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A Dynamic Model of Altruistically-Motivated

Transfers

Daniel Barczyk and Matthias Kredler

October 12, 2009

Abstract

This paper studies an environment with two infinitely-lived altruistic
agents whose only sources of income are a risk-free return on savings and
voluntary transfers from the other player. We study the Markov-perfect
equilibrium of a continuous-game (differential game). On the technical
side, we address shortcomings of Markov-perfect equilibrium and standard
control theory by introducing a refinement we term limit-consistency, in
which we study a sequence of discrete-time games converging to the differ-
ential game. The concept allows us to deal with discontinuities in policies
and regions where measure-valued controls are used. We find that as
in the well-known two-period model of altruism savings decisions are not
Pareto-efficient. Agents do not want to induce the other person to overcon-
sume on their expense, a phenomenon known as the Samaritan’s dilemma
(Buchanan (1975)). Our model exhibits what we call the dynamic Samar-

itan’s dilemma: distortions are present long before the “last” period. A
stark difference to the two-period model is that the donor’s savings deci-
sion is also distorted. Transfers only flow when the recipient’s borrowing
constraint binds, which is in line with stylized facts from the empirical
literature.
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1 Introduction

In the literature on altruism, many static models for transfers in the tradition
of Becker (1974) have been analyzed1. However, there is a conspicuous lack of
models in which agents overlap for more than two periods. Yet, dynamic macroe-
conomic models often have to take a stance on how agents within a family are
connected. Two standard models highlight this well: a representative household
is often justified by the assumption that altruistic concerns connect subsequent
generations, whereas in pure life-cycle overlapping-generations (OLG) models
households act in complete isolation.

While these two extremes often are convenient representations, there is a
substantial literature which deems it important to employ a model which lies
somewhere in-between. Laitner (1988) studies the impact of social-security sys-
tem on capital accumulation in an overlapping generations economy in which
children and parents care for each other. However, while generations are allowed
to act strategically they overlap for only one period. Altig & Davis (1988) study
an array of inter- and intra-generational redistributive policies in an economy
with altruistic agents. They point out that this setting has an array of implica-
tions that differ from those of the two standard workhorses of macroeconomics,
the OLG economy and the infinite-horizon framework. Nonetheless, while ac-
knowledging the importance of strategic interaction, they choose to circumvent
it by assuming commitment. Lindbeck & Weibull (1988) carefully demonstrate
theoretical implications of strategic interactions in a model of transfers with
altruistic agents. While their discussion highlights important features of the
inter-temporal aspects of altruism and transfers, the restriction to a two-period
world and the fact that they allow transfers to flow in the second period only
limits the usefulness of their analysis to modern dynamic macroeconomics.

The contribution of our paper is three-fold: (1) We extend the well-known
two-period model with altruism in a game-theoretic setting and provide a the-
oretical characterization of its implications; (2) We introduce the refinement of
(discrete-time-) limit consistency to Markov-perfect equilibrium in differential
games, which allows us to deal with discontinuities in policies and optimality of
measure-valued transfers; (3) We provide a building block for dynamic macroe-
conomic models which put an emphasis on redistributive policies and family
behavior. The model we study is inhabited by two infinitely-lived agents who
are linked to each other by mutual altruism. One-sided altruism, perfect altru-
ism (representative household) and egoistic preferences (pure life-cycle) are all
nested in this general setting.2 Agents decide about consumption and savings

1See the short literature review below.
2Following Laitner (1997) survey, throughout the paper we will refer to one-sided altru-

ism as the following concept: Person A’s ranking of allocations is influenced by person B’s
consumption – in a static setting, A may rank allocations according to a utility function
u(cA)+αu(cB). Person B’s ranking of allocations, however, is not affected by person A’s con-
sumption – B’s preferences may be represented by utility u(cB) in this example. For two-sided

altruism, this dependence is mutual; B’s utility function would be u(cB)+α′u(cA), for exam-
ple. We will refer to perfect altruism as the concept that person A is just as concerned about
his own consumption as about person B’s consumption, for example having a utility function
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in a riskless asset and can make a non-negative transfer to the other agent in
each instant. We characterize the Markov-perfect equilibrium; agents can only
condition their strategy on current states, but not on past actions.

We find that as in the static model of altruism, transfers are positively linked
to the donor’s resources and negatively linked to the recipient’s resources. One
feature of our model is that transfers are especially likely to occur when one
agent is borrowing-constrained, which is in line with empirical results (see Cox
& Jappelli (1990) and Cox (1990)). When altruism is imperfect, agents’ savings
decisions are distorted with respect to the efficient allocation that a benevolent
family ruler would choose. Both donors and recipients are led to overconsume
due to strategic-altruistic considerations. Soon-to-be recipients of transfers fail
to fully internalize the burden of transfers on donors; potential donors don’t
want to induce poorer family members to act imprudently by building up too
many assets and thus creating expectations of large transfers. Almost ironically,
efficiency is restored when one agent becomes dependent on the other’s transfers
forever – then, an effective family ruler is in charge in the person of the donor
and his/her preferred allocation is implemented.

On the technical side, our paper makes the following contributions: In our
setting –and in general in differential games–, some cases arise where classical
control theory and the viscosity concept for Hamilton-Jacobi-Bellman (HJB)
equations do not give us satisfactory answers about optimality of players’s
strategies. We introduce (discrete-time-)limit consistency as a refinement of
Markov-perfect equilibrium for differential games (DGs). We consider a se-
quence of discrete-time games in which the time steps between the decisions go
to zero in the limit. The candidate value functions and policies for the DG, if
applied to the discrete games, have to induce policies that are optimal — at
least in the limit.

The remainder of the paper is structured as follows: section 2 outlines the
set-up of the model. It describes the set of Pareto-efficient allocations and
exploits the homogeneous structure of the problem in order to reduce the state-
space. The Hamilton-Jacobi-Bellman equations follow, which characterize op-
timal consumption-savings decision as well as transfers in smooth regions. Sec-
tion 3 provides a theoretical characterization of different regions, introduces the
concept of limit consistency and uses it to study boundaries between smooth
regions. Subgame perfection will rule out some common-sense equilibria and
we briefly describe why. Computational results are then presented in section 4.
Finally, section 5 concludes.

u(cA) + u(cB). Imperfect altruism is the obvious counterpart, represented for example by
u(cA) + αu(cB) for 0 < α < 1.
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2 Model

2.1 Setting

Time t is continuous. There are two agents in the economy who are infinitely-
lived. We will denote variables for the first agent, whom we will refer to as “she”,
as plain lower-case letters, e.g. ct. Variables referring to the second agent, whom
we will call “he”, are denoted with prime-superscripts, e.g. c′t. Both agents can
hold a non-negative amount kt in a riskless asset that pays a time-invariant rate
of interest r.

In each instant of time, agents choose a consumption rate ct ≥ 0 and a non-
negative transfer rate gt to the other agent (g stands for “gift”), so that their
assets evolve according to

k̇t = rkt − ct − gt + g′t (1)

k̇′
t = rk′

t − c′t − g′t + gt, (2)

where dots denote the time-derivative of a variable. There is a no-borrowing
constraint for both agents; when kt = 0, we must have that she does not spend
more than she receives, i.e. ct + gt ≤ g′t (and equivalently for him, of course).

She ranks allocations using the criterion

V0 =

∫ ∞

0

e−ρt[u(ct) + αu(c′t)]dt,

where ρ > 0 is the discount rate and 0 ≤ α ≤ 1 the parameter which measures
the intensity of altruism.3 He is a mirror-symmetric copy of her, but might have
a different altruism parameter 0 ≤ α′ ≤ 1 from hers. His criterion for ranking
allocations is

W0 =

∫ ∞

0

e−ρt[u(c′t) + α′u(ct)]dt.

We assume that the agents do not differ in their discount rates and the form of
the “primitive” utility function u(·). For the sake of simplicity and intuition we
choose logarithmic utility as the functional form.

2.2 Pareto-optimal allocations

To find the set of Pareto-optimal allocations, consider the allocations a benev-
olent planner would choose placing a weight η on her life-time value. Given k0

and k′
0, the planner chooses optimal savings policies k(t), k′(t) and consumption

policies c(t), c′(t) for 0 ≤ t < ∞ to maximize

J = η

∫ ∞

0

e−ρt
[
u(ct) + αu(c′t)
︸ ︷︷ ︸

≡Ut

]
dt + (1 − η)

∫ ∞

0

e−ρt
[
u(c′t) + α′u(ct)
︸ ︷︷ ︸

≡U ′

t

]
dt, (3)

3With this linearly separable formulation of altruistic preferences we are in line with the
bulk of the literature.
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This approach will yield all allocations on the Pareto frontier when varying η ∈
[0, 1].

Obviously, we can pool the single capital stocks together and define K =
k + k′ as total resources of the family. It is also straighforward how the planner
must allocate resources intratemporally in any instant: To equalize the two
margins, the following must hold:

[
η + α′(1 − η)

]
uc(ct) =

[
(1 − η) + αη

]
uc(ct) ∀t,

Solving for uc(ct) yields

uc(ct) =
(1 − η) + αη

η + α′(1 − η)
uc(c

′
t) ∀t. (4)

This gives us c′t as a function of ct, and we can see that the problem has collapsed
to an autarkic savings problem with a modified objective function — to see this,
substitute c′t into the objective (3). When η = 1 and α = 0, equation (4) does
not give us c′t as a function of ct any more – in this case, however, it is obviously
optimal for the planner to set c′t = 0 for all t. The same is true for the symmetric
case η = 0 and α′ = 0, where ct = 0 for all t is optimal.

Intertemporally, we can see that the agent’s autarkic Euler equations must
hold. If that was not the case, the family planner should definitely re-allocate
resources in a way that yielded higher value to the agent without requiring more
life-time wealth. This means that we must have

d

dt
uc(c) = (ρ − r)uc(c)

d

dt
uc(c

′) = (ρ − r)uc(c
′),

where the second equation is already implied by the first when we invoke intra-
temporal optimality from (4).

2.3 (P,K)-Space: Homogeneity

In the setting presented above her and his capital stock (k, k′) are the natural
state variables when we look for a stationary Markov-Perfect equilibrium. How-
ever, since the environment is homogeneous our analysis will be simplified by
re-defining the state-variables (k, k′) as follows

P =
k

K
, P ∈ [0, 1], K = k + k′ ∀k, k′ ≥ 0, k + k′ 6= 0.

Thus, P is the fraction of wealth she owns out of the combined wealth K of
both players. The maximum value of P is 1 due to the no-borrowing constraints
the agents face. The advantage of the (P, K) variables is that it allows us to
reduce the dimensionality of the state-space to 1, in particular the only state
variable will be P . Thinking about the nature of the problem it seems apparent
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that a measure of relative wealth as captured by P is important for the agents’
decision making. For example, when P = 1 then only she has wealth. Since the
other player has neither wealth nor income and per-period utility has an Inada
condition it has to be the case that she transfers resources when α > 0. On the
other hand, with P = 1/2 both players own the same fraction of total wealth
and we do not expect transfers to flow.

Since our economy is homogeneous in P we conjecture that the equilibrium
consumption and transfer policies are4,

c(k, k′) = c̄(P )k, g(k, k′) = ḡ(P )k

c′(k, k′) = c̄′(P )k′, g′(k, k′) = ḡ′(P )k′

Furthermore, by multiplying the right-hand side of the consumption and transfer
functions by K/K, the conjecture of the policies in (P, K) variables is given by

c̄(P )PK ≡ C̄(P )K = C(P, K), ḡ(P )PK ≡ Ḡ(P )K = G(P, K)

c̄′(P )(1 − P )K ≡ C̄′(P )K = C′(P, K), ḡ′(P )(1 − P )K ≡ Ḡ′(P )K = G′(P, K)

Thus, the key equilibrium objects are the factors of proportionality which are
functions of P only:

C̄, C̄′, Ḡ, Ḡ′ : [0, 1] → R̄+, c̄, c̄′, ḡ, ḡ′ : [0, 1] → R̄+.

The ¯bar emphasizes that the function represents a proportion. If the proportion
is written using a capital letter, e.g. C̄, it indicates that it is related to the sum
of players’ wealth K, whereas proportions written in lower-case letters, e.g. c̄,
refer to the private wealth of the agent k or k′. In order to minimize cluttering
in the notation, arguments of functions will be surpressed.

2.3.1 Her Problem in (P,K) Space

Using the guess of the strategies, her problem given initial values (P0, K0) and
his strategy {C′(P, K), G′(P, K)} is

V (P, K) ≡max
C̄,Ḡ

{∫ ∞

0

e−ρt
[
ln
(
C̄K

)
+ α ln

(
C̄′K

)]
dt

}

(5)

subject to

K̇ =
[
r − C̄ − C̄′

]
K

Ṗ = −(1 − P )C̄ + PC̄′ +
[
Ḡ′ − Ḡ

]

P ≥ 0, C̄ ≥ 0, Ḡ ≥ 0, ∀P.

We can simplify (5) by integration and defining the following function:

V̄ (P ) ≡
∫ ∞

0

e−ρt

{

ln(C̄t) + α ln(C̄′
t) − (1 + α)

∫ t

0

[C̄(Pτ ) + C̄′(Pτ )]dτ

}

dt (6)

4Recall that in the homogeneous standard consumption-savings problem with logarithmic
utility the consumption policy is simply to consume a constant fraction ρ out of wealth i.e.
c(k) = ρk.
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The interpretation of this complicated integral will become clear in a moment.
We can now write (5) as

V (P, K) ≡max
C̄,Ḡ

{
1 + α

ρ

[
r

ρ
+ ln(K)

]

+ V̄ (P )

}

(7)

subject to

K̇ =
[
r − C̄ − C̄′

]
K

Ṗ = −(1 − P )C̄ + PC̄′ +
[
Ḡ′ − Ḡ

]

P ≥ 0, C̄ ≥ 0, Ḡ ≥ 0, ∀P.

From (7), we note that the value function in terms of K is known so that only
V̄ remains to be determined (we use the ¯bar to indicate that this part of the
value function V (P, K) only depends on proportions).

Note that we may also see her problem (7) as follows: She maximizes (6)
subject to the law of motion for P and the constraints on policies. We can see
easily that since r only influence a part of V (P0, K0) that is fixed, best responses
will be independent of r. As for ρ, it is not hard to show that the maximizer
must be homogeneous in this parameter; we have:

Proposition 1 (Equilibrium independent of r and homogeneous in ρ)
If {C1(·), C′

1(·), G1(·), G′
1(·)} are an equilibrium for (ρ, r) = (1, 1), then {ρC1(·), ρC′

1(·), ρG1(·), ρG′
1(·)}

are an equilibrium for any vector (ρ, r) and vice versa.

Proof: It is obvious that r does not enter the problem of maximizing (6) given
the law of motion for P and the no-borrowing constraint.

As for ρ, consider the following argument: Denote the time path of P

for given P0 under the policies {C1, C
′
1, G1, G

′
1} by P

(1)
t . Then we can eas-

ily see that P
(ρ)
t = P (1)ρt gives us the time path of P for the suggested policies

{Cρ, C
′
ρ, Gρ, G

′
ρ} = {ρC1, ρC′

1, ρG1, ρG′
1} for P

(ρ)
0 = P

(1)
0 since the ODE for the

law of motion for P is fulfilled.
Now apply the change of variable g(t) = ρt to the integral inside the brackets

in (6):
∫ t

0

ρC1(ρτ) + ρC′
1(ρτ)dτ =

∫ ρt

0

C1(x) + C′
1(x)dx.

Applying again the change of variable g(t) = ρt, now to the entire integral in (6),
we obtain

V̄ρ(P ; {ρC, ρG}) =
(1 + α) ln ρ

ρ
+

1

ρ
V̄1(P ; {C, G}),

where V̄ρ(·; C, G) denotes the value function for a given value of the parame-
ter ρ given a policy {C, G}. So if V1 attained by the policy {C1, G1} domi-
nates the value Ṽ1 attained by any other feasible {C̃1, G̃1}, then Vρ attained by

{ρC1, ρG1} must dominate the value Ṽρ attained by {ρC̃1, ρC̃′
1}. Since any fea-

sible policy under the discount rate ρ corresponds to one such policy {ρC1, ρG1}
and Vρ(ρC, ρG) is a monotone transform of V1(C, G), {ρC1, ρG1} must be an
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optimal policy. Since the same holds for him, the statement in the proposition
follows. �

This proposition tells us that we are essentially left with the two parameters
(α, α′); we can easily map equilibria between different values for (ρ, r). The
intuition is the following: The interest rate r does not matter since the income
and substitution effect cancel with log-utility. As for ρ, consider the following
parable: If we changed the unit of time from a year to a month, then we
should divide the discount rate by 12. When also dividing all consumption
(and transfer) rates by 12, we obtain the exact same allocation as before, which
is of course also an equilibrium – this is at least true when utility is homothetic
and the nature of the physical environment is homogeneous.

With (5) and (7) we can use standard tools of dynamic programming to
obtain her5 Hamiltonian-Jacobi-Bellman (HJB) equation6

ρV̄ =α ln C̄′ − C̄′

[
1 + α

ρ

]

+ PC̄′V̄P + Ḡ′V̄P + (8)

+ max
C̄,Ḡ

{

ln C̄ − C̄

[
1 + α

ρ

]

− (1 − P )C̄V̄P − ḠV̄P

}

.

Since (8) is an equation in P only it is an ordinary differential equation which is
an additional simplification with regard to (k, k′) state variables, in which the
HJB is a partial differential equation (PDE). When she is unconstrained her
first-order condition with respect to her consumption rate is given by:

1

C̄
=

1 + α

ρ
+ (1 − P )V̄P , for P ∈ (0, 1]. (9)

When V̄P = 0 we will refer to the resulting consumption rate ρ/(1 + α) as the
wealth-pooling rate. The reason is that when V̄P = 0 she is indifferent towards
the asset distribution. If P = 1 he is broke and she implements her first-best
which in this case is the wealth-pooling rate , i.e. in the planner’s objective (3)
she obtains a weight of η = 1 (also see Lemma (12) in the appendix). Besides
these special cases we can think of the consumption rate as the sum of the
valuation of common resources and a value on the distribution of resources
between the players. In other words, VK = ρ/(1+α) measures the value obtained
if an additional $1 rains on the both players while leaving the distribution
unchanged, whereas, VP = V̄P measures the value to her when 1% of total
assets K are transfered from him to her while K remains unchanged. It follows
that as long as V̄P ≥ 0 she will not make any transfer to him. When V̄P < 0
she wants to make a transfer – vice versa, if V̄ ′

P he wants to make a transfer –
and we will refer to V̄P and V̄ ′

P as her and his transfer motive, respectively.
From (8) we can quickly see that the maximization part instructs to transfer

5Whenever it is obvious that the other player is a mirror-symmetric copy we provide
characterizations and analysis in terms of “her” problem.

6See appendix A.1 for the derivation of the HJB from (7) and (6).
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resources precisely when V̄P < 0 i.e.

max
C̄

{

ln C̄ − C̄

[
1 + α

ρ

]

− (1 − P )C̄V̄P

}

+ max
Ḡ

{
−ḠV̄P

}

We see that if V̄P > 0 the maximizer is Ḡ∗ = 0, whereas, if V̄P < 0 the maximizer
is a mass-point Ḡ∗ = ∞. When V̄P = 0, any transfer is optimal.

A great simplification in the continuous-time setting is that computing op-
timal consumption at a given point P in the state-space does not require to
solve a fixed-point problem as is the case in discrete time. The technical reason
for this is that second-order effects become unimportant and therefore only the
current value of the state matters7. The advantage of this becomes particularly
clear when we compute solutions to the model. In discrete-time one would have
to solve the Nash equilibrium for every node in the state-space. While this re-
quires an enormous amount of computational effort an additional problem may
arise because multiple Nash equilibria exist at a particular node.

As for the mass-point transfer we can think of this as a discrete jump in
the state-space of the agents. The donor provides instantaneously an amount
of transfers in order to ensure V̄P = 0. This, however, does not exclude the
possibility that transfers may also occur as a flow. In particular, if one of the
agents is liquidity constrained then the optimal amount of transfers the donor
provides is, as in the static model, given by

uc(ct) = αuc(c
′
t)

assuming she is the donor. But even within the state-space it may be plausible
to have a flow of transfers as would be the case when V̄P = 0.

Finally we obtain the Euler equations8

d

dt
V̄P (t) =

[
PC̄′ − (1 − P )C̄ − Ḡ + Ḡ′

]
V̄PP =

=
[
ρ − C̄ − C̄′

]
V̄P +

[

1

C
− α

C̄′
− V̄P

]

C̄′
P − Ḡ′

P V̄P (10)

d

dt
V̄ ′

P (T ) =
[
PC̄′ − (1 − P )C̄ − Ḡ + Ḡ′

]
V̄ ′

PP =

=
[
ρ − C̄ − C̄′

]
V̄ ′

P +

[

1

C̄′
− α′

C̄
+ V̄ ′

P

]

C̄P + ḠP V̄ ′
P .

7Recall that in discrete-time the FOC would be given by the Euler equation uc(ct) =
RβV ′(kt+1). Solving this equation requires knowledge of kt+1, which depends on current
strategies of the other player.

8The term GP (P )V̄P (P ) vanishes in regions where G = 0 since GP = 0 and in regions
where G > 0 since V̄P = 0; a similar argument shows that the term G(P )V̄PP (P ) vanishes
in both regions. Of course, the same arguments apply for the respective terms in the HJB
for V̄ ′(·).
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3 Characterization of equilibrium

We will restrict our attention to equilibria that consist of finitely many smooth
regions inside which players’ policies are continuous and satisfy certain regu-
larity conditions. Inside smooth regions we can use standard control theory to
analyze equilibria. On the boundaries between the smooth regions9 and inside
mass-transfer regions, however, standard control theory does not provide us
with answers on how to find best responses. To address this issue, we introduce
the concept of (discrete-time) limit consistency which formalizes what we mean
by optimality of a policy at these special points. In a nutshell, the concept says
that a player’s policy must be optimal to a first order over a short interval ∆t
for any point in the state space.

Formally, our assumptions are as follows:

Assumption 1 (Finitely many smooth regions) The state space P = [0, 1]
is divided into finitely many regions (intervals) Pi = (Pi−1, Pi), i = 1, . . . , n,
where 0 = P0 < P1 < · · · < Pn−1 < Pn = 1. Inside each region, the value
functions V̄ (·) and V̄ ′(·) are continuously differentiable and the policy functions
C̄(·), C̄′(·), Ḡ(·) and Ḡ′(·) are continuous.

Note that policies are allowed to be discontinuous at the boundaries P0, · · · , Pn,
which may be associated with non-differentiabilities (kinks) of the value func-
tions.

Assumption 2 (Consumption lower-bounded under altruism) If α > 0,
then C̄′(P ) > ǫ for all P ∈ [0, 1] for some ǫ > 0. If α′ > 0, then C̄(P ) > ǫ for
all P ∈ [0, 1] for some ǫ > 0.

We introduce this assumption since it is very hard to rule out equilibria where
one player’s consumption is zero for some P ∈ P . For example, if we had
C̄(0) = 0, then it would be a best response for him to set Ḡ(0) = 0 – giving her
transfers would not help, since she would consume nothing anyway and both
players would obtain utility of minus infinity. For her, since he is not giving any
transfer, setting C̄(0) > 0 does not pay since she would still be left with zero
consumption, so this pair of policies is an equilibrium. However, this is clearly
not in the spirit of the altruism framework because both players have strong
incentives to avoid such situations. We thus exclude this case from our analysis.

Note that we do not restrict her consumption to be lower-bounded if he is not
altruistic towards her. To see why, consider the case α = α′ = 0: Here, autarky
with her consuming C̄(P ) = ρP is clearly an equilibrium where C̄(P ) → 0,
which is reasonable since he has no incentives to help her out when α′ = 0.

Finally, we make the following technical assumption:

Assumption 3 (Limit-consumption exists) For each region Pi, the limits
of consumption on the boundaries of the region exist: C̄(Pi−1)lim ≡ limP→P

+

i−1

C̄(P )

and analogously for C̄′(Pi−1)lim, C̄(Pi)lim and C̄(Pi)lim.

9including the boundaries of the state space P = 0 and P = 1
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Given these three assumptions, it is not hard to show that both players’
value functions are continuous also on the boundaries (see Lemma 11 in the
appendix). If both players are altruistic, the value functions are also bounded
(see Lemma 10 in the appendix).

3.1 Refinement of equilibrium: (Discrete-time-) Limit con-
sistency

In our setting – and in general in differential games – cases may arise where
classical control theory and the viscosity concept10 for HJBs do not give us
satisfactory answers about optimality of players’ strategies. The two most im-
portant ones that lead to difficulties in our setting are mass-transfer regions and
boundaries between regions.11

We will introduce (discrete-time-) limit-consistency as a refinement of Markov-
perfect equilibrium for differential games. We consider a sequence of discrete-
time games in which the time steps between the decisions go to zero in the limit.
The candidate value functions and policies for the differential game, if applied
to the discrete games, have to induce policies that are optimal — at least in the
limit.

Consider a general differential game. Each decision x
(i)
j of player i = 1, . . . , n

is made only once over a typical time interval [t0, t0 + ∆t), where j ∈ 1, . . . Ji

indexes player i’s decisions (in our example: consumption and transfers, j =
1, 2). The sequencing of the decisions is governed by a timing protocol, which

consists of a number of stages of the interval game K ≤∑N
i=1 Ji with associated

numbers sk ∈ [0, 1), s1 = 0 and sk+1 ≥ sk for k = 2, . . . , K, where a subvector

x̃
(i)
k of x(i) is chosen by player i at ti + sk∆t with knowledge of all previous

decisions at stages k̃ < k.
For our game, we adopt the following timing protocol with K = 2 stages for

the interval game:

1. g and g′ are chosen simultaneously at t0, i.e. s1 = 0.

2. As soon as transfer flows have been realized and observed, c and c′ are
chosen simultaneously t = t0, i.e. s2 = 0.

10The viscosity concept is the agreed-upon sense in which the HJB has to be fulfilled
as a PDE; unlike classical control theory, the viscosity concept is able to deal with non-
differentiabilities of the value functions, see the seminal paper by Crandall & Lions (1983)
and for differential games Bressan (2009)

11As for mass transfers, note that in a region where she receives a mass transfer, setting
C̄ = 0 would be a best response for her since no time is spent in the mass-transfer region in
equilibrium thus her choice does not matter. However, taking C̄ = 0 as given, he is forced
to give a mass transfer if α′ > 0 since any short interval of time spent with C̄ = 0 leads
to utility of minus infinity for him. But clearly the “suicide threat” of C̄ = 0 is not what
one would consider a credible threat in the spirit of subgame perfection. As for boundaries
between regions, consider the case where his policy changes in a discontinuous fashion at a
boundary. This leads to a discontinuous Hamiltonian in her control problem, which is a case
that neither classical control theory nor the viscosity concept of the HJB is able to deal with.
CITATION FOR VISCOSITY NEEDED HERE!
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We will consider the following problem for the player:

V (Pt0+sk∆t) = max
xk∈Xk(P )

{

U(P, x, x′(P ))∆tk + e−ρ∆tkV (Pt0+sk+1∆t)
}

(11)

where ∆tk = (sk+t − sk)∆t for k = 1, . . . , K − 1 and ∆tK = (1− sK)∆t denote
the time interval until the next decision stage. xk, k = 1, . . . , K, denote the sub-
vector of decisions taken at step k of the interval game, Xk(P ) is the feasible set
for these decisions and U(P, x, x′(P )) = ln c + α ln c′(P ) is flow utility resulting
from the decision taken over the previous ∆t. Pt0+sk+1∆t is determined by the
realization of transfers after stage 1 and by the realization of consumption at
stage 2.

We require (11) to hold in the limit as ∆t → 0. As for the transfer decision,
the problem becomes

V (Pt0) = max
G≥0

V
(
Pt0 + G′(Pt0)∆t − G∆t

)
. (12)

(12) implies that her value function must be weakly increasing. When poli-
cies are of the flow-type, (12) has no bite since Pt0+sk+1∆t → Pt0+sk∆t and
U(·)∆tk → 0.

As is standard in control theory, we will thus require that (11) holds up to
terms of order ∆t. For points P where V is differentiable, this yields the usual
HJB. We require additionally that on boundaries Pi (where the value function
may have kinks) the Hamiltonian be maximized when taking the derivative into
the appropriate direction. For a given policy of the other player x′(·) and a
given value function V̄ (·) ∈ C0 (and C1 inside smooth regions), we define the
limit Hamiltonian as

Hlim(x; P, x′(P )) = U(P, x, x′(P ))+

{

f(P, x, x′(P ))V +
P (P ) if f(P, x, x′(P )) ≥ 0

f(P, x, x′(P ))V −
P (P ) if f(P, x, x′(P )) < 0

where U(P, x, x′(P )) = ln c + α ln c′(P ) is the flow utility for strategy x, V +
P (P )

is the upward derivative of the value function at P and V −
P (P ) is the downward

derivative. Observe that inside smooth regions, Hlim equals the usual Hamil-
tonian; on boundaries between smooth regions, however, the concept has bite.
Also, note that it is important how we specify the opponent’s strategy x′(P )
at P if P is a boundary between regions.

Definition 1 We say that a pair of strategies {x(·), x′(·)} and associated value
functions {V (·), V ′(·)} constitute a discrete-time-limit-consistent (or short: limit-
consistent) Markov-perfect equilibrium with respect to a certain timing protocol
if the following holds for all players i = 1, . . . , n, for all stages k = 1, . . . , K and
for all P ∈ P:

1. (0th-order consistency) (11) holds in the limit as ∆t → 0.

2. (1st-order consistency) For k with ∆tk > 0

12



(a) strategies {x(·), x′(·)} are first-order optimal in the sense that

x(P ) = arg max
x

Hlim(x; P, x′(P ))

(b) and they are consistent with V (·) in the sense that

ρV (P ) = Hlim(x(P ); P, x′(P )).

Obviously, in smooth regions without mass transfers limit consistency col-
lapses to the simple requirement that value functions be continuous (0th-order
consistency), that policies maximize the Hamiltonian and the HJB be fulfilled
(1st-order consistency) and thus do not impose any additional constraint to or-
dinary control theory. However, limit consistency will be key to characterize
equilibria on boundaries as well as to study credible strategies inside mass-
transfer regions and in bankruptcy.

3.2 Characterization of regions

We will now proceed to characterize the equilibrium on the interior of smooth
regions. The following is an exhaustive listing of possible types of regions:� No-transfer region (NT): Ḡ(0) = Ḡ′(0) = 0 for all P ∈ Pi.� Flow-transfer region (FT): Ḡ(P ) > 0 for all P ∈ Pi (or equivalently

Ḡ′(P ) > 0 for him).� Bang-bang-transfer region (BB): Ḡ(P ) = (Pi − P )δ for all P ∈ Pi (or
equivalently Ḡ(P ) = (P − Pi−1)δ for him).12

Furthermore, we will study the following important special types of regions:
Autarkic regions (AUT), where policies equal the autarkic ones (a special kind
of NT); bankruptcy (BR) at P = 0 and P = 1 as an absorbing state (a special
kind of FT); and wealth-pooling regions (WP), where both players’ consumption
is given by the wealth-pooling policies (a special kind of FT).

3.2.1 No-transfer regions (NT)

The value functions and consumption policies satisfy her HJB (8), his HJB
(not shown) and Euler equations (10), in which all terms in Ḡ and Ḡ′ are
set to zero. The Euler equations yield a system of two non-linear ordinary
differential equations of first order for the consumption policies C̄(·) and C̄′(·)
on Pi. Given limiting consumption policies C̄(P+

i−1) and C̄′(P+
i−1), we can solve

for consumption throughout Pi (or equivalently for Pi from the top).
MAY WANT TO STATE Euler Equations IN C,CP HERE. ALSO: THEO-

REM THAT NT HAS TO BE REPELLING UNLESS AUTARKIC.

12δ denotes the Dirac delta: The path Pt would instantaneously jump from P to Pi if it
reached P at any point.
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We will now be interested in stationary points of the economy inside a NT-
region. First, we express the law of motion for P in terms of (c, c′):

Ṗ = P (1 − P )(c′ − c)

So P increases over time if and only if he consumes at a higher rate out of his
own capital stock than he does. At a stationary point P0, we have c′ = c = c0.
We will now study stationary points with c0 6= ρ (i.e. which are not autarkic
regions). We can express the Euler equations (10) in terms of consumption rates
(see appendix A.4 for some intermediate steps) and use the identity c = CP
and c′ = C′(1 − P ) to obtain

CP = −
1

C′
− 1+α′

ρ

1 + α′

(

c0 − ρ
1
ρ
− 1

c0

)

≤ 0 ⇒ cP =
CP − c

P
< 0

C′
P =

1
C
− 1+α

ρ

1 + α

(

c0 − ρ
1
ρ
− 1

c0

)

≥ 0 ⇒ c′P =
C′

P + c′

1 − P
> 0.

The inequalities follow from the parenthesis always being positive and C̄ ≤
ρ/(1 + α), C̄′ ≤ ρ/(1 + α′). So it must be that Ṗ > 0 to the right of P0 and
Ṗ < 0 to the right, so Ṗ is not an attracting steady state.

3.2.2 Flow-transfer regions (FT)

We will consider a FT region where she gives transfers, i.e. Ḡ > 0. First,
observe that Ḡ(P ) > 0 implies V̄P (P ) = 0 for all P ∈ Pi. By her FOC (5)
for consumption, this also means that C̄ = C̄wp throughout Pi. Then, from
her HJB (8), we can see that C̄′ must also be constant on P since the function
α ln C̄′− C̄′[(1+α)/ρ−P V̄P ] would vary if C̄′ did, violating her HJB (note that
all other terms of her HJB are constant in P ).13

From his Euler equation in (10), we now see that

V̄ ′
P (ρ − C̄ − C̄′ + ḠP ) = 0.

Observe that the ḠP enters the Euler equation with the same sign as ρ, which
stands for impatience. So when her transfers are increasing in P , this is a
disincentive for him to save. By the same token, she can give him incentives to
save if she makes transfers decreasing in P , i.e. increasing in his wealth share.
So rewarding thriftiness with more money later can induce savings, as intuition
suggests.

His Euler equation now leads us to the following two relevant cases:

1. V̄ ′
P = 0: In this case, we must have C̄ = C̄′ = C̄wp on P and transfers are

indeterminate – we might indeed have Ḡ′ > 0 now. Note that the Euler
equations cease to contain information in this case. The HJBs tell us that
V̄ ′ and V are pinned down at their wealth-pooling levels, so P would be
a wealth-pooling region (see section 3.2.6).

13We would arrive at the same conclusion by studying her Euler equation.
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2. V̄ ′
P < 0: In this case, his Euler equation tells us that

ḠP = C̄WP + C̄′ − ρ = C̄′ − α

1 + α
ρ = C̄′ − αC̄WP (13)

Ḡ′
P = α′C̄′

WP − C̄,

where we have stated the ODE for his transfer in the case where he is
giving transfers for future reference. The last expression in (13) involves
αC̄WP , which is what she would like him to consume if she could set his
consumption, i.e. C̄

′∗(C̄WP ). If he consumes more than this level then
transfers have to increase at a certain rate in P in order to ensure that C̄′

is held constant.

Another way to think of (13) is that it tells her the ḠP that is needed
to induce a desired consumption rate C̄′ for him. We see that the lower
this desired rate is, the lower must be ḠP , i.e. the more she must make
transfers increasing in his wealth share to provide stong-enough incentives
to save.

Note that (13) is a very simple ODE for Ḡ(·) – it tells us that the slope of
Ḡ(·) is constant on Pi. Since C̄′ is constant on Pi, this is the only ODE
we have to solve when provided with boundary values Ḡ(Pi) and C̄′(Pi),
for example.

Furthermore, we state the following result which tells us that no-transfers
regimes are always transitory (except for points with measure zero on the state
space):

Lemma 1 (FT not absorbing) There cannot be any interval I = (a, b) in-
side FT for which Pt ∈ I implies Ps ∈ I for all s > t.

Proof: Suppose there was such an interval I contained in FT. Since both
consumption rates are constant on FT, consumption rates would be the same
constants for all s > t for any Pt ∈ I. But this implies that both agents obtain
the same continuation value starting from any Pt ∈ I, meaning that their value
functions are constant on I. But this would mean that I is of WP-type and the
recipient should play WP-consumption too, a contradiction to I being contained
in an FT region. �

3.2.3 Bang-bang-transfer regions (BB)

Consider a region where she gives a mass transfer, i.e. Ḡ(P ) = (Pi − P )δ for
P ∈ Pi. Since BB is always left immediately (as argued before), we have
V̄ (P ) = V̄ (Pi) and V̄ ′(P ) = V̄ ′(Pi) for all P ∈ Pi, which of course implies
V̄P = V̄ ′

P = 0 throughout Pi. If she decided to defer the mass transfer by ∆t,
then both players should choose wealth-pooling consumption over this interval.
Thus the only “credible threat” is C̄′ = C̄′

WP for him, which is formalized by the
requirement of limit consistency. For her, equivalently C̄ = C̄WP throughout
the region. Her threat will be essential when considering deviations from a mass
transfer at her bankruptcy, as will be discussed in 3.2.4.
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3.2.4 Bankruptcy (BR)

An important special case is the point P = 0 where she is bankrupt (and
P = 1 for him equivalently). First, note that for any interior point P = ǫ > 0,
any policy C̄(ǫ) becomes feasible in the interval game for ∆t small enough in
the consumption stage. So she becomes unconstrained (i.e. she can choose an
arbitrarily high consumption rate) with any small amount of resources when
the time horizon is short enough. On the other hand, notice that whenever we
have P = 0 after the transfer stage, she will be forced to consume zero over the
next interval ∆t and the value function would be minus infinity.

To escape this dilemma, we will interpret the policy C̄(0) as the policy
when she is constrained in the stage of the game where consumption is chosen,
i.e. on the interval I0(∆t) = (0, C̄lim(0)∆t]. As the relevant derivative of the
value function, only V̄P,lim(0) ≡ limǫ→0 V̄P (ǫ) is a sensible candidate. Under
this interpretation, it is easy to see that for any P ∈ I0(∆t) the only limit-
consistent policy for her is to consume all her resources. We interpret this as
C̄(0) = C̄lim(0).14 So we have:

Lemma 2 (Recipient’s policy continuous at BR) In any limit-consistent
equilibrium C̄(0) = C̄lim(0) ≡ limP→0 C̄(P ), and equivalently C̄′(1) = C̄′

lim(1).

As for the donor, he should not give transfers that lift her out of I0(∆t) if
V̄ ′

P,lim < 0. When giving a transfer Ḡ′(0) ≤ C̄(0), then the economy will stay
at P = 0. Note that this implies that he can achieve his globally preferred
allocation if C̄(0) ≥ α′C̄′

WP by setting C̄′(0) = C̄′
WP and Ḡ′(0) = α′C̄′

WP

which implies C̄∗
0 = α′C̄′

WP (see the Pareto problem (3) with weight η = 0).
We summarize:

Lemma 3 (Donor’s policies at BR) For P = 0 limit-consistent implies:� C̄(0) ≥ α′C̄′
WP implies Ḡ′(0) = α′C̄′

WP and that his globally preferred
allocation is played at P = 0.� limP→0 V̄ ′

P (P ) < 0 (P1 is NT) implies Ḡ′(0) ≤ C̄(0).

3.2.5 Autarkic regions (AUT)

We refer to an autarkic region as an interval Pi = (Pi−1, Pi) where the con-
sumption rates equal the autarkic ones, i.e. C̄(P ) = ρP and C̄′(P ) = ρ(1 − P ),
and where transfers are zero, i.e. Ḡ = Ḡ′ = 0. For the laws of motion, this
implies Ṗ = 0 and K̇ = (r − ρ)K, which is, as explained in section 2.2, effi-
cient. Observe that Ṗ = 0 implies that any autarkic region is absorbing: If the
economy is started in P or reaches Pi at some time, it will stay there forever.

14Note that this does not mean that the actual consumption since this is given by C̄∗

0
, which

depends on his transfer Ḡ′(0).

16



Value functions are given by the autarkic ones, which are easily verified to
be:

ρV̄ (aut) = (1 + α)(ln ρ − 1) + lnP + α ln(1 − P )

ρV̄ ′(aut) = (1 + α′)(ln ρ − 1) + ln(1 − P ) + α′ lnP.

Taking the derivative in P gives us

ρV̄
(aut)
P =

1

P
− α

1 + P

ρV̄
′(aut)
P =

−1

1 − P
+

α′

P
,

In this case, the Euler equations and the first-order conditions contain the same
information.

Furthermore, since Ḡ = Ḡ′ = 0 have to be optimal, we also have the in-

equalities V̄
(aut)
P ≥ 0 and V̄

′(aut)
P ≤ 0, from which we obtain the restriction

P ∈
[

α′

1 + α′
,

1

1 + α

]

for all P ∈ Pi

Any autarkic region has to be contained in this interval. The intuition for this
result is very simple: If one player becomes too poor, the marginal utility of
helping the other out becomes higher than the marginal utility of own consump-
tion.

3.2.6 Wealth-pooling regions (WP)

We refer to WP-regions as those where consumption policies are of the wealth-
pooling type, which is equivalent to both value functions being constant in this
region. WP-regions are either BB-regions or FT-regions where both players
transfer motives are zero. Her HJB tells us for such a region that

ρV̄ (WP ) = ln C̄WP + α ln C̄′
WP − (C̄WP + C̄′

WP )
1 + α

ρ
= constant.

The following statement follows immediately:

Lemma 4 All WP-regions must be connected. In a symmetric equilibrium they
must form an interval (P̃ , 1 − P̃ ), where P̃ ∈ [0, 1

2 ].

Proof: Suppose there were two disconnected WP-regions. Then between those
regions there must be a point where the transfer motive is positive for at least
one player – if not, everything in between would be a WP-region, too. Without
loss of generality, say that V̄p > 0 at some point. But then, since her value
function is V̄WP in both WP-regions, there also has to be a region where V̄p < 0
in between, which is a contradiction. �
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3.3 Characterizing boundaries

We will now turn to characterize policies on boundaries between two regions A
and B, where A = Pi lies to the left of B = Pi+1. We denote the boundary as
P̃ = Pi. It turns out that it is convenient to work with policies in terms of agents’
own capital stock; we denote c̄A = limP→P̃− c̄(P ) as the limit of consumption on
the A-side. The notation for c̄′A, c̄B, ḡA and so forth is analogous. The policies
directly on the boundary are denoted by c̄K = c̄(P̃ ) etc., where K stands for
“kink”. When saying Hlim = HA, we mean the Hamiltonian using V̄ −

p and

analogously for Hlim = HB using V̄ +
p .

The following lemma tells us that whenever policies on a kink lead us into
region i ∈ {A, B}, then the policies on the kink must be like the limit policies
in i (if i is not a wealth-pooling region):

Lemma 5 (Policy matching) If an equilibrium allocation (cK , gK , c′K , g′K) on a
kink is such that� Ṗ < 0, then we have:

cK = cA, c′K = c′A

V̄ A
P > 0 ⇒ gK = gA = 0 V̄

′A
P < 0 ⇒ g′K = g′A = 0� Similarly, if Ṗ > 0:

cK = cB c′K = c′B

V̄ B
p > 0 ⇒ gK = gB = 0 V̄

′B
p < 0 ⇒ g′K = g′B = 0

Proof: Suppose that policies on the kink are such that Ṗ < 0. Since Ṗ is a
continuous function in c, there is an interval Bǫ(cK) = (cK − ǫ, cK + ǫ) such
that Ṗ < 0 for all c ∈ Bǫ(cK). On Bǫ(cK), Hlim is given by HA and cK must
optimize HA on Bǫ(cK). Since HA is differentiable, cK must fulfill the FOCA.
But only cA does this, so cK = cA. Analogously, c′K = c′A.

In the stage of the game where transfers are chosen it is obvious that V̄ A
P > 0

implies gK = 0. The argumentation for the remaining statements is entirely
similar.

This tells us that on any boundary that is left the consumption policies must
be as in one of the adjacent regions. As for transfers, it is unproblematic to find
optimizing transfers on a boundary: If the transfer motive is zero, any policy
is optimal, if it is negative, than transfers must be zero. So for this kind of
boundaries it is easy to find limit-consistent kink policies; we only have to make
sure that value matching is satisfied between the regions A and B.

This is not so easy, however, for attracting boundaries15. The above lemma
tells us, for example, that neither the A-policies nor the B-policies can be op-
timal kink policies if both A and B are NT-regions. The following lemma tells
us something about the implications of limit-consistency on the consumption
policies on the kink:

15By an attracting boundary we mean that ṖA > 0 and ṖB < 0.
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Lemma 6 (Consumption ordering on attracting kinks) Suppose ṖK = 0, i.e.
there are limit-consistent kink policies such that the kink is never left. This
implies that

cA ≤ cK ≤ cB

c′B ≤ c′K ≤ c′A.

Proof: Consider first her situation: Note that cK = c′K in equilibrium since
ṖK = 0. When considering deviations c > c′K , changes in the limit Hamiltonian
are given by FOCA(·) since we would have Ṗ < 0. In equilibrium, such a
deviation cannot be profitable, so we need FOCA(cK) ≤ 0. But this is true
if and only if cK ≥ cA, since FOCA(·) is a strictly decreasing function wity
root cA. By the same token, deviations c < cK should not be profitable. For
this we need FOCB(cK) ≥ 0, which is equivalent to cK ≤ cB since FOCB(·)
is a strictly decreasing function with root cB. This concludes the proof for her
ordering of consumption rates; the argumentation for his ordering is entirely
similar. �

To prove this statement, we have only used the property that limit-consistent
policies maximize the limit Hamiltonian; note that in practice, we still have to
check if candidate policies also fulfill value matching, i.e. if the maximized limit
Hamiltonian HK takes the same value as HA and HB for both players.

3.3.1 Implications of value matching

Since both value functions have to be continuous at boundaries (see Lemma 11),
they have to converge to the same values on the A- and B-sides (referred to as
value matching in the literature). Using the HJBs, such as hers (8), substituting
consumption rates for V̄P from the FOCs, such as hers (9), and taking limits
towards the boundary, this implies the value-matching conditions

H(C̄A, C̄′
A) = H(C̄B , C̄′

B) (14)

H ′(C̄′
A, C̄A) = H ′(C̄′

B , C̄B) (15)

H(C̄, C̄′) = ln C̄ − 1 + α ln C̄′ − C̄′

1 − P

[
1 + α

ρ
− P

C̄

]

+
Ḡ′

1 − P

[
1 + α

ρ
− 1

C̄

]

= ln C̄ + α ln C̄′ − (C̄ + C̄′)
1 + α

ρ
+ Ṗ V̄P

H ′(C̄, C̄′) = ln C̄′ − 1 + α′ ln C̄ − C̄

P

[
1 + α′

ρ
− 1 − P

C̄′

]

+
Ḡ

P

[
1 + α′

ρ
− 1

C̄′

]

= ln C̄′ + α′ ln C̄ − (C̄ + C̄′)
1 + α′

ρ
+ Ṗ V̄ ′

P

Fixing policies in the A-region, (14) and (23) constitute a system of two non-
linear equations in two unknowns from the B-side: If V̄P = 0, then C̄ = C̄WP

but Ḡ is unknown; otherwise, Ḡ = 0 and C̄ is unknown (and equivalently for
him).

19



When B is of FT-type, it is easy to obtain the solution to the system. Say
he is giving transfers in B. Then C̄′

B = C̄′
WP and ḠB = 0, so we can use (23)

to obtain C̄B (there are usually two solutions since the terms in C̄B constitute
a concave function). We then use (14) to pin down Ḡ′

B uniquely.
If B is of NT-type, matters are more complicated. However, it turns out that

we can exploit the concavity of the utility function to characterize the solutions:

Proposition 2 (Discontinuities in policies) Suppose that B is a NT-region.
Then, for a given pair V̄A and V̄ ′

A, there are generically at least two candidates
for the consumption policies {cB, c′B) on the B-side which are consistent with
value matching. One of these candidates coincides with {cA, c′A}. The solutions
are independent of P . The only exception is the case where cA = c′A = ρ, where
the unique solution is cB = c′B = ρ.

If also region A is of NT-type, then

cA > c′A ⇔ cB < c′B

cA < c′A ⇔ cB > c′B

cA = c′A ⇔ cB = c′B.

If either k(cA, c′A) ≤ k(ρ, ρ) or k′(cA, c′A) ≤ k(ρ, ρ), then there are exactly
two solutions for (cB , c′B) with the following property: If he is under-consuming
in her eyes on the A-side, he must be over-consuming in her eyes on the B-side:

α

c′A
>

1 + α

ρ
− 1

cA

⇔ α

c′B
>

1 + α

ρ
− 1

cB

.

The same is true reversing the inequalities, and of course for her under-/over-
consumption in a symmetric fashion.

A proof is given in appendix A.3. It also provides an algorithm for finding a/the
second solution to the system. In one specific case we were not able to prove
that there are exactly two solutions. Numerical exercises, however, suggest that
also in this case there exists no third solution.

In the following, we will characterize boundaries between the different types
of regions. We start with the analysis of the different region types bordering
bankruptcy and then proceed with the characterization of boundaries on the
interior.

3.3.2 Bankruptcy-bang-bang (BR-BB) structure

It is intuitive to expect an equilibrium where the richer agent gives a mass-point
transfer in a region where the other is very poor, i.e. P0 = [0, P1) is a BB-region.
However, it turns out that this is impossible:

Proposition 3 (No BR-BB equilibrium) If αα′ < 1, then in equilibrium
he does not give a mass transfer at P = 0 (and she does not give one at P = 1).
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Proof: If P1 is of BB-type, then C̄ = C̄WP throughout P1 and thus also
C̄(0) = C̄WP = ρ/(1 + α) > α′ρ/(1 + α′) = α′C̄′

WP if αα′ < 1.16 Then, by
Lemma 3, Ḡ′(0) = α′C̄′

WP , and thus C̄∗
0 < C̄WP . �

Intuitively, the poor agent has incentives to consume a lot; indeed she chooses
CWP in the entire BB-region. So at P = 0, the donor (he) can restrict transfers
to a flow G′ = αC′

WP and so obtain his preferred allocation – but this flow-
transfer contradicts a mass-transfer being given when she is bankrupt.

3.3.3 Bankruptcy-flow-transfer (BR-FT) structure

Here, we clearly have the restriction CFT ≤ αC′
WP (i.e. the recipient’s con-

sumption must be below of what the donor would choose for the recipient if he
could). If that was not the case, limit consistency would break down at P = 0
since he would set G′(0) = α′C′

WP < CFT .
BR-FT boundaries can only be of the smooth kind; we summarize this and

other properties in the following proposition:

Proposition 4 (BR-FT properties) Policies are continuous on a BR-FT
boundary: C′(0) = C′

lim = C′
WP , C(0) = Clim(0) < αC′

WP and G′(0) =

G′
lim(0) ≥ C(0). Furthermore, Ṗ > 0 for all P > 0, so she is lifted out of FT

from any P > 0.

Proof: Limit consistency clearly implies that C′(0) = C′
WP so that C′(0) =

C′
lim(0). Now, his VM (23) implies that also C(0) = Clim(0) since the term

Ṗ V̄ ′
P is always zero. Then her VM (14) tells us that G′(0) = G′

lim(0): If Ṗ > 0

at P = 0, this is obviously necessary; if Ṗ (0) = 0, then we also need Ṗlim(0) = 0
since V̄P > 0, which again tells us that transfers are continuous. Feasibility at
P = 0 requires G′(0) ≥ C(0). Then Lemma 3 tells us that it must be that
C(0) ≤ α′C′

WP , if not he would restrict her consumption to his desired level at
bankruptcy.

Now, we will rule out the possibility that C(0) = α′C′
WP . If this was the

case, then his HJB says that he obtains V ′
max for all P in FT. The unique

consumption sequence that ensures this is that his preferred consumption rates
are placed forever. But this implies one of the following: (i) either FT is never
left from any point P in FT – this is impossible since FT-regions cannot be
absorbing, see Lemma 1, (ii) or his preferred consumption rates are played on
the entire state space [0, 1], which is inconsistent with her optimality at P = 1
(and not symmetric, either). So we can conclude that C(0) < α′C′

WP .
From his ODE for transfers (13) we see that his transfers are increasing in P ,

i.e. G′
P > 0 on FT. From the law of motion for P REF??? and G′(0) ≥ C(0)

we conclude that dotP > 0 for all P > 0 inside FT, so she will be lifted out of
FT from any point P > 0 on FT. �

Note that if we introduced the possibility of in-kind transfers into the model
(i.e. a transfer that cannot be saved but must be consumed), then this structure
would break down since he would give her an in-kind transfer of α′C′

WP at

16Observe that 1/(1 + α) ≥ 1/2 ≥ α′/(1 + α′).
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P = 0 and set monetary transfers equal to zero, which would guarantee that his
preferred allocation was played forever.

3.3.4 No-transfer (NT) region and bankruptcy (BR): Parties

First, we establish the following lemma:

Lemma 7 (Donor’s limit consumption) Suppose αα′ > 0. Then, under
assumptions 2 and 3 in any equilibrium where a NT-region borders her BR:

lim
P→0

C̄′(P ) = C̄′
WP =

ρ

1 + α′

lim
P→0

Ṗ = −C̄lim < 0,

i.e. bankruptcy is an absorbing state. The same is true in a mirror-symmetric
way for P = 1.

Note that this is not obvious since it is not true that V̄ ′
P → 0. The intuition is

that his consumption policy does not influence the proportion of asset she owns
any more when her assets become very small; then, if her consumption does not
approach zero, she must head into bankruptcy.

Given this result, we can show that

Proposition 5 (Party Theorem) If 0 < α = α′ < 1 and assumptions 1, 2,
3 are satisfied, then any equilibrium where a NT-region borders her bankruptcy
has the following properties:

1. Ṗlim < 0 and Ṗ0 = 0: Bankruptcy is an absorbing state.

2. C̄(0) = α′C̄′
WP = α′ρ

1+α′
: In her bankruptcy, his preferred allocation is

played.

3. C̄lim = exp
(

1−αα′

1+α′

)

C̄(0) > C̄(0): (Party) On reaching bankruptcy, her

consumption path has a downward jump.

4. V̄ ′
P (0) > 0: He strictly prefers her bankruptcy to her returning to be un-

constrained.

Proof: First, it is convenient to rule out that V̄P (0) = limP→0 V̄P (P ) = 0.17

By way of contradiction, suppose that V̄P (0) = 0. Then, since C̄lim = C̄WP her
value-matching condition (VM) becomes (14)

ln C̄∗
0 − C̄∗

0

1 + α

ρ
= ln C̄lim(0) − C̄lim

1 + α

ρ
,

which implies C̄∗
0 = C̄WP (note that the left- and right-hand sides are uniquely

maximized by C̄WP ). Since αα′ < 1, by Lemma 3 the donor should then set

17Note that although NT is not a transfer region, it is possible that the transfer motive is
negative throughout NT but tends to zero in the limit of the region.
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Ḡ′(0) = α′C̄′
WP to obtain his globally preferred allocation. We would thus have

C̄∗
0 < C̄WP , a contradiction. So from now on we may assume V̄P (0) > 0.

Now we will consider separately the two possibilities for the law of motion
at her bankruptcy: Ṗ0 = 0 and Ṗ0 > 0.

(i) Suppose first that Ṗ0 > 0, i.e. C̄(0) = C̄∗
0 < Ḡ′(0). By Lemma 5, it must

be that C̄(0) = C̄lim. For him, C̄′(0) = C̄′
lim = C̄′

WP by Lemma 7. Now, since
both agents’ policies are the same at P = 0 and P → 0+, her VM (14) collapses
to:

Ṗ0V̄P (0) = ṖlimV̄P (0),

from which we conclude that Ṗ0 = Ṗlim < 0 since V̄P (0) > 0. But this is a
contradiction to Ṗ0 > 0.

(ii) So it can only be that Ṗ0 = 0, which –together with Lemma 7– proves
point 1 of the proposition. Now, define the function HWP (C̄) = ln C̄ − C̄ 1+α

ρ

and re-write her VM (14) as

HWP (C̄∗
0 ) = HWP (C̄lim) + ṖlimV̄P (0).

Since V̄P (0) > 0 and Ṗlim < 0 (see Lemma 2), the fact that HWP (·) is a strictly
increasing function on [0, ρ

1+α
] implies that C̄∗

0 < C̄lim, which is what we term
a party before bankruptcy.

Now define GWP (C̄) = α′ ln C̄ − C̄ 1+α′

ρ
and re-write his VM (23) as

GWP (C̄∗
0 ) = GWP (C̄lim) + ṖlimV̄ ′

P (0).

Since Ṗlim < 0 and V̄ ′
P (0) ≤ 0, it is clear that ṖlimV̄ ′

P (0) ≥ 0 and thus
GWP (C̄∗

0 ) ≥ GWP (C̄lim). Observe that GWP (·) is a strictly increasing function
on (0, α′C̄′

WP ] and a strictly decreasing function on [α′C̄′
WP ,∞). By the order-

ing C̄lim > C̄∗
0 from before, it can therefore be ruled out that C̄lim ≤ α′C̄′

WP .18

Furthermore, by Lemma 2 we know that C̄(0) = C̄lim, so he must set Ḡ′(0) =
α′C̄′

WP to obtain his globally preferred allocation. Thus, C̄∗
0 = min{C̄(0), Ḡ′(0)} =

α′C̄′
WP , which is point 2 of the proposition.
Now, using again her VM (14) and the FOC for C̄lim in (9), can find the

closed-form expression for C̄lim(0) given in point 3 of the proposition. Fi-
nally, using his VM (23) again, we see that V̄ ′

P (0) < 0 since GWP (C̄∗
0 ) >

GWP (C̄lim(0)), which proves point 4. �

Note that the discontinuity of the recipient’s consumption path is a gross vio-
lation of efficiency; a Pareto planner would lower consumption before bankruptcy
and increase it in bankruptcy. This party is equivalent to the Samaritan’s
dilemma in a 2-period model: The recipient of transfers is not fully internalizing
the negative effects that her consumption has on the donor when choosing con-
sumption in the period/instant before bankruptcy. As the Euler equations (10)
make clear, this inefficiency will propagate further back in time and so affect
the entire span of time before bankruptcy – an effect that 2-period models are
silent on.

18In intuitive terms, he must dislike the party and prefer the bankruptcy consumption rates
to it, otherwise his VM cannot be fulfilled.
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3.3.5 Boundaries between two no-transfer regions (NT-NT)

Lemma 6 and Proposition 2 together imply:

Corollary 1 (No attracting kink between NT-regions) There cannot be
an attracting boundary if both A and B are NT-regions.

Repelling boundaries (i.e. ṖA < 0 and ṖB > 0) are possible if they satisfy value
matching. The policies on the two sides are characterized by Proposition 2.
Both the A- and the B-side policies are then possible limit-consistent policies
on the boundary.

3.3.6 Boundary between autarkic and no-transfer region (NT-AUT)

Proposition 2 tells us that any NT-AUT boundary must be smooth, i.e. policies
in the NT-region must converge to the autarkic levels.

3.3.7 Flow-transfer and no-transfer region (FT-NT)

We distinguish between smooth and non-smooth boundaries between FT- and
NT-regions. As a smooth boundary we regard one where value functions are
differentiable and thus policies are continuous.

For example, let A be is a region where he is giving transfers, so C̄′
A =

C̄′
WP = C̄′

B. From her value matching it follows that G′
A = 0. It is obvious that

this fulfills VM for both players and that C̄K = C̄A = C̄B and C̄′
K = C̄′

A = C̄′
B

are limit-consistent policies on the boundary. From the ODE for transfers (13)
and the fact that transfers cannot be negative the following characterization
then follows easily:

Lemma 8 (Smooth FT-NT/NT-FT boundary) Let P̃ be the boundary be-
tween a region A on the left and a region B on the right, where one of the two
is NT and the other FT. Then

1. C′
A = C′

B = C′
K = C′

WP and CA = CB = CK .

2. G′
A = G′

B = G′
K = 0.

3. If A is of NT-type, then C ≥ α′C′
WP .

4. If B is of NT-type, then C ≤ α′C′
WP .

This result tells us that when we reach a point P̃ where V ′
P becomes positive

in an NT-region, then it is only possible to start an FT-region at P̃ if she is
under-consuming in his eyes at P̃ .

Appendix A.2.3 provides a result on non-smooth FT-NT boundaries.
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3.3.8 FT-FT structure

When looking for a symmetric equilibrium, it will prove important to rule out
the case that an FT-region (in which he is giving transfers) extends to P = 1/2

from the left. The following result formalizes this:

Lemma 9 (No FT-FT at 1/2 in symmetric equilibrium) Let (Pi, Pi+1) ∈
[0, 1/2] with G′ > 0 be an FT region and suppose α = α′. In any symmetric
limit-consistent equilibrium it must be that Pi+1 < 1/2.

Proof: Let cWP and cFT denote the donor’s and recipient’s consumption levels
in terms of their own capital stock. We are looking for a symmetric consumption
level csymm at P = 1/2 that is consistent with both value matching and limit

consistency. Note that by symmetry, we also have g(1/2) = g′(1/2) and Ṗ (1/2) =
0.

For csymm to be limit consistent, we need cFT ≤ csymm ≤ cWP , as inspec-
tion of the relevant limit Hamiltonian reveals. Value matching requires that
k(cWP , cNT ) ≤ k(ρ, ρ) = maxc k(c, c). Also, observe that cWP > ρ. In Fig-
ure 19, which plots the loci where k = k(ρ, ρ), we must thus be in one of the
following two regions (recall that k(c, ·) is concave for all c):

1. cWP > ρ, cNT ≤ γ′
−(c): But then, for him we have k′(cWP , cNT ) > k(ρ, ρ)

by the properties of k′. This rules out value matching for him:

k(csymm, csymm) = k′(cWP , cNT )−gNT V ′
P,NT ≥ k′(cWP , cNT ) > k(ρ, ρ) ≥ k(csymm, csymm),

a contradiction.

2. cWP > ρ, cNT ≥ γ′
+(c): Then cNT > ρ, since γ′

+(c) > ρ for c > ρ. But
now, observe that

ksymm(csymm) ≤ ksymm(cNT ) < k(cWP , cNT )

where the weak inequality follows from csymm ≥ cNT and ksymm being
strictly decreasing on [ρ,∞) and the second inequality follows from cWP >
cNT and k being increasing in its first argument below the diagonal (i.e.
for c > c′). The inequality makes value matching for her impossible.

The statement in the lemma follows, since these are the only possible cases. �

3.3.9 FT-WP structure

First, notice that at boundary between an FT- and a WP-region, the recipient’s
consumption in FT is pinned down exactly. To see this, assume that he is the
donor in the FT-region. Then by his VM (23), her consumption CFT – recall
that the recipient’s consumption is constant inside FT – must solve

f(CFT ) ≡ α′ lnCFT − CFT

1 + α′

ρ
= α′ lnCWP − CWP

1 + α′

ρ
= f(CWP ) (16)
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One solution to this equation is obviously CFT = CWP . However, this would
mean that FT was also a WP-region, which contradicts our assumption. Since
f(·) is concave, uniquely maximized at α′CWP and limC→0 f(C) = −∞, there
must exist exactly one further solution CFT ∈ (0, α′CWP ), where she under-
consumes in his eyes. Interestingly, this solution is homogeneous in ρ, as is
easily verified: If CFT (1, α, α′) solves (16) for ρ = 1, then CFT (ρ, α, α′) =
ρCFT (1, α, α′) solves (16) for any ρ > 0.19

From her VM (22), we get

lnCFT − CFT

1 + α

ρ
︸ ︷︷ ︸

≡h̃(CF T )

+ṖAV̄P = lnCWP − CWP

1 + α

ρ
= h̃(CWP )

Since CFT < α′

1+α′
ρ < ρ

2 < 1
1+α

= CWP (if αα′ < 1) and h̃ is strictly increasing

for C ≤ CWP , it must be that h̃(CFT ) < h̃(CWP ). Now, since V̄
(A)
P > 0, there

is a unique G′
A > 0 that solves the above VM. It is obtained as

G′
A = (1−P̃ )ρ

(1 + α)CFT (1, α, α′) − lnCFT (1, α, α′) − 1 − ln(1 + α)
1

CFT (1,α,α′) − (1 + α)
︸ ︷︷ ︸

≡H̃(α,α′)

+(1−P̃ )CFT−P̃C′
WP .

(17)
Note that for P̃ = 0, we have G′

A > CFT . By continuity, there must thus be
some P̃ > 0 such that G′(0) ≥ CFT (note that G′(0) < G′(P̃ ) since G′

P > 0,
see Proposition 4).
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Figure 1: FT-WP-equilibrium: α = α′ = 0.5, P̃ = Pmax

Note that the right-hand side of (17) is linearly decreasing in P̃ ; we can back
out the maximally-possible P̃ that can sustain a FT-WP equilibrium from the

19Note that it is impossible to establish a similar result for α and α′, even in the special
case α = α′.
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equation
G′(0) = G′

A(P̃max) − G′
P P̃max = CFT

Using (17) and (13), we find that this value is independent of ρ and given by

P̃max(ρ, α, α′) =
H̃(α, α′)

H̃(α, α′) + 1
, (18)

where H̃(α, α′) is defined in (17). Figure 2 shows P̃max as a function of (α, α′).
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Figure 2: Maximal boundary in FT-WP-equilibrium

The following proposition collects the previous results:

Proposition 6 (Continuum of FT-WP equilibria) If αα′ ∈ (0, 1), then
there exists a continuum of equilibria of the following type: He gives trans-
fers on [0, P1); there is a WP-region [P1, P2] and she gives transfers on (P2, 1],
where P1 ∈ (0, P̃ ′

max] and P2 ∈ [1 − P̃max, 1) and P̃max is given in (18). Trans-
fers on [0, P1) are given by (17) at P1 and follow from (13) for P ∈ (0, P1).
Transfers inside WP are indeterminate, but are such that WP is never left from
any point: P0 ∈ [P1, P2] ⇒ Pt ∈ [P1, P2] for all t > 0.

Note that limit consistency at P1 is unproblematic: Since his value function is
flat in both directions, C′(P1) = C′

WP and any G′(P1) ≥ 0 are clearly limit-
consistent. For her, C(P1) = CWP is fine since it is the global maximum of
the limit Hamiltonian for any VP , see 12; decreasing C below this value and
heading into FT must decrease Hlim.

A noteworthy feature of this equilibrium is the following: Since transfers G′

are linearly increasing in P on FT, we see from the law of motion for P in (7)
that Ṗ linearly increases in P . This means that the economy is moving out of FT
at increasing speed as she becomes richer. If P1 < Pmax, then the equilibrium is
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such that FT is left in finite time for any starting value P0, even when P0 = 0.
For P1 = Pmax, however, the initial time spent in FT increases without bound
as P0 → 0 and is indeed infinite when P0 = 0: Then Ṗ = 0 and the economy is
stuck at P = 0 forever.

Note that type of equilibrium described in Proposition 6 breaks down if we
allow agents to give in-kind transfers, as was already noticed in section 4: He
would give an in-kind transfer of α′C′

WP instead of monetary transfers inside
NT, which she would be “forced” to consume instantaneously. This would lead
to his globally-preferred allocation being played, so it would be a profitable
deviation for him.

4 Computational Results

In this section we present the results of computing a stationary Markov-Perfect
equilibrium using value function iteration. We find that there is an equilibrium
where transfers flow only when one of the players is broke. In other words, for
P ∈ (0, 1) there are neither bang-bang transfers nor flow transfers. Only when
P = 0 (he is broke) or P = 1 (she is broke) transfers flow. While we have not
been able to prove that this equilibrium is unique we have reason to believe that
it is. In order to check the robustness of this equilibrium we consider a finite-
horizon version of this model. In the last period T the sharing rule is based
upon the static altruism game. Using backward induction, including time as a
state-variable, yields the same equilibrium as the one found by value function
iteration. We also use a host of other sharing rules for the final period and
consistenly find convergence to the same equilibrium. Thus, this equilibrium
is the unique limit of the sequence of equilibria in (equivalent) finite-horizon
games.

In this equilibrium, there is a party of the recipient just before bankruptcy.
For example, consider the situation where he is about to become broke. The
relationship between his limit-consumption and consumption in bankruptcy is
given by

lim
P→1

C̄′(P ) = exp

(
1 − αα′

1 − α

)
αρ

1 + α
>

αρ

1 + α
= C̄′(1) = Ḡ(1) (19)

For α′ < 1 his limit-consumption is strictly larger than his consumption when
he is broke. Thus, his consumption path exhibits a discontinuity in the form of
a downward jump of size which we can read off equation (19).

4.1 Asset Evolution

In this section we present the results of computing the stationary Markov-Perfect
equilibrium. In order to build intuition for the results of the model it is helpful
to simulate the distribution of wealth P over time. Figures 3 to 6 show the
evolution of P over a time horizon of 30 years. Initial values of P range between
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Figure 3: α = α′ = 0.2
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Figure 4: α = α′ = 0.4

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p

Years

Converging Down to p=0: c > c’

Converging Upto p=1: c < c’

Converging Down to p=1/2: c > c’

Converging Up to p=1/2: c < c’

Wealth Evolution

Figure 5: α = α′ = 0.6
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Figure 6: α = α′ = 0.8

29



0.2 and 0.8. The altruism parameters are assumed to be symmetric and given
by α = α′ = {0.2, 0.4, 0.6, 0.8}.

In all 4 figures, which correspond to the various rates of altruism, three
regions become apparent: (1) Starting with a value of P closer to one leads
eventually to his bankruptcy which is an absorbing state; (2) With starting
values of P closer to 1/2 neither of the players become bankrupt but rather
converge to P = 1/2; (3) For values of P closer to zero she reaches bankruptcy
in a matter of time. Additionaly, comparing Figure 3 in which α = α′ = 0.2
with Figure 6 in which α = α′ = 0.8 demonstrates that the range of P for which
bankruptcy results increases in the altruism parameter. This is not surprising
since the “soon-to-be” bankrupt can count on higher transfers from the donor.
Another way of saying this is that the optimal time of bankruptcy is sooner the
higher the degree of altruism. For example, in Figure 3 if we start the players
off with P0 = 0.2 and follow them through time she becomes bankrupt after
approximately 22 years. On the other hand, Figure 4 shows that she reaches
bankruptcy already after 13 years.

The horizontal lines are meant to visually approximate intervals for values
of P when one of the players’ consumption rate is larger or smaller than the
others. This can be easily seen when we write the law of motion for P in terms
of c̄, c̄′, the consumption proportions out of the private capital stock,

Ṗ = −(1 − P )P (c̄′ − c̄)

Clearly, when he consumes at a faster rate then she does Ṗ > 0 and if he
consumes at a slower rate Ṗ < 0. In Figure 4, for example, below the horizontal
line P = 0.4 we see that Ṗ < 0, she consumes at a faster rate than he does,
and as we will see below above her autarkic rate ρ. The situation is mirror-
symmetric above P = 0.6. When P = 0.5 then we trivially have that c̄ = c̄′ and
Ṗ = 0. Thus, within the interval [0.4, 0.6] they consume at approximately the
same rate and we will see that this rate is close to the autarkic rate. At values
of P close to the horizontal lines there are strong conflicting forces among the
two players. Each player has a strong incentive to direct the evolution of P in
opposing directions. This conflict of interest will become especially clear in the
following section.

4.2 Consumption Policies

Figures 7 to 10 plot for α = α′ = {0.2, 0.4, 0.6, 0.8} consumption proportions
in terms of common wealth C̄, C̄′ (the left box in each figure) and in terms of
private wealth c̄, c̄′ (the right box in each figure) for P ∈ [0, 1]. As reference
points we also depict the autarkic consumption proportion and the wealth-
pooling rate. The autarkic consumption proportion out of combined capital
stock are respectively given by C̄′

aut = ρ · (1 − P ) for him and C̄aut = ρ · P for
her, and players wealth-pooling rate is C̄wp = C̄′

wp = ρ/(1 + α). Similarly, for
the consumption proportions out of private wealth her and his autarkic rate is
given by c̄aut = c̄′aut = ρ, his wealth-pooling rate is given by c̄′wp = 1

1−P
ρ

1+α
,

and c̄wp = 1
P

ρ
1+α

for her.

30



0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

C
o

n
s
u

m
p

ti
o

n
 P

r
o

p
o

r
ti
o

n

p

Consumption Rates in K

 

 

C
C’
C

wp

 C
aut

C’
aut

0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

C
o

n
s
u

m
p

ti
o

n
 P

r
o

p
o

r
ti
o

n

p

Consumption Rates in k,k’

 

 

c
c’
c

aut

 c
aut

c’
wp

Figure 7: α = α′ = 0.2
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Figure 8: α = α′ = 0.4
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Figure 9: α = α′ = 0.6
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Figure 10: α = α′ = 0.8
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For example, Figure 8 can be read as follows. In the left box the pink line
is her consumption rate C̄ and the thick baby-blue line is his consumption rate
C̄′. The wealth-pooling rate is constant and equal for both players and is shown
as the horizontal line. The two discontinuous lines from the upper corner to the
lower corner represent his and her autarkic consumption rates. Note that for
the right box it is the autarkic rate which is equal for both agents but not the
wealth-pooling rates.

Consider, for example, Figure 8 with P starting off at zero. At P = 0 she
is bankrupt and receives transfers. His consumption rate equals the wealth-
pooling rate. We can see that his consumption rate is below the autarkic rate
and her consumption rate is, of course, above. He implements his first best by
doing what the planner would do. Instead of consuming ρ out of K = k′ he
consumes ρ/(1 + α) out of K = k′ and transfers αρ/(1 + α) to her. It is the
sum of his consumption and transfer rate which equals ρ (see the left box). In
terms of consumption out of private capital stock (see the right box) the story
is entirely analogous.

As we increase P slightly her consumption rate exhibits an upward jump
since briefly before she is about to become bankrupt she is “having a party”.
From then on until approximately P = 0.4 her consumption rate out of K is
roughly constant and much larger than it would be in the autarkic case. His con-
sumption rate is decreasing and slightly below his autarkic rate. This is what we
refer to as the dynamic Samaritan’s dilemma. She vastly overconsumes relative
to what the planner would do since she knows that eventually she will be taken
care of. His consumption rate is also distorted even though he consumes below
the autarkic rate. Since it is the growth rate of marginal utility of consumption
which matters for overconsumption it turns out to be the case that his rate is
too fast.

At roughly P = 0.4 his consumption rate displays an upward hump, shooting
up but not exceeding his wealth-pooling rate, and her consumption displays a
downward hump, dropping down but not below her autarkic rate. It is here that
the characterization of regions becomes especially important. Since the players
know that to the left of P = P they are in a region in which eventually she will
be receiving transfers from him but to the right no transfers will ever flow there
is a conflict of interest in which direction P should evolve. Since both players
have control using consumption and transfers over the law of motion for P it is
important to understand on how the regions are connected. It is conceivable that
the value functions exhibit convexities at these critical points which would be
in line with Laitner (1988)’s suspicion. This could be interpreted as risk-loving
behavior even in the absence of risk. Another possibility is that while the value
functions are continuous they are not differentiable at these points of conflict in
the state-space. Then the humps would be an artifact and an interpretation is
difficult. Increasing P above P = P we can see that both consumpion rates are
getting close, but never equal, to the autarkic rates.

Some more observations from the other figures are worthwhile to point out.
Comparing figures 8 and 9 we see that qualitatively the interpretation conforms
to the one just outlined. Notice that in figure 7 there is a fairly large region in
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which the agents consume as if they are in autarky. This is sensible since their
altruism parameter is fairly small. From figure 10 we can see that the agents
essentially behave as if they are wealth-pooling, at least, for P ∈ (0, 1). Note
however, that this is somewhat of an illusion since the transfer motives of him
and her are not even close to zero 20.

4.3 Strategic-Altruistic Distortions

4.3.1 Euler Equation in (k,k’)

In order to supplement intuition about the intertemporally optimal consumption
plan a slight detour into the (k, k′) state-space is in order. In particular we will
take a look at her Euler equation under the assumption that we are within
a smooth region in which there are neither transfers nor binding borrowing
constraints (e.g. a no-transfer region). Euler equations tell us how marginal
utility of consumption changes over time – recall that in discrete time for a
selfish agent, we have uc(ct) = βRuc(ct+1), which is a difference equation in ct.
In continuous time, we can obtain an analogous differential equation from the
HJB: First, let us focus on the selfish case by setting α = α′ = 0. We obtain
the following Euler equation for a selfish agent:

d

dt
Vk(kt) = (ρ − r)Vk =

d

dt
uc(ct),

This equation tells us something familiar: If ρ > r, the agent is impatient
compared to other market participants and her marginal utility grows at rate
(ρ − r) over time, which implies a decreasing consumption path. If ρ = r, then
marginal utility is time-invariant. For ρ < r, the agent is more patient than
other market participants and his consumption is increasing over time.

When carrying out the same steps as in the selfish problem for the case with
altruism (i.e. α > 0 and α′ > 0)

dVk

dt
= (Vk)kk̇ + (Vk)k′ k̇′ = (ρ − r)Vk +

[
Vk′ − αuc(c

′)
]

︸ ︷︷ ︸

≡λ(kt,k′

t)

∂c′

∂k
.

The intuition here is the following: The term(ρ − r)Vk tells us that marginal
utility increases at rate (ρ − r) along the optimal consumption path, which is
the same as in the selfish setting. The second term λ(·) is related to altruis-
tic/strategic considerations: When she saves one unit more over some interval
of time, her capital stock will increase and there will be a (usually positive21)

20It turns out that for α’s large enough and logarithmic utility one can fairly well approxi-
mate the consumption function as a linear combination of wealth-pooling rates which is itself
again a wealth-pooling rate.

21In the case where he is richer than she is, he will feel more confident about consuming
more when she increases her wealth since it becomes less likely that he must help her out or
later. If she is rich relative to him, he will know that there are more resources available that
she can potentially provide to him in the form of transfers, which again tends to increase his
consumption.
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effect on his consumption which is captured in the term ∂c′/∂k. This increase
in c′ gives an immediate gain αuc(c

′) to her since she feels happy for him; this
is an additional incentive to save, so it enters the equation with the same sign
as r does. However, his increased consumption also means that he saves less,
which has negative effects on her (through decreased future consumption and
decreased future transfers) that are captured in the term Vk′ . These enter with
the same sign as ρ, so they act as a disincentive to save.

4.3.2 Distortion in (P,K)

In (P, K)-space the Euler equations are given by equation (10) in section 2.3
which captures the growth of her and his transfer motive. Thus it is not di-
rectly suitable in understanding over- and under-consumption. Instead, we will
compute the growth rate of marginal utility which is after all the left side of
the Euler equation in (k, k′)-space. To this end recall that in the autarkic case,
or equivalently in the planner’s problem, the growth rate of marginal utility is
given by:

d
dt

uc(ct)

uc(ct)
= ρ − r (20)

In (P, K)-space we compute:

d
dt

uc(ct)

uc(ct)
=

d

dt
ln (uc(ct)) = −

˙̄C

C̄
− K̇

K
= − d

dt

[
ln(C̄) + ln(K)

]
=

= − C̄P

C̄
Ṗ − (r − C̄ − C̄′)

Equivalently, we can expresss the growth rate of marginal utility in terms of
private capital stocks c̄, c̄′ rates as follows:

d
dt

uc(ct)

uc(ct)
= c̄ −

˙̄c

c̄
− r = (c̄ − r) − c̄P

c̄
Ṗ

For simplicity, let us set r = ρ, then from (20) we see that efficiency corresponds
to a zero growth rate of marginal utility. In contrast, if (c̄− r)− c̄P

c̄
Ṗ > 0 there

is overconsumption. Next, we substitute the law of motion in terms of private
capital stock Ṗ = −(1 − P )P (c̄ − c̄′) into the distortion,

(c̄ − r) + (1 − P )P (c̄ − c̄′)
c̄P

c̄
> 0 (21)

Figures (11) to (14) show the distortion (21) for the various symmetric val-
ues of the altruism parameters as a function of P . Also shown is the zero-line
which corresponds to the efficient growth rate as well as the growth rate corre-
sponding to the wealth-pooling consumption rate (this rate is non-zero since we
are working with small variables c̄ and c̄′, the upper horizontal line.

There are two regularities which jump out immediately. First, note that over
the entire state-space the distortion is practically always non-negative. Thus,
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Figure 11: α = α′ = 0.2
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Figure 12: α = α′ = 0.4
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Figure 13: α = α′ = 0.6
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Figure 14: α = α′ = 0.8
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for all values of P there is overconsumption. This highlights our definition of
over-consumption. We do not mean that the consumption rate is larger than
the planner would choose, but that the growth of the consumption rate is faster
than the planner would set it. As dicussed above when she is bankrupt efficiency
is restored, an allocation that a planner chooses, when all the weight is placed
on his life-time utility. Yet, his consumption rate is below his autarkic rate! The
key of efficiency is that marginal utility for both agents grows at a rate zero.

Second, the distortion due to the wealth-pooling rate is never surpassed. The
intuition for this can be understood when considering the tragedy of the com-
mons. In that scenario there is a resource which can be accessed and exploited
by various individuals who do not care for each other. All the players have an
incentive to extract more from the resource than they would as owner. Simi-
larly, in order for both agents to consume at the wealth-pooling rate it would
have to be the case that V̄P = V̄ ′

P = 0. When these derivatives are both zero
then both agents do not care about the distribution of wealth but only about
the common capital stock K. This can be interpreted as an absence of property
rights. As a result there is an altruistic tragedy of the commons. The degree of
altruism ameliorates the underlying force in the tragedy of the commons, but,
as we can see it is still less efficient than our Markov-Perfect equilibrium.

As an example of what these figures say consider figure (12). For P close
to zero the growth rate of her marginal utility of consumption is somewhat
above 1%. While this is significantly smaller than the distortion would be in
the wealth-pooling case, about 1.7%, it is much larger than the efficient rate of
zero. For the future donor the growth rate is also positive and roughly 0.7%.
As P increases her distortion decreases and is smallest when P = 0.5. His
distortion slightly increases before it decreases to its lowest point at P = 0.5.
The interpretation of the spikes in the distortion hinge on whether the value
function is convex in that region or non-differentiable.

In a two-period model it is easy to show that the savings decision of the
agent who expects to be the recipient in the second period is inefficient. In our
model the situation is similar but distortions occur long before actual transfers
flow. A difference however is that in our model both agent’s savings decision
are distorted, as opposed to a two-period model in which only the recipients
is. In addition, to this dynamic Samaritan’s dilemma there is the standard
Samaritan’s dilemma which occurs before one of the agents is broke as signified
by the discontinuity of the recipient’s consumption function.

4.3.3 A History

In Figure (15) a history of a tuple of players who start off with P = 0.25
and symmetric altruism of α = α′ = 0.4 is illustrated. Her optimal time of
bankruptcy is in about 17 years at which point her consumption rate drops
discontinuously from C̄ = 2.2% to 1.1%. At that time she receives transfers
from him, portrayed by the discontinuous baby-blue line Ḡ′ = ḡ′ = ρα′/(1+α′)
with his consumption rate being equal to the wealth-pooling rate C̄′

wp = c̄′wp =

ρ/(1+α). The growth rate of common resources K̇/K = −(r− C̄ − C̄′) is close
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Figure 15: A history of a tuple of players with α = α′ = 0.4 starting off the simulation
with P = 1/4. Along the horizontal axis is time measured in years and along the
vertical axis is P , consumption and transfer rates C̄, C̄′, Ḡ, Ḡ′, growth of combined
wealth K, and growth of her marginal utility.
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to −1% over the first 17 years which is in stark contrast to the efficient growth
rate of zero percent. Note that both agents contribute to this inefficiency as
is evident from the last sub-figure which is in contrast to a 2-period model in
which only the future recipients savings decision is distorted but not the donors.

4.3.4 Welfare

A particular way of assessing the welfare implications of the equilibrium is to
ask how much the players would value a scheme in which they could commit to
a redistribution of resources at time zero equal to the present value of future
transfers the donor would give away. Table 1 demonstrates the percentage of
common resources K the agents would require in order to make them indifferent
between the actual equilibrium and a hypothetical situation in which the donor
transfers a lump-sum at time zero equal to the amount of transfers in present
value terms of the actual equilibrium. One would expect that the future recipient
as well as the future donor attain a higher level of life-time utility if the donor
could credibly commit to that scheme. In that case strategic considerations
are eliminated and both players consume at their unique optimal rate ρ. Since
she is able to perfectly smooth her consumption stream she has to be clearly
better off. If she is better off then this contributes well-being to him since her
well-being is part of his preferences. Furthermore, he can also consume at his
unique optimal rate ρ.

More specifically, we first compute the optimal time of her bankruptcy T ∗.
As of that point we know that

K̇

K
= r − α′ρ

1 + α′
− ρ

1 + α′
= r − ρ

Next, we compute the corresponding combined capital stock KT∗ by numer-
ically integrating. The present value of transfers at time T ∗ is given by:

G′
T∗ =

∫ ∞

T∗

e−r(s−T∗) α′ρ

1 + α′
e(r−ρ)(s−T∗)KT∗dt =

α′

1 + α′
KT∗

and at time zero by:

G′
0 = e−rT∗ α′

1 + α′
KT∗

Consumption policies if the agents could commit to transfer G′
0 at time zero

and then shut down transfer possibilities is given by:

ccom(t) = (G′
0 + e(r−ρ)tk0)ρ, c′com(t) = (−G′

0 + e(r−ρ)tk′
0)ρ

Her value function is then given by:

V =

∫ ∞

0

e−ρt ln(ccom(t))dt + α

∫ ∞

0

e−ρt ln(c′com(t))dt
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In the case that r = ρ consumption is constant over time so that her value is:

Vcom =
ln(ccom) + α ln(c′com)

ρ

Similarly for him:

V ′
com =

ln(c′com) + α′ ln(ccom)

ρ

The welfare measure we employ is to find two values of K for a given initial
distribution P0 such that:

Vcom − V (K) = 0, V ′
com − V ′(K ′) = 0

The following table displays various values of this welfare measure in percentages
(brackets are for him):

0 0.2 0.4 0.6 0.8 1
0.05 0 (0) 4.3 (1.6) 1.8 (1.4) 1.1 (1.1) 0.82 (0.91) 0 (0)
0.1 0 (0) 6.9 (2.2) 3.1 (1.9) 1.6 (1.4) 0.96 (0.99) 0 (0)
0.2 0 (0) 8.4 (2.5) 4.7 (2.5) 2.3 (1.8) 1.1 (1.1) 0 (0)
0.3 0 (0) 1.5 (2.3) 5.1 (2.7) 2.6 (2.1) 1.2 (1.2) 0 (0)
0.4 0 (0) - 0.5 (3.1) 2.7 (2.1) 1.3 (1.3) 0 (0)

Table 1: Percentage compensation of K required for her and (him) in order to be
indifferent between the equilibrium and an equivalent transfer of resources at time
zero under commitment. Along rows the starting value of P0 varies; along columns
the symmetric value of the altruism parameter varies i.e. α ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}.

5 Conclusions

This paper provides a dynamic model of voluntary transfers with two-sided
altruism in a Markov-perfect setting. The continuous-time setting allows us to
neglect certain second-order effects and provides additional tractability.

We find that transfers are especially likely when the recipient is liquidity
constrained, which is in line with results from the empirical literature. We show
that the equilibrium allocation is not Pareto-efficient because agents’ savings
decisions are distorted by altruistic-strategic considerations. Agents have an
extra disincentive to save since they fear that their relatives react by over-
spending in reliance on their larger resources. On the technical side we introduce
the concept of “limit consistency” as a refinement of Markov-perfect equilibrium
for differential games.

In future work, we plan to extend the model to allow for shocks in order
to be able to tie the framework to the partial insurance literature. It is then
imperative to confront the model with data to assess its empirical performance.
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We plan on testing restrictions implied by the Euler equations using panel data
such as the Health and Retirement Study. Another avenue for future work is to
revisit Ricardian equivalence and study the effects of intergenerational altruism
with its strategic considerations on the allocations of the economy.
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A Appendix

A.1 HJB in P/K-space

A.1.1 Our approach

Using the definition of agents’ preferences, we can re-write the value function
recursively (to a first order):

V (P, K) =
[
ln(CK) + α ln(C′K)

]
∆t + e−ρ∆tV (P + ∆P, K + ∆K)
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where the law of motions for the state variables are given in (7). We then
substitute in our P/K-separable expression for V on both sides, take a first-
order expansion of e−∆tV (P + ∆P, K + ∆K) in ∆t and take limits as ∆t → 0.
The terms in K disappear and we obtain the HJB (8).

A.1.2 Working directly on (6)

Another way of doing things is to recognize that the agent cannot influence the
value stemming from K in (7) and thus to maximize V̄ in (6) by choosing a
path for C̄ given his policy rule C̄′(P ). This dynamic-programming problem is
non-standard since the current policy C̄0 appears in the double integral in (6),
which makes it harder to state the Bellman equation (i.e. to write the value
function recursively).22

We now want to write the double integral in (6) recursively. To a first order,
we have:

J(0) =

∫ ∞

0

e−ρt

[∫ t

0

Csds

]

dt =

=

∫ ∆t

0

e−ρtC0tdt + e−ρ∆t

(∫ ∞

∆t

e−ρ(t−∆t)

[

C0∆t +

∫ ∞

∆t

Csds

]

dt

)

=

= 0 +
C0

ρ
∆t + e−ρ∆t

∫ ∞

∆t

e−ρ(t−∆t)

[∫ t

∆t

Csds

]

dt =

=
C0

ρ
∆t + e−ρ∆tJ(∆t)

From line 1 to 2, we split up the integrals in two parts at ∆t and use the fact
that Ct = C0 + o(t) for small t by continuity. From line 2 to 3, we see that the
first term is of order ∆t2 (note that t ≤ ∆t in the integrand and thus the entire
term is bounded by C0∆t2). Line 3 to 4 uses the definition of J(·) from the first
line to arrive at the recursive formulation.

Using this expression, it is then easy to see that, to a first order,

V̄ (P0) = α ln C̄′(P0)∆t−C̄′
0

1 + α

ρ
∆t+max

C̄,Ḡ

{

ln C̄∆t − C̄
1 + α

ρ
∆t + e−ρ∆tV (P∆t)

}

where, again to a first order,

e−ρ∆tV (P∆t) ≃ (1− ρ∆t)V (P0)+
[
(1−P )C̄′(0)−PC̄ − Ḡ+ Ḡ′(P0)

]
∆tV̄P (P0).

From this it is then easy to obtain the HJB (8) taking limits as ∆t → 0.
Economically, the term in the double integral represent the damage that

consumption today has on the size of the “pie”

22Note the similarity of this problem to the problem of finding the HJB for habit or recursive
preferences, see Fwu-Rang Chang REF???, chapter 4.4.1, for example.
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A.2 Further results and proofs

Lemma 10 (Value functions bounded under altruism) Let consumption
functions satisfy assumption 2. Then, if α > 0 and α′ > 0, then there exist
numbers M > −∞ and M̄ < ∞ such that M < V̄ (P ) < M̄ and M < V̄ ′(P ) <
M̄ .

Proof: Clearly, her value function is upper-bounded by the value of the Pareto
problem where the planner puts full weight on her. To find a lower bound,
notice that her flow-utility is lower bounded when we invoke assumption 2:

FUmin ≡ min
C̄∈[ǫ, ρ

1+α ],C̄′∈

h

ǫ,
ρ

1+α′

i

{

ln C̄ + α ln C̄′ − (C̄ + C̄)1+α
ρ

}

> −∞

since we are minimizing a continuous function over a compact set. Now we see
that

V̄ (P ) =

∫ ∞

0

e−ρt
[
ln C̄t + α ln C̄′

t − (C̄t + C̄′
t)

1+α
ρ

]
dt ≥ FUmin

ρ
> −∞

Since we can do the same for him, the statement follows. �

Lemma 11 (Value functions continuous) Let the policy functions satisfy
assumptions 2 and 3. Then the value functions of both players are continu-
ous at the boundaries {Pi} (and thus continuous throughout P).

Proof: Suppose that the value function is discontinuous at Pi for her (without
loss of generality). Since his policies C̄′ and Ḡ′ converge to finite positive num-
bers at Pi from both sides by assumptions 2 and 3, she can always choose her
policy C̄ such that Ṗ =< 0 (or Ṗ > 0) in a neighborhood around Pi by the law
of motion for P in ((5))23. Now, if V (P+

i ) > V (P−
i ) (these two denoting the

right- and left-side limits at Pi), then the inequality

V (Pi − ǫ) ≥ [ln(C̄) + α ln(barC′(P−
i )]∆t + e−ρ∆tV (P

)
i + o(∆t)

can be violated for some small ǫ > 0 and some C̄. ∆t is the amount of time it
takes to reach Pi under the given policies, which vanishes as ǫ → 0. In other
words, she could obtain a higher value than V (Pi − ǫ) by steering the economy
to Pi. The case V (P+

i ) < V (P−
i ) is entirely analogous. �

A.2.1 Proof for Lemma 7: Donor’s limit consumption

Proof: Since his FOC is given by

1

C̄′
=

1 + α′

ρ
+ P V̄ ′

P

23In the special case where Pi = 0 this must also be true since Ḡ′(0) > 0 by our assumption
that C̄(0) > 0. Then Ṗ > 0 may be achieved by setting C̄ < Ḡ′(0). A similar argument
applies if Pi = 1.
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and limP→0 P = 0, it is sufficient to show that V̄ ′
P is upper-bounded in absolute

value to prove the claim.
From his HJB, we obtain

V̄ ′
P =

1

Ṗ

{

ρV̄ −
[

ln C̄′ + α′ ln C̄ − (C̄′ + C̄)
1 + α′

ρ

]}

.

Invoking assumptions 2 and 3,

Ṗlim ≡ lim
P→0

−(1 − P )C̄(P ) + PC̄′(P ) = −C̄lim ≤ −ǫ.

since consumption policies have finite non-zero limits. Thus,

∣
∣V̄ ′

P

∣
∣ =

∣
∣
∣
∣

1

Ṗlim

∣
∣
∣
∣
|{·}| ≤ 1

ǫ
|{·}|

since |1/Ṗlim| is bounded by 1/ǫ. The term in curly brackets is bounded since V̄ ′

is bounded (by Lemma 10) and the remaining expression is a continuous func-
tion of consumption rates, which are confined to a compact set by assumption 2.
This shows that V̄ ′

P is bounded, which concludes the proof. �

A.2.2 Global maximizer of H

Define the maximization problem contained in her HJB w.r.t. her consumption
rate in common capital stocks as:

H(C̄; V̄p) = ln C̄ − C̄

(
1 + α

ρ
+ (1 − P )V̄p

)

Lemma 12 H(C̄WP ; 0) is the unique global maximum of H(·; ·).

Proof: Substitute the first-order condition to obtain:

H∗(V̄p) = − ln

(
1 + α

ρ
+ (1 − P )V̄p

)

−
(

1 + α

ρ
+ (1 − P )V̄p

)−1(
1 + α

ρ
+ (1 − P )V̄p

)

⇒ H∗ is strictly decreasing in V̄p so that it is maximized at V̄p = 0. Using this
fact in the first-order condition shows that (C̄ = C̄WP , V̄p = 0) maximizes H.
�

A.2.3 Lemma on non-smooth NT-FT boundary

We will characterize the boundary of a flow transfer region FT with an NT -
region for a special case. We are assuming that he is the donor, i.e. V̄ ′

p = 0).
We know that c′FT = c′wp. Her VM (14) yields:

VM: ρV̄NT = ρV̄FT ⇒ k(cNT , c′NT ) = k(cFT , c′FT ) +
g′FT

P̃
V̄p,FT
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His VM (23) yields:

VM’: k′(cNT , c′NT ) = k′(cFT , c′FT ),

since V̄ ′
P,FT = 0. Given (cNT , c′NT ), and knowing that c′FT = c′wp we can

solve VM and VM’ for (cFT , g′FT ) (note that there are usually two candidate
solutions). Then take ODE to solve forward for c, g′.

We now check limit consistency. Consider first the ordering of the two regions
such that NT is to the left of FT and P̃ < 1/2. The donor’s limit Hamiltonian
as a function of c′ fixing (g′K , cK) reads as:

H ′
lim(c′; g′K , cK) = α′ ln cK−cKP

1 + α′

ρ
+

{

ln c′ − c′(1 − P )
1 + α′

ρ
+ Ṗ ν′(c′; g′K , cK)

}

,

where

ν′(c′; g′K , cK) =

{

V̄
′

p,NT if Ṗ < 0

V̄
′

p,FT = 0 if Ṗ ≥ 0

Ṗ = (1 − P )P

(

c′ − cK +
g′K
P

− gK

1 − P

)

.

Define

H̃(c′, g′) =

{

ln c′ − c′(1 − P )
1 + α′

ρ
+ c′(1 − P )Pν′(c′, g′; cK)

}

+

{

(1 − P )P
g′

P
ν′(c′, g′; cK)

}

The second curly bracket is always zero (recall that V A
P > 0 implies gA = 0).

The first curly bracket is maximized over all c′, ν′ if c′ = c′wp, see Lemma 12.

By choosing a rate of transfers g′ high enough, he can always ensure Ṗ > 0 and
set c′ = c′wp which must then be optimal. We thus have the following lemma:

Lemma 13 Consider a kink P̃ > 0 where V̄ ′
B,P = 0. Then, on the kink, limit

consistency requires that c′K = c′wp and ṖK ≥ 0. Analogously, if V̄A,P = 0, then

we have cK = cwp and ṖK ≤ 0.

A.3 Restrictions from value matching

In this section we describe the condition on policies on the left (A) and right side
(B) of a boundary P̃ between two smooth regions and prove the statements in
Proposition 2. Assume that inside A and B, respectively, the solution is smooth
and the Euler equations hold. At P̃ , however, we consider the possibility that
policies (i.e. consumption levels) jump, and thus value functions might have
kinks. We denote the left-hand limits of consumption at P̃ by C̄A = (C̄A, C̄′

A)
and the right-hand limits by C̄B = (C̄B, C̄′

B). Since both value functions must
be continuous at P̃ (see Lemma 11), certain conditions must be fulfilled by the
pair (C̄A, C̄B) since the two HJBs must equalize in the limit (value matching).
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Write her HJB (8) writing V̄P in terms of C̄ using the FOC (9) (and doing
the same for him) to obtain

ρV̄ = α ln C̄′ − C̄′

1 − P

[
1 + α

ρ
− P

C̄

]

︸ ︷︷ ︸

≡G(C̄,C̄′)

+ ln C̄ − 1
︸ ︷︷ ︸

≡H∗(C̄)

ρV̄ ′ = α′ ln C̄ − C̄

P

[
1 + α′

ρ
− 1 − P

C̄′

]

︸ ︷︷ ︸

≡G′(C̄,C̄′)

+ ln C̄′ − 1
︸ ︷︷ ︸

=H∗(C̄′)

.

Now, expressing consumption rates in terms of the agents’ own wealth, i.e. using
the identities c̄ = C̄/P and c̄′ = C̄′/(1 − P )), we obtain

ρV̄ = lnP + α ln(1 − P )
︸ ︷︷ ︸

≡f(P )

+ α ln c̄′ − c̄′
[
1 + α

ρ
− 1

c̄

]

︸ ︷︷ ︸

≡g(c̄,c̄′)

+ ln c̄ − 1
︸ ︷︷ ︸

≡h∗(c̄)

ρV̄ ′ = ln(1 − P ) + α′ lnP
︸ ︷︷ ︸

≡f ′(P )

+ α′ ln c̄ − c̄

[
1 + α′

ρ
− 1

c̄′

]

︸ ︷︷ ︸

≡g′(c̄,c̄′)

+ ln c̄′ − 1
︸ ︷︷ ︸

≡h∗(c̄′)

.

We see that two regimes (c̄A, c̄′A) and (c̄B , c̄′B) can only be consistent with value
matching if the following two value-matching (VM) conditions hold:

k(c̄A, c̄′A) ≡ g(c̄A, c̄′A) + h∗(c̄A) = g(c̄B, c̄′B) + h∗(c̄B) = k(c̄B , c̄′B) (22)

k′(c̄A, c̄′A) ≡ g′(c̄A, c̄′A) + h∗(c̄′A) = g′(c̄B, c̄′B) + h∗(c̄′B) = k′(c̄B , c̄′B) (23)

We see that this value-matching condition is independent of P̃ – this is not sur-
prising, since the HJBs in (k, k′) are independent of P̃ , too, and value matching
has to hold in (k, k′)-space as well.

We now want to determine what the relevant range for c̄B ≡ (c̄B , c̄′B) is. The
FOCs for consumption together with V̄P ≥ 0 and non-negativity of consumption
give us the following bounds:

0 ≤ C̄ ≤ ρ

1 + α
0 ≤ c̄ ≤ ρ

P̃ (1 + α)
(24)

0 ≤ C̄′ ≤ ρ

1 + α′
0 ≤ c̄ ≤ ρ

(1 − P̃ )(1 + α′)
. (25)

Note that these bounds do depend on P̃ , so we cannot neglect P̃ altogether
when trying to determine c̄B for a given c̄A.

In order to characterize the solution, it will be crucial to study the derivatives
of k. We start with the derivative in an agent’s own consumption:

∂k(c, c′)

∂c
=

1

c

(

1 − c′

c

)

,
∂k′(c, c′)

∂c′
=

1

c′

(

1 − c

c′

)

. (26)
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Fixing c′, k is decreasing in c for c < c′ (i.e. above the diagonal of the (c, c′)-
plane) and increasing in c for c > c′ (below the diagonal). For given c, k is
minimized by c′ = c.

The derivative in the other agent’s consumption is

∂k(c, c′)

∂c′
=

α

c̄′
−
[
1 + α

ρ
− 1

c̄

]

,
∂k′(c, c′)

∂c
=

α′

c̄
−
[
1 + α′

ρ
− 1

c̄′

]

. (27)

Note that if the bracket on the right-hand of (27) side is negative (c̄ ≤ ρ/(1+α)),
then an increase in c̄′ always leads to an increase in k. In this case, her marginal
value V̄P of having the wealth distribution tilted in her favor is so high that
this dominates the marginal value of common funds (1 + α)/ρ; she would set
infinite consumption for him if she had the choice (this is what the expression
c̄∗

′

= α/0 = ∞ is supposed to say). If the bracket is positive, ∂k/∂c′ is strictly
decreasing in c′ for fixed c.

It is useful to study the following related maximization problem:

k∗(c̄) ≡ max
c̄′

k(c̄, c̄′)

c̄∗
′

(c̄) ≡ arg max
c̄′

k(c̄, c̄′) =
α

max
{

1+α
ρ

− 1
c̄
, 0
} (28)

Since this is a strictly concave problem, the FOC (27) is sufficient. c̄∗
′

(c̄) has
the interpretation as the consumption rate that she would choose for him given
the slope of the value function V̄P that is consistent with a given consumption
rate c̄. k is increasing in c′ below the function c

′∗(c) (again in (c, c′)-space) and
decreasing in c′ above, as the FOC (27) shows.

A.3.1 Properties of c̄
′∗(·) and c̄∗(·)

Our goal will now be to show that (i) the unique intersection between the
functions c̄

′∗(·) and c̄∗(·) in the (c̄, c̄′)-plane is at the point (ρ, ρ), (ii) the graph
of c

′∗ lies above the graph of c∗ for values c̄ > ρ and (iii) c
′∗ lies below c∗ for

values c̄ < ρ.
We first re-write c̄

′∗(·) in the area where it is bounded:

c̄
′∗(c̄) =

1

1
ρ

+ 1
α

(
1
ρ
− 1

c̄

) .

Now, we invert this function and then reverse the roles of the two players to
obtain that graph of c̄∗ as a function of c̄′ in c̄:

c̃′(c̄) =
1

1
ρ

+ α′

(
1
ρ
− 1

c̄

) .

Inspection of the two functions makes clear that the claims above are true
whenever αα′ < 1, see also Figure 16 for an illustration. The functions fall on
top of each other in the case α = α′ = 1.
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Figure 16: kA < kρ and k′
A < k′

ρ (case 1)
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A.3.2 Properties of k∗(c̄) and k
′∗(c̄′)

By substituting c
′∗(c̄) into k(c̄, c̄′), it can be verified that k∗(·) has the following

properties:24

1. k∗ is smooth and strictly convex.

2. k∗ is uniquely minimized at c̄ = ρ.

3. limc̄→0 k∗(c̄) = limc̄→∞ k∗(c̄) = ∞.

The same is true for the function k
′∗(·), making the obvious adjustments. The

above properties together with the derivatives (26) and (27) imply that the point
(ρ, ρ) is the saddle point of both functions k∗(·) and k

′∗(·): Geometrically, c̄
′∗(c̄)

is the ridge of a mountain (the maximal point of the k-surface keeping c̄ fixed
and varying c̄′). At c̄ = ρ, this ridge attains its lowest point. The equivalent
statements hold for k

′∗(·) and c∗(·).
24It is worthwhile noting that these properties do not depend on the choice u(c) = ln c

for instantaneous utility. They can be derived generally for concave utility functions u(·)
satisfying limc→0 u(c) = −∞ and limc→∞ u(c) = ∞ using only the convexity properties of
Legendre transforms.
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A.3.3 Find c̄′ given c̄ to solve her VM

We will now study the following problem: Given a fixed c̄, find c̄′ to solve
k(c̄, c̄′) = kA (her VM). In order to find the solution(s), it will be useful to
study the function gc̄(c̄

′) ≡ g(c̄, c̄′). Obviously, gc̄(·) is smooth and concave, and
we have limc̄′→0 gc̄(c̄

′) = −∞.
There are two cases to consider:

1. c̄ > ρ/(1 + α): gc̄(·) attains its unique maximum at c̄
′∗(c̄) and we have

limc̄′→∞ gc̄(c̄
′) = −∞. There are the following sub-cases:

(a) k∗(c̄) > k(c̄A, c̄′A): There are two solutions; we denote the upper
solution by γ′

+(c̄) and the lower one by γ′
−(c̄). Of course, γ′

+(c̄) >

c̄
′∗(c̄) > γ′

−(c̄).

(b) k∗(c̄) = k(c̄A, c̄′A): There is exactly one solution γ′(c̄) = c̄
′∗(c̄).

(c) k∗(c̄) < k(c̄A, c̄′A): There is no solution.

2. c̄ ≤ ρ/(1 + α): gc̄ is globally increasing and limc̄′→∞ gc̄(c̄
′) = ∞. Thus

there is exactly one value for c̄′ that solves VM, which we denote by γ′
−(c̄),

since it lies below c̄
′∗(c̄) = ∞.

A.3.4 Characterization of γ-functions

Since k(·, ·) is a smooth function, both γ′
−(·) and γ′

+(·) will be smooth functions
(on the range where they are defined). The implicit-function theorem gives us

∂γ′

∂c̄
=

dc̄′

dc̄
= −

1
c̄

(

1 − c̄′

c̄

)

α
c̄′
−
(

1+α
ρ

− 1
c̄

) =
(c′ − c)c

cc′ + αc2 − 1+α
ρ

cc′
(29)

∂γ

∂c̄′
=

dc̄

dc̄′
= −

1
c̄′

(

1 − c̄
c̄′

)

α′

c̄
−
(

1+α′

ρ
− 1

c̄′

) =
(c − c′)c′

c′c + α′c′2 − 1+α′

ρ
c′c

, (30)

where of course we have to set c̄′ = γ′(c̄) along the graph of γ′(·) and c =
γ(c′) along the graph of γ(·). The denominator equals λ(c̄, c̄′) = ∂g(c̄, c̄′)/∂c̄′

(the distortive term in her Euler equation). Along γ′
+(·), λ is always negative,

which means that she would prefer him to consume less (we term this over-
consumption). Along γ′

−, λ is always positive, which means that she would
prefer him to consume more (which we term under-consumption).

Furthermore, we see that the numerator in (29) is zero if and only if c̄ = c̄′,
i.e. on the diagonal of the (c̄, c̄′)-plane; it is positive above the diagonal and
negative below. The denominator coincides with the FOC of the problem (28),
so it is zero on c

′∗(c̄), positive below and negative above. So γ′
+ (which lies above

c
′∗) is decreasing above the diagonal and increasing below it. γ′

− (which lies

below c
′∗) is increasing above the diagonal and decreasing below. Furthermore,
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Figure 17: kA ≤ kρ and k′
A ≥ k′

ρ (case 2)
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γ′
+ and γ′

− have infinite slope at the point where they cross the function c
′∗(c̄),

which is the point where the two solutions collapse to a single one; see the right
pink curve in Figure 18 for an illustration.

Since the diagonal c̄ = c̄′ plays a crucial role, it is useful to study the function
k(·, ·) along it. Define

ksymm(c) ≡ k(c, c) = (1 + α)

(

ln c − c

ρ

)

.

It is clear that ksymm(·) is smooth, convex, uniquely maximized at c = ρ and
that limc→0 ksymm(c) = limc→∞ ksymm(c) = −∞.

We will now characterize the γ-functions. It turns out that the value of k
on the saddle point kρ ≡ ksymm(ρ) = k(ρ, ρ) = (1 + α)(ln ρ − 1) plays a crucial
role in distinguishing different cases:

1. kA < kρ: For each c̄ ∈ (0,∞), γ′
+(c̄) and γ′

−(c̄) exist since k∗(c̄) > kρ for
all c̄. By the properties of ksymm, there are exactly two numbers cl (with
0 < cl < ρ) and ch (with ch > ρ) such that ksymm = kA. This implies
that γ′

− is a smooth function on (0,∞), is uniquely maximized at cl, is
increasing and above the diagonal for c̄ < cl and decreasing and below the
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Figure 18: kA ≥ kρ and k′
A ≥ k′

ρ (case 3)
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diagonal for c̄ > cl. γ′
+ is a smooth function on (ρ/(1+α),∞), is uniquely

minimized at ch, is decreasing above the diagonal and increasing below it.
The situation is illustrated in Figure 16.

2. kA > kρ: By the properties of k∗, there are exactly two values c1 < ρ
and c2 > ρ such that k∗(c1) = k∗(c2) = kA. No solution c̄′ exist to
k(c̄, c̄′) = kA on the range c̄ ∈ (c1, c2) since k∗(c̄) < kA, so the γ-functions
are not defined on this range. Also note that the γ-functions cannot cross
the diagonal since ksymm(c) ≤ kρ < kA.Thus γ′

− is an increasing function
that stays above the diagonal for c̄ ∈ (0, c1) and a decreasing function that
stays below the diagonal for c̄ ∈ (c2,∞). γ′

+ is a decreasing function above
the diagonal for c̄ ∈ (0, c1) and an increasing function below the diagonal
for c̄ ∈ (c2,∞). The situation is illustrated in Figure 18.

3. kA = kρ: By the same argument as in the case kA < kρ, γ′
+ and γ′

− are
defined for all values c̄ ∈ (0,∞), if we allow the coincidence
gamma′

+(ρ) = γ′
−(ρ) = ρ on the saddle point (ρ, ρ). Since k(·, ·) is dif-

ferentiable, level lines must be differentiable, too. So γ′
− must have the

same slope just left of ρ as γ′
+ has just right of ρ. Also, it must be that

γ′
− has slope smaller than unity just right of c = ρ: If γ′

− came out above
the diagonal, (29) tells us that its slope should be negative, which is a
contradiction. So ρ < γ′

+(c) < c for all c > ρ.This in turn implies that
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γ′
− comes out above the diagonal just left of ρ and that γ′

−(c) > c for all
c < ρ and ρ < γ′

+(c) < c. For the other two branches, we clearly have

γ′
+(c) > c

′
∗(c) > ρ for all c < ρ and γ′

−(c) < c
′
∗(c) < ρ for all c > ρ. The

situation is illustrated in Figure 19.

Another important property which is independent of the different cases is the
following: For c̄ large enough, the function γ′

+(c̄) always exists, stays below the
diagonal and is increasing. As c̄ goes to infinity, we have

lim
c̄→∞

γ′
+(c̄) = ∞ lim

c̄′→∞
γ+(c̄′) = ∞

Suppose this was not the case and there was a bound c̃′ to which γ′
+ converged.

Then (29) would tell us that the slope of γ′
+ approaches unity as c̄ grows large,

which is a contradiction to γ′
+ being bounded.

A.3.5 Find (c̄, c̄′) to solve both VM-conditions

We can now finally look at the different types of solutions to the system (22)
and (23) of both VM-conditions. The following is an exhaustive list of the
cases that arise. (Note that the arguments also provide algorithms to find the
respective solutions.)

1. kA ≤ kρ and k′
A ≤ k′

ρ, where one of the inequalities is strict: Without loss
of generality, assume that cl ≤ c′l, i.e. γ′

− crosses the diagonal closer to the
origin than γ− does.25

Then, there are exactly two solutions (see Figure 16 for an illustration):

(a) Following γ′
− to the right from cl on (i.e. on the range c̄ > cl), there

must be a unique intersection point of γ′
− with γ− (since γ′

− is de-
creasing in c̄, and γ− is increasing in c̄′ for c̄′ < c′l ≤ ρ, see A.3.4).
This is a solution where both under-consume (we are on the γ−-
parts), c̄B < ρ, c̄′B < ρ and c̄ > c̄′.

(b) Notice that cl is the lower solution to ln c − c/ρ − kA/(1 + α) = 0,
and c′l is the lower solution to ln c′ − c′/ρ − k′

A/(1 + α′) = 0. It
is easy to see that cl ≤ c′l implies ch ≥ c′h for the upper solutions.
Now, proceed similarly as in 1a: Follow γ+ upward from c′h (i.e. in
the range c̄′ ≥ c′h). Since γ+ is increasing in c̄′ and γ′

+ is decreasing
in c̄ function on (ρ/(1 + α), ch), there must be a unique intersection
point (c̄B, c̄′B). This solution is such that both over-consume, c̄B > ρ,
c̄′B > ρ and c̄ < c̄′. Note that on the other side of the diagonal (
barc > c̄′), the γ-functions cannot intersect due to the properties
described in A.3.4.

2. kA ≤ kρ and k′
A ≥ k′

ρ, where one of the inequalities is strict. See Figure 17
for an illustration.

25Just reverse the roles of the two in case the crossing is the other way around.
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(a) Again, follow γ′
− to the right from cl on (i.e. on the range c̄ > cl).

Note that γ− must cross c
′∗(·) on its way to c̄∗(·) by the ordering

of c∗ and c
′
∗ described in A.3.1. Since γ′

− always stays below c
′
∗,

there must be an intersection with γ+. Again, by the properties of
the γ-functions (see A.3.4) this must be the only intersection that γ′

−

can have with γ− and γ+. The solution has the property that both
under-consume, c̄B ≥ c̄′B and c̄′B ≤ ρ.

(b) Now, consider γ′
+. By the properties of γ+ and γ−, it is clear that

γ′
+ yield a solution to the right of the diagonal. When following γ′

+

to the left from ch, γ′
+ grows unbounded as c̄ → ρ/(1 + α). Since

γ+ grows unbounded in c̄′, there must be a unique intersection of γ′
+

and γ+. At this solution, both over-consume, c̄ ≤ c̄′ and c̄′ > ρ.

3. kA ≥ kρ and k′
A ≥ k′

ρ, where one of the inequalities is strict: There are
two cases to consider, depending on the value of k′ at (c2, γ

′(c2))
26; see

Figure 18 for an illustration (which corresponds to sub-case ).

(a) k′(c2, γ
′(c2)) ≤ k′

A: γ− must lie below (c2, γ
′(c2)) at c = c2. When

following γ′
− letting c increase from c2 on, at least one intersection

with γ− must take place since γ− must cut c∗ at some point, and c∗

is above c
′∗, which again lies above γ′

−. This intersection must be
unique, because k′ strictly increases when we follow γ′

− south-east
by the derivatives of k′ (which are analogous to (26) and (27)). This
solution is such that c > c′ and that both under-consume.

(b) k′(c2, γ
′(c2)) > k′

A: γ− must lie above (c2, γ
′(c2)) at c = c2. When

following γ′
+ letting c increase from c2 on, at least one intersection

with γ− must take place since γ′
+ grows unbounded. This intersection

must be such that c > ρ > c′, he over-consumes and she under-
consumes. In this case, we cannot rule out that another crossing
happens between γ− and γ′

+, so there might be another solution. We
could not find any such case computationally, though. Also, note
that this is the only case in which there can be mixed solutions, i.e.
where she over-consumes and he under-consumes.

We can follow the same procedure starting at the point (c′2, c
∗(c′2)) and

will find (at least) one more solution there.

4. kA = kρ and k′
A = k′

ρ: All γ-functions (for both agents) must contain
the point (ρ, ρ), which is one solution to the system. These properties
imply that there cannot be any other solution in the entire (c, c′)-space,
see Figure 19 for an illustration.

Note that having found a candidate solution (cB, c′B) (which is independent
of P ), of course we still have to check if it respects the bounds given in (24)
and (25), which depend on P .

26Recall that this is the locus where there is exactly one solution c′ for her VM given c, so

γ′

−
(c2) = γ′

+
(c2) = c

′
∗(c2), so we simply write γ′(c2)
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Figure 19: kA = kρ and k′
A = kρ (case 4)
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A.4 Euler equations: Different formulations

The Euler equations in terms of consumption rates (C̄, C̄′) out of the total
capital stock K are

−Ṗ
C̄P

C̄2
=

[
1

C̄
− 1 + α

ρ

]{

(ρ − C̄ − C̄′) − Ṗ

(1 − P )

}

+

[(
1 + α

ρ
− P

C̄

)

− α
(1 − P )

C̄′

]

C̄′
P

Ṗ
C̄′

P

C̄ ′2
= −

[
1

C̄′
− 1 + α′

ρ

]{

(ρ − C̄ − C̄′) +
Ṗ

P

}

+

[(
1 + α′

ρ
− (1 − P )

C̄′

)

− α′P

C̄

]

C̄P .

It is instructive to replace most of the terms in (C̄, C̄′) in the above equations
by consumption rates (c̄, c̄′) out of agents own capital stocks (k, k′):

−
[
1 − P

C̄

(
c̄′ − c̄

c̄

)]

︸ ︷︷ ︸

≡q1(P,c,c′)

C̄P =

[
1

C̄
− 1 + α

ρ

]

[ρ − c̄′]

︸ ︷︷ ︸

≡q3(P,c,c′)

+

[(
1

ρ
− 1

c̄

)

+ α

(
1

ρ
− 1

c̄′

)]

︸ ︷︷ ︸

≡q2(c,c′)

C̄′
P

(31)

−
[

P

C̄′

(
c̄ − c̄′

c̄′

)]

︸ ︷︷ ︸

≡q′

1
(P,c,c′)

C̄′
P = −

[
1

C̄′
− 1 + α′

ρ

]

[ρ − c̄]

︸ ︷︷ ︸

≡q′

3
(P,c,c′)

+

[(
1

ρ
− 1

c̄′

)

+ α′

(
1

ρ
− 1

c̄

)]

︸ ︷︷ ︸

≡q′

2
(c,c′)

C̄P

(32)
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where we note that
Ṗ = P (1 − P )(c̄′ − c̄).

We can write the Euler equations entirely in small consumption rates:

q1PcP + q2(1 − P )c′P = −q1c + q2c
′ − q3

q′2PcP + q′1(1 − P )c′P = q′1c − q′2c
′ + q′3

Note that q1 = q2 = q3 = q′1 = q′2 = q′3 = 0 when c = c′ = ρ. Then any
pair (cP , c′P ) is solution to the above system for given (P, c, c′). To study the
solutions in the neighborhood of (c, c′, P ) = (ρ, ρ, P ), we will linearize the above
equations around this point.

For this, we first calculate the partial derivatives of (qi, q
′
i)

3
i=1 in (c, c′) at

(c, c′) = (ρ, ρ) for a given P – note that all derivatives in P vanish since c =
c′ = ρ:

∂q1

∂c
= −1 − P

Pρ2

∂q1

∂c′
=

1 − P

Pρ2

∂q′1
∂c

=
P

(1 − P )ρ2

∂q′1
∂c′

= − P

(1 − P )ρ2

∂q2

∂c
=

1

ρ2

∂q2

∂c′
=

α

ρ2

∂q′2
∂c

=
α′

ρ2

∂q′2
∂c′

=
1

ρ2

∂q3

∂c
= 0

∂q3

∂c′
=

(1 + α) − 1
P

ρ

∂q′3
∂c

=
(1 + α′) − 1

1−P

ρ

∂q′3
∂c′

= 0

We then use these above to linearize the system around (ρ, ρ) – note that all
terms in ∆P vanish:

[

∆c

(
∂q1

∂c
P ∂q2

∂c
(1 − P )

∂q′

2

∂c
P

∂q′

1

∂c
(1 − P )

)

+ ∆c′

(
∂q1

∂c′
P ∂q2

∂c′
(1 − P )

∂q′

2

∂c′
P

∂q′

1

∂c′
(1 − P )

)](
cP

c′P

)

=

= ∆c

(

−∂q1

∂c
ρ + ∂q2

∂c
ρ − ∂q3

∂c
∂q′

1

∂c
ρ − ∂q′

2

∂c
ρ +

∂q′

3

∂c

)

+ ∆c′

(

−∂q1

∂c′
ρ + ∂q2

∂c′
ρ − ∂q3

∂c′
∂q′

1

∂c′
ρ − ∂q′

2

∂c′
ρ +

∂q′

3

∂c′

)

Simplifications yield

1

ρ

[

sin φ

(
P − 1 1 − P
α′P P

)

+ cosφ

(
1 − P (1 − P )α

P −P

)](
cP

c′P

)

=

= sinφ

(
1
P

0

)

+ cosφ

(
0

− 1
1−P

)

When setting ∆c = 0, we see from the second row (or equation) that cP and c′P
must be of opposite sign; the same is true for the solution when setting ∆c′ = 0.
The solutions to these two “extreme” problems are

cP (∆c, 0) = − 1

P (1 − P )

ρ

1 + α′
c′P (∆c, 0) =

1

P (1 − P )

α′ρ

1 + α′

cP (0, ∆c′) = − 1

P (1 − P )

αρ

1 + α
c′P (0, ∆c′) =

1

P (1 − P )

ρ

1 + α
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detA(φ) = −P (1 − P )
[
(1 + α′) sin2 φ + (1 + α) cos2 φ − (1 − αα′) cosφ sin φ

]

The following shows that A(φ) < 0 for all φ, so the above system has a unique
solution for all φ:

0 <
(√

1 + α′ sinφ −
√

1 + α cosφ
)2

=

=(1 + α′) sin2 φ + (1 + α) cos2 φ − 2
√

1 + α′
√

1 + α sin φ cosφ ≤ − A(φ)

P (1 − P )

where the last step follows from 2
√

1 + α′
√

1 + α > 1 ≥ 1−αα′ for any (α, α′).
As solution, we obtain

(
cP

c′P

)

(φ) =
1

A(φ)

(
sin2 φ + α cos2 φ

−α′ sin2 φ − cos2 φ

)

so obviously cP (φ) < 0 and c′P (φ) > 0 for all directions φ. Note that since
sin(φ+π) = − sinπ and cos(φ+π) = − cos(φ), A(φ) = A(φ+π) and cP (φ+π) =
cP (π). So completing half a circle leads to the same vector direction, as is
evident in Figure

Figure 20: cP around (ρ, ρ) (for α = α′ = 0.2)
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We are looking for an angle φ ∈ [0, π) such that
Since sin2 φ + cos2 φ = 1.
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The angle of the vector cP is

tan ξ(φ) = − (1 − α) sin2 φ + α

1 − (1 − α′) sin2 φ
≡ −N(φ)

D(φ)

It is easy to see that N ′(φ) has the opposite sign of D′(phi); tan ξ is maximized
at φ = 0 with value −α, it is decreasing on [0, π/2], takes its minimum at
φ = π/2 with value −1/α′ and increases again on [π/2, π).

A path c̄(P ) going through (ρ, ρ) must be such that ξ(φ) = φ, or equivalently
– since tan(·) is a strictly increasing function on [−π/2, π/2)–:

tan ξ(φ) = tanφ

Since tan ξ(φ) ≤ 0 for all φ and tan(φ) > 0 for φ > 0, there cannot be any
solution to this fixed-point problem on the range (0, φ/2). On [−π/2, 0], there
must exist at least one fixed point since tan(φ) goes crosses the entire range of
tan ξ(φ). BUT tan ξ LOOKS DECREASING ON THE FIGURE!
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