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Abstract

We study an all-pay contest with multiple identical prizes ("lifeboat seats").

Prizes are partitioned into subsets of prizes ("lifeboats"). Players play a two-

stage game. First, each player chooses an element of the partition ("a lifeboat").

Then each player competes for a prize in the subset chosen ("a seat"). We

characterize and compare the subgame perfect equilibria in which all players

employ pure strategies or all players play identical mixed strategies in the first

stage. We find that the partitioning of prizes allows for coordination failure

among players when they play nondegenerate mixed strategies and this can

shelter rents and reduce rent dissipation compared to some of the less efficient

pure strategy equilibria.
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1 Introduction

When a ship sinks, passengers must hurry to find a lifeboat and, if the boat is crowded,

there might be some competition over seats. The shortage of lifeboat seats has been

frequently discussed in the most famous ship catastrophe, the sinking of the Titanic.

In their empirical analysis Frey, Savage and Torgler (2009) analyze the determinants

of who among the 2207 passengers of the Titanic survived. The sinking of the Titanic

took several hours, and the process of evacuating the ship is reported as having been

mostly civilized and fairly coordinated.1 Still, even though there were more passengers

than lifeboat seats on the Titanic, there were both lifeboats launched at less than

capacity and boats for which there was intense competition for seats. Indeed, ships

sometimes sink much faster than the Titanic,2 making the problem of the allocation

of lifeboat seats an even more difficult, and sometimes less peaceful task.

In more abstract terms, the battle over seats in different lifeboats describes a

situation in which the players in a group of players partition themselves into smaller

subgroups, and the members of each subgroup compete for one of several identical

prizes that are awarded to some of the members of the respective subgroup. Com-

petition may be intense in a subgroup if there are more contestants than prizes in

this group, and competition is absent if there are more prizes than contestants. We

call this game of endogenous self-partitioning followed by competition the lifeboat

problem. We show in a symmetric version of this game that the subgame perfect

equilibrium partitioning of players may be realized through both symmetric mixed

strategies and asymmetric pure strategies. When there are more players than prizes

in the aggregate, these endogenous choices can shelter rents that would be dissipated

in a single large contest. The equilibrium payoff in a subgame perfect equilibrium

with symmetric mixed strategies played in the first stage (as regards each player’s

choice of the set of prizes) can yield higher or lower rents than those arising in some

1See, for instance, the Report of the British Wreck Commissioner’s Inquiry (1912) which can be

both found at http://www.titanicinquiry.org/.
2Frey et al.(2009) note the case of the HMS Birkenhead which sank in 25 minutes in 1852. The

American tranport ship The Antilles was struck by a torpedo in 1917 and sank in five minutes. 167

of the 237 persons on board were rescued. The cruiseferry MS Estonia sank in 1994 in a fifty-five

minute period. Of the 938 passengers, it is estimated that up to 310 reached the outer deck and 160

managed to climb into liferafts or lifeboats. 138 passengers were rescued.
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of the equilibria employing pure strategies.

The problem faced by passengers on a sinking ship is a metaphor for situations

in which humans or other organisms must self-partition in a decentralized manner to

engage in dissipative contests for prizes. Although we phrase the problem in the

context of the choice of lifeboats on a sinking ship, it applies to other contexts as

well. One example is educational or professional choice in a world with specializa-

tion and complementary skills where scarcity premia accrue to players who choose a

specialization with excess demand. Another example is the choice of nesting areas

by birds or animals, where animals choose individually among distinct territories and

overpopulation of a territory leads to a war of attrition.3

For simplicity, we assume that players are identical from an ex ante standpoint,

wish to obtain at most one prize, and that the contests are perfectly dissipative under

homogeneity, as arises in a multiple prize all-pay auction or a multiple-unit pay-as-

bid winner-pay auction with complete information. In these types of contests, if the

number of identical prizes in a contest is greater than or equal to the number of

competitors who compete for the prizes, everyone receives a prize with zero expendi-

ture, but if the number of competitors is strictly greater than the number of prizes,

dissipation is complete and the competitors receive no benefit in expectation. This

notion of competition captures the idea that within a given environment in which the

agents are competing, if competition is sufficiently "cut-throat" agents on the long

side of the market gain nothing in expectation while those on the short side of the

market collectively obtain all potential gains from trade.4 In this context, the "fail-

3A critical aspect of these examples is that self-partition takes place across a set of contests

and prizes that are fixed. That is, the matching problem faced is one-sided and not two-sided.

Sometimes this is natural due to time-to-build on one side of the market. Lifeboats must be loaded

on the ship before it sails. Specialized education programs or professions typically take many years

to evolve. Wildlife habitats may take considerably longer to be developed. In other environments

it may be more unclear whether one side of the market has a quasi-fixed nature. For instance, the

choice of market platforms by buyers and sellers may involve two-sided self-partition. However if,

for example, the sellers’ side of the market involves large players who themselves establish platforms

with which to interact with many small buyers, this may be viewed as a one-sided buyer problem

with precommitted sellers.
4This property arises not only in the Nash equilibria of many types of non-cooperative bidding

games with identical players and complete information, but also in the core of certain cooperative

coalitional games.
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ure" to not fill all groups evenly turns out to be a huge benefit if there is an excess

supply of players in the aggregate. In a grand contest with all players competing

for all prizes, the payoffs are zero if there are more players than prizes. If the set

of all prizes is partitioned into several sets of prizes, players who select into groups

where there are at least as many prizes as players reap rents. Such rent generating

partitioning arises both in pure strategy equilibria at the stage at which each player

chooses a set of prizes, in which players coordinate in a self-enforcing fashion to not

"spoil the pot" for a subset of rent earners, and in mixed strategy equilibria, in which

"coordination failure" due to randomization in their choices yields stochastic rents

that are symmetric in expectation across players.

Our analysis is related to a number of contest studies in the literature. A

prominent paper in this line of research is the study of contest architecture by

Moldovanu and Sela (2006). They study all-pay auctions with incomplete information

and find that a grand contest for one big prize elicits more aggregate effort in expec-

tation than either the same contest with the prize divided into many smaller prizes

or a partition of the contest into multiple parallel contests in which both the set of

players and the prize are equally divided. Moldovanu and Sela (2006) do not examine

the self-partitioning of players into contests. Piccione and Rubinstein (2007) consider

a general equilibrium model of "equilibrium in the jungle" in which allocation is de-

termined by a strength relation between pairs of players that is a complete ordering

of the players. A special case of this model may be interpreted as the peaceful alloca-

tion of m prizes among n players (with m > n), but with heterogeneity of prizes and

sequential allocation based on strength. Perhaps closest to our paper is Amegashie

(2004), which examines a problem in which n players of strictly ranked abilities each

choose between two contests with h and l prizes respectively, where there are at least

two more players than prizes. Each of the h prizes in one contest are ranked identi-

cally and more highly by the players than each of the l identically ranked prizes in

the second contest. Like in our framework, Amegashie examines a two stage game

in which players simultaneously choose between contests and then play an all-pay

auction with complete information within each contest. Amegashie provides a partial

characterization of the set of subgame perfect equilibria with pure local strategies at

the first stage of the game. He does not examine equilibria with mixed local strategies

at the first stage. Moreover, he does not examine the question of how endogenous
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choice between different sets of prizes through pure or mixed strategies shelters rents,

and how this outcome depends on the structure of the partition of the total number

of prizes.

2 Group choice and the intra-group all-pay contest

We consider the following two-stage game. The set of (ex-ante symmetric) players is

N ≡ {1, 2, ..., n}. In stage 1 each player chooses one element j of the setB ≡ {1, ..., b}.
As one of the interpretations of the game is that the players are passengers on the

Titanic who choose to go to one of the lifeboats, we can describe this choice as each

player i chooses one lifeboat. Players’ choices lead to a quasi-partition of players into

b subsets N1, ..., Nb, with nj ≥ 0 the number of players who have chosen the same life
boat j, for all j ∈ B.5 This completes stage 1. At stage 2 the players in each of the

subsets Nj compete with each other in an all-pay auction with complete information

and without noise. The rules of the game in this all-pay auction are as follows. Each

j ∈ B consists of k identical prizes which are valued equally by all players i ∈ Nj, and

this value is normalized to 1. Each player i ∈ Nj can win at most one prize. If the

player wins no prize, this amounts to a prize value of zero. We may think of k seats

in a life boat, where all players who receive a seat survive with certainty, whereas the

players without a seat fare worse. The allocation of the k prizes among the nj players

follows the rules of an all-pay contest as in Barut and Kovenock (1998) among nj

symmetric players for k < nj identical prizes of size 1.6 Each contestant chooses an

5A quasi-partition of the set N is a collection of sets {N1, ...Nb} such that Ni ∩Nj = ∅ if i 6= j

and ∪bi=1Ni = N (see, for instance, Dunn and Hardegree 2001, p. 189). Note that a quasi-partition

differs from a partition in that the sets Ni need not be nonempty, that is, some lifeboats may go

unused. In the continuation we will sometimes refer to (N1, ...Nb) as a partition, even though the

collection formally constitutes a quasi-partition.
6Clark and Riis(1998) examine the case of n players competing to win one of k prizes each of

which players view as identical but for which players’ values strictly differ. Clark and Riis note

that when players value prizes identically multiple equilibria may arise. Barut and Kovenock (1998)

examine the case where for any given prize, the players’ values are identical, but this value may

vary across the k prizes depending on the rank-order of the prize. In this environment, Barut and

Kovenock characterize the complete set of Nash equilibria and show that equilibrium payoffs are

unique although the set of equilibria could be quite large. The subgame employed in this paper is a

special case of the Barut-Kovenock game where all k prizes are identical and valued identically by
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effort ei, and has a cost of effort C(ei), where C(·) is continuous and strictly increasing
on [0,∞) with C(0) = 0 and C(e) > 1 for all e > ē, for some 0 < ē <∞.7

The subgame equilibrium payoffs of players in the group Nj can be extracted

from Barut and Kovenock (1998), using their Theorem 2, setting the highest k prizes

equal to one and all lower prizes equal to zero in their Theorem 2. Their result is

stated as

Lemma 1 (Barut and Kovenock 1998): The payoff of a player i in group Nj

is equal to zero if nj > k and equal to 1 if nj ≤ k.

The payoff for nj ≤ k is immediately intuitive. For instance, if players j = 1, ...nj
approach seats 1, ..., nj, respectively, they face no competition, and this outcome is

perfectly peaceful. If nj > k, full dissipation occurs. This is less obvious but shown

in Barut and Kovenock (1998). Roughly, the result follows from the fact that the

existence of more players than prizes implies that some player must earn an expected

payoff of zero (at the lower bound of the union of the supports of the equilibrium

strategies and, hence, in equilibrium) and such a player is willing to compete away

any gains that other players might obtain by bidding strictly below one. This result

is an important starting point for the analysis of the two stage game, as it gives us

the unique equilibrium payoffs for all possible subgames in stage 2. We first consider

subgame perfect equilibria in which players are able to coordinate in stage 1 when

making their choices about which j ∈ B they choose.

3 Pure strategy choice of the prize set

We first consider and characterize the subgame perfect equilibria in which all players

make a deterministic choice of j ∈ B. In such an equilibrium each player receives an

expected payoff of either zero or one, depending on whether the boat chosen by the

all players.
7Note that Barut and Kovenock (1998) assume linear costs of effort. However, reinterpreting C(ei)

as the "bid" generates the same results The analysis could be extended to allow for nonlinearity and

heterogeneity as in Siegel (2009). However, this heterogeneity is tangential to our main research

question.
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player attracts more players than it has seats, or not. We first state the results8

Proposition 1 (i) If kb ≥ n, then all pure strategy equilibria yield a payoff equal to

1 to each player. (ii) If kb < n, then, for given b and k, the pure strategy equilibria

with the highest total welfare have ni = k for b − 1 boats and ni = n − (b − 1)k for
one boat. (iii) If a pure strategy equilibrium with the highest total welfare is chosen

for a given m ≡ kb < n, then the welfare is higher if there are more boats with fewer

seats. (iv) If n ≥ b(k+1), then a pure strategy equilibrium exists in which all players

have a zero payoff.

Proof. (i) For kb ≥ n quasi-partitions of players among the b boats with nj ≤ k for

all j = 1, ..., b exist. Let (N1, ..., Nb) be such a quasi-partition. In stage 2 each player

receives a payoff of 1 given this quasi-partition. Suppose all but player i make their

choices in stage 1 according to this quasi-partition deterministically, and let i ∈ Nj

in the candidate equilibrium quasi-partition. If i chooses boat j, i’s payoff is equal to

1. If i chooses a different boat j0, then i’s payoff is at most equal to 1. Moreover, we

need to rule out inefficient pure strategy equilibria. Suppose there is a pure strategy

equilibrium with a lower payoff. Then this implies that the quasi-partition in this

equilibrium has a set Nj with nj > k and a set Ns with ns < k. In this case the

deterministic choice of a player i in the set Nj yields a lower payoff to i than if the

player chooses s ∈ B. Hence, the quasi-partition withNs andNj is not an equilibrium

outcome with deterministic choices of boats.

(ii) For any quasi-partition (N1, ..., Nb), let B̂ be the set of boats j for which

nj ≤ k and B̂\B the set of boats for which nj > k. Then the total welfare is equal toP
j∈B̂ nj, as all players at boats with nj > k receive zero payoff and all other players

receive a payoff of 1. The efficiency benchmark is a quasi-partition in which there is

only one boat for which nj > k, and nj = k for all boats j ∈ B̂. To complete the

proof of (ii) we have to confirm that this quasi-partition emerges as a coordination

equilibrium. Consider the quasi-partition (N1, ..., Nb) with n1 = ...nb−1 = k and

nb = n− (b − 1)k that yields maximum welfare. Consider a player i who joined set

8In addition to the pure strategy equilibria and the symmetric mixed strategy equilibrium there

is a large set of equilibria in which some players choose pure strategies and other players randomize.

There is also a large set of equilibria in which some or all players randomize over strict subsets of

the set of lifeboats.
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Nj for j 6= b. This player has a payoff equal to 1 in the candidate equilibrium. If

the player chooses any other set, his payoff drops from 1 to zero, as the number of

players in this set will then exceed the number k. Similarly, consider a player i who

joined set Nb in the candidate equilibrium and has a payoff of 0 there. If this player

chooses any other j 6= b, the player’s payoff is still zero. Hence, staying at the boat

that is overbooked is not worse than any of the alternatives.

(iii) For given kb = m < n, the maximum welfare in (ii) as a function of k can

be written as (b− 1)k = m− k. This is a strictly decreasing function in k.

(iv) We consider a quasi-partition (N1, ..., Nb) of players with nj ≥ k+1 for all

j ∈ B. The condition n ≥ b(k+1) is sufficient for such a quasi-partition to exist. We

show that this quasi-partition also emerges as a coordination equilibrium. Suppose

that all players choose their boat according to the quasi-partition. Consider now one

single player i who chooses boat j in the candidate equilibrium. This player receives

a payoff of zero if he chooses j. If he chooses any other boat j0, the number of players

at that boat becomes nj0 +1 > k. Hence, i’s payoff from all other choices is also zero.

Intuitively, if the total number of seats is at least as great as the number of

players, there are functions that map the set of players to the set of seats that are

one-to-one (injective mappings); no player needs to compete with another player for

his seat, and each of these mappings is a subgame perfect equilibrium. Evidently, each

of these allocations is efficient. Conversely, any mapping which is not injective, i.e.,

under which two or more players have to fight over seats, cannot be an equilibrium

if m ≡ kb ≥ n, as players who face competition for their respective seat can simply

switch to another boat that has seats that would remain empty.

If, instead, m ≡ kb < n, then as long as b ≥ 2, multiple payoff nonequivalent
pure strategy equilibria exist, all having some set of players obtaining an equilibrium

payoff of zero. The aggregate payoff of a pure strategy equilibrium depends inversely

on the number of full boats to which the excess n−m of players over seats is allocated.

The number of players receiving a payoff of one (and hence, the aggregate payoff) is

maximized within the set of pure strategy equilibria in an equilibrium that coordinates

the strategies of players to place the excess n−m of players over seats into a single

boat, keeping all other boats at exact capacity k. The number of players receiving a

payoff of one is minimized within the set in an equilibrium that disperses each of the
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excess n−m players to a different full boat until all boats have at least k+1 players

and then arbitrarily after that. In this case excess players are allocated in such a way

as to "spoil the pot" for the most boats.

Proposition 1 also implies that, if players can coordinate on the most efficient

equilibrium in the lifeboat problem, then lifeboats should be as small as possible. All

but one lifeboat should be just filled, and all excess passengers should come together

at the one remaining lifeboat (and if the lifeboats were to be of heterogenous size,

all excess passengers should come together at the smallest lifeboat). The welfare loss

occurring due to the competition for seats is minimized in this case, and equal to

the benefit that would emerge from this last lifeboat in the absence of competition

for seats. Accordingly, if the total number of seats across all lifeboats is given and

the cost of provision of seats is independent of the composition on smaller or larger

boats, it is best to build the lifeboats as small as possible. One-person lifeboats (or

life vests) are optimal. Of course, coordination on the most efficient equilibrium is

a heroic assumption in this context. In particular, if players coordinate on more

symmetric equilibria, they are more likely to end up in a situation in which there are

more than k players at each boat and their total payoff is zero. This is the implication

of part (iv) in the proposition.

Note also that if players were given an outside option which offered a certain

payoff equal to that received when not obtaining a seat ("going down with the ship")

there exist asymmetric pure strategy equilibria which are efficient. In these equilibria

any set of n−m players choose the outside option with certainty and them remaining

players play pure strategies which generate an equal allocation of players across the

boats.

Of course, the coordination that underlies the pure strategy equilibria in

Proposition 1 is a strong assumption. We therefore view the symmetric but non-

coordinated equilibria as more plausible outcomes and consider them next.

4 Symmetric mixed strategy choice of the prize set

We now consider subgame perfect equilibria in which players are unable to coordinate

on a pure strategy equilibrium and where they randomize independently and sym-

metrically in stage 1. The following proposition characterizes the equilibrium payoffs

8



as a function of b, k and n in this case.

Proposition 2 The payoff of each player in the symmetric equilibrium without co-

ordination is
h=k−1X
h=0

µ
n− 1
h

¶
(1− 1

b
)(n−1)−h

µ
1

b

¶h

. (1)

Proof. Consider the payoffs of players who arrive at a given boat. Let nj be the

number of players arriving at boat j which has k seats. Recall from section 2: if

nj ≤ k, the players need not fight for a seat, hence, the payoff for each of these

players is equal to the value of having a seat, which we normalized to v = 1. If

nj > k, then the equilibrium payoff of players in an all-pay auction is zero if the

number of (symmetric) players exceeds the number of (identical) prizes (Lemma 1).

Hence, players arriving at boats with sufficient supply have a payoff of 1 and players

arriving at a boat with excess demand have a payoff of zero.

Turn now to stage 1. Suppose that there is an equilibrium in which all players

2, 3, ...n randomize symmetrically and independently, i.e., each player goes to each of

the boats with the same probability. Then this probability is 1
b
for each player for

each boat. The probability that h of the other (n− 1) players show up at boat j as
well is µ

n− 1
h

¶
(1− 1

b
)(n−1)−h

µ
1

b

¶h

(2)

for h ≤ n − 1, and this probability is the same for all boats. Accordingly, the

probability that no conflict takes place at boat j if player 1 goes to this boat is

π(n, b, k) =
h=k−1X
h=0

µ
n− 1
h

¶
(1− 1

b
)(n−1)−h

µ
1

b

¶h

. (3)

Symmetric randomization is optimal for player 1 given that all other players random-

ize symmetrically. This follows from the fact that the expected payoff from going

to any of the b boats is exactly the same. Moreover, if all n players independently

randomize across all boats b, then their expected payoffs are equal to this value.

Equation (3) shows how the payoff in the symmetric mixed strategy equilib-

rium depends on b and k for a given total capacity m = kb. We first consider the

extremes. Let b = 1 and k = m. All players will approach the one and only lifeboat.

Hence, the aggregate payoff from this is large and equal to n if and only if n ≤ k = m,
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but the aggregate payoff will drop to zero for all n > k = m. Compare this with the

other extreme case with lifeboats with the smallest possible capacity of k = 1, but a

number of lifeboats equal to b = m, which generates the same total seating capacity.

In this case the expected payoff to each player i from approaching a randomly chosen

boat j is equal to the probability that no other player approaches this boat, which

is equal to (1 − (1/b))n−1, and this is each player’s equilibrium payoff in this case.

This payoff is strictly smaller than 1 even if there are many more boats than there

are players, but it is also strictly positive when m < n, i.e., if there is an absolute

shortage of seats.

This discussion motivates the following characterization of the optimal com-

position (b, k) for a given total number of seats m and players n in the uncoordinated

symmetric equilibrium.

Proposition 3 Consider the symmetric equilibrium in Proposition 2. Let m,n > 2.

(i) If m ≥ n, then k = m and b = 1 maximizes the expected payoff of all players.

If m < n, then k = m and b = 1 is dominated by all other combinations (b, k) with

kb = m. (ii) If m < n, and m is even, then the optimum is an interior solution

(k ≥ 2 and k < m) if µ
m− 1
m− 2

¶n−2
<

m+ 2n− 4
m− 1 (4)

For any given m > 1 there is a sufficiently large n such that (4) is violated.

Proof. The first part of the proposition has already been established by the discussion

of the extreme cases m = b and m = k. The second part of the proposition can be

established by comparing payoffs for (k = 1; b = m) and (k = 2; b = (m/2)). We

already derived the payoff for k = 1 as (1− (1/b))n−1 = (1− (1/m))n−1. To derive the
payoff for k = 2 and b = m/2, note that the probability that no other player arrives

at boat j is (1 − (1/b))n−1 = (1 − (2/m))n−1 . Moreover, the probability that just
one other player arrives at boat j is equal to (n− 1)(1− (2/m))n−2(2/m). Hence, a
player’s equilibrium payoff for (k = 1; b = m) is lower than for (k = 2; b = (m/2)) if

(1− (1/m))n−1 < (1− (2/m))n−1 + (n− 1)(1− (2/m))n−2(2/m). (5)

The condition (5) can be transformed into (4).

The first result in Proposition 3 suggests that, if there is no absolute shortage

of boat seats, efficiency can be achieved by having only one boat — as this essentially
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solves the coordination problem. The situation is less clear cut if there is an absolute

shortage of seats. In this case the lack of coordination has two effects. On the

one hand it may cause a welfare loss due to inefficient use of capacity: with some

probability some boats have strictly fewer passengers than seats. On the other hand,

passengers in boats which do not have more passengers than seats enjoy a positive

rent. If there are more but smaller boats, this changes the relative importance of these

two effects. We look at the two extreme cases: (b, k) = (m, 1) and (b, k) = (2, (m/2)),

and let the number of passengers be r times the total number of seats: n = rm, with

r ≥ 2. Consider first (b, k) = (m, 1). The probability that a player is the only player

arriving at a given boat in the symmetric equilibrium is (1 − (1/m))rm−1. As m
increases

lim
m→∞

(1− (1/m))rm−1 = e−r > 0.

Hence, even if the number of passengers vastly exceeds the number of seats, as long as

the ratio of passengers to seats remains fixed, the probability that a single passenger

arrives at an empty seat is quite substantial. In contrast, if there are only two boats

with joint capacity of m, and the number of passengers is r times as large as the total

number of seats, as m increases without bound the probability that one of the boats

is approached by less than m/2 passengers is driven down to zero.9

Table 1 provides further insight into the comparative static properties of the

equilibrium payoff. It shows the equilibrium payoff to a representative player in the

symmetric mixed strategy equilibrium for different values of b and k and for n = 100.

Each cell in the table provides the payoff in the case where the number of seats per

boat is given by the corresponding row value of k and the total number of seats m

is given by the corresponding column value. The number of lifeboats can be easily

derived by dividing the corresponding value of m given by the column by the value

of k appearing in the row. Blank cells correspond to parameter values for which m/k

or m/b is not an integer, so that this number cannot be obtained by utilizing equally

sized lifeboats with k seats each. As can be easily seen, for values of m greater than

9The probability that a given boat is approached by no more than m/2 passengers is equal

to the cumulative distribution function of the binomial distribution with parameters rm and 1/2,

evaluated at m/2. Using normal approximation to the binomial cumulative distribution with a

continuity correction this probability may be written as Φ((1− r)(mr )
1/2+(rm)−(1/2)) which (since

1− r < 0) approaches 0 as m→∞.
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n = 100, payoffs are monotonically increasing in the number of seats per boat until

a point is reached where the number of seats per boat equals the number of players.

The table also illustrates the large welfare losses that may be realized when players

choose their boat due to the "coordination failure" arising from the randomization

generated by the symmetric mixed strategy equilibrium. Even if there are double the

number of seats as players (m = 200 and n = 100), if these seats are configured in 200

one-seat boats, the welfare is only approximately 60% of that arising in with a single

boat of 200 seats (or two boats with 100 seats). If there are exactly 100 seats the

welfare with 100 single-seat boats is approximately 37% of that with a single 100-seat

boat. Moreover, even with five twenty-seat boats, this welfare rises only to about

48% of the optimal welfare.

m

k
60 80 90 96 100 120 200

1 .189 .288 .331 .355 .370 .437 .609

2 .154 .289 .351 .386 .409 .507 .739

3 .122 − .355 .399 − .549 −
4 .097 .265 − .405 .437 .579 .863

5 .077 .252 .351 − .445 .604 .897

6 .061 − .347 .410 − .625 −
8 − .215 − .411 − .660 .955

10 .023 .193 .328 − .464 .689 .973

12 .014 − − .409 − .715 −
20 .000 .109 − − .480 .794 .998

100 − − − − 1 − 1

Table 1: Payoffs to a representative player for n = 100.

Blank spaces indicate cases where m is not perfectly

divisible by k.

When the total number of seats is strictly lower than the number of players,

there is in a sense an optimal amount of coordination failure that may or may not

lead to interior configurations of seats per boat. When m is small relative to n,

a player can only expect to obtain a positive payoff if the players are sufficiently
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unequally spread across boats and a player is lucky enough to find himself in a boat

that receives a small number of people. In this case the coordination failure resulting

from randomization is valuable and the optimal configuration of seats is b = m and

k = 1. This is indicated in Table 1 in the case where m = 60, where the bold entry

corresponding to k = 1 shows a maximum expected payoff of .189. For m = 60,

payoffs are decreasing as the number of seats per boat increases. Starting at a value

of m slightly below eighty, the welfare maximizing amount of coordination failure

decreases sufficiently to generate an interior solution. For m = 80, the payoff from

setting k = 2 and b = 40 slightly improves upon k = 1 and b = 80 and this becomes

the optimal configuration, yielding a payoff of .289. Payoffs decrease in k beyond

k = 2 in this case. For m = 90 the optimal configuration is k = 3 and b = 30, with

payoffs increasing in k for lower values of k and decreasing in k for higher values

of k. Finally, when the number of players exceeds the number of seats by a number

that is very small relative to the number of players (n = 100,m = 96) too much

coordination failure leads to wasted capacity and the optimal number of seats per

boat rises to k = 8, corresponding to b = 12. In this case, despite the fairly small

shortfall in seats, welfare is .411, less than half of the optimum with one seat per

passenger (n = 100,m = 100) but substantially higher than that which would arise

at either extreme when m = 96: when k = 1and b = 96 welfare is .355 and when

b = 1 and k = 96 welfare is zero.

It is useful to compare the payoffs obtained if players make coordinated choices

and if they randomize independently. As the welfare in the equilibrium with pure

boat-selection choices in stage 1 generates full efficiency for n ≤ kb, but not for the

symmetric equilibrium with randomization, the coordinated equilibrium is superior to

the non-coordinated equilibrium for n ≤ kb. The comparison is less clear for n > kb,

as there is a wide variety of equilibria in deterministic boat-selection choices. In par-

ticular, for n ≥ b(k+1) it is clear that some of the equilibria with deterministic choice

(as in (iv) in Proposition 1) are inferior compared to the symmetric uncoordinated

equilibrium. However, typically some coordinated equilibrium also exists that has

higher welfare than the symmetric uncoordinated equilibrium.
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5 Conclusions

Players often have to choose which contest to enter, not knowing the decisions of

other players. As a result, some players may find themselves in a situation with many

players competing for few prizes, in which competition is strong, or alternatively they

may end up in an environment with few other competitors compared to the number

of prizes. In this article we highlight the role of the partitioning of prizes into different

sets and the importance of the process by which players choose the set of prizes over

which they compete. We characterize the set of pure strategy equilibria and the

symmetric equilibrium that is typically in mixed strategies. We find that when total

capacity is too small to accommodate all users a partition of that capacity into smaller

subsets ("boats") can increase welfare if individuals must simultaneously select a set of

prizes ("seats") over which they compete. This result holds for both types of equilibria

that we consider: both coordinated equilibria in pure strategies and the symmetric

mixed strategy equilibrium have higher welfare with the partition of prizes. This

result uncovers a general principle which may apply universally to a large number

of problems that range from education choices among different, mutually exclusive

alternatives to choices of territory among animals. Here we focus on a particular type

of interaction in case capacity falls short of demand: an all-pay contest without noise.

Other allocation mechanisms in which players discontinuously suffer if the number

of players arriving at a "boat" exceeds the number of "seats" are likely to generate

similar results.
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