quarters). By 

contrast, the response of risk is delayed after GDP, price and monetary policy shocks and 

more persistent following the latter shocks. The evolution of the capital-asset ratio tends to 

mirror-image the evolution of the non-performing loan ratio in qualitative terms. This is not 

surprising. Better capitalization of a bank is associated with a lower risk of default. Hence, the 

capital-asset ratio should be inversely related to risk. 

                                                 
21 An exception is the reaction of stock prices to monetary policy shocks which is rather delayed and persistent. 
22 An exception is the positive risk impact response to price shocks. Our price shocks are contractionary. Since 
our model is symmetric, an expansionary price shock which lowers prices and raises output has, unlike the other 
expansionary shocks, a negative impact effect on risk.  
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One objection to our analysis could be that both, non-performing loans and the capital asset 

ratio, are balance sheet indicators of risk which might react sluggishly to changes in the true 

underlying risk compared to more market-based measures. Also, the non-performing loans 

ratio primarily measures valuation changes for outstanding loan contracts. For these, and in 

particular for flexible-rate contracts, a monetary loosening should indeed lower risk. In our 

data, we cannot identify to what extent changes in loans are due to valuation changes on 

existing loans or changes on the risk of new credits being granted. 23 Altunbas et al. (2009), 

for instance, find that risk of new credits rises after a monetary policy loosening and that the 

risk-taking channel is particularly important the longer interest rates have been held low. We 

do not control for the duration of a particular monetary policy shock but consider “average” 

shocks over the entire sample period. For these reasons, our results probably understate the 

risk channel of monetary policy. In future work, it would be interesting to test the robustness 

of our findings using more market-based measures of risk such as CDS spreads.  

Figure 2 also reveals that the responses of banks’ returns are generally positively correlated 

with the responses of the Fed Funds rate, although the magnitude and timing of the effects 

differs. The correlation between banks’ risk and return tends to be negative after all but GDP 

shocks. The risk-return correlation after a house price shock somehow varies with the 

horizon. 

Finally, loans to assets tend to increase after all expansionary shocks,24 as predicted by theory, 

although the impact effect is negative for supply and stock price shocks. Also, the persistence 

and dynamics of the effects differ. The positive effect of all but monetary policy shocks 

quickly evaporates whereas it lasts longer for monetary policy shocks. The medium-term 

lending response to house price shocks is negative. The reason could be a negative demand 

effect as reflected by the negative GDP impulse response function at medium horizons as a 

consequence of a negative wealth effect for house renters.  

Table 5 shows the forecast error variance decomposition. Macroeconomic (and asset price) 

shocks together explain 37 percent of return on assets, 39 percent of the non-performing loan 

ratio, 27 percent of loans-to-assets, and 19 percent of the degree of capitalization of median 

banking variables in the short run (the one-year forecast horizon). These numbers increase for 

all variables by about 5-10 percentage points in the medium run (the five-year horizon). 

House price shocks play the most important role for risk and returns; GDP shocks account for 

the greatest share of the variation in loans to assets. Table 5 also reveals that the idiosyncratic 

(variable-specific) component is by far more important than common banking shocks, in line 

with other micro-studies. 

                                                 
23 Note, however, that the positive response of the capital-asset ratio points into a similar direction, namely a 
decrease in bank risk following a monetary expansion. 
24 An exception is again the insignificant loans-to-assets reaction to price shocks. 
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In sum, we find that macroeconomic shocks play a non-trivial role for (aggregate) 

developments in the banking sector. Our findings suggest that bank risk for the median bank 

falls following expansionary macroeconomic shocks. Furthermore, the correlation between 

banks’ risk and return depends on the underlying shock.  

5.2 What is the Role of the Banking Sector for the Macroeconomy? 

Table 3 also reveals that banking shocks are quite important for macroeconomic variables, in 

particular in the medium run. Banking shocks explain roughly one 1/10 of the forecast error 

variance of the macroeconomic variables. For house prices, this ratio is even higher 

(18 percent). The short-term effects are much smaller, ranging between 2 percent (GDP) and 

9 percent (stock prices). The rather large share of stock prices is particularly remarkable. 

Stock prices are generally known to move quite autonomously, which is confirmed by the 

small fraction explained by macroeconomic shocks (Table 5). 

To what extent is the banking sector procyclical? We find that lending increases after 

expansionary shocks and this could amplify the effects of shocks on GDP. Ciccarelli et al. 

(2009), for instance, find evidence on positive effects of credit shocks on output. The decline 

in risk we tend to find after expansionary shocks probably could further amplify the effect of 

the shocks on real activity. Christiano et al. (2009) and Gilchrist et al. (2009) find that an 

(unexpected) decline in risk raises real activity. In a next version of the paper we plan to 

quantify the role of the banking sector as an amplifier of macroeconomic shocks by carrying 

out a counterfactual experiment. We compare the impulse responses presented above with 

impulse responses from a model where we have set all feedback coefficients from the banking 

factors B̂t  to the macroeconomic variables to zero.  

5.3 Heterogeneity of Banks 

In our set-up, bank heterogeneity has two dimensions. First, there may be a substantial 

idiosyncratic component in bank-level developments. Second, banks may respond differently 

to the common shocks.  

5.3.1 Idiosyncratic Shocks versus Asymmetric Transmission of Common Shocks 

Figure 3 shows the dispersion of idiosyncratic and common components of individual banks’ 

risk, return, and lending for the sample period. Note that changes in the dispersion of the 

common component over time are driven by the changing relative occurrence of common 

shocks since the factor loadings are constant over time. Generally, the dispersion in the 

idiosyncratic components of non-performing loans ratio and returns on assets exceeds the 

dispersion of the common components. For these variables, heterogeneity is mainly due to 

idiosyncratic shocks. For the loans-to-assets and the capital-to-assets ratios, dispersion across 

idiosyncratic components and common components is of roughly equal importance. An 
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interesting pattern that is apparent from Figure 3 is also that the standard deviation of the 

common components is relatively large at the beginning and the end of the sample suggesting 

that over these periods the banking sector was hit by common (macroeconomic and/or 

banking) shocks that triggered more heterogeneous responses than other common shocks 

which seem to have been more present at the middle of the sample.  

To assess to what extent some common shocks are more asymmetrically transmitted than 

others we show in Figure 4 (the 5th to 95th quantiles of) impulse response functions of 

individual banks.25 The charts reveal that GDP, price, and house price shocks tend to trigger 

more heterogeneous responses than monetary policy or stock price shocks. This may explain 

why, in the middle of the sample period, which can be associated with the dotcom bubble and 

very volatile stock markets, dispersion across common components was relatively low. 

Interestingly also, although risk has been shown above to decline on average (i.e. for the 

median bank) in response to a monetary policy loosening, Figure 4 shows that risk indeed 

rises for a large fraction of banks. The non-performing loans ratio rises for 33 percent and 30 

percent of the banks, and the capitalization ratio declines for 41 percent and 37 percent of all 

banks at the one- and the two-year horizon, respectively. 

Overall, a substantial fraction of heterogeneity in the banking sector can thus be explained – 

as in any micro-dataset – by idiosyncratic shocks. However, asymmetric transmission is 

almost equally important. The next subsection sheds light on which bank-level features can 

explain different exposure to common macroeconomic shocks. While no evidence is found 

for the existence of the risk-taking channel on average over all banks, risk increases after a 

monetary policy loosening for a discernible share (roughly one third) of all banks. 

5.3.2 Which Bank-Level Features Affect the Exposure of Banks to Macroeconomic 

Factors?  

In a next step, we analyze whether banks’ response to macroeconomic shocks differs across 

banks of different types in any systematic way. Following previous literature, we focus on 

banks’ size, internationalization, liquidity, connectedness with other banks, riskiness (non-

performing loans and capitalization), and a full set of regional dummies (unreported) (see also 

Ssection 3).26 These bank-level variables are averages over the sample period. 

We use individual banks’ impulse response functions (one- and the two-year horizons) as well 

as factor loadings as left-hand side variables. Regression results for the loadings are most 

likely comparable to results from the previous empirical literature which looks at the effects 

of “reduced-form” constructs (such as our observable factors) on risk. We focus (for now) on 

                                                 
25 We show the 5th to 95th quantiles instead of impulse response functions for better visibility. In charts with 
impulse responses of all banks, the scaling is dominated by outliers. Moreover, we do not obtain an assessment 
of the frequency with which banks fall into certain ranges of impulse responses. 
26 In a next version of our paper we plan to consider similarity of banks’ portfolios as an additional determinant. 
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the reaction of non-performing loans ratio as a measure of risk and the loans-to-assets to 

monetary policy. We normalize signs of the loadings associated with the Federal Funds rate 

for the median bank to represent a monetary expansion. Least absolute deviations regressions 

are used which are more robust with respect to outliers compared to ordinary least squares. 

These regressions allow us to interpret results as relative to the response of the median bank.27 

We carry out bivariate and multivariate regressions (to account for multicolinearity). Because 

the results are qualitatively similar, we report only the multivariate regression results in Table 

6. We plan, in the next version of the paper, to account in the cross-section regressions for the 

uncertainty involved with the estimation of loadings and impulse responses. 

Size 

From a theoretical point of view, we would expect size to dampen the exposure of banks to 

macroeconomic shocks. Diamond and Rajan (2006) have argued that smaller banks should be 

more prone to risk-taking than larger banks because of lower net worth, lack of 

diversification, and funding difficulties. Similarly, the lending channel of monetary policy 

should be less relevant for large than for small banks since large banks find it less difficult to 

resort to alternative sources of finance if funding conditions worsen. Moerover, according to 

Farhi and Tirole (2000), banks increase their exposure to macroeconomic shocks in order to 

make a (monetary) bail out more likely, i.e. they want to fail when a large number of banks 

fails. One might conjecture that these incentives are greater ceteris paribus for smaller banks 

since larger banks have a larger probability to be bailed out because of too-big-to-fail 

considerations. In Zhang (2009), the exposure of banks to macroeconomic risks depends on 

their ability to write state-contingent contracts. This ability may be positive correlated with 

the size of banks, which would imply a lower exposure of large banks to macroeconomic 

shocks.  

Overall, these considerations would suggest differences in the responses of large and small 

banks to macroeconomic shocks. Our results do not confirm this expectation. Although the 

coefficients have the expected sign, i.e. size is negatively/positively related to the exposure of 

lending/risk to a monetary policy tightening, we find no significant impact on factor loadings 

or impulse response functions with regard to monetary policy (Table 6).  

Liquidity 

Generally, there is a positive correlation between liquidity and the lending capacity of banks. 

Since banks engage in maturity transformation and finance illiquid long-term projects with 

liquid short-term funds (see, e.g., Diamond and Rajan 2006), improved access to liquid funds 

should increase lending. Improved access to liquidity, in turn, could be the result of an 

expansionary monetary policy. Also, banks should react differently to monetary policy 

                                                 
27 The constant can be interpreted as the conditional median. 
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shocks. Banks with limited access to alternative sources of funding should react relatively 

more to a given monetary policy shock than banks that can easily substitute between different 

Sources of funding. This ability is determined by the size of banks, their net worth, and the 

degree of information asymmetries.  

Consistent with this expectation, we find that liquidity, as measured by the ratio of securities 

to assets, has a negative and significant impact on the exposure of loans to assets to monetary 

policy, i.e. more liquid banks tend to expand lending by less in response to a decline in 

monetary policy rates than less liquid banks. We find no significant impact of liquidity on the 

response of risk.  

Internationalization 

Next, we account for the fact that the degree of internationalization of banks could affect their 

exposure to shocks. If shocks at home and abroad are imperfectly correlated, then banks with 

foreign affiliates should respond less to domestic shocks than other banks because they have 

an additional channel of diversification of risk. At the same time, banks with foreign affiliates 

may be able to take on higher risks at home but lower risk overall.28 Our specification closely 

follows Cetorelli and Goldberg (2008). These authors show that internationally oriented banks 

have the potential to lay off domestic macroeconomic shocks through borrowing and lending 

to their foreign affiliates. Hence, the exposure of internationally active banks to domestic 

macroeconomic shocks should be smaller than the exposure for purely domestic banks. 

We include in our regressions a dummy variable which is one if a bank has foreign affiliates 

and zero otherwise. Our results show that international banks indeed show different responses 

to monetary policy shocks than domestic banks.29 Concerning the impact of monetary shocks 

on the non-performing loans ratio, we find a positive coefficient on the international dummy. 

The effect is, however, significant only for impulse response functions at the two-year 

horizon. Furthermore, internationally active banks change their loans-to-assets less in 

response to monetary policy shocks than domestic banks. Given that, on average, lending 

increases and risk declines following an expansionary monetary policy shock, the response of 

international banks is thus muted. As regards lending, this would be consistent with the 

findings in Cetorelli and Goldberg (2008).30 

                                                 
28 Note that we look at consolidated accounts of domestic headquarters and foreign affiliates. Since we do not 
have information on the location of the foreign affiliates, we cannot control for the correlation between domestic 
and foreign shocks. 
29 Cetorelli and Goldberg (2008) consider large international and large domestic banks. By including size in our 
regressions we already control for size. 
30  We have also followed Cetorelli and Goldberg (2008) more directly by including an additional interaction 
term between being international and liquidity, but this term was insignificant. 
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Connectedness  

We measure linkages between banks using banks’ exposure to the interbank market. Closer 

linkages between banks can have two effects. On the one hand, closer linkages allow banks to 

insure against idiosyncratic shocks, thus lowering risk. On the other hand, closer linkages 

should increase the exposure to macroeconomic shocks by exposing banks to common shocks 

hitting the financial system. In Allen and Gale (2000), for instance, excessive liquidity shocks 

are more likely to be contagious if banks are more closely interlinked together via the 

interbank market.  

We find that banks which are more active on the interbank market lower risk by more in 

response to monetary policy shocks. The effect on loans is insignificant. Recalling that 

internationally active banks lower risk by less than the full sample, this result is consistent 

with the prior that the domestic interbank market allows banks to diversify idiosyncratic, but 

not domestic macroeconomic risk. Internationally active banks, in contrast, can also diversify 

domestic macroeconomic risk and thus react less to these risks. 

Risk 

Finally, we analyze whether bank risk affects the reaction of banks to monetary policy shocks. 

We find no strong impact of the degree of the capitalization ratio. If anything, the responses 

for better capitalized banks at the one-year horizon are stronger with regard to lending but 

weaker with regard to non-performing loans.  

Measuring the riskiness of banks through their share of non-performing in total loans gives 

more clear-cut results. The impact of this variable is negative for loans-to-assets, suggesting 

that riskier banks increase lending by less following a monetary expansion. The coefficient on 

the exposure of the non-performing loans ratio is negative and significant as well (except for 

the factor loadings), hence the more risky a bank, the more risk falls. The interpretation would 

be that risky banks shy away from expanding their loan portfolios (and potentially 

accumulating additional non-performing assets) and, at the same time, lower the total risk of 

their portfolio.  

Overall, the exposure of bank risk and lending to monetary policy shocks depends on the 

riskiness of a bank and whether a bank has foreign affiliates or not. In addition, liquidity 

matters for lending and the degree of capitalization seems to matter for risk. Other 

determinants such as a banks’ size or its connectedness with other financial institutions do not 

play a significant role. 

6 Summary 

In this paper, we use a FAVAR model to analyze feedback effects between banks and the 

macroeconomy, and we particularly focus on the heterogeneous exposure of over 2,000 U.S. 
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banks to macroeconomic factors. We make several contributions to the literature, in particular 

the recent empirical literature on the risk-taking channel of monetary policy: First, we model 

dynamic responses by taking the endogeneity of macro- and banking factors into account. 

Second, we allow for and exploit the connection between banks and different banking 

variables (unlike previous micro studies). Third, we (loosely) identify orthogonal 

macroeconomic (and asset price) shocks to cleanly decompose banks’ common risk into its 

different sources, and we isolate these shocks from idiosyncratic risk at the bank level.  

Our paper has the following main findings.  

First, average bank risk measured through non-performing loans to total loans and the capital-

asset ratio tends to decline following expansionary shocks, including monetary policy shocks. 

Results for individual banks, however, reveal that about 1/3 of all banks raise risk after a 

monetary policy loosening. In this sense, our results are only partly in support of the risk-

taking channel of monetary policy. It should be noted that our risk measures do not allow 

distinguishing the riskiness of the outstanding loan portfolio and new loans. This may thus 

understate the effects of expansionary shocks on risk because the risk-taking channel operates 

through increased risk of new loans.  

Second, shocks that increase output are associated with an increase in bank lending and are 

thus in support of the lending channel. 

Third, our results add to the microeconomic banking literature studying the link between bank 

risk and return. Typically, this literature does not take into consideration that the underlying 

macroeconomic shocks driving risk and return might matter. We find that the correlation 

between the risk and the return of banks depends on the underlying shock and the time 

horizon considered.  

Fourth, there is a substantial degree of heterogeneity in banks’ risk developments. This 

heterogeneity has two dimensions. As in any study using micro-level data, we find a 

substantial idiosyncratic component. In addition, we can identify a further source of 

heterogeneity, namely heterogeneous responses to the same shocks. This source of 

heterogeneity is perhaps equally important. We have made an attempt to understand the 

sources of the latter heterogeneity further. Our analysis has shown that the dispersion across 

banks’ impulse response functions is smaller for monetary policy and stock price shocks than 

for other (GDP, aggregate price and house price) shocks.  

Fifth, we study which bank-level feature can explain differences in banks’ exposure to 

monetary policy shocks. The median bank increases lending and reduces risk following an 

expansionary monetary policy shock. Compared to the median bank, risky banks increase 

lending by less and reduce risk by more. More internationally oriented banks also increase 

lending by less but reduce risk by less. Lending of more liquid banks is affected less. Other 

factors, notably the size of a bank, do not play a significant role 
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Our findings have important implications for regulatory policy. Theoretical analyses have 

suggested that tighter regulatory requirements should be established for banks with a larger 

exposure to macroeconomic factors. Our results show the difficulties of implementing such 

proposals as they reveal a substantial degree of heterogeneity of banks’ responses to 

macroeconomic factors. The responses differ across banks, and they differ with regard to the 

macroeconomic factor considered. Moreover, our finding that bank lending increases and risk 

declines after expansionary shocks could imply that the banking sector amplifies the impact 

on shocks on real activity. Countercyclical capital buffers as recently proposed by the BIS are 

an attempt to counteract this feature. Finally, it should be kept in mind that international 

diversification (which we have shown to yield to lower exposure to macroeconomic 

(domestic) shocks) works only in the case of imperfect correlation of domestic and foreign 

shocks. This was not the case during the recent global financial crisis and this will not be the 

case during future global downturns. Hence, internationalization of banks alone does not 

guarantee a muted shock impact on banks. 

Overall, our results can thus be seen as a first step into the direction of jointly modeling 

dynamics of the banking sector and the macroeconomy. Our findings suggest that these 

feedback effects are relevant for both, understanding macroeconomic dynamics as well as the 

responses of banks. At the same time, our findings show the importance of future research to 

provide deeper insights into the sources of the substantial bank-level heterogeneity that we 

document. In addition, a caveat of our analysis is that the FAVAR is a linear model. However, 

non-linearities, e.g. in the reaction of banks to common (macroeconomic and banking) 

shocks, may be present in extreme situations such as banking crises. Our model has to be seen 

as suitable to analyze macro-banking feedbacks in “normal” times. However, an extension to 

allow for non-linearities would certainly be interesting to pursue in future work. 
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8 Appendix 1: Data 

Bank-level variables  

 

Variable Definition  

Assets Call report item rcfd2170 (total assets, gross) 

Equity capital/assets Ratio of equity capital - call report item rcfd3210 (total equity capital) – to total 
assets 

Interconnectedness Share of interbank borrowing in total balance sheet. Interbank borrowing is 
measured through the call report entry rcfd3353 (average quarterly of federal funds 
purchased and securities sold under agreements to repurchase ). 

Internationalization Dummy variable indicating the presence of foreign affiliates. Foreign affiliates are 
identified through a positive entry in any of the call report entries due to foreign 
affiliates (rcon2941), due from foreign affiliates (rcon2163), total loans of foreign 
affiliates (rcfn2122) or C&I loans of foreign affiliates (rcfn1766). 

Liquidity Share of securities in total assets. Prior to 1994Q1 our securities measure is 
constructed as the sum of the call report entries rcfd0390 (total investment 
securities – book value), rcfd2146 (total assets held in trading accounts) and 
rcfd1350 (federal funds sold and securities purchased under aggreements to 
resell). After 1994Q1 securities are defined as the sum of the call report entry lines 
rcfd1754 (held to maturity securities, total) rcfd1773 (available for sale securities, 
total)  rcfd3545 (trading assets, total) and rcfd1350 (federal funds sold and 
securities purchased under agreements to resell).  

Loans/assets Share of total loans - call report item rcfd1400 (total loans, gross) - in total assets  

Nonperforming loans/loans  Share of total nonperforming loans in total loans. Total nonperforming loans is 
constructed as the sum of call report item rcfd1403 ( total loans and lease finance 
receivbles:nonaccrual) and call report item rcfd1407 ( total loans and lease 
finance receivbles:past due 90 days or more and still accruing).  

Return on assets Ratio of net income - call report item riad4340 (net income) - to total assets. 
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9 Graphs and Tables 

Table 1:  Theoretical Hypotheses on Macroeconomic Shocks and the Risk and Return 
of Banks 

 

 Angeloni / Faia (2009) Meh / Moran (2008) Zhang (2009) 

 
Monetary 

policy 
Tech-
nology 

Asset 
prices 

Monetary 
policy 

Tech-
nology 

Monetary 
policy 

Tech-
nology 

Bank 
capital 
shock 

         
Macroeconomy         
Inflation + -- + + -- + -- + 
Output + + + + + + + + 
Interest rates -- -- + -- --    
Capital stock + + +      
Banks         
Banks' ROA -- -- +      
Equity / assets -- -- -- -- -- + +  
Deposits / assets + + +      
Loans      -- / + + + 
Risk + + -- -- -- -- -- -- 
Banks net worth    + +    
Bank default rate      -- -- -- 
Loan default rate      -- --  

Notes: This Table summarizes the implications of the discussion in Section 2.1. Columns (1), (2), (4) are mainly 
based on the baseline impulse-response functions in Angeloni and Faia (2009) where the change in bank loans 
corresponds to the investment response, and the implications for the capital-asset ratio are the inverse of the 
response of the deposit ratio. The qualitative results for banks’ returns are identical for return on assets (used in 
the theoretical model) and return on equity (used in the empirical model). Our proxy for banks risk (non-
performing loans / total loans) is positively correlated with the probability of a bank run, which is the theoretical 
measure for bank risk. The signs reported below give the impact effects. Details on the calibration and 
underlying assumptions are given in the original paper. 
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Table 2:  Descriptive Statistics 

 Balanced Panel Unbalanced Panel 

 Median  
Coef. of 
variaton 

5th 
percentile 

 95th 
percentile 

Median  
Coef. of 
variation 

5th 
percentile 

95th 
percentile 

Non-performing loans / loans 0.74 1.28 0.08 3.91 0.68 1.53 0 4.03 

Equity capital / assets 9.74 0.32 6.85 16.92 9.16 0.41 6.41 16.48 

Return on assets 1.21 0.88 0.27 2.29 1.14 1.42 -0.19 2.25 

Loans / assets 59.37 0.26 29.91 79.84 62.25 0.25 31.98 82.85 

Assets (2005 $ millions) 100.67 8.1 40.76 500.42 102.38 15.91 34.73 1120.78 

Liquid assets / assets 31.53 0.47 10.08 61.58 28.18 0.53 6.49 58.86 

Federal funds purchased to 
assets 

0.02 2.86 0.00 6.52 0.07 2.65 0.00 8.47 

Number of banks 2,734    13,375    

Notes: The difference between the balanced and the unbalanced panel stems from the fact that we exclude 
observations with (i) negative or missing values for total assets, (ii) negative total loans, (iii) observations with 
loan to assets ratios larger than one, (iv) observations with capital to asset ratios larger than one, and (v) banks 
with gross total assets below $25 million. Banks which have been involved in mergers are excluded as well. 
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Table 3:  Correlation Between Median Banking Variables 

  Non-performing Equity capital /  Return on Loans / 
 Loans / loans assets assets assets 
Non-performing loans / loans 1.00    
Equity capital / assets -0.75 1.00   
Return on assets -0.13 0.07 1.00  
Loans / assets -0.75 0.64 -0.38 1.00 
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Table 4:  Cumulated Variance Shares Explained by the First 10 Principal Components 
calculated from datasets associated with individual banking variables 

  Non-performing Equity capital / Return on Loans / 
 Loans / loans assets assets assets 

1 0.22 0.29 0.25 0.30 
2 0.33 0.45 0.38 0.44 
3 0.42 0.54 0.47 0.53 
4 0.49 0.61 0.53 0.60 
5 0.54 0.66 0.58 0.64 
6 0.58 0.70 0.61 0.67 
7 0.61 0.73 0.64 0.70 
8 0.64 0.75 0.66 0.72 
9 0.67 0.77 0.68 0.74 
10 0.69 0.79 0.70 0.75 
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Table 5: Forecast Error Variance Decomposition 

  GDP Price House Monetary Stock Common  Idiosyn- 

   price policy price banking cratic 

    1 year horizon   

GDP 0.84 0.03 0.02 0.05 0.01 0.02 - 
GDP deflator 0.02 0.80 0.07 0.01 0.01 0.04 - 

House price 0.02 0.06 0.83 0.02 0.00 0.03 - 
Federal Funds rate 0.21 0.18 0.21 0.26 0.02 0.05 - 
Stock price 0.07 0.02 0.02 0.02 0.68 0.09 - 

Non-performing loans/loans 0.03 0.09 0.24 0.01 0.01 0.04 0.56 
Equity capital/assets 0.02 0.06 0.10 0.01 0.00 0.04 0.76 
Return on assets 0.10 0.10 0.17 0.00 0.00 0.04 0.56 
Loans/assets 0.17 0.01 0.07 0.00 0.02 0.04 0.67 

    5 year horizon    

GDP 0.46 0.09 0.16 0.08 0.01 0.09 - 
GDP deflator 0.08 0.53 0.12 0.05 0.01 0.13 - 
House price 0.06 0.24 0.34 0.08 0.01 0.18 - 
Federal Funds rate 0.17 0.16 0.27 0.19 0.02 0.11 - 
Stock price 0.04 0.03 0.08 0.04 0.58 0.10 - 

Non-performing loans/loans 0.04 0.09 0.27 0.02 0.01 0.08 0.49 
Equity capital/assets 0.02 0.06 0.16 0.01 0.00 0.08 0.66 
Return on assets 0.10 0.09 0.25 0.01 0.01 0.08 0.43 
Loans/assets 0.15 0.01 0.11 0.01 0.02 0.06 0.61 

Notes: The forecast error variance of the banking variables refers to the median bank. 
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Table 6: Regression Results 

 Loans / assets  Non-performing loans / loans  
 Loadings IRF, 1 yr. IRF, 2 yrs. Loadings IRF, 1 yr. IRF, 2 yrs. 

Size -0.003 -0.010 -0.005* 0.005 0.000 0.000 
 (0.007) (0.010) (0.003) (0.005) (0.001) (0.000) 
Liquidity -0.337*** -0.680*** -0.150*** 0.018 -0.003 0.004 
 (0.048) (0.065) (0.017) (0.031) (0.008) (0.003) 
Internationalization -0.093* -0.128* 0.038** 0.063* 0.012 0.008** 
 (0.053) (0.070) (0.019) (0.032) (0.008) (0.003) 
Connectedness  0.133 0.246 -0.068 -0.171* -0.034 -0.020** 
 (0.149) (0.218) (0.058) (0.100) (0.026) (0.009) 
Capital-to-asset ratio 0.003 0.005* 0.001 0.000 0.001** 0.000 
 (0.002) (0.003) (0.001) (0.001) (0.000) (0.000) 
Non-performing loans / loans -0.015*** -0.029*** -0.004* -0.004 -0.008*** -0.002*** 
 (0.006) (0.008) (0.002) (0.004) (0.001) (0.000) 
Constant 0.152 0.326** 0.101*** -0.035 -0.004 0.001 
 (0.098) (0.131) (0.035) (0.063) (0.016) (0.006) 
Number of banks 2,734 2,734 2,734 2,734 2,734 2,734 
R² (from OLS, robust) 0.10 0.13 0.13 0.06 0.06 0.06 

 

Notes: This Table presents results from quantile regressions at the sample median. The dependent variable is the 
exposure to monetary policy ( = (normalized) loadings or impulse response functions) for risk (non-performing 
loans/loans) and loans/assets. Explanatory variables are banks size (log of the volume of assets) and other bank 
characteristics as defined in Section 3.2. Internationalization is a 1/0-dummy indicating whether a given bank has 
foreign affiliates, connectedness gives the volume of Federal Funds purchased. A full set of regional dummies is 
included. ***, **, * = significance at the 1%, 5%, 10%-level. Standard deviations are in parentheses. 
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Figure 1: Impulse Response Functions of Macroeconomic Factors 

0 10 20
0

2

x 10
-3 GDP

G
D

P

0 10 20

-4
-2
0
2
4

x 10
-4 GDP deflator

0 10 20

-3
-2
-1
0

x 10
-3 House price

0 10 20
-0.05

0
0.05
0.1

0.15

FFR

0 10 20

0

10

20
x 10

-3 Stock price

0 10 20

-10

-5

0

x 10
-4

P
ric

e

0 10 20
0

0.5

1

x 10
-3

0 10 20

-4

-2

0
x 10

-3

0 10 20
-0.1

0

0.1

0 10 20
-0.01

0

0.01

0 10 20
-1

0

1
x 10

-3

H
ou

se
 p

ric
e

0 10 20

-5

0

5

x 10
-4

0 10 20
-2
0
2
4
6

x 10
-3

0 10 20
-0.2

-0.1

0

0.1

0 10 20

-15
-10
-5
0
5

x 10
-3

0 10 20

0

5

10
x 10

-4

M
on

et
ar

y 
po

lic
y

0 10 20
-2
0
2
4
6

x 10
-4

0 10 20

-1
0
1
2
3

x 10
-3

0 10 20

-0.1

0

0.1

0 10 20

0

10

20
x 10

-3

0 10 20

-5

0

5

10
x 10

-4

S
to

ck
 p

ric
e

0 10 20
-6
-4
-2
0
2
4

x 10
-4

0 10 20

-2

0

2
x 10

-3

0 10 20
-0.1

0

0.1

0 10 20
0

0.05

 
Notes: We show the median and the one standard deviation confidence bands.   
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Figure 2: Impulse Response Functions of Median Banking Variables 

0 5 10 15 20

-0.01
0

0.01
0.02

Non-performing loans/loans
G

D
P

0 5 10 15 20

-0.02

0

0.02
Equity capital/assets

0 5 10 15 20

-5
0
5

10
x 10

-3 Return on assets

0 5 10 15 20

-0.5

0

0.5
Loans/assets

0 5 10 15 20

-0.01
0

0.01
0.02

P
ric

e

0 5 10 15 20
-0.04

-0.02

0

0.02

0 5 10 15 20

-10

-5

0

x 10
-3

0 5 10 15 20
-0.2

0

0.2

0 5 10 15 20

-0.03
-0.02
-0.01

0
0.01

H
ou

se
 p

ric
e

0 5 10 15 20
-0.02

0

0.02

0.04

0 5 10 15 20

-5

0

5

x 10
-3

0 5 10 15 20
-0.2

0

0.2

0.4

0 5 10 15 20

-5

0

5

10
x 10

-3

M
on

et
ar

y 
po

lic
y

0 5 10 15 20
-10
-5
0
5

x 10
-3

0 5 10 15 20

-2

0

2

x 10
-3

0 5 10 15 20
-0.15
-0.1

-0.05
0

0.05

0 5 10 15 20
-15
-10
-5
0

x 10
-3

S
to

ck
 p

ric
e

0 5 10 15 20

0

10

20
x 10

-3

0 5 10 15 20

-2
0
2
4
6

x 10
-3

0 5 10 15 20

-0.2

0

0.2

 
Notes: We show the median and the one standard deviation confidence bands. 
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Figure 3: Cross-Sectional Standard Deviation of Banks’ Common and Idiosyncratic Components 
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Figure 4: Impulse Response Functions of Individual Banks (5th to 95th Quantiles) 
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Notes: Point estimates of impulse response functions to one standard deviation shock. 


