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Abstract

We develop a model of rational bubbles, based on the assumptions of an unknown
potential market size and delegation of investment decisions. In a bubble, the price of
an asset rises above its steady-state value, which must be justified by rational expec-
tations about possible future price development. The higher the expected future price
increase, the more likely is the market potential reached, in which case the bubble
will burst. Depending on the interaction of uncertainty about the market potential,
fundamental riskiness of the asset, the compensation scheme of the fonds manager,
and the risk-free interest rate, we give a condition for whether rational bubbles are
possible. Based on this analysis, several widely-discussed policy measures are in-
vestigated with respect to their effectiveness to prevent bubbles. A modified Taylor
rule, long-term compensation, and capital requirements can have the desired effect.
Caps on bonuses can create or destroy the possibility of bubbles, depending on their
implementation, whereas a Tobin tax is unlikely to prevent bubbles.
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1 Introduction

The last 15 years have seen at least two important market developments that are con-
sidered as bubbles by now. Both, the so-called dot-com bubble in the late ’90s and the
recent housing bubble in the United States and elsewhere have produced large realloca-
tions of wealth during their buildup, and especially after their respective crashes. These
bubbles have not only affected the parties directly participating in the bubble markets.
Also outsiders were impacted heavily, e. g., by mass layoffsthat took place as a result of
the crashes. Although bubbles are a phenomenon known (at least) since the tulip mania
in 1637, economic policy has apparently not been able to prevent their repeated occur-
rence. Neither does a commonly accepted theoretical model of bubbles exist. Our paper
contributes to the development of such an understanding, which might eventually help
guiding policymakers.

We construct a simple workhorse model of a bubble, based on anoverlapping generations
model and the crucial assumption that the potential amount of investment in the market is
not precisely known. In the model, the number of potential investors is a random variable.
Consequently, information about the market size is noisy except for the limiting case of
a finite market of fixed size. We think that, as financial markets become more complex
and opaque, the assumption of imprecise information about the market size seems very
natural. Now within a bubble, managers are only willing to invest if they believe that
there might be another investor in the next period to whom they can sell the asset at
an even higher price. As already observed by Tirole (1982), if the number of investors
were known, the highest possible price of the concerned asset could be calculated, and by
backward induction no bubble could emerge from the beginning.1

The second important feature of our model is delegation. In particular, we consider in-
vestors who delegate investment to fonds managers. However, the model applies directly
to intermediated finance such as through banks, investment banks, insurance companies,
private equity firms, and the like. In the absence of a bubble,we find that the risk ap-
petite induced by the limited liability of fonds managers pushes asset prices above their
fundamental values (as already noted by Allen and Gale, 2000). Because of the limited
liability in case of a low or zero return, the manager can increase her expected payoff
by engaging in riskier assets. This effect drives asset prices above fundamentals, but in
a static way. These price deviations are not induced by expectations, and there are no
sudden corrections (bursts).2

1Tirole (1985) extends the model of Tirole (1982) to an overlapping-generations model with perfect
foresight, showing that under certain conditions bubbles can occur. However, these bubbles do not grow
faster than the real interest rate. Also Santos and Woodford(1997) show that the conditions for the existence
of bubbles are very restrictive, if one is to assume a fixed number of households that participate in the asset
market and own a finite aggregate endowment.

2A related point was discussed by Allen and Gorton (1993), whoshow that asymmetry of information
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The interaction of both features, unknown market size and limited liability, is crucial to
our model. A high-powered incentive scheme only pushes prices above fundamentals, but
keeps them at a constant level. Adding the unknown market size, an expectations-induced
bubble with a dynamic price path may emerge. Higher prices increase the probability
that the current asset holders do not find future buyers for even higher prices. Given this
increased risk, today’s buyers demand a higher expected gain from the asset.3 This mech-
anism drives prices up over time, until the price collapses because either the previously
unknown ceiling is hit or the underlying fundamental breaksdown (e. g., a bankruptcy of
the issuing firm). Importantly, the described mechanism can, but does not have to allow
for bubbles. Depending on the interaction of limited liability, uncertainty about the market
size, riskiness of the asset and the interest rate on an alternative safe asset the prerequisites
for bubbles can be fulfilled or not. This stands in contrast toprevious models, in which
bubbles always exist if the ceiling in the market is unknown,or are always ruled out if this
ceiling is known (Brunnermeier, 2008). In these kinds of models, no comparative statics
and policy implications can be derived.

Since the model allows us to derive conditions under which bubbles can exist, we can
also test several policies that could prevent bubbles. Thisis particularly important, since
bubbles harm the welfare of the investors. One of the widely-discussed possible policy
measures is a cap on bonuses. We find that a system that reducesthe bonus payments
but keeps their proportionality to investment success could actually backfire and make
bubbles possible. A maximum cap on bonuses, on the other hand, can effectively prevent
the emergence of bubbles. Similarly, a monetary policy rulethat takes asset price inflation
into account, as discussed in Bernanke and Gertler (2001), can render bubbles impossible.
Finally, mandatory long-term compensation and/or capitalrequirements fulfill the same
purpose.4

The remainder of this paper is organized as follows. Section2 introduces the model.
Section 2.2 constructs a steady-state (rational expectations) equilibrium price process.

between investors and heterogenous managers can lead to deviations of prices from fundamentals. In our
model, this heterogeneity does not exist.

3Note that this mechanism rests on rational and symmetric expectations of managers. This differen-
tiates the models from Allen, Morris, and Postlewaite (1993), in which private information can drive a
price above its fundamental value, and those of Scheinkman and Xiong (2003) and Bolton, Scheinkman,
and Xiong (2006), who assume that buyers of an asset hope to sell it to overoptimistic agents in the next
period. This is only possible in case of heterogenous beliefs. Note that different to our model, the latter
paper is concerned with executive compensation, just as Calcagno and Heider (2007). Also the model of
Brunnermeier and Abreu (2003) relies on dispersed opinions. Together with coordination failure, they can
trigger bubbles. In this context, Froot, Scharfstein, and Stein (1992) analyze which information can influ-
ence trading, potentially leading to herding equilibria. Allen, Morris, and Shin (2006) analyze the role of
higher-order expectations if traders have asymmetric information.

4Referring to the dot-com bubble, Brunnermeier and Nagel (2004) provide evidence that hedge funds
were riding the bubble, a result similar to a previous findingby Wermers (1999). They relate this to, among
others, a short-term horizon of the managers. This is in linewith our model. Here, riskiness and herding are
no opposites, such that the argument of Dass, Massa, and Patgiri (2008)—high-powered incentive schemes
will induce managers to break out from herding—does not apply.
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Section 3 constructs a simpleexampleof a non steady-state (rational expectations) equi-
librium price process, which we call a bubble. We give a necessary and sufficient condi-
tion for when such example-bubbles exist. In section 4, we show that the very condition is
necessary and sufficient for the existence of bubbles in general. This condition lends itself
to basic policy analysis, hence in section 5, we discuss policy measures. Some measures
require a slight generalization of the model. While all other sections take the managers’
compensation scheme as given, we consider one (of possibly many) ways to endogenize
bonus payments in section 6. Section 7 concludes. All proofsare in the appendix A.

2 The Model

2.1 Setup

Consider an infinite horizon economy with overlapping generations of two types of agents,
investors and fonds managers. In each period, a continuum ofmeasureN investorsis
born, each with an endowment of 1 dollar. Investors die in thenext period. They consume
only in the period they die. Investors cannot participate inthe financial market. There is a
continuum of fonds managers (short: managers), and in orderto invest in bonds or stocks,
each investor needs to employ one of these manager. Each fonds manager can handle the
funds of one investor only. The manager is compensated by a linear scheme with limited
liability. Her compensation consists of a success-depending bonus and a base salaryS.
Earning a yieldy, she receivesmax{α y − β; 0} + S, with α ∈ [0; 1] andβ, S ≥ 0. So if
a manager invests 1 dollar into an asset at pricept and the price rises topt+1, she receives
max{α pt+1/pt−β; 0}+S. The contract will be treated as exogenous within this section
and will be endogenized in section 6.

There are two assets, safe assets (bonds) of unlimited supply and a single risky asset. The
safe bond bears a net interest ofr. The risky asset can be interpreted as the shares of a
firm. This firm pays total dividends ofd each period.5 However, in each period, there is a
probability1−q that the firm will go bankrupt and cease to pay dividends forever. Hence,
the time of bankruptcy is determined by a Poisson process. The total amount of shares of
the firm is normalized to 1. The risky asset is traded in each period. Its price follows a
time-discrete stochastic process{pt}t≥0.

The number of investorsN is unknown ex-ante. It follows a Pareto Distribution, with the
densityf(N) = γ Nγ

0 /N
1+γ and the distribution functionF (N) = 1 −Nγ

0 /N
γ (both for

N > N0). Here,N0 is some lower bound on the number of investors, andγ is a shape
parameter. The smallerγ, the more uncertainty exists about the number of investors,the
thicker is the tail of the distribution. In fact, the mean of the distribution isµ = N0

γ
γ−1

5One may also interpret the asset as real estate. If the house is let, thend is the rent per period.
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for γ > 1, andµ = ∞ for γ ≤ 1. The standard deviation is given byσ = N0
1

γ−1

(

γ
γ−2

)1/2

for γ > 2, andσ = ∞ for γ ≤ 2. The following figure 1 shows the distributions and
density functions forN0 = 20 and shape parametersγ = 2 (dashed) andγ = 4 (solid).6

For γ → ∞, we get the limiting case of a known number of investors. The number of
managers is assumed to be unlimited, so an investor will always find a manager to handle
her wealth.

Figure 1: Pareto Density and Distribution Functions
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2.2 The Stock Market in Equilibrium

2.3 The Steady-State Price

Consider the following simple stochastic process. The price of the asset is a constant,
p̃t = p̄. Only if the underlying firm goes bankrupt (with probability1 − q) and cash
ceases to flow, the price drops top̃t = 0. Hence, the price follows a very simple binomial
process withPrt{p̃t+1 = p̄|pt = p̄} = q. The zero is an absorbing state. Let us derive the
price p̄ for which this process can be a rational expectations equilibrium.

In a market equilibrium, prices must be such that the managers’ compensation is the
same for storage and for the risky asset. If the manager stores, the compensation is
max{0; α (1 + r − β)} + S = α (1 + r − β) + S, assuming for now thatβ ≤ 1 + r.7 If

6In fact, we would only need the assumption that the upper tailof the distribution of potential market
participantsF (N) can be approximated by a Pareto distribution. The Theorem ofPickands, Balkema and
de Haan states that this assumption holds for a large class ofdistributions (see Embrechts, Klüppelberg, and
Mikosch, 2008). For our purpose, the Pareto distribution has the important feature that the probability to
exceed a thresholdN , conditional on that we exceedN −∆N , does not approach zero asN → ∞. In fact,
(1 − F (N))/(1 − F (N − ∆N)) = ((N − ∆N)/N)γ → 1 asN → ∞.

7The contract is endogenized in section 6, where this assumption is confirmed.
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the manager buys shares of the firm at a pricept = p̄, she benefits from the dividend with
probabilityq. She thus earnsd/pt with probabilityq. If the firm does not pay a dividend,
the price drops to zero. Otherwise, the price remains atp̃t+1 = p̄, and the manager gets
additionallyp̃t+1/pt = p̄/p̄ = 1 from selling the asset. This stochastic process is depicted
in figure 2 (with parametersγ = 2, β = 0.9, q = 95%, d = 1, andr = 10%).

Figure 2: A Binomial Price Process
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Given this price process, a date-t-manager’s expected compensation is

Et max
{

0; q α
( p̃t+1

pt
+
d

pt
− β

)}

+ S (1)

In the market equilibrium, managers must be indifferent between the asset and storage,
hence

α (1 + r − β) + S = Et max
{

0; q α
( p̃t+1

pt
+
d

pt
− β

)}

+ S.

Since the left-hand side is positive, we get

α (1 + r − β) + S = q α
( p̄+ d

p̄
− β

)

+ S (2)

Thesteady-state pricēp is above the fundamental value of the asset that would obtainif
investment were not delegated to managers, denoted byp := d q/(1 − q + r).

p̄ =
d q

(1 − β) (1 − q) + r
. (3)

If β = 0 or if q = 1, the two prices are equal,p = p̄. The effect that managers with
limited liability push up prices of risky assets above theirfundamental value has been
analyzed before by Allen and Gale (2000). But other from Allen and Gale, we do not
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want to call this price divergence a bubble. The price exceeds the fundamental, but not
due to expectations, but due to preferences (even if these preferences are induced by the
managers’ compensation schemes). This kind of a bubble cannot burst, so its existence is
less interesting from a financial stability perspective. However, like Allen and Gale, we
find that an increase in uncertainty, keeping the fundamental value constant, drives the
steady state pricēp up.

Remark 1 Keeping the fundamental value constant, the steady-state price of a riskier
asset is higher above its fundamental value.8

Let us make one important clarification. In the above numerical example, the fundamen-
tal value isp = 6.33, but the steady-state price is̄p = 9.05. This price deviation is due
to the limited liability of managers. However, it is astaticdeviation, which is driven by
fundamentals (q, d, andr) and the managers compensation package (β andα, whereα is
irrelevant). The price deviations is hence driven by fonds managers’ expectations about
future risk (q) and dividends (d), but not on their expectations about future price devel-
opments. The deviation is constant over time. Nevertheless, this deviation can magnify
price movements. By contrast, thebubbledescribed in the following isdynamicby na-
ture. The bubble can be sustained only if the price keeps increasing on and on. Here, a
price deviation will be fueled by the expectation that in thefuture, other managers will
buy at an even higher price (if the bubble has not burst until then).

3 An Example for a Bubble

Assume that the pricept is abovep̄ at some datet. The only conceivable reason to
buy is that managers expect the price to rise even further, atleast with some probability.
Otherwise, as shown above, it would be a dominant strategy for managers to store rather
than invest in the asset. However, if managers believe that aprice increase to somẽpt+1 >
pt is possible, the investors’ aggregate resources might be used up. In this case, the price
would hit a ceiling, and the bubble would have to collapse back to p̃t+1 = p̄. If the
underlying firm goes bust, the price drops will drop top̃t+1 = 0. As a consequence, the
simplest process that can exhibit a bubble is trinomial. Letus hence look at a process with

p̃t+1 =







0, with probability1 − q
p̄, with probabilityq −Qt

pt+1, with probabilityQt

(4)

with Qt ≤ q. Note the notational difference betweenp̃t+1 andpt+1. p̃t+1 is the stochastic
price at datet+1 that can assume three different values.pt+1 is the largest of these values,

8The proofs for this remark and all propositions are in the appendix.
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pt+1 > p̄ > 0. A possible price process is depicted in figure 3 (with parameters as above).
The process starts at some pricep0 > p̄, and the bubble potentially grows further and
further. However, it can hit the ceilingN and burst at any time. ButN cannot be pictured
in the figure, it is unknown. The ceiling will be hit with probability 1, but the date at
which the bubble bursts is (and must be) unknown.

Figure 3: A Trinomial Price Process with a Bubble
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For a price increase frompt to pt+1, the probability of a continuation (non-collapse) of
the bubble is

Qt = q
1 − F (pt+1)

1 − F (pt)
= q

Nγ
0 /p

γ
t+1

Nγ
0 /p

γ
t

= q pγ
t /p

γ
t+1. (5)

Hence,q is the probability that a firm continues to operate, andQt is the probability that
the firm’s asset price continues to rise. The probability that the bubble just bursts although
the firm is still solvent is thus1 −Qt − (1 − q) = q −Qt.

If the share price falls because the firm is insolvent, then the price will drop to zero and
no dividends will be paid. The payment to the manager is

α max

{

0

pt
+

0

pt
− β; 0

}

= 0. (6)

If the share price falls because a bubble bursts, the price will drop to p̄, and dividends will
still be paid. The payment to the manager is

α max

{

d

pt
+
p̄

pt
− β; 0

}

= α max

{

d+ d q
(1−β) (1−q)+r

pt
− β; 0

}

. (7)

This implies that, if the price is only slightly above the steady-state pricēp (hence the bub-
ble is small), the manager will earn a bonus even when the bubble bursts. The according
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condition is

pt < p̂ :=
(

1 +
d q

(1 − β) (1 − q) + r

)

/

β. (8)

Otherwise, the manager gets nothing if the bubble bursts. Let us start with discussing the
second case. If she invests in the risky asset, she gets a bonus with probabilityQt. Then
a modified version of (2) must hold,

α (1 + r − β) + S = Qt α
(

(pt+1 + d)/pt − β
)

+ S,

= q
( pt

pt+1

)γ

α
(

(pt+1 + d)/pt − β
)

+ S,

1 + r − β

q
=

( pt

pt+1

)γ
(

pt+1

pt
+
d

pt
− β

)

. (9)

If, on the other hand,pt is belowp̂ such that (8) is satisfied, another version of (2) must
hold,

α (1 + r − β) + S = Qt α
(

(pt+1 + d)/pt − β
)

+ (q −Qt)α
(

(p̄+ d)/pt − β
)

+ S,

1 + r − β

q
=

( pt

pt+1

)γ pt+1

pt
+

(

1 −
( pt

pt+1

)γ)
(

p̄

pt
+
d

pt
− β

)

. (10)

Then equations (9) and (10) respectively implicitly determine a price process in a rational
expectations equilibrium. To be precise, letf(pt+1, pt) be defined as the right-hand side
minus the left-hand side of equations (9) and (10), depending on whether (8) holds.

Definition 1 A rational-expectations equilibrium is a path of prices{pt}t≥0 and transi-
tion probabilities{(q, Qt)}t≥0 such that forEt[f(pt+1/pt)|(q, Qt)] = 0 for all t ≥ 0.

For any givenp0 > p̄, (9) (or 10) implicitly definep1, and (5) defines the accordingQ0,
so all variables for̃p1 in (4) are defined. Then starting fromp1 in a next step, (9) (or 10)
and (5) definep2 andQ1, sop̃2 is defined. Following this procedure defines the complete
process recursively. One such process is shown in the above figure 3.

However, equation (9) does not necessarily have a solution for any set of parameters. The
higher the potential future pricept+1, the likelier it is that the ceilingN is hit and the
bubble will burst. However, the likelier a bursting of the bubble, the higher a potential
price increase must be in order to compensate managers for the risk they face. A multiplier
effect evolves. This feedback does not necessarily reach anequilibrium pricept+1 for all
t. As a consequence, a bubble can burst with certainty at some date t, andQt = 0.
However, if the bubble cannot be sustained at datet + 1, managers will anticipate this
already before, and a backward induction argument shows that the bubble will not be
sustainable right from the start. An example is given in figure 4 (withr = 20%, all other
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Figure 4: A Trinomial Price Process with a Non-sustainable Bubble
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parameters as above). At date 7, the price has risen too high,and the bubble can no longer
be sustained. Consequently, the according initial pricep0 cannot be part of an rational
expectations equilibrium process in the first place.

We are interested in conditions under which a bubble can or cannot be sustained. In order
to be sustainable, the implicit equation must have a solution for any datet. Rewrite (9)
and (10), definingφt = pt+1/pt as the relative price increase, an auxiliary variable,

φγ
t

1 + r − β

q
= φt +

d

pt
− β for pt > p̂, (11)

φγ
t

1 + r − β

q
= φt + (φγ

t − 1)
p̄

pt
+ φγ

t

( d

pt
− β

)

otherwise. (12)

The value ofpt+1 = φt pt is implicitly defined by (12) ifpt < p̂, and otherwise by (11).
The right-hand side of the equation is always the same, the left-hand side is moving up
or down, depending on the starting pointpt. The following figure 5 shows the right-hand
side (thick), and the left-hand for a couple of parameters. First, pt = p̄ < p̂. In this case,
the left-hand side of (12) becomesφt + (φγ

t − 1) + φγ
t

(

d/p̄t − β
)

. From the Figure, one
can see that the only intersection with the thick curve is atφt = 1, which implies that
pt+1 = φt pt = pt, hence there is no price increase. Starting withpt = p̄, we are of course
in the steady state, and the price does not change over time. There is no bubble.

But if the initial price is slightly abovēp, the line bends downward, implying that it
intersects with the curve at someφt > 1. In the next period, the price will be higher still,
and hence the intersectionφt+1 will be even higher. The bubble emerges, and the speed
φt = pt+1/pt increases with time. When the pricept = p̂ is reached, the right-hand sides
of (11) and (12) are equal, and we are at the dashed line in the figure. The intersection
is again at someφt > 1. This implies that the price will increase even more, resulting
in a parallel shift downwards of the line. For an infinite price pt, the limiting lineφ − β

9



Figure 5: Possibility of a Bubble
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is reached. From the figure, one can see that the intersectionpoint moves right aspt

increases. As a result, over time (with increasingpt), the bubble becomes less and less
stable, the probability of a burst increases.

Remark 2 In a bubble process, the relative price increaseφt = pt+1/pt grows over time,
Qt falls over time, and the bubble becomes less stable.

As a consequence, in order to show that a bubble can be sustained in a market, it suffices
to consider large pricespt. Hence, we may also concentrate on the casept > p̂. In the
limit pt → ∞, equation (11) simplifies to

φγ (1 + r − β) = q (φ− β). (13)

The equation does not depend on time, so we have dropped the index t. If (13) has a
solution forφ, the according market can sustain a bubble. For arbitrarilyhigh pricespt,
there is always a pricept+1 that is high enough to make fonds managers buy at datet. If
(13) does not have a solution forφ, then there is exists a pricept that is so high that a
further increase is impossible. Nobody will buy, and the bubble will burst. Hence, using
backward induction, the bubble cannot get started at datet = 0. The only possible initial
price is thenp0 = p̄.

Unfortunately, this innocent looking equation (13) has no closed-form solution forφ.
Becauseγ > 1, the left-hand side of (13) exceeds the right-hand side for largeφ. The
above figure 5 shows the left and right side of (13) for the numerical exampleγ = 2,
β = 0.9, q = 95%, d = 1, and r = 10%. There is a solution atφ = 1.21 (and,
for completeness, another atφ = 3.54).9 Let us briefly explain this number. For these

9We do not consider the high solution in the following since the corresponding equilibrium is unstable.
Note that a situation in which the straight line is above the curved one in figure 5,φγ (1+r−β) < q (φ−β),
implies a low probability of a burst relative to the expectedgains. Hence, the price is driven up (φ falls) and
we move to the left. The same argument holds for the opposite case, drivingφ up. Thus, only the lower
equilibrium is stable.
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parameters, (2) yields̄p = q/
(

(1 − β) (1 − q) + r
)

= 9.05. Hence, the minimum asset
price would be much above the fundamental value ofq/(1 − q + r) = 6.33. However, a
price of9.05 would be stable. Each period, with probability1 − q = 5%, the firm would
stop to pay dividends, in which case the price would drop to zero. Otherwise, the price
would stay at̄p = 9.05.

Now if, as a zero probability event, the price of the asset moves abovēp = 9.05, this is
the starting point of a bubble. Figure 3 shows a bubble that starts atp̄ + 0.8 = 9.85. At
the starting point of the bubble, the probability of a burst is 1 − Q = 1 − q (pt/pt+1)

γ ≈
5.7%, only slightly above1 − q = 5%. In later periods,pt+1/pt converges towards
1.21, as calculated above. The probability of a burst then converges towards1 − Q =
1−0.95 (1/1.24)2 ≈ 34.7%. The bubble can burst for two reasons. First, as a fundamental
reason, the underlying firm can go bankrupt. Second, as a financial reason, the resources
in the market can be exhausted. Figure 3 shows these two possible developments of
the market. The black curve starts with the steady state price of 9.05. The price never
increases. With probability1 − q = 5%, the price drops to zero, but otherwise it remains
stable. The gray curve starts slightly above the steady state price atp = 9.25. This price
can only be rational if further price increases are expected.

In another numerical example, let us see what happens if a bubble is not sustainable. Set-
ting r = 20% (and letting all other parameters unchanged), we get the following figure 6.
Here, because of the higher interest rate,p̄ drops to 4.63 (the dashed and the curved line
are higher). There is no solution for equation (13), so a bubble cannot be sustainable. One
can calculate the maximum pricept for which (11) has a solution, namely atpmax = 9.23
(upper dashed line). Ifpt > 9.23 at some date, thenpt+1 does not exist. But in a bubble,
prices need to rise, hence the price will reachpmax at some time, hence the bubble is not
sustainable.
A little bit repetitive, or?

Figure 4 uses exactly this parameter constellation. The price in the bubble rises. At date
t = 7, it rises abovepmax = 9.23, so the bubble will bust no later thant = 8. Backward
induction yields that the bubble cannot get started in the first place. Theonly possible
price path is the steady state, with a price ofp̄ = 4.63.

Existence of Trinomial Bubble Processes. The above numerical examples in figures 3
and 4 seem to suggest that lower interest rate levels supportbubbles, whereas higher
interest rates can punctuate a bubble. Reassuringly, this is perfectly in line with traditional
intuitions of bubbles.

Let us now analyze more generally under which conditions bubble processes can exist.
Looking at figure 5, one can see that the solution may cease to exist if the gray line does
no longer intersect with the black curve, like in figure 6. A general condition is given in
the following proposition.
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Figure 6: Non-Existence of Bubbles
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Proposition 1 The market can develop a trinomial bubble process if and onlyif

γγ
( β

γ − 1

)γ−1

≤
q

1 + r − β
, (14)

that is, for largeq, smallr, smallγ or largeβ.

The parameterγ captures the uncertainty in the market. The smallerγ, the larger are
mean and variance of the distribution, the more uncertain isthe potential market size. For
γ ≤ 1, the mean is infinite, and forγ ≤ 2, the variance is infinite. The parameterN0 does
not appear in the analysis, which shows that for the existence of a bubble, only the shape
of the upper tail matters. The smallerγ, the more likely is the sustainability of a bubble.

In the extreme case ofγ → 1, the expected market size becomes infinite, andγγ (β/(γ −
1))γ−1 → 1. Hence, a bubble can emerge ifq > 1+r−β. However, ifγ → ∞, the market
size is almost certainlyN0, and a bubble can never be sustained, independent of the sizes
of other parameters. This is the traditional backward induction argument of Tirole (1982).

The larger the interest rater, the less likely is the possible existence of a bubble. This is
in line with the intuition that central banks can punctuate bubbles by increasing interest
rates, and that bubbles are more likely to emerge it interestrates are low.

Bubbles can exist especially ifq is high, that is, if the underlying asset is rather safe. This
seems to be in line with the recent housing bubble in the U. S. and other countries. Real
estate itself has a bankruptcy probability of zero, thusq = 1.10 Hence, as argued above,
the difference between the fundamental valuep and the steady-state price is higher for
more risky assets, but the likelihood that a bubble emerges is larger for rather safe assets.

10If real estate is seen as a risky investment, then mainly because real estate prices can be driven away
from fundamentals, not because real estate is inherently risky.
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Finally, the parameterβ describes how steep the incentive schemes of managers are. The
largerβ, the later the bonus payments to the manager kick in, and the higher is the power
of the contract, and the more prominent is the effect of the limited liability of the manager.
Hence, we have the result that the emergence of bubbles becomes more likely when fonds
manager compensation is higher powered. The following figure 7 summarizes all these
observations for the caseγ = 2. For parameters below the surface, bubbles are feasible.

Figure 7: Feasibility of a Bubble

 

4 Bubbles in General

We have argued that a very special kind of a bubble process, the trinomial bubble, exists if
and only if (14) holds. We now make this result more general byshowing that, if (14) fails
to hold, the only rational expectations equilibrium process is the non-bubble process with
price p̄. With other words, bubble processes exist if and only (14) holds. The argument
will be simple. Starting from a pricept, a price larger or equal topt+1 as defined by (9)
must be in the support of the density function. So to say, the trinomial price path is a
lower bound for any bubble. So if, for a given set of parameters, no trinomial bubble path
exists, this implies that no bubble at all exists.

Proposition 2 In a rational expectations equilibrium, a price process canexhibit a bub-
ble if and only if

γγ
( β

γ − 1

)γ−1

≤
q

1 + r − β
, (15)

hence if(14)holds.
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This is the main result of our paper. If the condition holds, there are multiple rational
expectations equilibria, including bubble equilibria. Ifthe condition does not hold, there
is only one steady-state (non-bubble) equilibrium price process. There are no bubbly
equilibria, neither trinomial nor of any other shape.

5 Policy Measures

In this section, we examine whether certain policy measuresthat have been suggested in
the public debate can prevent the creation of bubbles in our model. Specifically, we look
at an asset-price augmented Taylor rule, caps on bonuses, mandatory long-term compen-
sation, a financial transaction (Tobin-) tax, and capital requirements.

5.1 An Augmented Taylor Rule

We have already seen that a central bank can punctuate a bubble by increasing interest
rates. Let us now analyze the impact of a preannounced interest rate increase in the case of
a bubble, following a Taylor rule that takes asset price inflation into account. Specifically,
assume a version of the rule used in Bernanke and Gertler (2001),

rt = r̄ + ψπ (πt − π̄) + ψ (pt/pt−1 − 1), (16)

whereπt is gross consumer price index (CPI) inflation, andpt/pt−1 asset price inflation
of the only asset in the economy as defined above. For now we neglect the influences
of asset price inflation on CPI inflation by setting CPI inflation equal to its target ratēπ.
The target rate of asset price inflation is assumed to be one. As in the above analysis, in
a bubble,pt+1/pt converges towards a constantφ. Inserting (16) in equilibrium into (13)
yields

φγ
(

1 + r̄ + ψ (φ− 1) − β
)

= q (φ− β). (17)

as a necessary condition for a bubble to emerge. Like for (14), we can derive a condition
for parameters̄r, ψ, β, γ andq, determining whether (17) has a solution forφ. Unfortu-
nately, the condition is algebraically complex. An equilibrium exists if and only if

q(φ−β) ≥ φγ
(

1 + r̄ + ψ (φ− 1) − β
)

with

φ =
1

2ψ γ

(

1 − β − γ)(1 − ψ) + r̄ + βγ − r̄γ + βγψ

+
√

(

r̄+(1−β)(1−ψ)
)(

(1−γ)2(1+r̄−ψ)−β((1+γ2)(1−ψ) − 2γ(1+ψ))
)

)

.

The following figure 8 shows parametersr̄ andψ for which bubbles can exist, forγ = 2,
β = 0.9 and r = 10%. The figure shows that, in order to prohibit the emergence of
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bubbles, a regulator (central bank) can either raise the interest rater, or threaten to raise
interest rates in the future if a bubble should occur by committing to a Taylor rule with
positiveψ. If the central bank opts for the Taylor rule, it never actually needs to raise
interest rates: interest rates occur only as a consequence of asset price increases, but
because of the Taylor rule (with a sufficiently largeψ), asset prices do not rise because
bubbles are prevented. This argument shows that an augmented Taylor rule can cause less
distortions than direct interest policies. However, if thecentral bank cannot differentiate
between price movements due to bubbles and changes in the underlying fundamentals
(such as the probability of bankruptcy1 − q), it faces a trade off between preventing
bubbles and the risk of unnecessarily moving the interest rate in times without bubbles.

Figure 8: Effects of the Taylor Rule
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5.2 Caps on Bonuses

The bonus payment to a manager isB = α
(

(pt+1 + d)/pt − β
)

, if the underlying asset
continues to pay off (probabilityq) and, if there is a bubble, it does not burst (probability
1 −Q). Absent a bubble, this bonus payment is a constant. In a bubble, it equalsα

(

φt +
d/pt − β

)

. Let us first ask whether a potential cap on this bonus would bind in the early
life of a bubble, hence potentially deterring a bubble from emerging in the first place, or
whether it would bind in the later stadium of a bubble. In the latter case, the bubble would
have to bust with probability 1 at some datet̄, so a backward induction argument would
show that the bubble could not have existed in the first place.

In the term for the bonus payment,φt increases over time, butd/pt decreases. In the
aggregate, due to (11), we have

Bt = α
(

φt + d/pt − β
)

= αφγ
t (1 + r − β)/q.
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Hence, bonuses increase over time in a bubble, and caps on bonus payments would be-
come binding in later stages of a bubble. As a consequence, wecan concentrate on large
pricespt, so thatφt becomes a constant, and the maximum bonus is

B = α
(

φ− β
)

= αφγ (1 + r − β)/q.

Now assume that the regulator puts a capB̄ on the bonus.

There are two ways the regulation can be implemented.First, the compensation scheme
could be adjusted such that bonuses aboveB̄ are less likely to occur, for example by
reducingα or increasingβ. However,α does not have an effect on the existence of
bubbles, and an increase inβ would forward the emergence of bubbles. Hence, this
policy would backfire and make bubbles more likely.

Second,one could adjust the compensation tomin{max{α
(

(pt+1 + d)/pt − β
)

0}; B̄}.
Then, the bubble will burst with certainty at some point of its life if α

(

φ−β
)

> B̄, hence
if φ > B̄/α + β. Consequently, for a given compensation scheme with parametersα and
β, a cap on bonus payments̄B will punctuate a bubble if̄B/α + β < φ, with φ defined
by (13).

The implicit function theorem shows howφ depends on other exogenous parameters. For
example,dφ/dr > 0. To see this, define the termT = φγ (1 + r − β) − q (φ − β),
which is zero due to the implicit equation (13) forφ. The derivative∂T/∂r is positive,
the derivative∂T/∂φ must be negative if we concentrate on the most moderate pricepath.
Consequently,dφ/dr > 0. This proves the following remark.

Remark 3 Increasing interest rates and caps on bonus payments are substitutional reg-
ulatory instruments.

Along the same line,∂T/∂q < 0, hencedφ/dq < 0. A largerq can be identified with more
conservative investments. For example, if the assets were securitized mortgages, then a
high q would stand for the prime market, and a lowerq would stand for the subprime
market. Then a cap on bonus payments would be more likely to beeffective on the
subprime segment. More generally, the following result would hold.

Remark 4 Caps on bonus payments are less effective in deterring bubbles in conserva-
tive fields of investment.
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5.3 Other Measures

Long-term Compensation. In the recent political discussion, it has often been argued
that managers’ incentives should be made more sustainable,such that managers concen-
trate more on long-term goals and avoid short-termism. The same argument might be true
for the fonds managers in our model. To analyze this question, let us assume that the man-
ager receivesmax{0; α (y − β)} as before, but that she is liable with his compensation
for potential future losses. Hence, she will get nothing if the yield is negative in the next
period. In a steady state, the market price will then be

α (1 + r − β) = q2 α
(

(pt + d)/pt − β
)

,

pt = p̄ :=
d q2

(1 − β) (1 − q2) + r
,

smaller than without long-term liability. If a bubble exists, the probability that the bubble
does not burst after two periods is

Q = q2 pt/pt+2 = q2/φ2γ .

As a consequence, the one-period price increaseφ is determined by

α (1 + r − β) = Qα
(

φ− β
)

= q2/φ2 γ α
(

φ− β
)

,

φ2 γ (1 + r − β) = q2
(

φ− β
)

.

The equation is similar to (13), only thatγ is substituted by2 γ, andq is substituted byq2.
Because bubbles exist especially for smallγ and largeq according to proposition 1, we
find that long-term liability prevents the existence of bubbles. For even longer liability,
the effect would be even larger.

Remark 5 If fonds managers are liable for future developments with their bonuses, bub-
bles become less likely.

Financial Transaction Tax. A financial transaction tax (or Tobin tax) is intended to
prohibit bubbles by curbing short-term asset trading. For atax of 0.05%, for example,
the tax would amount to a steep 12.5% p. a. for an asset that is traded 250 times a year.
The bubble mechanism of our model, however, is not based on frequent trading. Assets
are held until the end of the investment period. Consequently, the aggregate tax would
be negligibly small. With a grain of salt, financial transaction taxes are ineffective at pro-
hibiting bubbles in our framework.
Analytic derivation ?
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Capital Requirements. We have already argued that our fonds managers can be many
kinds of financial intermediaries, for example banks. In this case, capital regulation would
be the most prominent policy tool. Our model suggests that capital requirements, among
other things, have the effect of preventing bubbles. The reason is straightforward. If our
fonds manager is a bank, then pure equity finance would meanβ = 0 and a rather low
α, whereas pure debt finance would imply a highβ andα = 1. Hence the more equity
capital a bank holds, the lower areβ andα. According to proposition 1, the lowerβ can
foreclose the emergence of bubbles.

In this subsection, the contract parametersα andβ were treated as exogenous variables.
However, more realistically these variables will be set optimally by the investor, who de-
signs the contract. Therefore, we endogenize the compensation package in the following
section.

5.4 Welfare

In order to justify any policy measure for the prevention of bubbles, it is necessary to
analyze the welfare effect bubbles. All agents are risk neutral, hence we can assume they
have identical utility functions,ui

t = cit−1 + ρ cit for an agenti born at datet − 1 and
consumes at datet. The discount factorρ must satisfy1/ρ ≤ 1 + r, otherwise agents
would not even have an incentive to invest into the riskfree asset. Takingρ also as the
inter-generational discount factor, we can write

W =

∞
∑

t=0

∑

i

ρtui
t =

∞
∑

t=0

ρtCt,

whereCt is aggregate expected consumption at datet. Payments between managers and
investors in the same generations are mere transfers and do not directly enter the welfare
function. Now, absent a bubble, the price of the asset is always p̄. Hence, the generation
that consumes at date0 earnsC0 = p̄ from selling the asset. Generation 1 paysp̄ for the
asset. Because there areN investors, each owning 1 dollar, the aggregate endowment of
generation 1 isN . The investment into the riskfree asset isN − p̄, becausēp is already
spent on the risky asset. With probabilityq, generation 1 also gets̄q from selling the asset,
plus the dividendd. Hence, the aggregate expected consumption of generation 1is

C1 = q (d+ p̄) + (N − p̄) (1 + r).

Generation 2 buys the asset only with probabilityq; with probability 1 − q the firm is
bankrupt and there is nothing to buy. Hence

C2 = q2 (d+ p̄) + (N − q p̄) (1 + r).
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The equations for the following generations are similar. Let us now look at the expected
consumption in a bubble. For concreteness, consider the trinomial “example” bubble pro-
cess of section 3. Generation 0 then getsC ′

0 = p0 > p̄ from selling the asset. Generation 1
buys the asset at pricep0, but expects the price to rise top1 wit probabilityQ0, to fall to p̄
with probabilityq −Q0, and to fall to 0 with probability1 − q. Hence,

C ′
1 = Q0 (d+ p1) + (q −Q0) p̄+ (N − p0) (1 + r),

and so on. Now consider welfare differences,

C ′
0 − C0 = p0 − p̄,

C ′
1 − C1 = Q0 (p1 − p̄) − (1 + r) (p0 − p̄),

C ′
2 − C2 = Q1Q0 (p2 − p̄) −Q0 (1 + r) (p1 − p̄),

and so forth. Hence the aggregate welfare difference amounts to

∆W = (p0 − p̄) +
∞

∑

t=1

ρt
t−2
∏

t′=0

Qt′

(

Qt−1

(

pt − p̄
)

− (1 + r)
(

pt−1 − p̄
)

)

=

∞
∑

t=0

ρt (pt − p̄)
(

1 − ρ (1 + r)
)

t−1
∏

t′=0

Qt′ ,

which is negative if1 + r ≥ 1/ρ. Consequently, the welfare effect of a bubble is always
negative, and zero only in the limiting case of1 + r = 1/ρ.

Rather than adding up all bits and pieces to calculate aggregate welfare, and then to take
the difference between scenarios (with and without bubble), one can argue the following
way. The payments of the risky asset are not affected if thereis a bubble. But in a
bubble, at datet, the young generationt pays a pricept higher than̄p to the old generation
born at datet − 1. This is simply a transfer of wealth between generations, with two
consequences. Due to the higher pricept > p̄, the youn generation invests less into the
the safe asset, at an opportunity cost of(1 + r) (pt − p̄). But the transfer is carried one
period forward, hence it is discounted less. But because theriskfree rate1 + r exceeds
the inverse discount factor1/ρ, the aggregate welfare effect is negative. Because bubbles
always involve prices abovēp, this argument proves the following proposition.

Proposition 3 (Welfare) Assume (14) holds, and1+ r > 1/ρ. Then of all equilibria, the
steady-state equilibrium is strictly welfare-optimal.

6 Endogenizing the Compensation Scheme

In the above analysis, the parameters of the compensation scheme for the managers,α, β,
andS, are taken as exogenous. In this section we are going to explore which compensa-
tion scheme will emerge endogenously. We assume that the investor is risk averse, while
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the manager is risk neutral. The remaining setup is as described in the previous section,
i.e. an investor delegates the investment decision to a manager, whose actions she cannot
observe. Since there are more managers than investors in theeconomy, the investor can
make take-it-or-leave-it offers to the managers, which maximize the expected profit of the
investor. In doing so, she has to consider the manager’s participation constraint. Letting
D denote the revenue generated by the manager, the expected profit of the investor is then

EtΠ = EtD − Et max
{

0; α (D − β)
}

− S.

We restrict the parameterα to be lower or equal to unity, since in the opposite case a
higherD can lead to a lower profit of the investor. In the extreme, a very high realization
of D could lead to bankruptcy of the investor underα > 1. The manager will only accept
the contract if it fulfills

Et max
{

0; α (D − β)
}

+ S ≥ A, (18)

whereA is the outside option of the manger (such as academia). Sincethere are more
managers than investors, the investor will chooseα, β, andS such that the manager will
be at the limit of his participation constraint. This implies that equation (18) will hold
with equality. Inserting this result in the above profit function yieldsEtΠ = EtD − A.
Hence, the investor maximizes her profit by reaping the complete surplus of the manager.
The relation betweenS, α, andβ can be seen by rewriting (18) as

S = A+Q′ αβ − αφ (19)

with

Q′ =

∫ ∞

β

f(D) dD and φ =

∫ ∞

β

Df(D) dD,

where the probability distribution ofD is denoted byf(D). The risk-neutral manager
is indifferent between values ofS, α, andβ, as long as this equation is fulfilled. The
risk-averse investor, however, has an incentive to minimize the variance of her profits in
the different states of the economy. To this end, let us rewrite the expected utility of the
investor as

EtU(Π) =

∫ β

0

U(D − S)f(D)dD +

∫ ∞

β

U (D[1 − α] + αβ − S) f(D)dD.

The investor maximizes this expression subject to (19) andα ≤ 1 andS ≥ 0. Because
of her risk aversion, she tries to increase the profit in states with a low realization ofD,
relative to states with a highD. Therefore she choosesα = 1, S = 0, and resulting from
equation (19)

β =
φ−A

Q′
.

The right-hand side falls from a large number, depending onf(D), for β = 0 to minus
infinity for β approaching infinity. Hence, a fixed point can be found. If a bubble is treated
as zero-probability event, we get a value ofβ < 1 + r.
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7 Conclusion

In our paper, there are two reasons why the price of an asset may deviate from its funda-
mental value.First, as also analyzed by Allen and Gale (2000), funds managers may drive
up the price of risky assets due to limited liability. This effect is larger for riskier assets.
Second, a funds manager may be willing to spend more than the fundamental value on an
asset because she expects to earn even more when she sells theasset. Such an increasing
bubble is more likely to emerge if the underlying asset is rather safe.

Our theory of bubbles is in line with some anecdotal evidence. During the dot-com bubble
(1998–2001), phantasies about the potential of internet firms were exuberant. Possibly,
the asset prices of these firms were even more exaggerated dueto the limited liability of
traders. Hence, the traders’ limited liability let the exuberance appear as through a magni-
fying glass. When expectations became more realistic, assets prices collapsed because the
correction of expectations was again magnified. This complete argument follows thefirst
explanation, hence it is especially reasonable for risky assets, like the stock of dot-com
firms.

Following the “as-long-as-the-music-is-playing-you’ve-got-to-get-up-and-dance” expla-
nation for the recent U. S. housing bubble, managers bought securities because they thought
they could sell them at a higher price later, driving up prices. This argument follows the
secondexplanation, hence it is especially reasonable for fundamentally safe assets, like
real estate. Our model can make some proposals how to avoid such bubbles. One can
increase interest rate, implement a Taylor rule that reactsto asset-price developments, cap
bonus payments to fonds managers (if this is done the right way), or introduce capital re-
quirements for managers (intermediaries). Due to its relative simplicity, the model lends
itself to further discussions. For example, one could consider several assets, and discuss
whether a the collapse of a bubble in one market can be contagious for the other markets.
One could plug bubbles into macro models and look at growth effects. Especially after
the recent burst of the housing bubble, the number of possible applications seems vast.

A Appendix

Proof of remark 1. To see this, assume thatd rises andq falls such that the fundamental
valuep remains unchanged, henced = p (1 + r − q)/q. The steady state pricēp is then

p̄ = p
1 + r − q

1 + r − q − β (1 − q)
,

which depends negatively onq. This implies that, for given fundamental valuep, the
steady state pricēp will be higher for more risky assets. �
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Proof of proposition 1. We have already argued that the probability that a bubble bursts
increases witht, or with pt. But, becausept is an increasing function, a bubble is sustain-
able if and only if it is sustainable forpt → ∞. Hence, if (13) has a solution forφ, the
bubble is sustainable. Now consider the limiting case, in which the lineq (φ− β) and the
curveφγ (1+ r−β) will only just touch. At the touching point, the slopes must be equal,
hence

(1 + r − β) γ φγ−1 = q,

which implies that the touching point isφ = β γ/(γ − 1). Substituting this solution into
(13), we find that the limiting case is reached at

( β γ

γ − 1

)γ

(1 + r − β) = q
( β γ

γ − 1
− β

)

.

Some algebra yields (14). �

Proof of proposition 2. Assume that a price process exhibits a bubble, and thatpt > p̄ at
a datet, andp̃t+1 is distributed with distributionF (p̃t+1). Then, in a rational expectations
equilibrium,

α (1 + r − β) + S =

∫ ∞

0

Qt α max
{ p̃t+1 + d

pt

− β; 0
}

dF (p̃t+1) + S,

1 + r − β

q
=

∫ ∞

0

h(p̃t+1) dF (p̃t+1), where (20)

h(p̃t+1) = max
{ pγ

t

p̃γ
t+1

( p̃t+1 + d

pt
− β

)

; 0
}

is an auxiliary function. Thept+1 implicitly defined by (9) solves this equation for a
distribution that has probability mass only at one pointpt+1 (and zero and̄p). The question
is, from this three-point distribution, can we shift probability mass downwards such that
the above (20) still holds? The answer depends on the shape ofh(p̃t+1). Some analysis
shows thath(p̃t+1) is zero up tõpt+1 = β pt − d, then increases and decreases again. For
p̃t+1 → ∞, it again approaches zero asymptotically. Now ifpt+1 were in the decreasing
part ofh(·), the task would be easy. One could move some probability massto thep′t+1

in the increasing part withh(p′t+1) = h(pt+1), and the integral would be unchanged. If,
however,pt+1 is in the increasing part, then for any decrease of probability mass one must
also increase the probability of some event better thanpt+1 in order to keep (20). Now
maximizingh(·) yields

p̃∗t+1 = γ
β pt − d

γ − 1
> β pt − d.

Sincep̃∗t+1 maximizesh(·), thept+1 that equalizes the left and the right side of (20) must
be smaller. Consequently,pt+1 is in the increasing part ofh(·).
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As a result, for givenpt, any rational expectations price process must have a support that
exceeds thept+1 from (9). This implies that, with positive probability, theprice rise must
exceed that of the trinomial bubble process. As a consequence, if no trinomial bubble
process exists, no other bubble process can exist neither.

On the other hand, if a trinomial bubble process exists, it isan example for a general
bubble process. As a consequence, (14) is the general condition for the existence of
bubble processes in rational expectations equilibrium. �
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