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1. Introduction 
 
”Of all empirical regularities observed in economic data, Engel’s Law is probably the 
best established...”,Houthakker (1957). This claim has been repeated frequently and was 
never seriously questioned. Given this unanimity of opinion, naturally, one expects that 
there is no ambiguity in the definition of Engel’s Law. Yet, as we shall show, this is not 
the case. 
 
Our original motivation for the present study was purely historical. We wanted to know 
exactly what Engel contributed in his two famous publications of 1857 and 1895, since 
there are concepts and claims attributed to Engel in the economic literature which 
certainly have nothing to do with Engel’s thinking or writings. 
 

Engel analysed in his publication “Die Productions- und Consumtionsverhältnisse des 
Königreichs Sachsen”(1857) income-expenditure data for Belgian working class 
households, which were collected by Ducpetiaux (1855). Engel summarized his insights, 
he speaks of a genuine step of induction [“auf dem Wege ächter Induction“] by the 
following statement that later has been called Engel’s Law: 
 
 (i) “je ärmer eine Familie ist, einen desto grösseren Antheil von der Gesamtausgabe 
muss zur Beschaffung der Nahrung aufgewendet werden“ [“the poorer a family, the 
greater the proportion of its total expenditure that must be devoted to the provision of 
food“]1. 
 
How this statement should be interpreted? Clearly, it refers to income or total expenditure 
and budget shares for food (food share for short) for different households in a given 
population at a given period and not to changing (different) income of a given household. 
Food share is sometimes defined as consumption expenditures in current prices on food 
items divided by income but also by consumption expenditure on food divided by ‘total 
expenditure’ which is defined as expenditures on a well-specified large class of 
consumption goods and services. 
 

                                                 
1 Translation by Stigler(1954), all other translations are by the authors. 



Engel‘s statement (i), taken literally, claims a decreasing functional relationship between 
family income and food share. But this is not what Engel wanted to assert since he 
amended on p.30 in his publication (1857):  
 (ii) “Freilich wird es auf Einzelne angewendet, nicht unter allen Umständen seine volle 
Richtigkeit behaupten, um so mehr aber in seiner Anwendung auf Bevölkerungsgruppen“ 

[Admittedly, applied to single households, it (statement (i)) will not be fully correct in all 
circumstances, yet it will be correct, if applied to groups of households.] 
 

Therefore, it is clear that Engel’s statement (i) concerns the bivariate distribution of 
income hx and food share hy  across a population H of households h, and the statement (i) 
together with the amendment (ii) express a negative stochastic association or dependence 
of x and y, that is to say, large (small) values of x “tend” to be associated with small 
(large) values of y. Precise definitions of such concepts of negative stochastic association 
of a bivariate distribution were not available in the literature at the time when Engel 
formulated his Law. This explains Engel’s somewhat unsatisfactory formulation of the 
Law by his statements (i) and (ii). It is easy, however, to fill this gap, since more than 150 
years after Engel, one can find many well-defined concepts of negative stochastic 
association for bivariate distributions in the statistical literature, e.g., Kruskal (1958) or 
Lehmann (1966). In section 2.1 we present four different such concepts: negative 
Kendall’s τ , negative quadrant dependence (Lehmann, 1966), decreasing population 
regression function and stochastically decreasing conditional food share distribution 
functions (Tukey, 1958). In the economic literature one generally defines Engel’s Law by 
a decreasing regression. This is, as we shall show, the least useful and least informative 
property. 
 
Engel analysed also other categories of consumption e.g., clothing, housing etc. 
However, Engel’s Law always refers to food share and to a comprehensive population 
defined largely by a certain geographical area or nationality, e.g, the population of 
Belgium working class families or the population of private households in Saxony. Engel 
did not assume that all households in the population are facing the same prices, nor that 
the households are identical in certain household characteristics. 
 
The goal of Engel in both articles (1857) and (1895) was to describe as carefully as 
possible an observed empirical regularity, he did not aim to explain deductively his Law 
by some postulates on individual household behaviour. This became the mainstream 
approach after Allen and Bowley (1935) [more details on this point at the end of the 
introduction and in section 2.2). 
 
Once a property of stochastic association for the population distribution is well defined, 
one can turn to the more difficult problem of how to make inferences about this property 
from random samples of the population (see section 4). It is this step, that is to say, going 
form the specific (property of the sample, i.e, data) to the general (property of the 
population distribution) which Engel might have had in mind when he wrote on page 8 
and page 28 in (1857) that he obtained his Law by a ‘genuine step of induction’. This 
does not mean, of course, that we claim that Engel based his ‘step of induction’ on a 
statistical theory of random sampling (hence a probabilistic model) but rather he relied on 



the idea of purposive sampling, i.e., the data is considered as “representative” for the 
population distribution. This explains why in the empirical literature on Engel’s Law one 
generally does not distinguish explicitly between the population distribution and the 
sample, i.e., data. This distinction, however, is necessary for testing statistical 
hypotheses. 
 
A property of a population distribution might be called a law if the class of populations is 
clearly specified for which serious attempts of falsification of the claimed property have 
not been successful. 
 
In interpreting an observed stochastic association between two variables X  and Y , as 
claimed by Engel for income and food share, one is constantly faced with the question or 
objection whether the association between X  and Y , in fact, is really (intrinsically) due 
to an association of each with a third variable Z . For this reason, most economists – yet 
certainly not Engel! - speak of Engel’s Law only if it refers to stratified subpopulations 
where “all” observable explanatory variables other than income (e.g., prices, household 
attributes and demographics) are held constant. For recent examples of insisting on this 
ceteris paribus clause see the articles in the New Palgrave (2nd ed.) by Browning (2008) 
and Lewbel (2008). However, without an explicit theory of individual household 
behaviour, which specifies a complete set of explanatory variables, the above objection 
remains since without such a theory there is always the possibility that a relevant 
explanatory variable is missing. For this reason, Allen and Bowley (1935) argued that the 
analysis of family budgets should be linked to micro-economic theory that is to say, to a 
model of individual household behaviour and to the derived theoretical concept of an 
individual demand function. 
 
We want to emphasize, however, that this link to micro-economics, which we shall 
discuss in section 2.2, is not in the spirit of Engel. Nowhere in Engel’s thinking or 
writings, has occurred the concept of an individual demand function. Utility-based 
demand functions were developed by Jevons and Walras in 1870’s. In 1857 Engel could 
not have known this concept. Also in his later contribution (1895) he did not use it. The 
micro-economic theory of a consumer and the notion of a utility-based demand function 
was mostly used as a logical tool to explore conceptually the properties of alternative 
market organization and economic policy. In empirical work utility theory played a less 
important role. Theorists in general were not engaged in empirical work. “The utility 
theorists as a class have always expressed the greatest enthusiasm for empirical work 
compatible with abstention from it” (Stigler, 1954).  
 
The paper is organized as follows: section two describes four concepts of negative 
stochastic association and the relationship of Engel’s Law with individual behaviour. In 
section three, the data from Ducpetiaux (1855) is presented with the re-interpretation of 
Engel’s original work and the statistical analysis of the empirical literature on Engel’s 
Law is presented. In section four two modern data sets which differ in place and time are 
used to provide empirical support for the concepts of association, which are presented in 
section 2.1.. Finally, in section five conclusion are drawn. 



2.1 Concepts of stochastic association 

 
In defining a notion of negative stochastic association of a general bivariate distribution 
which might serve as a candidate for defining Engel’s Law, it is convenient to consider a 
pair ( ),YX  of random variables whose joint distribution µ is the population distribution 
of income and food share across the population in question. Then, a realization of X  and 
Y  can be interpreted as income and food share of a randomly drawn household from the 
population. 
 
1. Negative Kendall’s τ (1938) 
The pair ( ),YX  of random variables (or its joint distribution µ ) is negatively associated 
in the sense of Kendall if  
(1)  {( )( ) 0} {( )( ) 0}

i k i k i k i k
P X X Y Y P X X Y Y− − > < − − <  

that is to say, if one chooses two households, say i and k, at random from the population 
under discussion, then observing discordance, i.e., ( )( ) 0

i K i K
x x y y− − <  is more likely 

than observing concordance, i.e., ( )( ) 0
i K i K
x x y y− − > . 

 
More generally, one can define a measure of the degree of stochastic association for any 
bivariate distribution µ , called Kendall’s τ  (tau), by 
 

}.|0))(({}|0))({(:)( kikikikikikikiki YYandXXYYXXPYYandXXYYXXP ≠≠<−−−≠≠>−−=µτ

 
It follows that 1 ( ) 1µ− ≤ τ ≤ + . If X  and Y  are independent, then 0)( =µτ  (not the 
converse) and )1(1)( +−=µτ  implies that there is a decreasing (increasing) functional 
relationship between X  and Y . Kendall (1938) gave a very thorough discussion of )(µτ  
and its associated sampling theory. The basic notion goes back to Fechner (1897) and 
Lipps (1906). 
 
 
2. Negative quadrant dependence (Lehmann (1966)) 
 
The pair ( ),YX  of random variables (or its joint distribution µ ) is negatively associated 
in the sense of Lehmann (or negatively quadrant dependent) if  
 
(2)  { | } { }P Y y X x P Y y≤ ≤ ≤ ≤ , for all x, y 
That is to say, the knowledge of X  being small (i.e., )xX ≤  decreases the probability of 
Y  being small (i.e., )yY ≤ . Or in other words, if one draws at random a household first 
in the entire population and second in the subpopulation of all households with income 
less than x , then, the probability of observing a food share less than y  in the first case is 
larger than in the second case. 
 
There is a very useful characterization: negative quadrant dependence is equivalent with  

0))(),(cov( ≤YX ψϕ  



for any non-decreasing functions ψϕ and  provided covariance is defined. It follows 
(2) implies (1), yet not the converse, and any linear least square fit of )(Yψ  on )(Xϕ  is 
non-increasing. 
A strenthening of (2), that we call monotone negative quadrant dependence, is defined by 
 
(2a)  { | }P Y y X x≤ ≤  is non-decreasing in x for every y, 

i.e. the conditional distribution function 
1

( | )
Y
F X x⋅ ≤  of Y stochastically dominates 

2
( | )

Y
F X x⋅ ≤  if 

1 2
x x< , i.e., the graph of 

1
( | )

Y
F X x⋅ ≤  lies below the graph of 

2
( | )

Y
F X x⋅ ≤ . This implies that ( | )E Y X x≤  is non-increasing in x. 

 
3. Decreasing regression 
 
The pair ( ),YX  of random variables (or its joint distributionµ ) has a decreasing 
regression of Y  on X  if 
 

(3)  
1 2

( | ) ( | )E Y X x E Y X x= ≥ =  

for any 
1 2
x x<  in the range of X , i.e., the mean food share of all households with 

income 
1
x  is larger or equal to the mean food share of all households with income 

2
x . 

 
This is the most popular definition of Engel’s Law in the economic literature. However, 
property (3) alone is not interesting from a distributional point of view since a decreasing 
regression does neither imply (1), a negative Kendall’s τ , nor (2), negative quadrant 
dependence. In other words, there are different distributions 

1
µ  and 

2
µ  with identical 

decreasing regression such that 
1
µ  satisfies property (1) or (2) yet 

2
µ  does not. The 

reason is that the conditional expectation )|( xXYE =  does not give sufficient 
information on the conditional distribution of Y  given .xX = This suggests to extend the 
monotonicity property of )|( xXYE =  in (3) to the conditional distribution function 

( | )
Y
F x⋅  which is defined by ( | ) { | }

Y
F y x P Y y X x= ≤ = , for all y. 

 
 
4. Stochastically decreasing conditional distribution functions (Tukey (1958)) 
 
The pair ( ),YX  of random variables (or its joint distribution µ ) is negatively associated 

in the sense of Tukey (1958) if the conditional distribution function ( | )
Y
F x⋅  of Y  given 

xX = is stochastically decreasing in x, i.e., for any 
1 2
x x<  in the range of X , 

 
(4)  

1 2
{ | } { | }P Y y X x P Y y X x≤ = ≤ ≤ =  for all y. 

Property (4) implies (3), yet (4) is much more restrictive, it also implies (2), (2a) and (1) 
(see Lehmann (1966) Lemma 4 and Corollary of Lemma 3). 



 
The decisive question now is which of these candidates (or possibly alternatives e.g. 
Gini’s or Spearman’s measure of concordance) should be chosen to define Engel’s Law? 
The answer is obvious. The chosen notions of association must have satisfactory 
empirical support. We discuss this important point in section 4. One expects that 
properties (1) and (2) will pass the test, yet the monotonic versions (2a), (3) or (4) might 
not hold over the whole domain of the income distribution. 
 
Remark: If one would have a priori knowledge on the functional form of the population 
distribution, then some of the above concepts might be equivalent. For example, in the 
case of a bivariate normal distribution each of the four concepts of negative association is 
equivalent with a non-positive correlation coefficient. Another example which is often 
considered in the statistical literature is the following case: the random variable y is 
defined by ε+= )(XmY  where X  and ε  are independent random variables. Then, 
properties (3) and (4) are equivalent. If )(Xm  is linear, then (X,Y) is either negatively or 
positively associated in the sense of Tukey (4), depending on the sign of cov(X,Y). 
 
2.2 Engel’s Law and Micro-Economics 

 

In the introduction we explained why Allen and Bowley (1935) argued that the analysis 
of family budgets should be linked to micro-economic theory, that is to say, to a model of 
individual household behaviour. Naturally, Allen and Bowley (and all their followers) 
model individual behaviour by the hypothesis of preference (utility) maximization under 
budget constraints. From this hypothesis one can derive a micro-economic behavioural 
relation (.)s  of the form 

,....),,( 21
hhhh vvxsy =  

where hx  denotes income of household ,h  the vector ,.....),( 21
hhh vvv =  consists of all 

parameters, other than income, which define the maximization problem and hy  denotes 
food share of household h . In the simplest case of an atemporal decision, one has 

),( hhh pv ≤= , where hp  denotes the price system which household h faces and h≤  is the 
preference relation of household h . 
 
In this micro-economic setting, a population of households is described by the 
behavioural relation (.)s  and a joint distribution π  of the explanatory variables x  and 
y . Let ),( VX  be a generic random variables with joint distribution π . The bivariate 

distribution µ  of income and food share which is relevant for Engel’s Law, is then given 
by the distribution of ),()),(,( YXVXsX ≡ . 
 
The following proposition answers the question which hypotheses on individual 
behaviour imply Engel’s Law and conversely, what are the implications of Engel’s Law 
on the postulated model of individual behaviour. 



Proposition: Consider a micro-economically defined population of households 

)],((.),[ VXs  such that X  and V  are stochastically independent, i.e.income x  and the 

vector v  of all explanatory variables other than income are independently distributed 

across the population.
2
  

(a) If all households’ budget share functions )(.,vs  for food are non-increasing, then 

the conditional distribution function of food share given income is stochastically 

decreasing in income, i.e., the joint distribution )),(,( VXsX  of income and food 

share is negatively associated in the sense of Tukey. Conversely, 

(b) If the range of X  is an interval ],[ ba , the range of V  is finite and households’ 

budget share functions )(.,vs  are continuous, then all budget share functions for 

food are non-increasing on (a,b) if the conditional distribution functions of food 

share are stochastically decreasing. 

 
In both conclusions one can not drop the independence assumption of (X,V). 
 
Proof: Independence of X  and V  implies that the conditional distribution function 

(. | ) ( , )
Y
F x of Y s X V=  given xX =  is the distribution function of the random 

variable ).,( Vxs  Indeed, 

 
{ ( , ) }

{ ( , ) | } { ( , ) }
{ }

P s x V y and X x
P s X V y X x P s x V y

P X x

≤ =
≤ = = = ≤

=
. 

(a) If )(.,vs  is non-increasing, one obtains 
1 2

{ ( , ) } { ( , ) }P s x V y P s x V y≤ ≤ ≤  for 

1 2
x x<  in the range of X  and all y , which proves the claim. 

(b) Since (., )s v  is continuous on (a,b) for every 
1

(a,b)x ∈  there is 

2 1 2
 (a,b), x x x∈ <  such that 

1 2
( , )x x x∈  and 

1 1
s( ,v ) < s( ,v )

i j
x x  implies 

2 2
s( ,v ) < s( ,v )

i j
x x . Note there are only finitely many '

k
v s . If there exists 

1 2
( , )x x x∈  such that for some 

k
v , 

1
s( ,v ) < s( ,v )

k k
x x  then one obtains a 

contradiction to the assumption that ( | )
y
F x⋅  is stochastically decreasing in x. (Note, 

that the weaker property of a decreasing regression would not lead to a contradiction.) 
Hence 

1
s( ,v)  s( ,v)x x≥  for all 

1 2
( , )x x x∈  and all v, which proves that s( ,v)⋅  is 

non-increasing in (a,b). 
 
Remark: The proposition is a purely theoretical result without empirical content. This, 
unfortunately, is typical for many results in economic theory! Part (a) of the 
proposition can not be viewed as a micro-economic explanation (deductive 
derivation) of Engel’s Law – even if one accepts as evident the assumption on 
households’ behaviour - since it refers to a population which can not be identified. 

                                                 
2 This independence assumption does not imply that (X,Y) satisfies a standard assumption made in 
regression analysis, i.e., ( )Y m X ε= +  where X and ε  are stochastically independent. For this 

conclusion one needs that ( , )s ⋅ ⋅  is separable, i.e., 
1 2

( , ) ( ) ( )s x v s x s v= + . 



Indeed, typically some of the explanatory variables in the vector V are unobservable 
(e.g., preference parameters or expectations). The standard practice to consider 
subpopulations by stratifying on “suitably chosen” observable household attributes 
(demographics) does not resolve the difficulty, since there is no guarantee that (X,V) 
becomes independent if conditioned on the ad hoc or “suitably” chosen households 
attributes. In any case, Engel did not formulate his Law for such hypothetical 
homogeneous subpopulation but rather for comprehensive populations which are 
defined by geographical area. For the same reason, part (b) of the proposition does 
not allow the conclusion that households’ budget share functions for food can be 
assumed to be non-increasing since it is not clear at all whether the required strong 
negative association in the proposition holds for the subpopulation in question(see 
section 4). 

  
3. Empirical support of Engel’s Law in the literature 

 

3.1. Engel (1857) and (1895): An early non-parametric statistician 

 

“The first and most famous of all statistical analyses of budgets was made in 1857” 
[Stigler (1954), p. 209]. We can add, it is also the first non-parametric statistical analysis 
of budgets [Härdle (1990), p. xi]. 
 
Engel analysed income-expenditure survey data for Belgian working class families, 
which were collected by the Provincial Statistical Commission and were procured under 
the direction of Edouard Ducpetiaux (1855). The commission defined three socio-
economic categories: (1) families dependent upon public assistance; (2) families just able 
to live without such assistance; and (3) families in comfortable circumstances. For each 
commune in the nine provinces one family of each category were chosen, resulting in 199 
families. Moreover, most families consisted of a father, mother and four children whose 
ages were 16, 12, 6 and 2 respectively. This family composition was considered by the 
commission as ‘typical’ for Belgium resulting in a ‘representative’ data-set. This view 
was criticized by Engel (1895) p. 23. The published data in Ducpetiaux(1855) contained 
for all 199 families’ information on income, expenditure on food items and many other 
consumption goods and services as well as for 153 families the belonging of the social-
economic category. 
 
Discussing the quality of the survey data Ducpetiaux observes [1855, p. 17] that for many 
families total expenditure exceeds income (for 19 families out of 199, even food 
expenditure exceeds income) since in some communes not actual expenditure on food but 
the need for food is reported. “Cet fait provient sans doute de ce que les recettes on été 
calculées d’après les salaires réelment gagnés, tandis que les dépenses on été indiquées 
d’après les besoin constatés des ménages, abstraction faite de ce que ceux-ci dépensent 
effectivement.” 
 
By modern standards, Ducpetiaux’s data is not satisfactory, empirical results based on 
this data should be taken with caution! However, they were among the first. Interest in 
family budgets had its beginning in England at the close of the eighteenth century(see 



D.W. Douglas, “Family Budgets”, Encyclopaedia of the Social Sciences, London): 
Arthur Young(1771), David Davies(1795), Sir Frederick Eden(1797) or Le Play(1855). 
Engel analyzed in (1857) Ducpetiaux’s data only in tabulated form (see tables 1 and 4-6 
in Engel (1857)). We ignore whether Engel also looked at a graphical representation. If 
so, he would have obtained the following scatter plots 3.1a and 3.1b. 
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Figure 3.1a: Food share against total expenditure  
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Fig 3.1b: Food share against income 
 
* represents first socio-economic category, + represents 2nd category and ▀ represents 3rd 
category. 
 
These scatter plots of Ducpetiaux’ data suggest some degree of ‘negative association’ 
between income and food share. In fact, Kendall’s τ  in figures 1a and 1b are -0.19 and -



0.21 respectively. Yet, as we explained in the introduction, Kendall’s τ  or other 
measures of association, as discussed in section 2.1, were not known in 1857.  
 
To give empirical support to his statements (i) and (ii) (see Introduction), Engel 
computed “category food share”, i.e., the ratio of mean food expenditure and mean 
income (or mean total expenditure) across each of the three categories, and obtained the 
following table  
 
Table 3.1a: Reproduced from tables 4 and 6 of Engel (1857) 

 
category Category 1 Category 2 Category 3 
mean income 565.0 796.7 1197.8 
total expenditure 648.7 845.5 1214.5 
food share out of income 81.4 71.5 63.3 
food share out of total expenditure  70.9 67.4 62.4 
 
Thus, as Engel claimed in his statement (ii) (see Introduction), the smaller the mean 
income of the category, the larger its food share. Note, however, that the three categories 
are socio-economic groups. These are not income classes since their income-ranges 
overlap considerably, as can be seen from figures 3.1a and 3.1b. Engel was aware that his 
findings of table 1 are not a satisfactory support for his law. Indeed, he wrote in his 
publication in 1895, p. 36: “In meiner Abhandlung aus dem Jahre 1857 habe ich 
nachgewiesen, zu welchem Schlusse diese Ergebnisse berechtigen. Die Berechtigung 
wird unleugbar grösser, wenn man das subjective Ermessen, ob man es mit einer 
dürftigen, auskommenden oder sparfähigen Familie zu thun habe, ganz bei Seite lässt und 
die Klassifiktation der Budgets lediglich sowohl nach der Höhe der Jahreseinnahmen als 
auch nach der Höhe der Jahresausgaben jeder einzelnen Familie vornimmt.“ [In my study 
of the year 1857 I have shown to which conclusion these results lead. The justification 
becomes undeniably stronger if one puts aside all together the subjective judgment of 
whether one deals with a family classified as on relief, poor but independent or 
comfortable, and instead classifies the family exclusively according to income per year as 
well as the level of expenditure per year.] 
 
Engel defined first eighteen income classes, but later reduced it to five, in order to have 
more observations in each class. Then he computed, analogously as for the three socio-
economic categories in (1857), for every income class the ‘food share’, and obtained 
again the result: the lower the income class the higher its food share. This is described in 
the following table 3.1b. 
 
 
 
 
 
 
 
 
 
 



 
 Table 3.1b: Reproduced from Table 2 of Engel (1895)* 

 
income class 

1

600

I

x ≤
 

2

900600

I

x ≤<
 

3

1200900

I

x ≤<
 

4

20001200

I

x ≤<
 

5

2000

I

x >
 

mean total 
expenditure 

501.63 762.09 1010.44 1460.99 2306.41 

mean food 
expenditure 

356.07 516.66 665.92 904.95 1444.27 

income class 
‘food share’ 

70.98 67.79 65.90 61.94 62.62 

mean food 
share 

70.89 67.68 65.90 62.35 62.08 

Numbers of 
observations 

42 70 46 35 6 

*Number of observations are reproduced from table 2 of Engel (1895) based on total expenditure according 
to Ducpetiaux report. Mean values are calculated by taking total expenditure as reported in Ducpetiaux, not 
as reported in Engel (1857). 
 
Comment: To match the number of observations within each class, as reported in Engel 
(1895), one has to take total expenditure according to Ducpetiaux, not as reported in 
Engel (1895). There are some discrepancies between Engel’s reported total expenditure 
(1857) and Ducpetiaux reported total expenditure [52 out of 199]. Engel’s reported 
values [Summe der Ausgaben pro familie, table 2 page 38 1895 article] are wrong even 
when one takes total expenditure data as reported by himself in 1857. 
 

 
Figure 3.1c: Graphical Representation of income class food shares of Table 2. 
 
We now claim that the step function in Figure 3.1c which we call the Engel smoother was 
viewed by Engel as a non-parametric estimator for the unknown population regression 
function. Note, that the step function in figure 3.1c is not a regressogram since the mean 
of households’ food shares across an income class (which defines the regressogram) is 
different from the category ‘food share’, calculated as the ratio of mean food expenditure 
and mean income. The difference, however, is small for narrowly defined income classes, 
since 
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The following figure shows Engel’s smoother of figure 3.1c and the corresponding 
regressogram where 09.01 =∆ , 11.02 =∆ , 00.03 =∆ , 41.04 =∆ , 54.05 =∆ . Note, the 
sample regressogram is decreasing while Engel’s smoother is not decreasing in the last 
step. 
 
 

 
Figure 3.1d: Comparison of Regressogram and Engel’s smoother 
 
Thus asymptotically (for more and more narrowly defined income classes), there is no 
difference between Engel’s smoother of figure 3.1c and the corresponding regressogram. 
Collomb (1977) and Lecoutre (1983) have shown that for suitably chosen income classes 
the regressogram of a random sample is a non-parametric estimator for the population 
regression function with good statistical properties. Since a regressogram is a special 
Kernel estimate [Härdle (1990), p. 67], we have linked Engel’s statistical analysis to 
modern non-parametric Kernel estimation. 
 
In summary, Engel’s statistical analysis in support of his law is non-parametric. For the 
given data set of Ducpetiaux he computed his version of a regressogram, the Engel 
smoother, which he considered as an estimator for the population regression. Of cause, 
Engel could not show that this estimator has good statistical properties. Note, the 
Ducpetiaux’ data set is not a random sample from the population distribution. Engel 
probably did not feel the need to distinguish between the observed sample property and 
the claimed population property, since the data was typically viewed as ‘representative’. 
We emphasize that Engel never assumed a parametric functional form of the population 
regression. This is the reason why Engel did not use any curve fitting method that were 
known at his time, in particular, the method of linear least square- which Engel should 



have known, since this method was published 50 years earlier [Legendre (1805) and 
Gauss (1809)]. The non-parametric approach to study Engel’s Law was given up in the 
first part of the 20’ century in favor of parametric (linear) regression analysis, most likely 
for computational reasons. After high speed computers became available non-parametric 
methods – more than 100 years after Engel – were used again for analysing large cross 
section data (see section 3.3). 
 
Remark: 

In contradiction to our claim in the summery, one can find in the literature (e.g. 
Houthakker(1957)) the view that Table 8 in Engel(1857) is evidence for a parametric 
analysis, since the scatter plot of food expenditure hc  against income h

x  in a double 
logarithmic scale seems to lie on a straight line. 
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                              Figure 3.1e 

 

Engel wanted to illustrate his Law by his Table 8. However he did not explain how, if at 
all, he obtained Table 8 from Ducpetiaux’s data-set [see Perthel(1975) for an attempt to 
solve this puzzle]. There are at least two arguments against the above view. First the 
scatter plot )log,(log nh cx  in Figure 3.1e does not really lie on a straight line – even if 
one allows for random errors. This can easily be seen by looking at a scatter plot of 

log hy )log(
h

h

x

c
=  against log hx , which shows a clear nonlinear shape. 
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Figure 3.1f 

 
Note that the scatter plot (log , log )h hx y  lies on a straight line if and only if 

)log,(log nh cx does so. 
 
Second if Engel would have had in mind a linear relation between log income and log 
food share why then he wrote on p. 30 “Das Gesetz, mit welchem man es hier zu thun 
hat, ist kein einfaches” [The Law, with which one has to deal here, is not a simple one.] 
and further more “… so entsprechen die Ausgaben folgender 8. Tabelle ziemlich nahe 
den Bedingungen des Gesetzes, obschon diese selbst noch nicht auf einem präzisen 
mathematischen Ausdruck gebracht werden konnten.” [the data in the 8th Table represent 
rather well the conditions of the law, even so the law itself could not yet be expressed in a 
precise mathematical expression.] 
 
3.2 Econometric Studies on Engel’s Law: Parametric regression analysis 

 

The early econometric literature on Engel’s Law is bases on the linear least square 
regression model e.g, Allen and Bowley (1935), Working (1943), Prais and Houthakker 
(1955), Houthakker(1957) and Leser (1963). This literature can be summarized as 
follows: one selects a specification of a relationship between income x  and food share y  
which is of the form  

( ) ( ), [ , ]y a b x xψ ϕ α β= + ∈  
where yy ~)( =ψ  and xx ~)( =ϕ  are known increasing transformations and ba,  are 
unknown parameters. The above quoted literature differs in the choice of ψ  and ϕ , e.g., 
in Allen and Bowley ( ) 1/ , ( )x x y yϕ ψ= − = , since they assume that food expenditure is 
linear in income; in Working ( ) log , ( )x x y yϕ ψ= = ; in Leser ( ) , ( )x x y yϕ ψ= = ; and 
in Houthakker ( ) log , ( ) logx x y yϕ ψ= = . The problem with this literature is the ad hoc 
choice of the functional form of the relationship between income and food share. There is 
no theory which justifies a particular choice. Computational simplicity alone is not 
sufficient. 



 
Given a distribution µ  of income and food share, one considers the linear least square 

smoother (fit) of the transformed distribution µ~  defined as the straight line 

* *y a b x= +ɶ ɶ  which minimizes the expression 

∫ −−=−− .~)~~())()(( 2 µϕψ dxbayXbaYE  It is well-known that  

))(var(
))(),(cov(

),,(*
X

YX
b

ϕ

ψϕ
ϕψµ = and ))((),,(*))((),,(* XEbYEa ϕϕψµψϕψµ −= . 

Obviously, there is no a priori reason why the conditional expectation )
~

|
~

( xXYE =  
should be linear in x  on the whole range of the income distribution. If it happens to be 
the case3 (possibly after truncation on an interval [ , ]α β ), then the regression 

)
~

|
~

( xXYE =  is equal to the linear least square smoother. Invariably one obtains, for the 
data sets of income and food share which are analysed in the literature, and for the above 
specifications of ),( ϕψ - as well as for many other choices - that the linear least square 

smoother is decreasing. This is equivalent with 0))(),((cov <yx
s

ψϕµ , where the 

covariance is taken with respect to the sample distribution
sµ . 

 
This very robust empirical regularity, or its population distribution analogue, is often 
regarded in the literature as Engel’s Law. Of course, for a clear definition, one ought to 
specify the class of transformations ),( ϕψ , for which ))(),(cov( YX ψϕ  is supposed to be 
negative. The larger this class of transformations, the stronger would be the law. Recall, a 
distribution µ  is negatively quadrant dependent (definition 2, section 2.1) if and only if 

0))(),((cov ≤YX ψϕµ  for all increasing ϕ  and ψ .  

 
Certainly, however, the above empirical regularity alone is not sufficient to derive a 
satisfactory statistical support (not to say a test) for any of the four candidates of Engel’s 
Law which we discussed in section 2.1. For this, one needs suitable a priori knowledge 
on the structure of the population distribution. But where should this knowledge come 
from? 
 
Interestingly, a standard assumption of independence between the random variables X  
and ε in linear regression analysis such as εβϕαψ ++= )()( XY  where α and β  are 
unknown parameters, alone implies almost what one wants to show. Indeed, this 
assumption implies that ( ( ), ( ))X Yϕ ψ  and hence also ),( YX  is either negatively or 
positively associated in the sense of Tukey (Def. (4) section 2.1) as 0β ≤  or 0β ≥ . 
Therefore the data are only needed to decide which case is prevailing and for this it is 
sufficient to know the sign of ),cov( YX . 
 
 
                                                 
3 For the FES data it has been shown that it is very unlikely that any of the above transformations(ϕ , ψ ) 
lead to a linear regression on the whole support of the income distribution. See Härdle and Jerison(1991) 
for support of this claim. 



3.3 Non-parametric Regression Analysis 

 

As explained in section 2.1. Engel seems to be the first – certainly in the economic 
literature – who proposed a non-parametric estimator for the regression function of a 
general bivariate distribution. The statistical properties of Engel’s estimator (or 
alternative ones such as regressogram- or kernel-estimator) were developed much later in 
the mathematical statistical literature, starting in the 1960’s. Today this is a well-
developed field; for standard references see Härdle(1990), Simonoff(1996) or Li & 
Racine (2007) . The first applications of these non-parametric methods to Family Budgets 
and Engel’s Law appeared in the economic literature in the 80’s and early 90’s of the last 
century: see K. Hildenbrand and W. Hildenbrand(1986), Härdle and Jerison(1988) and 
(1991), Bierens and Pott-Buter(1990), Lewbel(1991), Blundell et al(1993), Engel & 
Kneip (1996). 
 
Non-parametric methods allow one to compute a uniform confidence region for the 
estimated regression. This region can be used to test hypotheses about the form of the 
underlying regression function. The large empirical literature for different populations 
varying in time and space supports well the hypothesis of a decreasing regression of food 
share on income or total expenditure if one neglects the near boundary region of the 
income distribution. 
 
 
4. New empirical Support of Engel’s Law: Four Measures of Stochastic Association 

 
In this section, two large data sets on consumption expenditure  are considered; one from 
UK: Family Expenditure Survey (FES) and one from India: Consumer Expenditure 
Survey of National Sample Survey Organization (NSSO), which not only vary in terms of 
place of origin and time, but also in terms of its size. To save space we represent here 
only the results for FES in 1994 and for NSSO in 2005. FES data consists of 6657  
observations after omitting extreme observations and for this data set not only total 
expenditure, but also income data are reported. 4  The consumer expenditure data for the 
rural population in India consists of 63028 observations. For the Indian data only total 
expenditure is reported.  
 
4.1: Kendall’s τ  
The sample estimates of Kendall’s τ  with confidence interval for these two data sets are 
reported in table 4.1 a. Similar values are abtained for other years. No structural 
assumption of the population distribution is required here except that  both YandX are 
assumed to be distributed continuously. Given a random sample of size n of observations 

),( ii YX , we may estimate and test the population values of Kendall’s τ by the 

corresponding sample statistics τ̂  using the relative frequencies for each pair of 
                                                 
4 In the FES data set two definitions of  income and total expenditure are used; one is including (before) 
and other is excluding (after) housing costs within which gross rent, water-electricity charges, council 
water charges, mortgage etc are included.  We use both total expenditure and income after housing cost 
because of the compatibility with the Indian data, where total expenditure in computed without considering 
housing cost. 



observations.  The details of the calculation of sample statistics is given in Newson’s 
(2002) which is based on Hoeffding’s  U-statistics (1948).  The confidence limits are 
calculated by jackknifing the U-statistics (Arvesen (1969)). 
 

Table 4.1a: Estimates of Kendall’s τ   

 
Measures τ  95% confidence interval 
Estimates of Kendall’s  τ  for food share and tex_ahc* (FES) -0.38 -0.39                  -0.37 

Estimates of Kendall’s  τ  for food share and inc_ahc** (FES) -0.40 -0.41                  -0.39 

 
Estimates of Kendall’s  τ  for food share and total 
expenditure (NSSO) 

-0.63 -0.633              -0.626 

Data source: Family Expenditure Survey (FES) 1994 & National Sample Survey data of India (NSSO)  
61st round, 2005. 

• *Food share is calculated by dividing expenditure on food only by total expenditure after 
subtracting housing cost(tex_ahc).  

• ** Food share is calculated by dividing expenditure on food only by income after subtracting 
housing cost(inc_ahc). 

 
The consideration of subpopulations has important implications on individual behaviour , 
which is described in section 2.2. A large number of subpopulations of FES  and NSSO 
have been analysed. In all cases estimates of Kendall’s τ  and the entire confidence 
interval are negative. For a small selection of subpopulations, the relevant statistics are 
presented in the following table 4.1b.5  The description of the subgroups is given in the 
following table. 
 
Description of subgroups 
 

Subgroups from FES  Groups  
Group 1: 2 adults &Employed  (864) Group 1:Hindu, SC-ST, AL & 2 

Adults  (468) ^ 
Group 2: 2 adults &Unoccupied (983) Group 2: Hindu, OBC & 2 

Adults+1 Baby [0-5 years age] 
(565) 
Group 3: Hindu, Upper Caste & 2 
Adults+1 baby+1 adult child [6-15 
years age] (279) 

Group 3: 2 adults& Self-employed (190)* 

Group 4: Muslim & 2 Adults (416) 
 
*Employment status describes the status of household head.  
^ Castesd are indicated by: SC-ST: Scheduled caste and Scheduled Tribe, OBC: Other backward caste. : 
AL: agricultural labour : indicates household main occupation. 
 
 

 

                                                 
5 The relevant statistics, presented  here for UK data, are for food share out of total expenditure. Similar 
results are observed for food share and income after housing cost. 



 

 

4.1b:  Kendall’s τ  for subgroups from UK (FES) and Indian (NSSO) data 
 
Subgroups from FES data Kendall’s τ  

 
95% confidence interval 

Group 1 (864)            -0.40 
 

[-0.44                    -0.36] 

Group 2 (983) 
 

           -0.50 
 

[-0.53                    -0.46] 

Group 3 (190)             -0.40 
 

[-0.49                     -0.31] 

Subgroups from NSSO data  Kendall’s τ  
 

95% confidence interval 

Group 1 (468)            -0.23 
 

[-0.29                     -0.17] 

Group 2 (565)            -0.31 
 

[-0.36                     -0.25] 

Group 3 (279)            -0.32 
 

[-0.40                    -0.25] 

Group 4 (416)            -0.33 
 

[-0.38                     -0.27] 

 
 
4.2 Quadrant dependence 
 
Lehmann’s (1966) quadrant dependence condition, as described in  definition 2 in section 
2.1, can be formulated in terms of stochastic dominance of cumulative distribution 
functions (CDF’s); the marginal distribution function of food share )(yFY  and the 

conditional distribution function )|( xXyFY ≤  for any income level x . Hence the null 
and alternative hypotheses are formulated as:         
 )()|(:0 yFxXyFH YY ≤≤  for all y and x  

           )()|(:1 yFxXyFH YY >≤  for some y.                                    

   

In this paper we follow the test proposed by Barrett and Donald (2003). They assume 
continuity of the two CDF and  allow for  random samples of different sizes n and m,  
from two distributions  )|( xXyFY ≤  and )(yFY  respectively. The test statistic for 

testing the hypothesis is ))(ˆ)|(ˆ(supˆ
1 yFxXyF

mn

mn
S YY

y

−≤
+

×
=  where yF̂  denotes the 

empirical distribution function.  The P-values for stochastic dominance have closed-form 
distribution                   .. 
 
For presentation purpose, we consider only three conditional CDF of food share given  
three particular values of total expenditure; first at a 25th quantile ( 1x ),  second at median 

( 2x ) and third at 75th quantile ( 3x ) of total expenditure. For each particular values of x , 
the test is proceeded in two-steps: first  by examining if the conditional CDF of food 
share for a particular quartile of total expenditure level )|(. xXFY ≤ stochastically 

))ˆ(2( exp 2
1S−



dominates  the marginal CDF of food share for the whole sample; and then in the second 
step  one tests if  (.)YF  stochastically dominates )|(. xXFY ≤ .  If we fail to reject the 

first step but can reject the second step, we conclude that )|( xXyFY ≤    stochastically 

dominates )(yFY . If we reject or fail to reject both steps of the test, we conclude that there 
is no stochastic dominance relation between the two distribution functions. 
  
 The following tables 4.2a and 4.2c present the p-values for UK (FES) and Indian 
(NSSO) data for the whole data and for  subgroups respectively.  
  
Table 4.2a:  Negative quadrant dependence (P-Values) 
 

 (FES) qtlthX 25≤  qtlthX 50≤  qtlthX 75≤  

)|(. xXFY ≤  SD 

(.)YF * 

0.99 0.99 0.99 

(.)YF SD 

)|(. xXFY ≤  

 

0.00 0.00 0.00 

)|(. xXFY ≤ SD 

(.)YF  
** 

1.00 1.00 0.99 

(.)YF  SD 

)|(. xXFY ≤  

0.00 0.00 0.00 

 

 (NSSO) qtlthX 25≤  qtlthX 50≤  qtlthX 75≤  

)|(. xXFY ≤  SD 

(.)YF  

0.99 1.00 1.00 

(.)YF  SD 

)|(. xXFY ≤  

 

0.00 0.00 0.00 

• * & **: As described in the footnote of  table 4.1a 
 
We also plot the CDFs for both FES and NSSO only for three different values of total 
expenditure, shown in figures 4.2a and 4.2b6. These plots suggest that even monotone 
negative dependence (definition 2a in section 2.2) prevails.  
 

                                                 
6 Similar pattern in the plot is observed for FES data corresponding to income level, which are available 
from the authors on request. 



4.2a:  Negative quadrant dependence for FES whole sample 
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4.2b:  Negative quadrant dependence for NSSO whole sample 
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Both results, the p-values and the graphs, indicate the fact that for UK as well as for 
Indian data, the probability of smaller food share is considerably less for a lower range of 
total expenditure (X), as compared to the whole range of total expenditure.  We also test 
for monotone negative quadrant dependence (definition 2a in section 2.2) using the 
conditional CDF’s for three different values of total expenditure, namely 25th quantile 
(CDF25th) , 50th (CDF50th) and 75th quantile (CDF75th). Therefore, using the stochastic 
dominance test, as described above, we test the null hypothesis  

)|()|(: 210 xXyFxXyFH YY ≤≤≤  for all y and 21 xx < .  The p-values are described  in 
table 4.2b for the whole sample. The diagrams and p-values for the whole sample support 
well the property of monotone quadrant dependence, which is stronger than Lehmann’s 
negative quadrant dependence. 
 



Table 4.2b: Monotone Negative Quadrant dependence (P- values) for the whole 

sample 
FES P-values 

)|()|( 21 xXyFxXyF YY ≤≤≤ * 1.00 

)|()|( 12 xXyFxXyF YY ≤≤≤ * 0.00 

)|()|( 32 xXyFxXyF YY ≤≤≤ * 0.99 

)|()|( 23 xXyFxXyF YY ≤≤≤ * 0.00 

)|()|( 21 xXyFxXyF YY ≤≤≤ ** 0.99 

)|()|( 12 xXyFxXyF YY ≤≤≤ ** 0.00 

)|()|( 32 xXyFxXyF YY ≤≤≤ ** 0.99 

)|()|( 23 xXyFxXyF YY ≤≤≤ ** 0.00 

NSSO  

)|()|( 21 xXyFxXyF YY ≤≤≤  0.99 

)|()|( 12 xXyFxXyF YY ≤≤≤  0.00 

)|()|( 32 xXyFxXyF YY ≤≤≤  1.00 

)|()|( 23 xXyFxXyF YY ≤≤≤  0.00 

* & **: As described in the footnote of  table 4.1a 
Next, we consider the subgroups from each set of data. We only present the p-values for 
all subgroups, not the graphs in order to make the presentation less cumbersome7. 
 
4.2c Negative quadrant dependence for subgroups from UK (FES) and Indian 

(NSSO) data (P-values) 
 
Subgroups from 

FES data 
qtlthX 25=  qtlthX 50=  qtlthX 75=  

)|(. xXFY ≤  SD 

(.)YF * =0.99 

)|(. xXFY ≤  SD 

(.)YF * =0.99 
 

)|(. xXFY ≤  SD 

(.)YF * =1.00 

Group 1 (864) 

(.)YF SD )|(. xXFY ≤  
=0.00 

(.)YF SD )|(. xXFY ≤  
=0.00 

(.)YF SD )|(. xXFY ≤  
=0.00 

)|(. xXFY ≤  SD 

(.)YF * =0.99 

)|(. xXFY ≤  SD 

(.)YF * =1.00 

)|(. xXFY ≤  SD 

(.)YF * =1.00 

Group 2 (983) 
 

(.)YF SD )|(. xXFY ≤  
=0.00 

(.)YF SD )|(. xXFY ≤  
=0.00 

(.)YF SD )|(. xXFY ≤  
=0.00 

)|(. xXFY ≤  SD 

(.)YF * =0.99 

)|(. xXFY ≤  SD 

(.)YF * =1.00 

)|(. xXFY ≤  SD 

(.)YF * =1.00 

Group 3 (190) 

(.)YF SD )|(. xXFY ≤  
=0.00 

(.)YF SD )|(. xXFY ≤  
=0.002 

(.)YF SD )|(. xXFY ≤  
=0.08 

 

Subgroups from 
qtlthX 25=  qtlthX 50=  qtlthX 75=  

                                                 
7 The corresponding figures for CDFs are available from the authors on request. Also the p-values for FES 
subgroups are reported for a given value of total expenditure only, not for income. 



NSSO data 

)|(. xXFY ≤  SD 

(.)YF * =0.93 

)|(. xXFY ≤  SD 

(.)YF * =0.99 

)|(. xXFY ≤  SD 

(.)YF * =1.00 

Group 1 (468) 

(.)YF SD )|(. xXFY ≤  
=0.00 

(.)YF SD )|(. xXFY ≤  
=0.01 

(.)YF SD )|(. xXFY ≤  
=0.13 

)|(. xXFY ≤  SD 

(.)YF *=0.99 

)|(. xXFY ≤  SD 

(.)YF * =0.99 

)|(. xXFY ≤  SD 

(.)YF * =1.00 

Group 2 (565) 

(.)YF SD )|(. xXFY ≤  
=0.00 

(.)YF SD )|(. xXFY ≤  
=0.00 

(.)YF SD )|(. xXFY ≤  
=0.00 

)|(. xXFY ≤  SD 

(.)YF * =1.00 

)|(. xXFY ≤  SD 

(.)YF * 
=0.99 

)|(. xXFY ≤  SD 

(.)YF *=0.99 

Group 3 (279) 

(.)YF SD )|(. xXFY ≤  
=0.00 

(.)YF SD )|(. xXFY ≤  
=0.01 

(.)YF SD )|(. xXFY ≤  
=0.05 

)|(. xXFY ≤  SD 

(.)YF * =0.99 

)|(. xXFY ≤  SD 

(.)YF * =0.99 

)|(. xXFY ≤  SD 

(.)YF * =0.99 

Group 4 (416) 

(.)YF SD )|(. xXFY ≤  
=0.00 
 

(.)YF SD )|(. xXFY ≤  
=0.00 

(.)YF SD )|(. xXFY ≤  
=0.04 

 

Table 4.2d: Monotone Negative Quadrant dependence (P- values) for the subgroups 
 
Subgroups 

from FES 

data )|(

)|(

2

1

xXyF

xXyF

Y

Y

≤

≤≤
 

)|(

)|(

1

2

xXyF

xXyF

Y

Y

≤

≤≤
 

)|(

)|(

3

2

xXyF

xXyF

Y

Y

≤

≤≤
 

)|(

)|(

2

3

xXyF

xXyF

Y

Y

≤

≤≤
 

Group 1 
(864) 

p value=0.99 p value=0.002 p value=0.99 p value=0.00 

Group 2 
(983) 

p value=0.99 p value=0.00 p value=0.99 p value=0.00 

Group 3 
(190) 

p value=0.99 p value=0.01 p value=0.99 p value=0.02 

Subgroups 

from NSSO 

data )|(

)|(

2

1

xXyF

xXyF

Y

Y

≤

≤≤
 

)|(

)|(

1

2

xXyF

xXyF

Y

Y

≤

≤≤
 

)|(

)|(

3

2

xXyF

xXyF

Y

Y

≤

≤≤
 

)|(

)|(

2

3

xXyF

xXyF

Y

Y

≤

≤≤
 

Group 1 
(468)# 

p value=0.93 p value=0.17 p value=0.99 p value=0.27 

Group 2 
(565)# 

p value=1.00 p value=0.11 p value=0.99 p value=0.29 

Group 3 
(279)# 

p value=0.99 p value=0.15 p value=0.99 p value=0.47 

Group 4 
(416)# 

p value=0.99 p value=0.12 p value=0.99 p value=0.14 

 
#: Monotone negative quadrant dependence is not satisfied. 

 
 
 



We also present plots only for 1st subgroup from FES and 1st subgroup from NSSO to 
illustrate our results described in tables 4.2c and 4.2d. 
 
4.2e: Subgroup 1 from FES data                     4.2f Subgroup1 from NSSO data 
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4.3 Decreasing regression:  
 
Estimation of regression function using nonparametric Kernel smoothing technique is 
standard today (see section 3.3 for references). Only for completeness we give the 
estimates with confidence region for FES and NSSO data sets. In the nonparametric 
regression model iii XmY ε+= )( , where sample observations ),( ii YX  are i.i.d and (.)m  

is a smooth function, one can estimate  (.)m  nonparametrically using Kernel method.  
We use the local linear estimator of (.)m (Stone (1977)) which is obtained  by minimizing  

)())'((min
1

2

},{
∑
=

−−−−
n

i

h

xX

ii
ba

iKbxXaY . The smoothing parameter h  is called the 

bandwidth parameter, and K  is the Kernel function. We choose the optimum bandwidth 
using least-square cross-validation technique and the second order the Epanechnikov 
Kernel is used for estimation. 
 
The nonparametrically estimated  regression curve is shown in the following diagrams 
with the confidence bands constructed with asymptotic normality, first for the whole 
sample of FES considering both income and total expenditure as  X variable, and for NSS 
data and  for few subgroups from these data sets8.  
 
 
 
 
 
 
 

                                                 
8 The nonparametric regression curves for all the subgroups are available from the authors on request. 



Figure 4.3a: Nonparametric Regression with confidence band from FES data   
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Food share is calculated by dividing expenditure on food only by total expenditure 
after housing cost.  
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• Food share is calculated by dividing expenditure on food only by income after housing cost. 
 

The property of decreasing regression is well supported if restricted on the main domain 
of income distribution. The nonparametrically estimated regression curves are also shown 
for few subgroups from FES and NSS  in the following  figures  4.3c and 4.3d 
respectively9. 
 

                                                 
9 For subgroups we have used adaptive nearest neighbour bandwidth  for cross-validation purpose and use 
499 bootstrap to compute the bandwidths. 



4.3b: Nonparametric regression for the Indian whole sample 
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4.3c: Nonparametric regression for the subgroups of FES data 

 

           

0
.1

.2
.3

.4
.5

F
o
o
d
 s
h
a
re

0 200 400 600 800
Total expenditure

Actual food share Kernel estimate

Lower bound Upper bound

FES Self-employed 2 Adults Household(Data & kernel regression)

                     

0
.2

.4
.6

F
o
o
d
 s
h
a
re

0 200 400 600 800 1000
Total Expenditure

Actual Food share Kernel estimate

Lower bound Upper bound

FES Employed and 2 Adults Household (Data and Kernel regression)

              
  

 



4.3d: Nonparametric regression from the subgroups  of NSS data 
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4.4 Stochastically decreasing conditional distribution functions  
 
Finally we consider stochastically decreasing conditional distribution functions (Tukey 
(1958)) as described  in definition 4 of section 2.1. i.e., stochastic dominance of the 
conditional distribution function, conditioned on xX = , denoted by )|(. xFY . 
 

Therefore, the hypothesis  for Tukey’s condition can be formulated as follows:               
)|()|(: 210 xyFxyFH YY ≤  for all y and for any 21 xx <  

 )|()|(: 211 xyFxyFH YY >  for some y                                       
   

We consider two conditional distribution functions of food share given two small 
consecutive intervals of total expenditure/ Income  level; one at qtlxqtl thth 105 ≤<  ( 1x ) 

and other at qtlxqtl thth 1510 ≤<  ( 2x ) of total expenditure / income. The test is proceeded 
in two-steps as before following Barrett and Donald (2003): first by examining if  



1|(. xXFY = ) stochastically dominates  2|(. xXFY = ); and then in the second step  tests 

if 2|(. xXFY = ) stochastically dominates 1|(. xXFY = ).  If we fail to reject the first step 

but can reject the second step, we conclude that the  )|( 1xyF Y    stochastically dominates 

the )|( 2xyFY  , thus satisfies condition 4 of negative stochastic association. If we reject 
or fail to reject both steps of the test, we conclude that there is no stochastic dominance 
relation. 
 
The test results for stochastically decreasing CDF are described in table 4.4a for the 
whole sample of FES and NSSO data and are illustrated in figures 4.4a   and 4.4b. The 
strongest condition of negative stochastic association is well supported in the FES as well 
as in the NSSO data.10  This is not so evident for consecutive intervals around income 
considered (see the p-values in table 4.4a and the right-most plot in figure 4.4a).   
 

Table 4.4a: Test of stochastic dominance given total expenditure(tex_ahc)/income 

(inc_ahc)  for quantiles (5-10
th
)  and (10-15

th
 ). 

 
 From the FES data P values* 

 

P values ** 

 

)|()|( 21 xXySDFxXyF YY ==  0.99 0.83 # 

)|()|( 12 xXySDFxXyF YY ==  

     From the NSS data 

0.00 0.12# 
 

)|()|( 21 xXySDFxXyF YY ==    1.00 
 
 

)|()|( 12 xXySDFxXyF YY ==    0.00 

 
*  & **    are described before in the footnote of  table 4.1a. #: Weakly satisfied.  In case of Indian data 
only total expenditure is reported, as stated earlier. 
  
4.4a: Plot of Empirical CDFs of food share given two total expenditure/income levels 

of FES data 

0
.2

.4
.6

.8
1

C
o
n
d
it
io
n
a
l 
C
D
F

0 .2 .4 .6 .8
Food share out of total expenditure

CDFlow CDFhigh

       

0
.2

.4
.6

.8
1

c
o
n
d
it
io
n
a
l 
C
D
F

0 .2 .4 .6 .8 1
foodshare out of income

CDFlow CDFhigh

 
                                                 
10  The Tukey’s condition for income levels are satisfied only weakly. Due to shortage of space the figures 
and tests of stochastic dominance for other intervals of expenditure and income levels are not reported here. 
Those are available from authors on request. Yet, we would like to mention here that similar feature is 
observed for whole range of income distributions.  
 



Fig 4.4b: Plot of Empirical CDFs given two total expenditure levels of Indian data 
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The p-values for stochastic dominance test for the subgroups are reported in table 4.4b. 
The values indicate absence of clear stochastic dominance in several subgroups. 
 

4.4b: Test of stochastic dominance given total expenditure for subgroups from FES and NSS data* 

 

Groups from the FES data** Description 

 

P values  

 

thqtlxthqtlthqtlxthqtlwhere

xXySDFxXyF YY

2515,155..

)|()|(

21

21

<≤<≤

==  0.90 Group 1 (864)$ 
 

thqtlxthqtlthqtlxthqtlwhere

xXySDFxXyF YY

2515,155..

)|()|(

21

12

<≤<≤

==
 

0.10 
 

thqtlxthqtlthqtlxthqtlwhere

xXySDFxXyF YY

2515,155..

)|()|(

21

21

<≤<≤

==  0.96 Group 2 (983) 
 

thqtlxthqtlthqtlxthqtlwhere

xXySDFxXyF YY

2515,155..

)|()|(

21

12

<≤<≤

==
 

0.04 

thqtlxthqtlthqtlxthqtlwhere

xXySDFxXyF YY

5025,255..

)|()|(

21

21

<≤<≤

==  0.97 Group 3 
(190)@ 

thqtlxthqtlthqtlxthqtlwhere

xXySDFxXyF YY

5025,255..

)|()|(

21

12

<≤<≤

==

 

0.01 

Subgroups from NSSO data Description 

 

P values  

 

thqtlxthqtlthqtlxthqtlwhere

xXySDFxXyF YY

2515,155..

)|()|(

21

21

<≤<≤

==  0.59 Group 1 (468)# 

 

thqtlxthqtlthqtlxthqtlwhere

xXySDFxXyF YY

2515,155..

)|()|(

21

12

<≤<≤

==

 

0.48 



thqtlxthqtlthqtlxthqtlwhere

xXySDFxXyF YY

2515,155..

)|()|(

21

21

<≤<≤

==  0.74 Group 2 
(565) # 
 
 
 thqtlxthqtlthqtlxthqtlwhere

xXySDFxXyF YY

2515,155..

)|()|(

21

12

<≤<≤

==
 

0.48 

thqtlxthqtlthqtlxthqtlwhere

xXySDFxXyF YY

5025,255..

)|()|(

21

21

<≤<≤

==  0.15 Group 3# 
(279)@ 

thqtlxthqtlthqtlxthqtlwhere

xXySDFxXyF YY

5025,255..

)|()|(

21

12

<≤<≤

==

 

0.94 

thqtlxthqtlthqtlxthqtlwhere

xXySDFxXyF YY

2515,155..

)|()|(

21

21

<≤<≤

==  0.91 Group 4# 
(416) 

thqtlxthqtlthqtlxthqtlwhere

xXySDFxXyF YY

2515,155..

)|()|(

21

12

<≤<≤

==
 

0.45 

 
o *Due to few observations within each subgroup we have considered here bigger intervals as 

compared to the whole sample  to have sufficient observations.   
o @ For the 3rd subgroups from both the FES data & the NSSO data, we have considered much 

bigger interval due to very small observations in these subgroups. 
o ** For the FES data the tests are reported only for given values of total expenditure, not for 

income. 
o # indicates non-satisfaction of stochastic dominance.  
o $ Indicates weak satisfaction of stochastic dominance 

  
The following diagrams present CDFs for few sub-groups to support the test results 
described in table 4.4b. 
 
4.4c: Subgroups from FES data 
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4.4d: Subgroups from NSSO data 
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5: Conclusion 

 

Engel’s verbal formulation (see statement (i) and (ii) in the introduction) of his law 
expresses a ‘negative stochastic association’ of the bivariate distribution of income (total 
expenditure) and food share.  
 
Among the many different definitions of ‘negative stochastic association’ which can be 
found in the statistical literature, we have chosen four: negative  Kendall’s τ , negative 
quadrant dependence, stochastically decreasing conditional food share distribution 
functions and decreasing regressions (see section 2.1). Only the last property is used in 
the economic literature in order to define Engel’s law. Yet a decreasing regression does 
not imply useful information of its underlying bivariate distribution, in particular, it does 
not imply a negative Kendall’s τ  nor negative quadrant dependence. However, one 
expects these properties to be satisfied if one reads the two articles by Engel (1857) and 
(1895).  
 
Further more if one wants to link Engel’s law with individual behaviour, then as we have 
shown in section 2.2, the property of a decreasing regression function is not sufficient, 
stronger properties are needed. This motivates the empirical study of section 4. We have 
shown that a negative Kendall’s τ  and negative quadrant dependence has good empirical 
support for the whole as well as for subpopulations of FES and NSSO. We have also 
shown that monotone negative quadrant dependence and even stochastically decreasing 
conditional food share functions have satisfactory empirical support in the case of total 
expenditure for the whole population of FES and NSSO. We expect that these empirical 
findings for the whole (unstratified) population will also hold for other data sets. This, of 
course, has to be shown. If the answer is positive, then the property of ‘stochastically 
decreasing conditional food share distribution functions’ is the proper definition of 
Engel’s law. 
 
For subpopulations, obtained by stratification, the situation is less clear. Naturally, 
income is not the only explanatory variable for food share. If one stratifies the population 



with respect to a certain observable explanatory variable, for example, family size, then 
one eliminates the influence of this variable on the stochastic association between food 
share and income. This might increase or decrease the ‘degree’ of stochastic association. 
For example, in the case where for given income, food share and family size  is positively 
associated and income and family size is negatively associated then one might expect 
(one can easily give examples) that controlling for family size  decreases the ‘degree’ of 
negative association of income and food share, e.g., one still obtains a negative Kendall’s 
τ  or negative quadrant dependence, yet not stochastic decreasing conditional distribution 
functions. Engel’s Law for subpopulations requires further empirical research analysis. 
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Appendix: 
 

Description of Belgian data, used by Ernst Engel  which was collected by the 

Provincial Statistical Commission and were processed under the direction of 

Edouard Ducpetiaux, Commission Centrale de Statistique in 1855. 

 

This survey data includes information of 199 families across nine Belgian provinces. To 
compare relative standard of living among these areas the commission chose three 
categories of families in each location which are as follows: (i) workers sustained by 
public assistance, (ii) poor workers just able to live without such assistance and (iii) well-
to-do workers living in comfortable circumstances. Also commission considered only 
families of a single type consisting of a father, mother and four children whose ages were 
sixteen, twelve, six and two [Ducpetiaux words]. Among these 199 families, Engel 
considered in his original study of 1857 only 153 families due to nonavailability of 
information on categories of 46 families. But in his 1895 paper where he considered 
explicitly the income classes he considered 199 families altogether. Although the final 
report in 1855 published annual budgets, information was actually collected on a weekly 
basis.  

Table A I: Descriptive statistics: mean values 

 

153 Families Expenditure/Income 
Category i 

(48) 
Category ii 

(51) 
Category iii 

(54)* 

199 families 

Food expenditure 459.85 569.55 757.98 613.53 
Total expenditure 
(Min)            
(Max) 

648.68 
(377.06) 
(1256.32) 

845.45 
(387.32) 
(1768.82) 

1214.44 
(411.00) 
(2822.54) 

933.24 

Income 
(Min)            
(Max) 

564.97 
(175.00)         
(1298.00)        

796.54 
(275.00) 
(1790.00) 

1198.33 
(411.00) 
(2830.00) 

879.92 

Food share 0.71 0.68 0.63 0.67 
Source: Edouard Ducpetiaux,:Budgets Economiques des Classes Ouvriers en Belgique (Brussels, 1855). 
All data are in Belgium Fr. 
The terms in parentheses indicate minimum and maximum values of total expenditure and income 
respectively for each category. These values clearly reflect the overlapping of values of income across 
these categories. * Although this category reflects families in comfortable position, only 33 families out of 
54 have income higher than total expenditure. 
 

 


