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ABSTRACT 
 

Evaluating Nonexperimental Estimators for Multiple Treatments: 
Evidence from Experimental Data* 

 
This paper assesses the effectiveness of unconfoundedness-based estimators of mean 
effects for multiple or multivalued treatments in eliminating biases arising from nonrandom 
treatment assignment. We evaluate these multiple treatment estimators by simultaneously 
equalizing average outcomes among several control groups from a randomized experiment. 
We study linear regression estimators as well as partial mean and weighting estimators 
based on the generalized propensity score (GPS). We also study the use of the GPS in 
assessing the comparability of individuals among the different treatment groups, and propose 
a strategy to determine the overlap or common support region that is less stringent than 
those previously used in the literature. Our results show that in the multiple treatment setting 
there may be treatment groups for which it is extremely difficult to find valid comparison 
groups, and that the GPS plays a significant role in identifying those groups. In such 
situations, the estimators we consider perform poorly. However, their performance improves 
considerably once attention is restricted to those treatment groups with adequate overlap 
quality, with difference-in-difference estimators performing the best. Our results suggest that 
unconfoundedness-based estimators are a valuable econometric tool for evaluating multiple 
treatments, as long as the overlap quality is satisfactory. 
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1 Introduction

Nonexperimental methods are widely used in economics and other disciplines to evaluate gov-

ernment programs and policies, and many other types of interventions. In the absence of an

experiment, these methods are in many situations the only alternative. Among them, those based

on a selection-on-observables or unconfoundedness assumption play a very important role. This

assumption states that selection into the intervention or �treatment� is random (i.e., exogenous)

conditional on a set of observable covariates. Most of the research on these methods has been on

estimation of average treatment e¤ects of a binary treatment (i.e., individuals either participate in

a program or not) on an outcome.1 In practice, however, individuals are usually exposed to di¤er-

ent doses of the treatment or to more than one treatment. As a result, there has been a growing

interest in evaluating programs or interventions in which the treatment is multivalued or there are

multiple treatments,2 and in di¤erent methods to evaluate such treatments.3 Unfortunately, very

little is known about the e¤ectiveness of these methods in terms of reducing the potential selection

bias present in nonexperimental evaluations of multiple treatments.

This paper contributes to the literature by assessing the performance of econometric methods

based on an unconfoundedness assumption in estimating average treatment e¤ects for multiple

or multivalued treatments. To our knowledge, this is the �rst paper to address this issue. We

study linear regression estimators as well as partial mean and weighting estimators based on the

generalized propensity score (GPS), de�ned as the probability of receiving a particular treatment

(or treatment level) conditional on covariates. In addition, we analyze the role of the GPS in

identifying, for every individual in the population, individuals that are comparable in terms of

observable characteristics in each of the treatment groups. This is a key element in the estimation

of population e¤ects in a multiple treatment setting.

The classical approach in economics when using an unconfoundedness assumption to estimate

treatment e¤ects has been the use of linear regression to adjust for di¤erences in the covariates.

Most of the recent research on this area has been on developing more �exible ways to control for

these di¤erences, and has focused mainly on the binary treatment case. Many semiparametric

estimators have been proposed (e.g., Hahn, 1998; Heckman et al., 1997, 1998b; Hirano et al., 2003;

Abadie and Imbens, 2006), some of which have been shown to achieve the semiparametric e¢ ciency

bound derived by Hahn (1998). Rosenbaum and Rubin (1983) showed that in order to control for

observed variables it is su¢ cient to control for the propensity score, de�ned as the probability of

receiving treatment conditional on the covariates. The propensity score plays a critical role in many

of the recently developed semiparametric estimators. It is also key in identifying observations for

which it is di¢ cult to �nd comparable individuals in the opposite treatment arm in terms of the

1For a review of this literature see, for instance, Heckman et al. (1999), Imbens (2004), and Imbens and Wooldridge
(2009).

2See, for example, Lechner (2002a, 2002b), Behrman et al. (2004), Frölich et al. (2004), Kluve et al. (2007),
Plesca and Smith (2007), Mitnik (2008), and Flores et al. (2009).

3See, for instance, Imbens (2000), Lechner (2001), Hirano and Imbens (2004), Imai and van Dyk (2004), Abadie
(2005), Flores (2007) and Cattaneo (2009). For a survey of some of these methods see Frölich (2004b).
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covariates, and in restricting attention to the usually called �overlap�or �common support�region

(e.g., Heckman et al., 1997; Dehejia and Wahba, 1999, 2002).

Given the importance and prevalence of multivalued and multiple treatments in practice, more

recently there has been a growing interest in extending to this setting some of the results from

the binary treatment case. Imbens (2000) and Lechner (2001) generalized the main results in

Rosenbaum and Rubin (1983) to the multivalued (or multiple) treatment case, and Hirano and

Imbens (2004) further extended them to the continuous treatment case.4 For the multivalued

setting, Imbens (2000) proposed partial mean and weighting estimators based on the GPS, and

Cattaneo (2009) derived the semiparametric e¢ ciency bound and introduced estimators that attain

it. We consider several of these GPS-based estimators in this paper.

Two approaches have been used in the literature to assess the value of methods based on the

unconfoundedness assumption for estimation of binary treatment e¤ects (Imbens, 2004). The �rst

approach relies on data from a randomized experiment and nonexperimental control groups, for

instance, from alternative data sets (e.g., Lalonde, 1986) or from di¤erent locations (e.g., Friedlander

and Robins, 1995). Estimators based on the unconfoundedness assumption are then applied to the

nonexperimental control group and the experimental treatment group and, to asses the performance

of the methods, the results are compared against those from the experiment (which are unbiased

estimates of the population average treatment e¤ect). This approach can also be implemented by

applying the estimators to the nonexperimental and experimental control groups, in which case the

benchmark is a zero treatment e¤ect. The second approach is based on Monte Carlo simulations,

where the performance of alternative estimators is evaluated under di¤erent scenarios (e.g., Frölich,

2004a; Zhao, 2004; Busso et al., 2009a, 2009b). Imbens (2004) discusses how the approach based on

nonexperimental controls is aimed at assessing the plausibility of the unconfoundedness assumption

and the value of the methods based on it; while the simulation-based approach is more helpful in

identifying which particular estimators perform better in a given setting.5 In this paper we follow

the approach based on nonexperimental controls, since our purpose is to assess the likely reliability

of the methods based on the unconfoundedness assumption in a multiple treatment setting. Since

the estimators we analyze are implemented using an actual data set, our results are also informative

about the relative performance of these estimators in a realistic (although particular) setting.

Since the in�uential paper by Lalonde (1986), many studies have evaluated the performance

of nonexperimental methods for estimation of average treatment e¤ects in a binary setting.6 This

literature has advanced our understanding of nonexperimental evaluations by specifying conditions

under which methods based on the unconfoundedness assumption are more likely to replicate the

4An alternative extension of the results in Rosenbaum and Rubin (1983) to the multivalued and continuous cases
is proposed by Imai and van Dyk (2004).

5Both approaches have advantages and disadvantages. For instance, relative to the approach based on nonex-
perimental controls, the arti�cial environments constructed in a simulation study are rarely representative of the
situations found in practice; however, in a simulation it is possible to understand how alternative estimators behave
in di¤erent environments by varying the parameters of the data generation process.

6Among others, see Fraker and Maynard, (1987), Heckman and Hotz (1989), Friedlander and Robins (1995),
Heckman et al. (1997), Heckman et al. (1998a), Dehejia and Wahba (1999, 2002), Michalopoulos et al. (2004), Smith
and Todd (2005), Dehejia (2005), and Mueser et al. (2007).
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results from a randomized experiment. One of the main conclusions is the importance of comparing

�comparable�individuals. For instance, Heckman et al. (1997) and Heckman et al. (1998a) stress

the importance of comparing treatment and control groups from the same local labor market to

which the same questionnaire is administrated, as well as having data on detailed labor market

histories. This literature has also highlighted the importance of the propensity score in identify-

ing regions of the data where treatment and control units are comparable in terms of observed

characteristics.

In this paper we use data from the National Evaluation of Welfare-to-Work Strategies (NEWWS),

a social experiment conducted in the U.S. in the 1990s in which individuals in several locations were

randomly assigned to a control group or to di¤erent training programs. We resort to the availability

of control groups in di¤erent locations to evaluate the performance of several unconfoundedness-

based estimators for multiple treatments. We use these estimators to adjust for observable char-

acteristics in order to eliminate di¤erences in average outcomes among all control groups.7 This

strategy is similar to that previously used in the binary treatment context by Friedlander and

Robins (1995), Michalopoulos et al. (2004) and Hotz et al. (2005). The key di¤erence in our ap-

proach is that, while their focus is on pairwise comparisons between controls in di¤erent locations,

we focus on simultaneously comparing all control groups, which requires the use of nonexperimental

methods for multiple treatments.

Although relying on an experiment is in principle not required to perform this analysis, using

data from the NEWWS experiment has several advantages for our purposes. First, all the individu-

als used in our study are welfare recipients at the time of randomization regardless of their location,

which helps reducing the heterogeneity across sites. Second, the survey instruments and the data

gathered for all the individuals are the same, and the data available is extremely rich; it includes

individual and family characteristics, as well as welfare use and labor market histories. Third, we

use the experiment itself to develop benchmark measures to assess the nonexperimental results in

the paper. However, comparing individuals across di¤erent geographic locations makes our exercise

much more di¢ cult because of (potential) di¤erences across local labor markets. Considering the

key role given in the literature to comparing individuals with di¤erent treatment status within the

same local labor market (e.g., Friedlander and Robins, 1995; Heckman et al., 1997; Heckman et

al., 1998a), it is therefore important to keep in mind that we impose a very high yardstick on the

nonexperimental estimators we study.

Our paper shows that one of the main issues that makes estimation of average e¤ects more

challenging, when moving from a binary to a multiple treatment setting, is that the overlap re-

quirements become more demanding. We highlight the crucial role played by the GPS in assessing

the quality of the overlap in the distribution of observable characteristics of the di¤erent treatment

groups, and propose a strategy to determine the overlap or common support region. This strategy is

less stringent than those previously used in the multiple treatment literature (e.g., Lechner, 2002a,

7An ideal data set for an evaluation like ours would include several (at least three) nonexperimental control groups
all belonging to the same local labor market. Unfortunately, such data is not available to the best of our knowledge.
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2002b; Frölich et al., 2004), and is motivated by a procedure commonly used in the binary setting

(e.g., Dehejia and Wahba, 1999, 2002). Our paper also illustrates how, in a multiple treatment

setting, one is more likely to encounter some treatment groups that are not comparable to the rest.

We discuss the importance of the GPS in identifying those groups.

We �nd that the estimators perform poorly �in equalizing average outcomes across all control

groups�when implemented using control groups in locations with extremely poor overlap in their

GPS distributions and with very di¤erent local economic conditions. However, their performance

improves considerably when applied to control groups in locations where the overlap quality is

better and the local economic conditions are relatively more similar. The di¤erence-in-di¤erence

estimators perform the best and compare well to benchmark measures derived from experimental

data. The superior performance of the di¤erence-in-di¤erence estimators is consistent with previous

�ndings in the binary treatment literature (e.g., Heckman et al., 1997; Heckman et al., 1998a; Smith

and Todd, 2005). The overall improvement in the performance of the estimators when comparing

individuals in more similar labor markets implies that, when the treatment groups belong to the

same local labor market, the estimators are likely to perform better.8

In sum, our results suggest that the nonexperimental estimators studied are a valuable econo-

metric tool when evaluating multiple or multivalued treatments in the absence of an experiment.

Nevertheless, they also highlight that it is key to carefully analyze the overlap quality in applica-

tions, since the overlap issues that arise in the implementation of these methods when the treatment

is binary are magni�ed in the multiple treatment setting.

The paper is organized as follows. We formalize the study setup in the following section. In

Section 3 we present the estimators considered in the paper, and in Section 4 we discuss the use of

the GPS in determining the overlap or common support region. In Section 5 we describe the data.

In Section 6 we use the GPS to assess the comparability of the di¤erent control groups and present

the results from implementing the nonexperimental estimators. Section 7 concludes.

2 Study setup

We exploit data from an experiment conducted in several locations to assess the e¤ectiveness of the

unconfoundedness-based estimators discussed in the following section. Within each of these sites,

individuals were randomly assigned either to a control group or to one of alternative treatment

groups. Based on this data, we formalize the study setup based on the potential outcomes approach

developed by Neyman (1923) and extended by Rubin (1974) to nonexperimental settings. Each

unit i in our sample, i = 1; 2; : : : ; N , comes from one of k possible sites. Let Di 2 f1; 2; : : : ; kg be
an indicator of the location of individual i. We denote the potential outcomes by Yi (td; d), where td
stands for the treatment and d for the site. Hence, Yi (td; d) is the outcome unit i would obtain if she

8Michalopoulos et al. (2004) evaluate the performance of nonexperimental estimators for binary treatments relying
also on the NEWWS experiment. As compared to our study, they use a di¤erent sample and outcomes (see Section 5
for details). Their conclusions, which are for the binary setting, are more negative than ours regarding the performance
of nonexperimental estimators. However, as in our case, they conclude that comparing groups in the same local
markets can be key in improving the estimators�performance.
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were located in site d and given treatment td. Two features of our potential outcomes notation are

worth mentioning. First, we let the potential outcome Y (td; d) depend on d. Although it may be

di¢ cult to think of the location as something we can manipulate (i.e., a �treatment�in Holland�s,

1986, sense), it is convenient for our purposes as our goal is to equate average outcomes for controls

across all sites. Second, we let td depend on d, as sites may not o¤er the same treatments. For all

sites, a value of t of zero denotes the control treatment, in which individuals are prevented from

receiving any program services.

In this paper we focus exclusively on the individuals in the control groups, so we use only the

potential outcomes at zero, or Y (0; d). By focusing on the control treatment we minimize treatment

heterogeneity across sites, as training programs di¤ered across sites in terms of implementation,

particular services o¤ered, administration, etc.9

The data we observe for each unit is (Yi; Di; Xi), with Xi a set of pre-treatment covariates, and

Yi = Y (0; Di). Our parameters of interest in this paper are

�d = E [Y (0; d)] , for d = 1; 2; : : : ; k: (1)

The object in (1) gives the average potential outcome under the control treatment in location d for

someone randomly selected from the entire population (i.e., from any of the k sites). In cases where

d represents di¤erent levels of the treatment, (1) is commonly called the dose-response function in

the statistics literature. In principle, we could take the expectation of Y (0; d) over any subset of

the union of the populations in each site. For instance, we could focus on E [Y (0; d) jDi = f ] or
E [Y (0; d) jDi = ff; gg] for any d; f; g 2 f1; : : : ; kg. By focusing on the (entire) population e¤ects
in (1) we avoid selecting a particular site as a reference group, and having our results depend on

this choice. On the other hand, the estimation problem becomes more challenging because we need

to �nd, for each individual in the entire population, comparable individuals in each of the sites.

In contrast, if we focused on E [Y (0; d) jDi = f ], for instance, we would need to �nd comparable
individuals in each site only for those individuals in the Di = f group.10

As documented in Section 5, the distribution of observable characteristics in our data di¤ers

systematically across the control groups in the k sites, so the controls from any particular location

are not representative of the entire population. The main goal of this paper is to study whether the

nonexperimental estimators described in the following section can properly adjust for the di¤erences

in these characteristics and equalize average outcomes for control individuals across all sites. Hence,

the hypothesis we test is

�1 = �2 = : : : = �k: (2)

The equalities in (2) form the basis of our analysis, as they imply that any of the k control groups

9Hotz et al. (2005) explicitly study program heterogeneity across sites. Their intuition is that if one is able to
adjust for control group outcomes across sites, the comparison of adjusted outcomes for nominally equal treatments
across sites may be interpreted as the e¤ect of program heterogeneity across sites.
10Note that since the expectation in (1) is calculated over the entire population, any pairwise (population) average

treatment e¤ect can be calculated as �d � �s for d; s 2 f1; 2; : : : ; kg. For an analysis of estimation of pairwise
di¤erences of the form E [Y (0; d)� Y (0; f) jDi = fd; fg] for any d; f 2 f1; : : : ; kg see, for instance, Lechner (2001).
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can be used to construct a valid counterfactual for the population average potential outcome in any

of the other sites. As previously mentioned, the key di¤erence between our approach and that in the

existing literature (e.g., Michalopoulos et al., 2004; Hotz et al., 2005) is that we compare all locations

simultaneously, which requires the use of nonexperimental methods for multiple treatments.

We assess the performance of the estimators presented in the following section in several ways.

First, given estimates b�1; : : : ; b�k of the corresponding parameters, we perform a Wald test of hy-

pothesis (2). One drawback of this strategy is that it may be too sensitive to the variance of the

estimators, in the sense that we could fail to reject the null hypothesis in (2) only because the

variance of an estimator is high, and not necessarily because all the estimated b��s are su¢ ciently
close to each other. Hence, a second approach is to directly compare overall measures of distance

among the estimated means. Letting � = k�1
Xk

d=1
b�d, we de�ne the following three distance

measures: the root mean square distance (rmsd),

rmsd =

s
1

k

kP
d=1

�b�d � ��2; (3)

the mean absolute distance (mad),

mad =
1

k

kP
d=1

���b�d � ���� ; (4)

and the maximum pairwise distance among all estimates,

Maximum Distance =

���� maxd=1;:::;k

nb�do� min
d=1;:::;k

nb�do���� . (5)

If a particular estimator completely eliminated all di¤erences across all sites, then all these

distances would be exactly zero. Hence, the closer these measures get to zero, the better the

performance of the estimator.

Note that, due to pure sample variation, we would never expect to see a value of zero in these

measures even in settings where (2) were known to hold. To have some reference point about what

can be considered reasonable values for these three measures, we present in Section 6 two sets of

benchmark values based on experimental data. These benchmarks give the value of the distance

measures that would be achieved by an experiment in a setting where �1 = �2 = : : : = �k holds.

The �rst set is derived from a �placebo� experiment, and the second exploits the availability of

pre-randomization experimental data within sites. We explain both approaches in Section 6.

Finally, it is important to point out the role played by the local economic conditions (LEC) in

this study. Even if we could adjust for all (observed and unobserved) personal characteristics of

the individuals among all sites, average outcomes may fail to equalize because of di¤erences in LEC

across sites.11 The binary treatment literature has stressed the importance of comparing individuals

11For instance, even if each control individual in our data had been randomly assigned to one of the seven sites,
equation (2) may fail to hold because of di¤erences in LEC across sites.

6



from the same local labor market when employing nonexperimental methods (e.g., Heckman et al.,

1997; Heckman et al., 1998a), so the di¢ culty of our exercise increases as the di¤erences in LEC

across locations increase. To deal with this issue, we control for pre-randomization LEC variables

by treating them as additional covariates, which is possible in our case because of the availability

of di¤erent cohorts within each site.12 We return to this issue later in the text.

3 Multiple treatment estimators

In this section we present the estimators of the parameters in (2) that we study, along with the

assumptions that justify them. For reference, we consider �rst the raw mean estimator. Let 1 (A)

be the indicator function, which equals one if event A is true and zero otherwise. This estimator is

then given by: b�rawd =

�
NP
i=1
Yi1 (Di = d)

� �
NP
i=1
1 (Di = d)

��1
: (6)

This estimator would be unbiased for �d if the individuals were randomized across di¤erent

locations. We use it as a measure of the initial bias, which we aim at reducing by adjusting for

di¤erences in observable characteristics across locations.

The other estimators we study are based on the following unconfoundedness or selection-on-

observables assumption:

Assumption 1 (Unconfounded site)

1 (Di = d)?Yi (0; d) jXi, for all d 2 f1; 2; : : : ; kg: (7)

This assumption states that for all sites, and conditional on a set of covariates, the indicator

variable for whether an individual belongs to a given site d is independent of her potential outcome

in that site. It implies that there are no other variables related to both the indicator variable for

belonging to site d and the potential outcome in that site, so that adjusting for the covariates is

su¢ cient to remove all biases in the estimation of �d = E[Y (0; d)]. This assumption is similar

to that in Hotz et al. (2005) when comparing potential outcomes between two locations, and is

referred to as weak unconfoundedness by Imbens (1999, 2000).13

As discussed by Imbens (1999), Assumption 1 is closely related to the de�nition of missing at

random in the missing data literature (e.g., Rubin, 1976; Little and Rubin, 1987). For instance,

suppose we are interested on learning about the population mean E [Y (0; d)] : The problem is that

we only observe Yi (0; d) for individuals with 1 (Di = d) = 1, while it is missing for those with

1 (Di = d) = 0. Assumption 1 implies that conditional on Xi the two groups are comparable, so

we can use the individuals with 1 (Di = d) = 1 to learn about E [Y (0; d)]. Note that a key feature

12As we discuss in Section 6, in some speci�cations we also adjust the outcome for post-randomization LEC variables.
13A stronger version of Assumption 1 could be written as Di?fYi (0; d)gd2f1;2;:::;kg jXi. For a discussion of this

strong version of unconfoundedness and the weak version in Assumption 1, see Imbens (1999, 2000).
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of Assumption 1 is that all that matters is whether or not unit i is in site d; hence, her actual site

in case she is not in d is not relevant.

In addition to Assumption 1, we impose an overlap assumption that guarantees that in in�nite

samples we are able to �nd individuals with the same values of the covariates across all k sites.

Assumption 2 (Simultaneous strict overlap) For all d and all x in the support of X

0 < � < Pr (Di = djX = x) , for some � > 0: (8)

This form of the overlap assumption is known as �strict overlap� in the binary treatment

literature (e.g., Busso et al. 2009a, 2009b). The standard overlap assumption in the binary setting

requires the propensity score (i.e., the probability of being in the treatment group conditional on

X) to be strictly between zero and one, but otherwise allows it to be arbitrarily close to these

boundaries. The strict overlap assumption plays a critical role in determining the asymptotic

properties of semiparametric estimators of �d. In particular, this condition is su¢ cient to guaranteep
n-consistency of these estimators and �niteness of the semiparametric e¢ ciency bound for regular

estimators of �d derived by Cattaneo (2009). In cases where the strict overlap assumption is

violated, semiparametric estimators of �d can fail to be
p
n-consistent (i.e., the semiparametric

e¢ ciency bound is in�nite). Intuitively, as discussed by Khan and Tamer (2009) for the binary

setting, if identi�cation of �d requires observing individuals in site d whose probability of being in

site d given their covariates is arbitrarily close to zero then, although point identi�ed, �d cannot

be estimated at the regular parametric rate (
p
n).14

The overlap condition in Assumption 2 is stronger than that of the binary treatment case, as

it requires that for each individual in the population we are able to �nd comparable individuals in

terms of covariates in each of the k sites. Intuitively, for each individual we want to learn about her

potential outcomes in sites 1; : : : ; k, but we observe only one of those k potential outcomes, so the

�fundamental problem of causal inference�(Holland, 1986) is worsen. As compared to the binary

treatment case, having more treatment groups implies that the conditional probabilities in (8) will

be smaller in magnitude, and it also increases the probability that there is a covariate for which (8)

does not hold in one of the groups. Both features represent a threat to the validity of Assumption

2, and simply re�ect the di¢ culty of moving from a binary to a multiple treatment setting. In fact,

as discussed by Imbens (1999), in the multiple treatment case there may be a particular treatment

(or treatments) for which (8) fails or is close to failing. This has two e¤ects. First, this prevents us

from making precise inferences about population e¤ects, since it is not possible to �nd comparable

individuals in the rest of the treatment groups for those in the non-comparable treatment group(s).

Second, it forces us to focus on the e¤ects of those treatments for which the groups are comparable.

Therefore, fewer treatment e¤ects are estimated for a narrower population. As usual in economics,

14Khan and Tamer (2009) relate this class of estimators to the �identi�ed at in�nity�models (e.g., Chamberlain,
1986; Heckman, 1990), as they require some variables to take values with arbitrarily small probabilities. For more
discussion on the rate of convergence of semiparametric estimators of treatment e¤ects and its relation to the strict
overlap assumption in a binary treatment setting, see Khan and Tamer (2009) and Busso et al. (2009b).
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focusing on a fewer set of treatments and a narrower population reduces the external validity of the

analysis, while analyzing all the treatments for the whole population despite Assumption 2 failing

(or being close to failing) reduces its internal validity.

Under Assumptions 1 and 2, and using iterated expectations, we can identify �d as:

�d = E[E [YijDi = d;Xi = x]]: (9)

This result suggests estimating �d using a partial mean, which is an average of a regression

function over some of its regressors while holding others �xed (Newey, 1994). In this case, the

conditional expectation function of Y on d and X is estimated in a �rst step, and then we average

this function over the covariates holding the site d �xed. The most straightforward model for the

inner expectation in (9) is a linear regression of the form:

E [YijDi; Xi] =
kX
j=1

�j � 1 (Di = j) + �0Xi; (10)

where � is the coe¢ cient vector for the covariates. Let the estimated coe¢ cients in (10) be given

by b�j and b�. Then, the OLS-based estimator of �d is given by:
b�pmXd = b�d +N�1PN

i=1
b�0Xi: (11)

In what follows, we refer to this estimator as the partial mean linear X estimator. We also

consider a more �exible model of (10) containing polynomials of the continuous covariates and

various interactions, which can be thought of as a global smoothing method (e.g., Imbens and

Wooldridge, 2009). We denote this estimator by b�pmXflexd , and refer to it as the partial mean

�exible X estimator.

Recently, part of the focus in the program evaluation literature has been on more �exible ways

to control for covariates. The main issue when controlling for the covariates without imposing any

structure in the model is that, if the dimension of X is large, then nonparametric methods become

intractable because of the so-called �curse of dimensionality�. Rosenbaum and Rubin (1983) show

that if the two potential outcomes from a binary treatment are independent of the treatment

assignment conditional on X, then they are also independent conditional on the propensity score.

This result implies that we only need to adjust for a scalar variable, as opposed to adjusting for all

covariates.15

Imbens (2000) and Lechner (2001) extend the results in Rosenbaum and Rubin (1983) to the

multivalued or multiple treatment setting.16 Following Imbens (2000), de�ne the generalized propen-

15The problem of nonparametrically estimating the regression function of the outcome on the treatment and the
covariates is translated to nonparametrically estimating the propensity score. The same occurs in the multiple or
multivalued treatment setting when using the generalized propensity score. For further discussion in the binary
treatment setting see, for instance, Imbens (2004).
16One key di¤erence between the approaches in Imbens (2000) and Lechner (2001) is that, while the latter reduces

the dimension of the conditioning set from the dimension of X to the dimension of the treatment, Imbens (2000)
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sity score, or GPS, as the probability of receiving a particular treatment (in our case, belonging to

a particular site) conditional on the covariates:

r (d; x) = Pr (D = djX = x) : (12)

For the discussion below, it is important to keep in mind the distinction between two di¤erent

random variables: the probability that an individual gets the treatment she actually received,

Ri = ri (Di; Xi), and the probability she receives a particular treatment d conditional on her

covariates, Rdi = ri (d;Xi). Clearly, R
d
i = Ri for those units with Di = d.

Imbens (2000) shows that under Assumptions 1 and 2 we can estimate the average potential

outcomes by conditioning solely on the GPS. Analogous to the binary treatment case, he shows

that Yi (0; d) ?1 (Di = d) jRdi for all d 2 f1; 2; : : : ; kg. This result implies that for estimation of
E[Y (0; d)] is enough to compare units with Di 6= d and Di = d in terms of Rdi .

Based on this result, Imbens (2000) proposes a partial mean approach for estimation of �d,

which can be written as:

(i)  (d; r) � E [Y (0; d) jr (d;X) = r] = E [YijDi = d;Ri = r] ; (13)

(ii) �d = E [Y (0; d)] = E [ (d; ri (d;Xi))] :

Therefore, the GPS can be used to estimate �d = E [Y (0; d)] by following the two steps in (13).

First, one estimates the conditional expectation of Y as a function of D and R = r (D;X). Second,

to estimate �d we average the conditional expectation  (d; r) over R
d = r (d;X). This procedure

is analogous to the partial mean approach that uses the covariates directly, see (9)-(11). However,

two important di¤erences are worth mentioning. First, contrary to that approach, we now use Ri
in the regression function in the �rst step, and integrate over the distribution of Rdi in the second

step. Second, the inner conditional expectation  (d; r) does not have a causal interpretation, while

the inner expectation in (9) does by Assumption 1.17

Hirano and Imbens (2004) implement this approach in a continuous treatment setting by esti-

mating the regression function in the �rst step using a (�exible) parametric regression. Following

their approach, we �rst estimate the regression function

E [YijDi; Ri] =
kX
j=1

�j � 1 (Di = j) +
kX
j=1

[�j � 1 (Di = j) �Ri + �j � 1 (Di = j) �R2i ]:

Letting the estimated coe¢ cients from this regression be denoted by a hat on top of the coe¢ cient,

reduces the dimension to one, just as in the binary case.
17The reason  (d; r) does not have a casual interpretation is that, while Assumption 1 implies

1 (Di = d)?Yi (0; d) jRdi , for all d 2 f1; 2; : : : ; kg, it does not imply 1 (Di = d)?Yi (0; d) jRi, for all d 2 f1; 2; : : : ; kg
(Imbens, 1999, 2000).
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�d is estimated as:

b�pmGPSd =
1

N

NX
i=1

[b�d � 1 (Di = d) + b�d � 1 (Di = d) �Rdi + b�j � 1 (Di = d) � (Rdi )2]:
We refer to this estimator as the GPS-based parametric partial mean estimator of �d.

Following Newey (1994) and more recently Flores (2007) and Flores et al. (2009), we also

consider a more �exible speci�cation in which the �rst-step estimator of the regression function is

based on a nonparametric kernel estimator. As in Flores et al. (2009), we use a local polynomial

regression of order one, which has desirable boundary properties and is commonly used in economics.

Since in our case the treatment is discrete, the nonparametric regression function of Yi on Di and

Ri in the �rst stage is equivalent to having one nonparametric regression function of Yi on Ri for

each site. Letting b (d; r;h) be the standard local linear estimator (e.g., Wand and Jones, 1995,
p.119, eq 5.4) of  (d; r) in (13) based on bandwidth h, the nonparametric partial mean estimator

of �d is given by: b�pmNPRd =
1

N

NP
j=1

b �d;Rdj ;h� : (14)

Note that each b(d;Rdj ;h) is obtained with Ri as the regressor using only the individuals in site
d, but is evaluated for all individuals at their GPS Rdj . In the next section we implement this

estimator by using an Epanechnikov kernel, and selecting a bandwidth for each of the regressions

 (d; r) using the procedure proposed by Fan and Gijbels (1996, p.111).18

In addition to employing the GPS within a partial mean framework to estimate �d, the GPS

can also be used to control for covariates using a weighting approach (e.g., Imbens, 2000; Cattaneo,

2009).19 Similar to the binary treatment case, in a multiple treatment setting we can weight the

observations receiving a given treatment level d by the probability of receiving the treatment they

actually received conditional on X (i.e., Ri). More speci�cally, in our context we can write �d as

(Imbens, 2000):

�d = E

�
Yi � 1 (Di = d)

Ri

�
: (15)

The intuition behind weighting by Ri is creating a sample in which the covariates are balanced

across all treatment arms (or sites), and then calculating the average outcome for those units with

Di = d in that sample to estimate �d. In the binary treatment literature, the weights implied by

(15) are usually normalized to add to one (e.g., Imbens, 2004; Busso et al., 2009a, 2009b). Thus,

the inverse probability weighting (IPW) estimator we use in this paper is given by

b�ipwd =

"
NX
i=1

Yi � 1 (Di = d)
Ri

#"
NX
i=1

1 (Di = d)

Ri

#�1
: (16)

18The bandwidths are obtained by estimating the unknown terms appearing in the optimal global bandwidth using
a global polynomial regression of order two. This bandwidth selection criteria has been previously used in economics;
for example, in the regression discontinuity context (e.g., Lee and Lemieux, 2009).
19See Flores et al. (2009) for a discussion of weighting-by-the-GPS estimators in a continuous treatment setting.
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Cattaneo (2009) analyzes the asymptotic properties of IPW estimators such as (16) when the

GPS is nonparametrically estimated using a series-based estimator.20,21 He shows that under certain

conditions, including the simultaneous strict overlap assumption (Assumption 2), these estimators

are asymptotically normal and e¢ cient in the class of
p
n-consistent estimators of �d in the sense of

achieving the semiparametric e¢ ciency bound. On the other hand, Khan and Tamer (2009) show

that in many important cases IPW estimators �and more generally any semiparametric estimator

of �d�can fail to converge at the parametric
p
n rate.22

Note that, similar to the binary treatment case, b�ipwd for d = 1; : : : ; k equal the coe¢ cients in a

weighted linear regression of Yi on the set of k dummy variables 1 (Di = j), with weights equal to

wi =
p
1=Ri. The last estimator of �d we consider combines IPW with linear regression by adding

covariates to this weighted regression.23 It is calculated following a three-step procedure. First, we

estimate the weighted regression

E [YijDi; Xi] =
kX
j=1

�j � 1 (Di = j) + �0Xi; (17)

with weights wi =
p
1=Ri. Next, we calculate the predicted value of the outcome at each site d for

all individuals as bY di = b�d + b�0xi. Lastly, the estimator b�ipwXd is given by the weighted average ofbY di using the weights wi. We refer to this estimator in the remaining of the paper as the IPW with

covariates estimator.24

In a parametric context, estimators combining IPW and linear regression share a �double ro-

bustness�property, which states that these estimators are consistent as long as either E [YijDi; Xi]
or the GPS is correctly speci�ed (e.g., Robins and Rotznitzky, 1995; Scharfstein et al., 1999;

Wooldridge, 2007). The �rst part of the argument is that if E [YijDi; Xi] is correctly speci�ed, then
weighting by any nonnegative function of the covariates does not a¤ect the consistency of (17).25

20Cattaneo (2009) uses a multinomial logistic sieve estimator for nonparametrically estimating the GPS. It gener-
alizes the logistic sieve estimator in Hirano et al. (2003), and can be implemented in practice by simply estimating
a multinomial logit with �exible functions of the covariates (e.g., polynomials and interactions).
21Cattaneo (2009) introduces another asymptotically e¢ cient estimator of �d based on the e¢ cient in�uence func-

tion (EIF) for �d, which we do not include in our study. As compared to the IPW estimator, this �EIF estimator�
has the advantage of being based on the entire EIF; however, it requires the estimation of two in�nite dimension
parameters �the GPS and a conditional expectation which is a function of �d. Moreover, Cattaneo (2009) does not
�nd any meaningful di¤erences in the results when applying both estimators to actual data, or in simulations.
22The rate of convergence of these semiparametric estimators depends on the tail behavior of the distribution of the

covariates and the error term in the treatment equation, and in many cases can be slower than
p
n (e.g., when both

the regressors and the latent error term in the treatment equation are normally distributed in the binary treatment
case). See Khan and Tamer (2009) and Busso et al. (2009b) for a discussion of these issues.
23For space considerations we do not consider other estimation methods such as blocking or matching. In a binary

treatment setting, IPW estimators tend to perform better than matching and blocking estimators in simulations (e.g.,
Busso et al. 2009a, 2009b). In addition, in a multiple treatment setting the GPS-based estimators we consider in
this paper are easier to implement and are less computationally intensive (especially the IPW estimators).
24Similar to the partial mean linear X estimator discussed in (11), the reason we go through this three-step

procedure is to avoid using one of the sites as a reference site. In fact, the average treatment e¤ect estimatorb�ipwXd � b�ipwXf for sites d and f is algebraically the same as the coe¢ cient in the indicator variable for site d from
the weighted regression (17) excluding the indicator variable for site f and including a constant term.
25 In this case, however, weighting will result in a less e¢ cient estimator relative to the unweighted regression by
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Intuitively, we can think of the second part of the argument as adjusting for the covariates using

linear regression in a sample in which the covariates have already been balanced by weighting by

a correctly speci�ed GPS. This would be analogous to adjusting for observed characteristics when

using experimental data, which is commonly done in practice to improve precision.26

Finally, we also study di¤erence-in-di¤erence versions of all the estimators previously discussed.

These estimators are the same as those described above, but use the outcome in di¤erences. This

speci�cation removes any potential bias coming from temporally invariant factors correlated to both

the treatment assignment (Di) and the outcome (e.g., Heckman et al., 1997; Heckman et al., 1998a;

Smith and Todd, 2005; Abadie, 2005). Hence, these estimators relax Assumption 1 by allowing

the di¤erent treatment groups to also di¤er systematically in terms of unobserved time-invariant

factors.

4 Determination of the overlap region

A key ingredient in the implementation and performance of the estimators discussed in Section 3 is

the availability of comparable individuals in terms of the covariates among the di¤erent treatment

groups, as implied by Assumption 2. This assumption guarantees that in in�nite samples we can

�nd comparable individuals for all units with Di 6= d in the subsample with Di = d, for every

site d. In �nite samples, though, we may fail to �nd comparable units in the Di = d group. This

point has been extensively analyzed in the binary treatment setting, where the propensity score

plays a signi�cant role in identifying regions of the data in which there is overlap in the covariate

distributions (e.g., Heckman et al. 1997; Heckman et al., 1998a; Dehejia and Wahba, 1999, 2002;

Imbens and Wooldridge, 2009). In this case, the usual approach is to focus on the �overlap� or

�common support" region by dropping those individuals whose propensity score does not overlap

with the propensity score of those in the other treatment arm.27

We propose a strategy for determining the overlap region that is motivated by a procedure

commonly used in the binary treatment setting (e.g., Dehejia and Wahba, 1999, 2002). As in the

binary case, we rely on the GPS Rdi to �nd the set of individuals for whom there are comparable

individuals in terms of covariates in each of the treatment groups. Let Rdq;fj2Ag denote the q-th

quantile of the distribution of Rd over those individuals in subsample A. First, we let the overlap

region with respect to a particular site (or treatment) d be given by the subsample

Overlapd =
n
i : Rdi � max

n
Rdq;fj:Dj=dg; R

d
q;fj:Dj 6=dg

oo
: (18)

the Gauss-Markov theorem.
26For a discussion of this estimator in the binary treatment case see, for instance, Imbens (2004) and Imbens

and Wooldridge (2009). For a formal discussion of the double robustness property in a general class of models,
including estimation of average treatment e¤ects and non-continuous outcomes (e.g., binary and count variables), see
Wooldridge (2007).
27Unless the treatment e¤ect is homogeneous, when implementing this type of trimming procedure one is implicitly

rede�ning the parameter of interest to be conditional on the subpopulation with overlap in the propensity score (e.g.,
Crump et al., 2009; Imbens and Wooldridge, 2009).
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In words, we �rst select the individuals whose propensity score of belonging to site d is greater than

a cuto¤ value, which is given by the highest q-quantile from the Rdi distribution for two groups:

those individuals that are in site d and those who are not. Then, we de�ne the overlap or common

support region as the subsample given by those units that are in the overlap regions for all di¤erent

sites simultaneously

Overlap =
kT
d=1

Overlapd: (19)

The overlap condition for site d in (18) ensures that for every unit in the subsample Di 6= d

we are able to �nd comparable units in the subsample Di = d, which implies we can estimate

E [Y (0; d)] under Assumption 1.28 Then, we take the intersection in (19) to guarantee that we

estimate E [Y (0; d)] d = 1; 2; : : : ; k using only units that are comparable in all sites simultaneously.

This procedure to impose overlap is di¤erent from that previously used in the multiple treatment

literature (e.g., Frölich et al., 2004), which uses a rule akin to (19) but de�nes Overlapd = fi : Rdi 2
[maxj=1;:::;kfminfq:Dq=jgRdqg;minj=1;:::;kfmaxfq:Dq=jgRdqg]g. The rule we propose is less stringent
in two important ways. First, as implied by the weak version of the unconfoundedness assumption,

it does not require the comparison of Rdi among all k treatment groups, but only among those in

groups Di = d and Di 6= d. Second, it identi�es individuals outside the overlap region based only
on the lower tail of the distributions of Rdi .

29

An important issue when implementing the overlap rule (19) is selecting the quantile q that

determines the amount of trimming. Even in the binary treatment literature, there is no consensus

about how to select the trimming level (e.g., see Imbens and Wooldridge, 2009).30 In this paper we

set q = 0:002, but also present results for other quantiles (q = 0; 0:001; 0:003; 0:004 and 0:005) to

evaluate the sensitivity of our results to the choice of q.

Finally, note that while the overlap rule above guarantees that for every individual in the

overlap region (19) there are comparable units in each of the treatment groups, the quality of the

overlap may still be poor with respect to one or more treatments. This happens, for instance,

when interest lies on estimating E [Y (0; d)] and, even inside the overlap region, many units with

Di 6= d are comparable to only a handful of units with Di = d. Hence, it is important to analyze
the quality of the overlap in each of the treatment groups. In Section 6 we accomplish this by

analyzing overlap plots.

28As discussed in Section 3, for estimation of E [Y (0; d)] we only need to �nd comparable individuals in the
subsample Di = d for those with Di 6= d, and not vice versa.
29When estimating the average treatment e¤ect in the binary setting, one usually looks at both tails of the distri-

bution of the propensity score, say Pr (D = 1jX) for D 2 f0; 1g. This is equivalent to analyzing the two lower tails
of the distributions of Pr (D = 1jX) and Pr (D = 0jX), because Pr (D = 1jX) + Pr (D = 0jX) = 1. Since condition
(18) is applied for all sites, it is not necessary to look at the upper tail of the GPS distributions.
30For the binary case, Crump et al. (2009) derive an e¢ ciency-based optimal trimming rule. Characterizing an

analogous rule for the multiple treatment setting is beyond the scope of this paper.
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5 Data

The data used in this paper comes from the National Evaluation of Welfare-to-Work Strategies

(NEWWS). This is a multi-year study conducted in the early and mid nineties to compare the

e¤ects of two approaches for helping welfare recipients (mostly single mothers) to improve their

labor market outcomes and leave public assistance. The �rst approach emphasized labor force

attachment (LFA) by encouraging participants to �nd employment quickly, and the second focused

on human capital development (HCD) by o¤ering academic, vocational and employment-oriented

skills training. In addition, under each of these approaches the evaluation analyzed the e¤ects of

di¤erent caseload and management strategies.31

The programs evaluated in the NEWWS study were operated in seven sites across the U.S.:

Atlanta, GA; Columbus, OH; Detroit, MI; Grand Rapids, MI; Oklahoma City; OK; Portland, OR;

and Riverside, CA. In Atlanta, Grand Rapids and Riverside both LFA and HCD programs were

o¤ered, and individuals were randomly assigned to LFA, HCD or the control group. In the rest of

the sites, individuals were randomized to one of the programs (LFA, HCD or a combination of both)

or to the control group, which was denied access to the training services o¤ered by the program

for a pre-set �embargo�period. As explained in Section 2, we concentrate only on the individuals

randomly assigned to the control group in each site in order to minimize treatment heterogeneity

across sites.

We rely on the public-use version of the NEWWS data. The data contains a rich set of individual

and family characteristics, information on labor market outcomes for up to �ve years after random

assignment, and individual welfare use and labor market histories up to two years prior to random

assignment. In addition, we are able to identify di¤erent cohorts in each site, although only by

their year of random assignment in this version of the data. The year of randomization di¤ered

across sites; the earliest randomization took place in 1991, and the latest in 1994.

We use only female control individuals in the �ve sites for which all the same variables are

available, and in which individuals were randomized after welfare eligibility had been determined.

The �nal sample size in our analysis is 9,351 women: 1,372 from Atlanta; 2,037 from Detroit; 1,374

from Grand Rapids; 1,740 from Portland and 2,828 from Riverside.32

The outcome we use in our analysis is an indicator variable equal to one if the individual was

ever employed during the two years following randomization, and zero otherwise.33 We focus on an
31For a detailed description of the NEWWS study and its results see Hamilton et al. (2001).
32The total number of individuals in the control groups in the original seven sites is 17,521. We exclude two sites,

Columbus (2,159) and Oklahoma City (4,368). Columbus has the problem of having only one year (instead of two)
of labor market history prior to random assignment. We exclude it from the analysis because of the documented
importance of controlling for such variables in nonexperimental settings (e.g., Heckman et al., 1997; Hotz et al.,
2005). We drop Oklahoma City because in this site randomization was performed to welfare applicants, not to
welfare recipients as in the remaining sites; and a large proportion (30%) of those individuals did not actually qualify
for welfare. There is evidence in the literature that applicants and recipients are very di¤erent in terms of their
characteristics and outcomes (e.g., Friedlander, 1988). From the individuals in the remaining �ve sites, we eliminate
all men and individuals with unknown gender (778). In addition, we drop 431 Atlanta women for whom it is unknown
whether they were embargoed from the program services during the period considered. Finally, from the remaining
women, we exclude those with missing values on any of the covariates used in our analysis (434).
33Using a one-year employment indicator instead of the aggregate two-year indicator does not change our results
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outcome measured only up to two years after random assignment because, in most sites, we cannot

identify which control individuals were embargoed from receiving program services starting in year

three. As mentioned in Section 3, we also consider the outcome in di¤erences. We de�ne it as the

original outcome minus an indicator equal to one if the individual was ever employed during the

two years prior to randomization. We standardize both outcomes (in levels and in di¤erences) with

respect to their respective mean and standard deviation across all sites in order to make results

comparable across estimators and outcomes, and to simplify the presentation of results.34

The �rst �ve columns of Table 1 show the descriptive statistics of the outcomes and covariates in

each site. The covariates include information on demographic and family characteristics, education,

housing type and stability, welfare and food stamps use history, and earnings and employment

history. As expected, there are important and usually large di¤erences in the means of all variables

across sites. For instance, while the percentage of blacks in Atlanta is 95 percent, this percentage

is only 17 percent in Riverside; and while in Detroit the percentage of women with a high school

or GED degree is 48 percent, it is 59 percent in Riverside and around 53 percent in the other sites

In fact, all variables fail a test of equality of means across all �ve sites at a 5 percent signi�cance

level (not shown in the table).

As previously mentioned in Section 2, LEC play an important role in our framework, since they

may prevent (2) to hold even if individual characteristics are balanced across all sites. In our data,

we observe di¤erent cohorts for each site, as determined by their year of random assignment. This

creates within-site variation that allows us to attempt to control for pre-randomization di¤erences

in LEC across sites. At the bottom of Table 1, we summarize the LEC faced by the individuals

in di¤erent cohorts within each site, measured at the metropolitan statistical area (MSA) level.

We present three variables �employment to population ratio, average real earnings and unemploy-

ment rate� that measure the LEC faced by each individual during the calendar year of random

assignment, as well as their corresponding two-year growth rates in the two years prior to random

assignment.35,36 In addition, Figure 1 presents the three LEC measures for two years before and

substantively (results available upon request). We focus on an employment indicator because the public-use data
available to us provides us solely with the year of random assignment and with nominal earnings measures. Thus,
we could create only relatively rough measures of real earnings. In order to avoid having our results a¤ected by how
we obtain real earnings, we do not focus on earnings-related outcomes.
34Michalopoulos et al. (2004) use mostly the same data as us, but for binary comparisons. A key di¤erence

between their study and ours regarding the data is that they have access to a restricted-use version that allows them
to compare individuals within (roughly) the same locations, which we cannot do. It also allows them to use earnings
as an outcome, which we decided against (see footnote 33). Another di¤erence is that they use Oklahoma City as
a comparison group, which we do not, since in that site randomization was performed before welfare eligibility was
determined (see footnote 32). A �nal key di¤erence is that Michalopoulos et al. use both, �short-run� (up to two
years after randomization) and �medium-run� (three to �ve years after randomization) outcomes. We do not use
medium-run outcomes because it is not possible to guarantee, for all sites, that only individuals who were embargoed
from receiving any program services over the whole �ve-year post-randomization period are included (see footnote
32). By including control observations that may have received services, and by keeping Oklahoma City, Michalopoulos
et al. allow their control groups to potentially be �contaminated�, which could seriously a¤ect their results.
35Because in the public-use version of the data we only observe the year of random assignment, we rely on yearly

LEC measures, which represent a rough approximation to the actual economic conditions faced by the program
participants.
36The two-year growth rate of variable X between period t and t � 2 is approximated as �log(X) � log(Xt) �
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after randomization, by site and cohort. The di¤erences in LEC across all sites clearly show that we

are working with �ve distinct local labor markets. Among the �ve sites, the LEC in Riverside are

particularly di¤erent from the rest. In Riverside, not only the LEC were the worst during the pe-

riod of randomization (e.g., lowest employment to population ratio), but also the pre-randomization

LEC dynamics were the worst (e.g., most negative growth rate in employment to population ratio).

6 Results

In the �rst subsection we discuss the estimation of the GPS and how it a¤ects the balance of the

covariates across all sites. Next, we analyze the quality of the overlap inside the common support

region, and show how the extremely low overlap quality in one of the sites leads us to consider

an alternative case where that site is dropped. In the third subsection we present the estimation

results for those two cases, and in the last subsection we calculate some benchmarks measures based

on the experimental data and perform some robustness analyses.

6.1 GPS estimation and covariate balancing

In the binary treatment setting, the propensity score is usually estimated using a logit model (e.g.,

Rosenbaum and Rubin, 1983; Dehejia and Wahba, 1999, 2002; Heckman et al. 1997; Heckman et

al., 1998a). We follow an analogous approach and estimate the GPS using a multinomial logit model

that includes all 52 individual-level covariates shown in Table 1 plus the two-year pre-randomization

growth rate in employment to population ratio.37,38

An important property of the GPS �which does not depend on unconfoundedness�is that it bal-

ances the covariates between the individuals in a site and those not in that site, or 1 (Di = d)?XijRdi
(Imbens, 1999). In the binary treatment setting this property is commonly used to gauge the ade-

quacy of the propensity score speci�cation (e.g., Dehejia and Wahba, 1999; Smith and Todd, 2005).

We follow two strategies to examine how the estimated GPS a¤ects the covariate balance across the

di¤erent sites. Both strategies are implemented after imposing the overlap rule in (19). The �rst

strategy tests, for each covariate, if there is joint equality of means across all �ve sites after each

observation is weighted by the same weights used in the IPW estimator in (16). Summary results

from these tests are presented in the �rst column of panel A in Table 2, which also shows equality

tests for the raw means before imposing overlap. Appendix Table A1 presents the variable-by-

variable results. Clearly, weighting improves the balancing among the �ve sites, as the number of

log(Xt�2):
37 It is not possible to include the LEC measures in levels into the GPS estimation because that would (almost)

perfectly identify the sites. We use only one of the LEC growth measures because of high collinearity among them.
Results do not change considerably when using other LEC measures.
38The results from this multinomial logit are not shown in the text for brevity, but are available upon request. We

also considered a multinomial probit model, which has the advantage of not having the �independence from irrelevant
alternatives�property. However, it has the disadvantage of being several orders of magnitude more computationally
intensive. In the cases where we estimated the GPS with a multinomial probit model, it did not seem to make any
sizeable di¤erence in the results.
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unbalanced covariates at the 5 percent signi�cance level drops from 53 to 11. This reduction is not

driven by an increase in variance, as weighting does bring most of the means much closer together.

Not surprisingly given its large initial di¤erences, the LEC measure is one of the variables that

remains highly unbalanced, although their means are brought a little closer together by weighting.

The second strategy we use to check the covariate balance consists of a series of pairwise com-

parisons of the mean of each site versus the mean of the (pooled) remaining sites, as in Hirano

and Imbens (2004). The summary results from applying this approach are presented in panel B of

Table 2, while the detailed results are presented in Appendix Table A2. The results shown in Table

2 for the raw means correspond to an equality test of those two means. For a given site d, the

GPS-adjusted version of these tests are obtained by dividing (�blocking�) all the observations based

on their value for Rdi . The groups (or blocks) are de�ned by the deciles of R
d
i , which are calculated

using only the units with Di = d. Within each group, we calculate the di¤erence of means in a

given covariate between those individuals with Di = d and those with Di 6= d. The weighted (by
the number of individuals in each block) average of these di¤erences of means is used to test the

GPS-blocked equality of means between a site and all the other sites pooled. This procedure is

repeated for each covariate and for all sites. Similar to our �ndings based on inverse probability

weighting (e.g., panel A in Table 2), adjusting for the GPS improves signi�cantly the balance of

the covariates, although a few unbalanced variables remain. Overall, we conclude from Table 2

that the covariates in the raw data are highly unbalanced across sites, and that the estimated GPS

when using all �ve sites does a reasonably good job in improving their balance.39

6.2 Assessment of the overlap quality

This subsection highlights the key role played by the GPS in evaluating the comparability of the

di¤erent treatment groups for estimation of the parameters in (1). First, we examine the set of

individuals dropped after imposing the overlap rule (19). Second, we assess the quality of overlap

in our data before and after imposing the overlap rule.

A careful examination of the individuals dropped after imposing overlap can help identifying

sites (or treatments groups) for which there is not su¢ cient overlap in the covariate distributions.

In particular, it is important to look at the percentage of units dropped from each site. Having

a large proportion of individuals dropped from a particular site implies that many of the units in

this site are not comparable to individuals in at least one of the other sites.

In the last two rows of Table 1 we present the percentage of individuals dropped from each site

after imposing the overlap condition in (19), and the overall percentage of observations dropped

(almost 27 percent).40 In Riverside, 61 percent of the observations are dropped, while in the site

39Following a common strategy in the binary treatment literature, we also considered other GPS speci�cations
that included interactions and higher order terms of variables that remained unbalanced even after imposing overlap.
In our case, the balancing in general did not improve under these alternative speci�cations, and even in some cases
it worsened slightly. However, the general results presented in the paper remain virtually unchanged under those
alternative speci�cations.
40 In the middle �ve columns of Table 1 we present the descriptive statistics for the individuals not dropped after

imposing the overlap rule. Comparing them with the descriptive statistics before imposing overlap allows us to
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that follows it this number decreases considerably to 18 percent.41 These simple statistics are

already a signal that there might be insu¢ cient overlap between Riverside and the other sites.

We now examine more closely the overlap quality in our application. A common approach for

doing this in the binary treatment setting is to graph, in the same �gure, the propensity score

distribution of both treatment groups and look at their overlap (e.g., Dehejia and Wahba, 1999,

2002; Heckman et al. 1997; Heckman et al., 1998a). We perform an analogous analysis in Figure

2, which presents kernel density estimates of the Rd distribution for individuals with Di = d and

Di 6= d for each of the �ve sites. As previously discussed, it is important to keep in mind that the
goal when estimating �d is to �nd, for every individual with Di 6= d, comparable individuals in

terms of Rd in the Di = d group, and not vice versa. This implies that we are interested only on

the lower tail of the distributions of Rd, as stated in Assumption 2 and discussed in Section 4.

Panel A in Figure 2 presents the densities before imposing overlap. These densities show that

the distributions of the corresponding GPS between the two groups of interest di¤er strongly for

all sites, and suggest a problem of lack of overlap for some sites. This is consistent with the large

di¤erences in observable characteristics documented in Tables 1 and 2. Panel B in Figure 2 presents

the densities after imposing overlap. Although it is now possible to �nd for every individual with

Di 6= d comparable individuals in the Di = d group for all sites, the quality of the overlap remains
poor in some regions of the distributions, as many observations in the �rst group are comparable

to only few observations in the second group. As discussed below, this has important consequences

on the performance of the estimators we study.

From Figure 2, it is striking how thin the overlap region in Riverside is. Before imposing overlap,

the median value of the GPS RRiv for those with Di = Riv is 0.95, while for those with Di 6= Riv
is 0.0004 (not shown in tables). Since the conditional probabilities must add to one, this suggests

that a very large fraction of individuals with Di = Riv have probabilities of being in other sites

that are very small. For those units, it is very di¢ cult to �nd comparable individuals in other

sites. Despite dropping a very large fraction of individuals from Riverside after imposing overlap,

the overlap quality in this site remains extremely poor. For instance, after imposing overlap, 75

percent of the units with D 6= Riv (4,308 observations) are comparable to only 2.3 percent of the
units in the D = Riv group (26 observations) �not shown in tables. This implies that, even though

after imposing the overlap condition (19) we guarantee that the overlap assumption is not violated

in our data, we need to rely on a very small number of observations for identi�cation of �Riv over

a very wide range of the support of RRiv.

The extremely weak overlap for Riverside in Figure 2 reveals that, for the individuals in the

other sites, there are some covariates (or combinations of them) for which it is very di¢ cult to

�nd comparable individuals in Riverside. Examining Appendix Tables A1 and A2, we see that two

variables remain highly unbalanced even after adjusting for the GPS: the percentage of blacks in

identify the characteristics of the individuals that do not satisfy the overlap rule in each site.
41For reference, if instead of using q = 0:002 as the quantile for the overlap trimming rule, we use the weakest

version of it (q = 0), overall we drop 12.9% of the observations; from Riverside we drop 38.4% of the observations,
and for the site that follows it this number is only 3.9%.
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each site and, most importantly, the LEC measure. For instance, the mean growth rates of the

employment to population ratio in Portland and Riverside start about 1.79 standard deviations

away from each other (see Appendix Table A1). Weighting by the GPS slightly decreases this

distance to 1.36, which is still considerably high.42 This is consistent with the large di¤erences in

LEC between Riverside and the rest of the sites documented in Section 5. Therefore, large part of

the comparability issues seems to come from the LEC in Riverside being very di¤erent from those

in the other sites, with the percentage of blacks playing a lesser but also important role.

The poor overlap that remains after imposing overlap in Riverside, along with the large and

disproportionate percentage of observations dropped from this site, suggests performing the analyses

dropping Riverside. As discussed in Section 3, the bene�t of doing this is attaining a greater internal

validity of the estimators, at the cost of analyzing fewer sites for a smaller population. An added

bene�t is that, in our context, it allows us to study the performance of the estimators when applied

to locations where the LEC are relatively more similar.

For the four-site analysis, we �rst re-estimate the GPS using the same speci�cation as before.

The last four columns of Table 1 replicate for this case the information previously presented for

the �ve-site case. The percentage of observations dropped when imposing the overlap rule (19) is

now much lower, 12 percent, while in no site more than 22 percent of observations are dropped.

Regarding balancing, the second column in Table 2 presents the summary results for the balancing

tests, and Appendix Tables A3 and A4 present detailed results from these tests. As compared to

the �ve-site case, the GPS does a better job in balancing the covariates across all groups, especially

in the IPW context, where even the previously highly-unbalanced variable �black�is now balanced.

Also, although still unbalanced, the growth rate of the employment to population ratio is not nearly

as highly unbalanced as with �ve sites.

Figure 3 shows kernel densities similar to those presented for �ve sites. The main improvement

when moving from �ve to four sites comes from not having a site with extremely poor overlap

(i.e., Riverside). This is important since, as we show in the next subsection, it is very di¢ cult

to draw inferences about �Riv. In addition, there is a small improvement in the overlap in the

remaining four sites, mainly from removing observations with low values of Rd in the D 6= d groups
after dropping Riverside.43 Even though in the multiple treatment setting the overlap condition is

stronger, the general quality of the overlap within each site is similar to that in previous studies

in a binary treatment setting (e.g., Dehejia and Wahba, 1999; Black and Smith, 2004; Smith and

Todd, 2005).

42Similarly, Appendix Table A2 shows that the unadjusted di¤erence in means of this variable between Riverside
and the rest of the pooled sites is 1.34 standard deviations away, and it is only slightly reduced (to almost one
standard deviation) after adjusting for the GPS. Not surprisingly, the t-statistic of the adjusted di¤erence of means
remains very high at 48.4 (not shown in table).
43For instance, note the scale change in the kernel densities for the D 6= d groups.
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6.3 Estimation results

In this subsection we present the results from implementing the estimators discussed in Section

3. We implement the non-GPS-based estimators before and after imposing overlap to analyze the

e¤ect of using only �comparable� units on these estimators. All the GPS-based estimators, on

the other hand, were only estimated within the overlap region.44 As previously mentioned, we use

q = 0:002 when applying (19), and we examine the robustness of the results to alternative values

of q in the next subsection.

We present �rst the results for the �ve-site case to study the performance of the estimators when

the quality of the overlap is poor and the LEC di¤er substantially across sites. Panels A and B in

Table 3 show assessment measures of the estimators for the outcome in levels and in di¤erences,

respectively. The table shows, for each estimator, the p-value from the joint equality test in (2) and

the three distance measures in (3)-(5) with their corresponding 95 percent con�dence interval based

on 1,000 bootstrap replications. Additionally, we show the distance measures relative to those from

the raw mean estimator using the outcome in levels before imposing overlap, which gives a reference

level for the initial di¤erence in outcomes across sites. In Figures 4 (levels) and 5 (di¤erences) we

show the point estimate of �d for each site with its corresponding 95 percent con�dence interval,

and Appendix Table A5 presents the same information in tabular form. The dashed line in each of

the graphs in Figures 4 and 5 represents the average estimate among the sites (�), which is used to

calculate the distance measures rmsd and mad �see (3) and (4). This is given as a reference point,

since the goal is to equate the estimates of �d across all �ve sites.

In general, the results show that the nonexperimental estimators studied are not very successful

when using �ve sites. Only a few of them reduce the distance measures more than 50 percent

with respect to the measures for the raw mean estimator in levels. Working with the outcome in

di¤erences reduces the distance measures more than using the outcome in levels, for which some of

the distance measures even increase. Figures 4 and 5 make clear that the methods have di¢ culties

in aligning �Riv with the rest of the sites, as its estimate is usually well below the rest. This comes

at no surprise in light of the extremely poor overlap quality in Riverside and its very di¤erent

LEC.45

The con�dence intervals for the distance measures and for many of the point estimates are

44For the estimators where we adjust by covariates (partial mean linear X and IPW with covariates) we include
all 52 individual covariates in Table 1 plus the same LEC measure used in the GPS estimation (the two-year pre-
randomization growth rate in employment to population ratio). For the partial mean �exible X estimator, we also add
several higher order terms and interactions, totaling an additional 51 covariates. A complete list of these additional
terms is available upon request.
45As Figure 1 makes clear, the di¤erences in LEC between Riverside and the other sites exist both before and

after randomization. In some speci�cations we adjusted the outcome by the post-randomization LEC variables.
There is no clear guidance about how to do this type of adjustments. In the binary setting, Hotz et al. (2006)
include post-treatment measures of LEC as additional covariates in a regression-based approach; while Galdo (2008)
applies a nonparametric procedure to remove time and location �xed e¤ects prior to applying matching estimators.
We implemented the adjustment by running a regression of the outcome in levels against post-randomization LEC
measures, and then using the residuals from this regression as an additional outcome. Probably because our yearly
LEC measures are relatively rough approximations, the results from implementing our estimators to this new outcome
are not signi�cantly better than those for the outcome in di¤erences. The results are available upon request.
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very wide, in particular for the GPS-based estimators. This is a direct consequence of the overlap

quality in some sites, since in some regions of the support of the GPS we are relying on a handful of

observations for identi�cation (especially in Riverside). In the binary setting, previous studies have

warned about the high variance of semiparametric estimators based on the propensity score when

the covariate distributions are very di¤erent between treatment and control groups (e.g., Black

and Smith, 2004; Imbens and Wooldridge, 2009). When the overlap is poor, these estimators can

fail to converge at the parametric
p
n-rate, which can lead to imprecise estimators and numerical

instability (e.g., Khan and Tamer, 2009; Busso et al., 2009b). In addition, Busso et al. (2009b)

document the high variance of these estimators in cases of poor overlap in a simulation study

analyzing their �nite sample properties in a binary treatment setting. As discussed in Section 3,

in the multiple treatment setting the overlap assumption is stronger than when the treatment is

binary, so this problem is likely exacerbated. On the other hand, the large standard errors of these

estimators, as compared to those in more parametric models, just (correctly) re�ect the uncertainty

in estimating average treatment e¤ects in cases with poor or limited overlap (e.g., Black and Smith,

2004; Imbens and Wooldridge, 2009).

We next perform the analysis for the four-site case (i.e., excluding Riverside). Table 4 presents

assessment measures similar to those in Table 3, while the point estimates are presented graphically

in Figures 6 and 7 and in tabular form in Appendix Table A6. The estimators now do a much better

work in equalizing the estimates of �d across the four sites, especially when using the outcome in

di¤erences. For the outcome in di¤erences, almost all estimators reduce the three distance measures

by more than 50 percent, and in many cases by about 70 percent, with respect to the raw mean

estimator in levels before imposing overlap. Importantly, for most di¤erence-in-di¤erence estimators

the joint equality test is not rejected at standard signi�cance levels, in particular for all the GPS-

based estimators and the linear regression-based partial mean with a �exible speci�cation (after

imposing overlap). Note also that in most cases imposing the overlap rule in (19) improves the

performance of the linear regression-based estimators.46

The con�dence intervals continue to be wide for the GPS-based estimators when using four

sites. This is probably because, at the lower tail of the GPS distributions, we are still comparing

a large number of units not in the site to a relatively small number of units in the site. Thus,

the wide con�dence intervals just re�ect the di¢ culty of drawing inferences in this case. The

linear regression-based estimators, on the other hand, mask this inherent uncertainty by imposing

linearity assumptions that help them extrapolate to the regions of low overlap quality, resulting in

narrower con�dence intervals.
46 It is important to note that the improvement in the performance of the estimators in the four-site case is driven

only by the fact that Riverside is dropped, and not just by having one less site to adjust for. We repeated the four-site
analysis by keeping Riverside and dropping each of the other sites one at a time. In all these four-site cases in which
we kept Riverside, we encountered the same poor overlap quality in Riverside. The estimation results analogous to
those in Table 4 were similar to those obtained in the �ve-site case in Table 3. These results are available upon
request.
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6.4 Experimental benchmark and robustness analysis

As discussed in Section 2, due to pure sample variation, we would never expect to see a value of

zero in the distance measures in Tables 3 and 4. In order to put the results from these tables

into perspective, we construct some reference levels by obtaining the value of those measures that

would be achieved by an experiment, in situations where �1 = �2 = : : : = �k is known to hold.

We obtain these reference levels in two ways. First, we perform a �placebo�experiment in which

we assign placebo sites randomly to the individuals in the data set, and we let b�d be the sample
mean in each placebo site. Table 5 presents benchmark values of the assessment measures from this

exercise when applied to �ve and four sites using the outcome in levels and in di¤erences.47 Second,

we use the fact that in three sites of the NEWWS study (Atlanta, Grand Rapids and Riverside)

individuals were randomized to one of three possible treatments �LFA training, HCD training or a

control group�within each site. Since this implies that the mean outcomes prior to randomization

are equal for the three groups, we use a pre-randomization outcome analogous to the one actually

used in our study and calculate the distance measures in (3)-(5) based on the sample mean for each

group. Table 6 presents benchmark values of the assessment measures from this case.48

Tables 5 and 6 show benchmark values ranging from 0.020 to 0.027 for rmsd, 0.019 to 0.023 for

mad and 0.048 to 0.060 for maximum distance. For comparison purposes, consider the benchmark

values from the case with four sites in Table 5 and the IPW estimator with covariates in Table 4,

both using the outcome in di¤erences. The distance measures for the raw mean estimator in Table

4 start about four times higher than those of the benchmark case (0.082 versus 0.023). The IPW

estimator substantially reduces these di¤erences to the point that now the rmsd is about 30 percent

higher than the benchmark of 0.023; and the mad and maximum distance are about 19 and 34

percent higher than those from the benchmark, respectively. In addition, note that if we were to

take those benchmark values as �xed, and test the null hypothesis that any given distance measure

from the IPW (with covariates) estimator is equal to the corresponding one from the benchmark

case, we would fail to reject the hypothesis at a 5 percent signi�cance level. We believe these

results are encouraging given the di¢ culty of the problem at hand and the high yardstick imposed

to evaluate the methods in this paper.

Finally, we examine the sensitivity of the assessment measures in Table 4 to the choice of the

quantile q that determines the trimming level for the overlap rule in (19). Table 7 presents two of

these measures for all the estimators, the p-value from the joint equality test in (2) and the rmsd,

when implementing the overlap rule using the following values of q: 0; 0:001; 0:003; 0:004; and

0:005. We also include in Table 7 the results for q = 0:002 �which are the same as those in Table

4�to make easier the comparison of results for all the values of q considered. The percentage of

47The number of observations per site in each case is the same as in the original data set.
48The sample sizes for this exercise in Atlanta, Grand Rapids and Riverside (including the three treatments) are

4,039, 4,298 and 3,994 respectively. For Riverside, this exercise can only be conducted for women �in need of basic
education�, who were the only ones randomized into three treatment groups (see Hamilton et al., 2001, for details).
Although the sample sizes are not the same as the ones used in Tables 3 and 4, they are of approximately the same
order of magnitude; so we do not expect the distance measures to be signi�cantly a¤ected by these di¤erences in
sample sizes.
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observations dropped in each case when imposing overlap ranges from 4.5 percent in the weakest

form of the rule (q = 0), to 18.2 percent when q = 0:005. Although the point estimates vary

depending on the speci�c choice of q �especially the GPS-based ones, which is expected given their

variance�, the general points previously discussed remain valid. It is also important to note that

the 95 percent con�dence intervals remain remarkably stable for the di¤erent levels of q, which

implies that hypothesis tests based on them are not a¤ected noticeably by this choice.

7 Conclusion

The purpose of this paper was twofold: (i) assess the performance of unconfoundedness-based

estimators of mean e¤ects in the multiple treatment case; and (ii) analyze the role played by the

GPS in evaluating the comparability of treatment groups in terms of covariates in this setting.

The overlap condition in the multiple treatment setting is stronger than in the binary case since

we need to �nd, for each individual in the population, comparable individuals in each treatment

group. This makes the estimation problem much more di¢ cult when working with multiple treat-

ments. Our paper highlights the crucial role played by the GPS in assessing the comparability

of the di¤erent treatment groups in terms of observable characteristics. Based on the GPS, we

propose a strategy to determine the overlap or common support region that is less stringent than

those previously used in the multiple treatment literature, and discuss the use of the GPS when

evaluating the quality of the overlap.

After we implement the proposed overlap rule to the �ve locations considered in this paper,

we identify a site (Riverside) for which the overlap quality is extremely poor, even in the common

support region. Our analysis suggests that a substantial portion of the comparability issues between

Riverside and the rest of the sites comes from the large di¤erences in local economic conditions.

The case of Riverside illustrates how, in a multiple treatment setting, treatment groups for which

the overlap fails or is close to failing are more likely to appear, giving rise to important trade-o¤s

regarding the external versus internal validity of the estimators. In particular, in practice, one may

choose to drop the noncomparable treatment group from the analysis and increase the internal

validity of the estimators, at the cost of analyzing fewer treatments for a smaller population. This

does not indicate a failure per se of the nonexperimental estimators we consider; rather, it highlights

the di¢ culty of the problem. In our study, we assess the performance of the estimators before and

after dropping Riverside from the analysis.

When we implement the unconfoundedness-based estimators using control groups with poor

overlap quality and very di¤erent local economic conditions (i.e. including Riverside), they perform

poorly in equalizing average outcomes across all control groups. As expected, this is mostly due to

the di¢ culty the methods have aligning the mean outcome in Riverside with those in the rest of the

sites. When the estimators are applied to control groups in locations with better overlap quality and

with relatively more similar local economic conditions (i.e. dropping Riverside), their performance

improves considerably. The di¤erence-in-di¤erence estimators perform the best and compare well to
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benchmark measures derived from experimental data. The superior performance of the di¤erence-

in-di¤erence estimators is consistent with previous �ndings in the binary treatment literature (e.g.,

Heckman et al., 1997; Heckman et al., 1998a; Smith and Todd, 2005). The improvement in the

performance of the estimators when comparing individuals in more similar labor markets suggests

that, when the treatment groups belong to the same local labor market, the estimators are likely

to perform better.

We deem our results as encouraging regarding the performance of nonexperimental estimators

for multiple treatments considering the high yardstick we impose, which entails equalizing mean

outcomes across di¤erent locations. Hence, we regard the nonexperimental methods we study as

valuable tools when evaluating multiple treatments in the absence of an experiment. Nevertheless,

our results also show that the overlap issues that arise in the implementation of these methods can

impose limits on what we can learn in any particular application. Therefore, applied researchers

should always identify the common support region in their data, and pay particular attention in

analyzing the overlap quality.

Finally, a natural extension of our research on unconfoundedness-based estimators of mean

e¤ects would entail using Monte Carlo simulations in order to learn more about the performance

of particular estimators in di¤erent settings. More speci�cally, our paper points out important

aspects to consider in that type of analysis, such as the degree and quality of overlap, the number

of treatments considered, and external validity versus internal validity trade-o¤s.
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Table 1. Descriptive statistics for the NEWWS data

ATL DET GRP POR RIV ATL DET GRP POR RIV ATL DET GRP POR
Outcomes

Ever employed in 2 years after RA 0.59 0.59 0.70 0.59 0.46 0.58 0.59 0.68 0.58 0.42 0.58 0.59 0.68 0.58
(0.49) (0.49) (0.46) (0.49) (0.50) (0.49) (0.49) (0.47) (0.49) (0.49) (0.49) (0.49) (0.47) (0.49)

Ever employed in 2 years after RA (in diff) 0.07 0.15 0.03 0.05 -0.07 0.08 0.15 0.03 0.06 -0.05 0.08 0.15 0.03 0.06
(0.57) (0.57) (0.55) (0.57) (0.58) (0.57) (0.57) (0.56) (0.58) (0.57) (0.57) (0.57) (0.56) (0.59)

Covariates
Demographic and family characteristics

Black 0.95 0.89 0.41 0.20 0.17 0.94 0.90 0.47 0.24 0.23 0.95 0.90 0.47 0.25
(0.22) (0.32) (0.49) (0.40) (0.38) (0.23) (0.30) (0.50) (0.43) (0.42) (0.23) (0.30) (0.50) (0.43)

Age 30-39 years old 0.51 0.35 0.29 0.40 0.45 0.50 0.35 0.31 0.42 0.47 0.50 0.35 0.32 0.43
(0.50) (0.48) (0.46) (0.49) (0.50) (0.50) (0.48) (0.46) (0.49) (0.50) (0.50) (0.48) (0.47) (0.50)

Age 40+ years old 0.14 0.11 0.09 0.08 0.13 0.12 0.11 0.09 0.09 0.13 0.13 0.11 0.09 0.09
(0.34) (0.32) (0.28) (0.27) (0.34) (0.33) (0.31) (0.29) (0.29) (0.34) (0.33) (0.32) (0.29) (0.29)

Became mother as a teenager 0.45 0.45 0.51 0.34 0.35 0.45 0.45 0.51 0.34 0.36 0.45 0.46 0.51 0.34
(0.50) (0.50) (0.50) (0.47) (0.48) (0.50) (0.50) (0.50) (0.47) (0.48) (0.50) (0.50) (0.50) (0.47)

Never married 0.62 0.69 0.58 0.49 0.34 0.64 0.70 0.59 0.51 0.39 0.63 0.70 0.58 0.50
(0.48) (0.46) (0.49) (0.50) (0.47) (0.48) (0.46) (0.49) (0.50) (0.49) (0.48) (0.46) (0.49) (0.50)

Any child 0-5 years old 0.42 0.65 0.69 0.71 0.58 0.45 0.66 0.67 0.68 0.60 0.45 0.65 0.66 0.67
(0.49) (0.48) (0.46) (0.46) (0.49) (0.50) (0.47) (0.47) (0.47) (0.49) (0.50) (0.48) (0.47) (0.47)

Any child 6-12 years old 0.70 0.48 0.43 0.52 0.59 0.71 0.49 0.46 0.56 0.61 0.70 0.49 0.46 0.57
(0.46) (0.50) (0.49) (0.50) (0.49) (0.45) (0.50) (0.50) (0.50) (0.49) (0.46) (0.50) (0.50) (0.50)

Two children in household 0.34 0.30 0.36 0.33 0.32 0.34 0.30 0.37 0.33 0.33 0.34 0.30 0.36 0.34
(0.47) (0.46) (0.48) (0.47) (0.47) (0.47) (0.46) (0.48) (0.47) (0.47) (0.47) (0.46) (0.48) (0.47)

Three or more children in household 0.31 0.27 0.19 0.30 0.28 0.33 0.28 0.21 0.31 0.31 0.33 0.27 0.21 0.31
(0.46) (0.44) (0.39) (0.46) (0.45) (0.47) (0.45) (0.40) (0.46) (0.46) (0.47) (0.45) (0.40) (0.46)

Education characteristics
10th grade 0.14 0.15 0.13 0.17 0.11 0.14 0.14 0.13 0.17 0.13 0.14 0.14 0.13 0.17

(0.35) (0.35) (0.34) (0.38) (0.31) (0.35) (0.35) (0.34) (0.38) (0.34) (0.35) (0.35) (0.34) (0.37)
11th grade 0.17 0.25 0.20 0.22 0.18 0.19 0.26 0.21 0.20 0.17 0.18 0.26 0.20 0.20

(0.38) (0.44) (0.40) (0.41) (0.38) (0.39) (0.44) (0.41) (0.40) (0.38) (0.39) (0.44) (0.40) (0.40)
Grade 12 or higher 0.57 0.50 0.54 0.45 0.57 0.56 0.50 0.53 0.45 0.51 0.56 0.50 0.54 0.46

(0.49) (0.50) (0.50) (0.50) (0.49) (0.50) (0.50) (0.50) (0.50) (0.50) (0.50) (0.50) (0.50) (0.50)
Highest degree = High School or GED 0.53 0.48 0.54 0.53 0.59 0.53 0.49 0.53 0.53 0.52 0.52 0.48 0.54 0.53

(0.50) (0.50) (0.50) (0.50) (0.49) (0.50) (0.50) (0.50) (0.50) (0.50) (0.50) (0.50) (0.50) (0.50)
Housing type and housing stability 

Lives in public/subsidized house 0.59 0.07 0.16 0.29 0.09 0.62 0.07 0.18 0.33 0.18 0.60 0.07 0.18 0.34
(0.49) (0.26) (0.37) (0.46) (0.29) (0.49) (0.26) (0.39) (0.47) (0.38) (0.49) (0.26) (0.38) (0.47)

One or two moves in past 2 years 0.49 0.48 0.51 0.47 0.54 0.49 0.48 0.53 0.47 0.50 0.49 0.48 0.53 0.47
(0.50) (0.50) (0.50) (0.50) (0.50) (0.50) (0.50) (0.50) (0.50) (0.50) (0.50) (0.50) (0.50) (0.50)

3 or more moves in past 2 years 0.08 0.08 0.25 0.23 0.22 0.08 0.07 0.21 0.19 0.18 0.08 0.07 0.21 0.18
(0.27) (0.27) (0.43) (0.42) (0.41) (0.27) (0.26) (0.41) (0.39) (0.38) (0.28) (0.26) (0.41) (0.39)

Welfare use history
On welfare for less than 2 years 0.26 0.23 0.38 0.32 0.44 0.24 0.23 0.34 0.29 0.33 0.24 0.23 0.35 0.29

(0.44) (0.42) (0.49) (0.47) (0.50) (0.43) (0.42) (0.48) (0.46) (0.47) (0.43) (0.42) (0.48) (0.46)
(continues in next page)
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Table 1. Descriptive statistics for the NEWWS data (continuation)

ATL DET GRP POR RIV ATL DET GRP POR RIV ATL DET GRP POR
On welfare for 2-5 years 0.25 0.25 0.31 0.35 0.28 0.26 0.26 0.32 0.36 0.33 0.26 0.25 0.32 0.36

(0.43) (0.44) (0.46) (0.48) (0.45) (0.44) (0.44) (0.47) (0.48) (0.47) (0.44) (0.44) (0.47) (0.48)
On welfare 5-10 years 0.24 0.24 0.17 0.23 0.16 0.26 0.24 0.18 0.24 0.19 0.25 0.24 0.18 0.24

(0.43) (0.43) (0.38) (0.42) (0.37) (0.44) (0.43) (0.39) (0.43) (0.39) (0.43) (0.43) (0.39) (0.43)
Received welfare in Q1 before RA 0.97 0.90 0.77 0.79 0.73 0.96 0.91 0.85 0.88 0.88 0.96 0.91 0.84 0.88

(0.18) (0.29) (0.42) (0.41) (0.44) (0.19) (0.28) (0.35) (0.33) (0.33) (0.18) (0.28) (0.36) (0.32)
Received welfare in Q2 before RA 0.93 0.86 0.70 0.74 0.49 0.92 0.86 0.78 0.83 0.76 0.92 0.86 0.75 0.83

(0.26) (0.35) (0.46) (0.44) (0.50) (0.27) (0.34) (0.42) (0.38) (0.42) (0.27) (0.34) (0.43) (0.38)
Received welfare in Q3 before RA 0.85 0.84 0.68 0.72 0.46 0.84 0.85 0.75 0.78 0.72 0.84 0.85 0.73 0.78

(0.36) (0.37) (0.47) (0.45) (0.50) (0.36) (0.36) (0.44) (0.41) (0.45) (0.36) (0.36) (0.45) (0.41)
Received welfare in Q4 before RA 0.73 0.83 0.67 0.69 0.44 0.77 0.83 0.72 0.74 0.67 0.77 0.83 0.70 0.73

(0.44) (0.38) (0.47) (0.46) (0.50) (0.42) (0.37) (0.45) (0.44) (0.47) (0.42) (0.37) (0.46) (0.44)
Received welfare in Q5 before RA 0.69 0.81 0.64 0.64 0.41 0.73 0.81 0.69 0.68 0.62 0.73 0.81 0.67 0.68

(0.46) (0.40) (0.48) (0.48) (0.49) (0.44) (0.39) (0.46) (0.47) (0.49) (0.45) (0.39) (0.47) (0.47)
Received welfare in Q6 before RA 0.66 0.79 0.61 0.61 0.39 0.69 0.79 0.65 0.65 0.57 0.69 0.79 0.64 0.64

(0.47) (0.41) (0.49) (0.49) (0.49) (0.46) (0.41) (0.48) (0.48) (0.49) (0.46) (0.40) (0.48) (0.48)
Received welfare in Q7 before RA 0.64 0.77 0.56 0.58 0.37 0.68 0.77 0.60 0.61 0.55 0.67 0.77 0.59 0.61

(0.48) (0.42) (0.50) (0.49) (0.48) (0.47) (0.42) (0.49) (0.49) (0.50) (0.47) (0.42) (0.49) (0.49)
Food stamps use history

Received FS in Q1 before RA 0.97 0.94 0.85 0.86 0.62 0.98 0.95 0.90 0.91 0.83 0.97 0.95 0.89 0.92
(0.17) (0.23) (0.36) (0.35) (0.48) (0.15) (0.22) (0.30) (0.28) (0.37) (0.17) (0.22) (0.31) (0.27)

Received FS in Q2 before RA 0.95 0.89 0.76 0.81 0.42 0.95 0.90 0.83 0.87 0.75 0.95 0.90 0.81 0.87
(0.22) (0.31) (0.43) (0.39) (0.49) (0.21) (0.31) (0.37) (0.33) (0.43) (0.23) (0.31) (0.39) (0.33)

Received FS in Q3 before RA 0.90 0.87 0.72 0.79 0.39 0.91 0.88 0.79 0.84 0.71 0.90 0.87 0.76 0.83
(0.30) (0.34) (0.45) (0.41) (0.49) (0.28) (0.33) (0.41) (0.37) (0.46) (0.30) (0.33) (0.43) (0.37)

Received FS in Q4 before RA 0.83 0.86 0.72 0.76 0.36 0.86 0.87 0.77 0.80 0.65 0.85 0.86 0.74 0.80
(0.38) (0.35) (0.45) (0.43) (0.48) (0.35) (0.34) (0.42) (0.40) (0.48) (0.36) (0.34) (0.44) (0.40)

Received FS in Q5 before RA 0.78 0.83 0.67 0.72 0.33 0.83 0.84 0.72 0.75 0.61 0.81 0.83 0.70 0.75
(0.42) (0.38) (0.47) (0.45) (0.47) (0.38) (0.37) (0.45) (0.43) (0.49) (0.39) (0.37) (0.46) (0.43)

Received FS in Q6 before RA 0.75 0.81 0.64 0.70 0.31 0.80 0.81 0.68 0.73 0.56 0.78 0.81 0.67 0.73
(0.43) (0.40) (0.48) (0.46) (0.46) (0.40) (0.39) (0.46) (0.45) (0.50) (0.41) (0.39) (0.47) (0.45)

Received FS in Q7 before RA 0.72 0.78 0.60 0.66 0.29 0.78 0.79 0.63 0.68 0.53 0.75 0.79 0.63 0.69
(0.45) (0.41) (0.49) (0.47) (0.45) (0.42) (0.41) (0.48) (0.46) (0.50) (0.43) (0.41) (0.48) (0.46)

Employment history
Employed in Q1 before RA 0.18 0.18 0.29 0.23 0.22 0.18 0.18 0.27 0.20 0.17 0.18 0.18 0.27 0.19

(0.39) (0.38) (0.45) (0.42) (0.41) (0.38) (0.38) (0.44) (0.40) (0.38) (0.39) (0.38) (0.44) (0.40)
Employed in Q2 before RA 0.18 0.18 0.30 0.25 0.25 0.18 0.18 0.27 0.22 0.18 0.18 0.18 0.27 0.22

(0.38) (0.38) (0.46) (0.43) (0.43) (0.38) (0.38) (0.44) (0.41) (0.39) (0.38) (0.38) (0.44) (0.41)
Employed in Q3 before RA 0.19 0.18 0.29 0.25 0.26 0.19 0.17 0.27 0.22 0.20 0.19 0.17 0.27 0.22

(0.39) (0.38) (0.46) (0.43) (0.44) (0.39) (0.38) (0.44) (0.42) (0.40) (0.39) (0.38) (0.44) (0.42)
Employed in Q4 before RA 0.22 0.17 0.30 0.24 0.28 0.21 0.17 0.27 0.22 0.21 0.20 0.17 0.27 0.22

(0.41) (0.38) (0.46) (0.42) (0.45) (0.40) (0.38) (0.45) (0.41) (0.41) (0.40) (0.38) (0.45) (0.41)
Employed in Q5 before RA 0.24 0.17 0.31 0.24 0.28 0.23 0.17 0.29 0.23 0.22 0.23 0.17 0.29 0.23

(0.43) (0.38) (0.46) (0.43) (0.45) (0.42) (0.38) (0.45) (0.42) (0.42) (0.42) (0.38) (0.45) (0.42)
(continues in next page)

Variables Before imposing overlap After imposing overlap - 5 sites After imposing overlap - 4 sites



Table 1. Descriptive statistics for the NEWWS data (continuation)

ATL DET GRP POR RIV ATL DET GRP POR RIV ATL DET GRP POR
Employed in Q6 before RA 0.27 0.18 0.34 0.25 0.29 0.25 0.18 0.32 0.23 0.23 0.25 0.18 0.32 0.24

(0.44) (0.38) (0.47) (0.43) (0.45) (0.43) (0.38) (0.47) (0.42) (0.42) (0.43) (0.39) (0.47) (0.43)
Employed in Q7 before RA 0.29 0.18 0.36 0.26 0.29 0.27 0.18 0.35 0.25 0.22 0.27 0.18 0.35 0.25

(0.45) (0.39) (0.48) (0.44) (0.45) (0.44) (0.39) (0.48) (0.43) (0.42) (0.45) (0.39) (0.48) (0.43)
Employed in Q8 before RA 0.30 0.18 0.39 0.27 0.30 0.28 0.18 0.37 0.26 0.25 0.28 0.18 0.37 0.27

(0.46) (0.38) (0.49) (0.45) (0.46) (0.45) (0.38) (0.48) (0.44) (0.44) (0.45) (0.38) (0.48) (0.44)
Employed at RA (self reported) 0.07 0.07 0.13 0.09 0.13 0.07 0.07 0.13 0.08 0.10 0.07 0.07 0.13 0.08

(0.26) (0.25) (0.34) (0.28) (0.33) (0.26) (0.25) (0.33) (0.27) (0.30) (0.26) (0.25) (0.34) (0.27)
Ever worked FT 6+ months at same job 0.72 0.46 0.64 0.77 0.71 0.72 0.47 0.63 0.76 0.69 0.72 0.47 0.64 0.76

(0.45) (0.50) (0.48) (0.42) (0.45) (0.45) (0.50) (0.48) (0.43) (0.46) (0.45) (0.50) (0.48) (0.43)
Earnings history (real $ /1,000)

Earnings Q1 before RA 0.23 0.21 0.36 0.33 0.43 0.23 0.21 0.32 0.26 0.29 0.23 0.21 0.32 0.25
(0.82) (0.68) (1.06) (0.89) (1.23) (0.76) (0.69) (1.03) (0.74) (0.98) (0.75) (0.69) (1.02) (0.74)

Earnings Q2 before RA 0.26 0.25 0.52 0.41 0.63 0.26 0.25 0.45 0.32 0.36 0.26 0.25 0.44 0.32
(0.85) (0.82) (1.29) (1.04) (1.55) (0.82) (0.82) (1.23) (0.90) (1.06) (0.81) (0.82) (1.22) (0.91)

Earnings Q3 before RA 0.29 0.26 0.55 0.41 0.72 0.28 0.24 0.46 0.32 0.37 0.28 0.25 0.47 0.32
(0.92) (0.89) (1.33) (1.07) (1.73) (0.86) (0.79) (1.25) (0.93) (1.09) (0.85) (0.81) (1.24) (0.94)

Earnings Q4 before RA 0.41 0.25 0.53 0.43 0.74 0.39 0.24 0.47 0.37 0.43 0.38 0.25 0.48 0.37
(1.22) (0.82) (1.29) (1.14) (1.68) (1.18) (0.82) (1.26) (1.06) (1.20) (1.16) (0.82) (1.26) (1.06)

Earnings Q5 before RA 0.51 0.29 0.57 0.46 0.79 0.45 0.28 0.53 0.41 0.51 0.45 0.29 0.54 0.41
(1.27) (0.94) (1.32) (1.16) (1.82) (1.15) (0.92) (1.31) (1.08) (1.36) (1.14) (0.93) (1.31) (1.09)

Earnings Q6 before RA 0.62 0.31 0.62 0.51 0.80 0.55 0.31 0.58 0.48 0.52 0.56 0.32 0.59 0.49
(1.44) (1.01) (1.41) (1.26) (1.81) (1.31) (1.01) (1.42) (1.24) (1.36) (1.35) (1.02) (1.42) (1.26)

Earnings Q7 before RA 0.72 0.32 0.68 0.54 0.83 0.61 0.32 0.65 0.52 0.56 0.63 0.33 0.66 0.53
(1.65) (1.06) (1.44) (1.31) (1.89) (1.47) (1.06) (1.44) (1.31) (1.40) (1.50) (1.06) (1.45) (1.33)

Earnings Q8 before RA 0.74 0.33 0.69 0.57 0.85 0.65 0.33 0.67 0.55 0.61 0.67 0.34 0.68 0.56
(1.61) (1.09) (1.45) (1.35) (1.86) (1.48) (1.11) (1.48) (1.34) (1.53) (1.52) (1.11) (1.47) (1.37)

Any earnings year before RA (self reported) 0.23 0.20 0.46 0.36 0.40 0.23 0.20 0.42 0.31 0.30 0.23 0.20 0.42 0.31
(0.42) (0.40) (0.50) (0.48) (0.49) (0.42) (0.40) (0.49) (0.46) (0.46) (0.42) (0.40) (0.49) (0.46)

Local economic conditions
Employment/population year of RA 0.52 0.46 0.49 0.49 0.29 0.52 0.46 0.49 0.49 0.29 0.52 0.45 0.49 0.49
Average total earnings year of RA ($1000) 32.39 35.90 29.12 30.00 27.80 32.37 35.88 29.12 29.98 27.68 32.37 35.88 29.12 29.98
Unemployment rate year of RA 5.93 7.38 7.42 5.36 10.45 5.89 7.40 7.45 5.46 10.53 5.91 7.41 7.49 5.48
Emp/pop growth rate 2 yrs before RA (Δ logs) -0.03 0.00 -0.02 0.00 -0.05 -0.03 0.00 -0.02 0.00 -0.05 -0.03 0.00 -0.02 0.00
Avg erns grwth rate 2 yrs before RA  (Δ logs) 0.03 0.03 0.01 0.02 -0.01 0.03 0.03 0.01 0.02 -0.01 0.03 0.03 0.01 0.02
Unemp growth rate 2 yrs before RA (Δ logs) 0.22 -0.24 0.11 -0.06 0.42 0.22 -0.24 0.12 -0.03 0.36 0.22 -0.24 0.13 -0.02
Number of observations per site 1,372 2,037 1,374 1,740 2,828 1,184 1,943 1,185 1,432 1,107 1,245 1,945 1,193 1,360
Total number of observations
Obs dropped per site due to overlap (%) 13.7% 4.6% 13.8% 17.7% 60.9% 9.3% 4.5% 13.2% 21.8%
Total obs dropped due to overlap (%)

9,351 6,851

Variables Before imposing overlap After imposing overlap - 5 sites

26.7% 12.0%

5,743

After imposing overlap - 4 sites



Table 2. Summary results from covariate-balancing analysis   

A. Joint equality of means tests for each covariate across all sites

Method
5 sites 4 sites

Raw means before overlap 53 52
GPS-based Inverse Probability Weighting 11 5
Total number of covariates 53 53

B. Difference of means tests for each covariate - Each site versus all other sites pooled

Method
5 sites 4 sites

Raw means before overlap
     Atlanta vs others 43 36
     Detroit vs others 50 47
     Grand Rapids vs others 35 49
     Portland vs others 37 34
     Riverside vs others 49 -
Blocking on GPS
     Atlanta vs others 4 1
     Detroit vs others 6 2
     Grand Rapids vs others 1 1
     Portland vs others 4 6
     Riverside vs others 2 -
Total number of covariates 53 53

Note: GPS-based balancing tests are applied only to observations that satisfy the overlap condition.

Number of covariates for which p-value ≤ 0.05

Number of covariates for which p-value ≤ 0.05



Table 3. Assesment measures of estimators of the average employment rate in two years after random assignment - 5 sites  

P-value 
joint equality

Estimator Wald test Estimated value Relative to Raw Mean Estimated value Relative to Raw Mean Estimated value Relative to Raw Mean
A. Outcome in levels
Raw Mean - No Ovlp 0.000 0.153 1.000 0.101 1.000 0.481 1.000

[0.137,0.170] [0.095,0.121] [0.427,0.534]
Raw Mean - Ovlp 0.000 0.171 1.122 0.123 1.210 0.530 1.101

[0.150,0.194] [0.108,0.143] [0.459,0.599]
Linear regression-based
Partial Mean Linear X - No Ovlp 0.000 0.111 0.726 0.083 0.819 0.329 0.684

[0.093,0.133] [0.070,0.106] [0.269,0.393]
Partial Mean Linear X - Ovlp 0.000 0.107 0.698 0.081 0.797 0.308 0.639

[0.089,0.137] [0.068,0.109] [0.250,0.392]
Partial Mean Flex X - No Ovlp 0.000 0.113 0.742 0.086 0.850 0.329 0.684

[0.095,0.136] [0.073,0.109] [0.269,0.390]
Partial Mean Flex X - Ovlp 0.000 0.108 0.706 0.083 0.818 0.304 0.632

[0.089,0.137] [0.069,0.110] [0.253,0.388]
GPS-based (imposing Ovlp)
Parametric Partial Mean 0.016 0.117 0.769 0.093 0.920 0.332 0.689

[0.076,0.193] [0.061,0.153] [0.209,0.547]
Nonparametric Partial Mean 0.016 0.150 0.984 0.119 1.177 0.396 0.822

[0.094,0.234] [0.075,0.184] [0.261,0.650]
IPW No Covariates 0.005 0.165 1.083 0.129 1.271 0.448 0.930

[0.112,0.258] [0.092,0.229] [0.304,0.705]
IPW With Covariates 0.009 0.138 0.906 0.110 1.082 0.371 0.770

[0.097,0.226] [0.080,0.181] [0.275,0.619]

B. Outcome in differences (with respecto to years 1 and 2 before RA)
Raw Estimator - No Ovlp 0.000 0.121 0.795 0.091 0.898 0.376 0.780

[0.108,0.139] [0.079,0.110] [0.329,0.427]
Raw Estimator - Ovlp 0.000 0.116 0.759 0.090 0.890 0.355 0.738

[0.103,0.143] [0.077,0.113] [0.308,0.434]
Linear regression-based
Partial Mean Linear X - No Ovlp 0.000 0.074 0.485 0.056 0.554 0.217 0.451

[0.054,0.101] [0.043,0.082] [0.154,0.290]
Partial Mean Linear X - Ovlp 0.001 0.071 0.463 0.055 0.545 0.216 0.449

[0.053,0.106] [0.042,0.088] [0.152,0.311]
Partial Mean Flex X - No Ovlp 0.000 0.100 0.652 0.079 0.776 0.285 0.591

[0.083,0.121] [0.065,0.098] [0.232,0.342]
Partial Mean Flex X - Ovlp 0.000 0.092 0.602 0.073 0.725 0.253 0.525

[0.076,0.120] [0.060,0.099] [0.213,0.336]
GPS-based (imposing Ovlp)
Parametric Partial Mean 0.027 0.107 0.698 0.078 0.766 0.318 0.661

[0.068,0.173] [0.056,0.135] [0.189,0.500]
Nonparametric Partial Mean 0.017 0.122 0.801 0.087 0.855 0.379 0.788

[0.087,0.196] [0.069,0.152] [0.240,0.593]
IPW No Covariates 0.043 0.116 0.763 0.090 0.885 0.321 0.666

[0.075,0.205] [0.063,0.162] [0.210,0.604]
IPW With Covariates 0.763 0.062 0.406 0.044 0.434 0.192 0.398

[0.040,0.161] [0.034,0.129] [0.105,0.472]

Note: Bootstrap confidence intervals in brackets (based on 1,000 replications).

Root Mean Square Distance Mean Absolute Distance Maximum Distance
Distance measures



Table 4. Assesment measures of estimators of the average employment rate in two years after random assignment - 4 sites

P-value 
joint equality

Estimator Wald test Estimated value Relative to Raw Mean Estimated value Relative to Raw Mean Estimated value Relative to Raw Mean
A. Outcome in levels
Raw Mean - No Ovlp 0.000 0.097 1.000 0.084 1.000 0.228 1.000

[0.078,0.119] [0.066,0.101] [0.194,0.296]
Raw Mean - Ovlp 0.000 0.084 0.868 0.072 0.862 0.206 0.902

[0.064,0.109] [0.054,0.092] [0.162,0.282]
Linear regression-based
Partial Mean Linear X - No Ovlp 0.012 0.043 0.443 0.037 0.437 0.114 0.500

[0.028,0.069] [0.023,0.061] [0.071,0.181]
Partial Mean Linear X - Ovlp 0.112 0.036 0.369 0.033 0.388 0.093 0.409

[0.021,0.067] [0.018,0.060] [0.054,0.173]
Partial Mean Flex X - No Ovlp 0.011 0.046 0.470 0.043 0.511 0.116 0.510

[0.028,0.073] [0.025,0.067] [0.073,0.184]
Partial Mean Flex X - Ovlp 0.098 0.039 0.398 0.037 0.446 0.093 0.408

[0.024,0.072] [0.020,0.065] [0.062,0.181]
GPS-based (imposing Ovlp)
Parametric Partial Mean 0.037 0.060 0.617 0.047 0.561 0.166 0.728

[0.034,0.100] [0.030,0.086] [0.088,0.262]
Nonparametric Partial Mean 0.637 0.031 0.317 0.026 0.312 0.077 0.337

[0.021,0.087] [0.018,0.076] [0.053,0.229]
IPW No Covariates 0.621 0.056 0.583 0.048 0.575 0.151 0.661

[0.029,0.168] [0.025,0.141] [0.073,0.433]
IPW With Covariates 0.284 0.058 0.597 0.045 0.532 0.162 0.712

[0.028,0.113] [0.025,0.096] [0.069,0.291]

B. Outcome in differences (with respecto to years 1 and 2 before RA)
Raw Estimator - No Ovlp 0.000 0.082 0.851 0.067 0.803 0.217 0.953

[0.066,0.103] [0.055,0.087] [0.171,0.276]
Raw Estimator - Ovlp 0.000 0.082 0.850 0.066 0.790 0.222 0.973

[0.065,0.105] [0.053,0.088] [0.169,0.284]
Linear regression-based
Partial Mean Linear X - No Ovlp 0.104 0.042 0.430 0.034 0.411 0.103 0.451

[0.021,0.074] [0.018,0.063] [0.054,0.190]
Partial Mean Linear X - Ovlp 0.040 0.050 0.515 0.042 0.503 0.128 0.562

[0.030,0.086] [0.025,0.075] [0.076,0.221]
Partial Mean Flex X - No Ovlp 0.050 0.034 0.351 0.028 0.333 0.093 0.409

[0.020,0.058] [0.017,0.050] [0.052,0.152]
Partial Mean Flex X - Ovlp 0.249 0.028 0.294 0.023 0.278 0.073 0.319

[0.018,0.060] [0.015,0.052] [0.045,0.155]
GPS-based (imposing Ovlp)
Parametric Partial Mean 0.629 0.031 0.322 0.026 0.314 0.080 0.350

[0.018,0.083] [0.015,0.070] [0.045,0.216]
Nonparametric Partial Mean 0.462 0.041 0.428 0.036 0.425 0.103 0.453

[0.022,0.100] [0.019,0.085] [0.058,0.259]
IPW No Covariates 0.788 0.030 0.305 0.025 0.302 0.072 0.315

[0.025,0.130] [0.021,0.110] [0.065,0.335]
IPW With Covariates 0.894 0.030 0.306 0.025 0.299 0.076 0.335

[0.017,0.091] [0.015,0.081] [0.042,0.239]

Note: Bootstrap confidence intervals in brackets (based on 1,000 replications).

Root Mean Square Distance Mean Absolute Distance Maximum Distance
Distance measures



Table 5. Benchmark values of the assessment measures for Raw Mean estimator from placebo experiments 
              Outcome: Employment rate in two years after random assignment

P-value joint equality Root Mean Mean Absolute Maximum
Outcome Wald test Square Distance Distance Distance
A. 5 sites
Levels 0.436 0.020 0.020 0.048

[0.013,0.043] [0.011,0.037] [0.035,0.122]
DID 0.158 0.027 0.024 0.064

[0.018,0.051] [0.015,0.045] [0.046,0.141]

B. 4 sites
Levels 0.491 0.020 0.019 0.048

[0.010,0.047] [0.009,0.042] [0.027,0.120]
DID 0.344 0.023 0.021 0.056

[0.013,0.048] [0.010,0.043] [0.032,0.126]

Note: Bootstrap confidence intervals in brackets (based on 1,000 replications).

Table 6. Benchmark values of the assessment measures for Raw Mean estimator from using within-site
              experimental treatment groups (3 treatments per site)
              Outcome: Employment rate in two years prior to random assignment

Site P-value joint equality Root Mean Mean Absolute Maximum
Wald test Square Distance Distance Distance

ATL 0.270 0.024 0.023 0.052
[0.009,0.051] [0.008,0.046] [0.022,0.120]

GRP 0.250 0.024 0.021 0.057
[0.009,0.051] [0.008,0.045] [0.021,0.120]

RIV 0.283 0.025 0.023 0.060
[0.009,0.055] [0.008,0.049] [0.021,0.129]

Note: Bootstrap confidence intervals in brackets (based on 1,000 replications).

Distance measures

Distance measures



Table 7. Assesment measures of estimators when applying different overlap trimming rules (quantile q ) - 4 sites 
              Outcome: Employment Rate in Two Years after Random Assignment 

P-value Root Mean P-value Root Mean P-value Root Mean P-value Root Mean P-value Root Mean P-value Root Mean
jnt equality Square jnt equality Square jnt equality Square jnt equality Square jnt equality Square jnt equality Square

Estimator Wald test Distance Wald test Distance Wald test Distance Wald test Distance Wald test Distance Wald test Distance
A. Outcome in levels 
Raw Mean - No Ovlp 0.000 0.097 0.000 0.097 0.000 0.097 0.000 0.097 0.000 0.097 0.000 0.097

[0.078,0.119] [0.078,0.119] [0.078,0.119] [0.078,0.119] [0.078,0.119] [0.078,0.119]
Raw Mean - Ovlp 0.000 0.093 0.000 0.087 0.000 0.084 0.000 0.081 0.000 0.082 0.000 0.081

[0.070,0.114] [0.066,0.112] [0.064,0.109] [0.062,0.109] [0.060,0.107] [0.059,0.107]
Linear regression-based 
Partial Mean Linear X - No Ovlp 0.012 0.043 0.012 0.043 0.012 0.043 0.012 0.043 0.012 0.043 0.012 0.043

[0.028,0.069] [0.028,0.069] [0.028,0.069] [0.028,0.069] [0.028,0.069] [0.028,0.069]
Partial Mean Linear X - Ovlp 0.058 0.039 0.088 0.037 0.112 0.036 0.094 0.039 0.115 0.038 0.106 0.039

[0.023,0.068] [0.023,0.067] [0.021,0.067] [0.020,0.066] [0.019,0.065] [0.019,0.065]
Partial Mean Flex X - No Ovlp 0.011 0.046 0.011 0.046 0.011 0.046 0.011 0.046 0.011 0.046 0.011 0.046

[0.028,0.073] [0.028,0.073] [0.028,0.073] [0.028,0.073] [0.028,0.073] [0.028,0.073]
Partial Mean Flex X - Ovlp 0.055 0.041 0.077 0.040 0.098 0.039 0.061 0.044 0.069 0.043 0.056 0.045

[0.025,0.072] [0.025,0.073] [0.024,0.072] [0.023,0.072] [0.022,0.072] [0.023,0.072]
GPS-based (imposing Ovlp) 
Parametric Partial Mean 0.016 0.067 0.062 0.057 0.037 0.060 0.070 0.055 0.079 0.055 0.084 0.054

[0.041,0.106] [0.037,0.102] [0.034,0.100] [0.034,0.098] [0.034,0.098] [0.033,0.097]
Nonparametric Partial Mean 0.467 0.038 0.687 0.029 0.637 0.031 0.685 0.029 0.691 0.029 0.650 0.031

[0.020,0.090] [0.020,0.088] [0.021,0.087] [0.021,0.090] [0.022,0.089] [0.022,0.093]
IPW No Covariates 0.360 0.089 0.725 0.043 0.621 0.056 0.626 0.049 0.490 0.064 0.626 0.049

[0.036,0.191] [0.030,0.186] [0.029,0.168] [0.026,0.146] [0.025,0.143] [0.027,0.139]
IPW With Covariates 0.200 0.066 0.463 0.043 0.284 0.058 0.351 0.050 0.187 0.066 0.280 0.057

[0.031,0.125] [0.028,0.118] [0.028,0.113] [0.027,0.111] [0.026,0.110] [0.024,0.108]

B. Outcome in differences (with respecto to years 1 and 2 before RA
Raw Mean - No Ovlp 0.000 0.082 0.000 0.082 0.000 0.082 0.000 0.082 0.000 0.082 0.000 0.082

[0.066,0.103] [0.066,0.103] [0.066,0.103] [0.066,0.103] [0.066,0.103] [0.066,0.103]
Raw Mean - Ovlp 0.000 0.082 0.000 0.081 0.000 0.082 0.000 0.085 0.000 0.082 0.000 0.081

[0.065,0.104] [0.065,0.105] [0.065,0.105] [0.065,0.105] [0.064,0.106] [0.064,0.105]
Linear regression-based 
Partial Mean Linear X - No Ovlp 0.104 0.042 0.104 0.042 0.104 0.042 0.104 0.042 0.104 0.042 0.104 0.042

[0.021,0.074] [0.021,0.074] [0.021,0.074] [0.021,0.074] [0.021,0.074] [0.021,0.074]
Partial Mean Linear X - Ovlp 0.046 0.049 0.036 0.051 0.040 0.050 0.017 0.056 0.018 0.056 0.014 0.058

[0.028,0.084] [0.029,0.084] [0.030,0.086] [0.031,0.087] [0.031,0.089] [0.032,0.090]
Partial Mean Flex X - No Ovlp 0.050 0.034 0.050 0.034 0.050 0.034 0.050 0.034 0.050 0.034 0.050 0.034

[0.020,0.058] [0.020,0.058] [0.020,0.058] [0.020,0.058] [0.020,0.058] [0.020,0.058]
Partial Mean Flex X - Ovlp 0.131 0.032 0.160 0.032 0.249 0.028 0.141 0.034 0.141 0.034 0.127 0.036

[0.018,0.059] [0.017,0.059] [0.018,0.060] [0.016,0.059] [0.016,0.059] [0.015,0.059]
GPS-based (imposing Ovlp) 
Parametric Partial Mean 0.738 0.026 0.635 0.030 0.629 0.031 0.656 0.030 0.582 0.034 0.590 0.034

[0.017,0.078] [0.017,0.079] [0.018,0.083] [0.019,0.085] [0.019,0.087] [0.020,0.088]
Nonparametric Partial Mean 0.319 0.047 0.449 0.041 0.462 0.041 0.475 0.041 0.442 0.043 0.466 0.043

[0.024,0.099] [0.023,0.098] [0.022,0.100] [0.025,0.099] [0.024,0.101] [0.024,0.102]
IPW No Covariates 0.729 0.038 0.754 0.035 0.788 0.030 0.812 0.027 0.668 0.045 0.667 0.043

[0.024,0.122] [0.026,0.126] [0.025,0.130] [0.026,0.121] [0.027,0.120] [0.026,0.119]
IPW With Covariates 0.991 0.012 0.990 0.010 0.894 0.030 0.955 0.019 0.734 0.042 0.708 0.041

[0.016,0.086] [0.017,0.091] [0.017,0.091] [0.020,0.095] [0.020,0.099] [0.020,0.099]
Sample size after overlap 
Obs dropped due to overlap (%) 

Notes: Results based on 1,000 bootstrap replications.

18.2%
5,393
17.3%4.5%

5,545
15.0%

5,888
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Figure 1. Local economic conditions
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Figure 2. Kernel densities of estimated GPS − 5 sites
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A. Results for linear regression−based estimators
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Figure 4. Estimated mean outcome in levels − 5 Sites
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A. Results for linear regression−based estimators
Outcome: Ever employed in 2 years after RA − DID
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B. Results for GPS−based estimators
Outcome: Ever employed in 2 years after RA − DID

Figure 5. Estimated mean outcome in differences − 5 Sites
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A. Results for linear regression−based estimators
Outcome: Ever employed in 2 years after RA
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B. Results for GPS−based estimators
Outcome: Ever employed in 2 years after RA

Figure 6. Estimated mean outcome in levels − 4 Sites



Avg

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

E
[Y

(0
,D

)]

 ATL DET GRP POR 

p−value joint equality test = 0.000
RMSD = 0.082, MAD = 0.067, Max Dist = 0.217

Raw Mean − No Ovlp

Avg

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

E
[Y

(0
,D

)]

 ATL DET GRP POR 

p−value joint equality test = 0.000
RMSD = 0.082, MAD = 0.066, Max Dist = 0.222

Raw Mean − Ovlp

Avg

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

E
[Y

(0
,D

)]
 ATL DET GRP POR 

p−value joint equality test = 0.104
RMSD = 0.042, MAD = 0.034, Max Dist = 0.103

Partial Mean Linear X − No Ovlp

Avg

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

E
[Y

(0
,D

)]

 ATL DET GRP POR 

p−value joint equality test = 0.040
RMSD = 0.050, MAD = 0.042, Max Dist = 0.128

Partial Mean Linear X − Ovlp

Avg

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

E
[Y

(0
,D

)]

 ATL DET GRP POR 

p−value joint equality test = 0.050
RMSD = 0.034, MAD = 0.028, Max Dist = 0.093

Partial Mean Flex X − No Ovlp

Avg

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

E
[Y

(0
,D

)]

 ATL DET GRP POR 

p−value joint equality test = 0.249
RMSD = 0.028, MAD = 0.023, Max Dist = 0.073

Partial Mean Flex X − Ovlp

A. Results for linear regression−based estimators
Outcome: Ever employed in 2 years after RA − DID
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B. Results for GPS−based estimators
Outcome: Ever employed in 2 years after RA − DID

Figure 7. Estimated mean outcome in differences − 4 Sites



Appendix Table A1. Balancing of covariates based on joint equality of means tests across all sites - 5 sites

Variable
Raw GPS IPW ATL DET GRP POR RIV ATL DET GRP POR RIV

Black 0.000 0.005 0.94 0.81 -0.14 -0.57 -0.62 -0.02 0.17 0.32 0.40 0.38
Age 30-39 years old 0.000 0.335 0.21 -0.11 -0.22 -0.01 0.10 -0.13 -0.10 0.05 0.00 -0.07
Age 40+ years old 0.000 0.023 0.08 0.01 -0.09 -0.10 0.06 0.17 -0.16 -0.02 -0.02 0.01
Became mother as a teenager 0.000 0.081 0.09 0.08 0.21 -0.14 -0.12 -0.10 0.27 0.06 0.02 0.16
Never married 0.000 0.369 0.20 0.34 0.12 -0.05 -0.37 0.01 0.10 0.17 0.19 0.02
Any child 0-5 years old 0.000 0.093 -0.40 0.09 0.17 0.19 -0.07 0.13 0.15 -0.07 -0.03 -0.06
Any child 6-12 years old 0.000 0.059 0.32 -0.14 -0.24 -0.05 0.09 -0.07 -0.17 0.00 -0.09 0.19
2 children in household 0.004 0.854 0.03 -0.06 0.07 0.01 -0.01 0.07 0.04 -0.02 -0.03 0.07
3+ children in household 0.000 0.596 0.08 -0.01 -0.19 0.06 0.03 -0.06 -0.07 0.05 -0.02 -0.08
10th grade 0.000 0.916 0.01 0.03 -0.01 0.10 -0.08 -0.07 0.00 0.01 0.03 0.00
11th grade 0.000 0.841 -0.07 0.12 -0.01 0.03 -0.07 0.03 0.03 0.04 0.02 0.19
Grade 12 or higher 0.000 0.480 0.09 -0.06 0.02 -0.16 0.09 0.07 0.04 -0.07 0.00 -0.15
Highest degree = HS/GED 0.000 0.362 -0.02 -0.12 0.01 -0.01 0.10 -0.02 0.06 -0.11 -0.13 -0.15
Lives public/subss house 0.000 0.017 0.95 -0.34 -0.12 0.21 -0.29 -0.07 0.29 0.12 0.00 0.27
1-2 moves in past 2 years 0.000 0.833 -0.03 -0.04 0.02 -0.06 0.07 0.06 -0.06 0.00 0.06 0.00
3+ moves in past 2 years 0.000 0.772 -0.25 -0.25 0.20 0.14 0.12 -0.09 0.05 -0.13 -0.10 -0.03
On welfare < 2 years 0.000 0.095 -0.16 -0.22 0.10 -0.03 0.21 -0.14 0.09 -0.14 -0.19 -0.02
On welfare for 2-5 years 0.000 0.924 -0.08 -0.08 0.04 0.14 -0.01 0.02 0.07 0.05 -0.01 0.04
On welfare 5-10 years 0.000 0.038 0.09 0.09 -0.07 0.06 -0.11 0.32 -0.10 0.00 0.09 0.07
On welfare Q1 before RA 0.000 0.668 0.38 0.22 -0.13 -0.08 -0.23 0.15 0.17 0.22 0.17 0.16
On welfare Q2 before RA 0.000 0.224 0.48 0.32 -0.04 0.06 -0.48 0.21 0.21 0.26 0.28 0.36
On welfare Q3 before RA 0.000 0.010 0.35 0.34 0.00 0.08 -0.47 0.41 0.14 0.25 0.28 0.36
On welfare Q4 before RA 0.000 0.035 0.18 0.37 0.05 0.09 -0.44 0.38 0.11 0.22 0.25 0.32
On welfare Q5 before RA 0.000 0.012 0.15 0.40 0.06 0.06 -0.42 0.37 0.06 0.19 0.23 0.35
On welfare Q6 before RA 0.000 0.050 0.15 0.41 0.04 0.04 -0.41 0.38 0.01 0.23 0.25 0.26
On welfare Q7 before RA 0.000 0.148 0.15 0.41 -0.01 0.03 -0.39 0.34 0.02 0.23 0.26 0.27
Rec. FS in Q1 before RA 0.000 0.000 0.39 0.32 0.07 0.10 -0.51 0.40 0.19 0.25 0.25 0.19
Rec. FS in Q2 before RA 0.000 0.149 0.50 0.37 0.08 0.20 -0.67 0.44 0.27 0.30 0.32 0.37
Rec. FS in Q3 before RA 0.000 0.154 0.45 0.38 0.06 0.21 -0.65 0.43 0.17 0.30 0.33 0.32
Rec. FS in Q4 before RA 0.000 0.353 0.35 0.41 0.11 0.21 -0.65 0.40 0.19 0.29 0.32 0.31
Rec. FS in Q5 before RA 0.000 0.150 0.31 0.42 0.09 0.19 -0.61 0.38 0.09 0.29 0.32 0.34
Rec. FS in Q6 before RA 0.000 0.082 0.29 0.42 0.07 0.20 -0.60 0.42 0.08 0.30 0.31 0.33
Rec. FS in Q7 before RA 0.000 0.274 0.29 0.42 0.04 0.18 -0.57 0.31 0.09 0.27 0.31 0.22
Employed Q1 before RA 0.000 0.395 -0.08 -0.09 0.17 0.03 0.00 -0.06 -0.11 -0.02 -0.07 -0.17
Employed Q2 before RA 0.000 0.585 -0.13 -0.12 0.16 0.05 0.04 -0.08 -0.08 -0.06 -0.10 -0.18
Employed Q3 before RA 0.000 0.976 -0.11 -0.14 0.14 0.04 0.06 -0.05 -0.05 -0.07 -0.10 -0.07
Employed Q4 before RA 0.000 0.625 -0.05 -0.15 0.13 -0.01 0.08 -0.04 -0.05 -0.01 -0.11 -0.09
Employed Q5 before RA 0.000 0.910 -0.01 -0.17 0.14 -0.02 0.07 -0.05 -0.08 -0.01 -0.06 -0.06
Employed Q6 before RA 0.000 0.107 0.01 -0.19 0.18 -0.02 0.06 -0.04 -0.06 -0.02 -0.12 -0.21
Employed Q7 before RA 0.000 0.382 0.04 -0.20 0.20 -0.01 0.03 -0.01 -0.11 -0.02 -0.13 -0.09
Employed Q8 before RA 0.000 0.067 0.04 -0.23 0.24 -0.01 0.04 0.10 -0.08 -0.05 -0.18 0.00
Emply at RA (self reported) 0.000 0.042 -0.08 -0.10 0.10 -0.05 0.09 -0.13 -0.15 -0.02 -0.07 0.03
Ever wrkd FT 6+ mths same job 0.000 0.861 0.13 -0.41 -0.03 0.23 0.11 -0.08 -0.02 -0.05 -0.11 -0.16
Earnings Q1 before RA 0.000 0.596 -0.10 -0.12 0.04 0.01 0.10 0.17 -0.08 0.00 -0.09 -0.12
Earnings Q2 before RA 0.000 0.480 -0.15 -0.15 0.07 -0.02 0.16 0.16 -0.06 -0.04 -0.14 -0.13
Earnings Q3 before RA 0.000 0.512 -0.14 -0.16 0.06 -0.05 0.19 0.11 -0.05 -0.09 -0.14 -0.15
Earnings Q4 before RA 0.000 0.531 -0.06 -0.19 0.03 -0.05 0.18 0.13 0.02 -0.06 -0.10 -0.13
Earnings Q5 before RA 0.000 0.534 -0.02 -0.18 0.02 -0.06 0.17 0.10 -0.12 -0.05 -0.12 -0.11
Earnings Q6 before RA 0.000 0.530 0.02 -0.19 0.02 -0.05 0.14 0.04 -0.07 0.00 -0.12 -0.13
Earnings Q7 before RA 0.000 0.491 0.06 -0.20 0.03 -0.06 0.13 0.02 -0.04 -0.01 -0.12 -0.11
Earnings Q8 before RA 0.000 0.435 0.06 -0.20 0.03 -0.05 0.13 0.10 -0.05 -0.04 -0.13 -0.05
Any earns yr before RA (slf-rep) 0.000 0.420 -0.22 -0.28 0.27 0.07 0.14 -0.28 -0.23 -0.15 -0.17 -0.10
Emp/pop gr. rate 2 yrs before RA 0.000 0.000 -0.36 0.76 0.08 0.85 -0.94 0.15 -0.01 0.20 0.68 -0.68

Notes: Variables have been standardized to mean zero and standard deviation 1 (before imposing overlap).
          GPS-based balancing tests are applied only to observations that satisfy the overlap condition.

P-value joint equality of means test
across all sites

Standardized means by site
Raw means Means using GPS IPW



Appendix Table A2. Balancing of covariates based on difference of means tests in each site versus all other sites pooled - 5 sites

Variable
ATL DET GRP POR RIV ATL DET GRP POR RIV

Black  1.10***  1.04*** -0.17*** -0.70*** -0.89***  0.24***  0.21***  0.11***  0.31***  0.08   
Age 30-39 years old  0.24*** -0.14*** -0.26*** -0.02    0.14***  0.01   -0.04    0.04   -0.01   -0.05   
Age 40+ years old  0.09***  0.01   -0.10*** -0.12***  0.09***  0.03   -0.05   -0.01   -0.02   -0.10   
Became mother as a teenager  0.11***  0.10***  0.24*** -0.17*** -0.17***  0.01    0.05    0.02   -0.03    0.20***
Never married  0.24***  0.44***  0.14*** -0.07** -0.53***  0.07    0.07*   0.02    0.08   0.00   
Any child 0-5 years old -0.47***  0.11***  0.19***  0.24*** -0.09*** -0.10    0.04   -0.05    0.01    0.01   
Any child 6-12 years old  0.37*** -0.18*** -0.28*** -0.06**  0.13***  0.11*  -0.08*  0.00   0.00    0.07   
2 children in household  0.03   -0.08***  0.08***  0.02   -0.01    0.06    0.02    0.01   0.00    0.09   
3+ children in household  0.10*** -0.01   -0.23***  0.07**  0.04*  -0.03   -0.04    0.02    0.03   -0.12*  
10th grade  0.01    0.03   -0.01    0.13*** -0.12*** -0.04   -0.02   -0.01   -0.06   -0.05   
11th grade -0.09***  0.16*** -0.01    0.04   -0.10*** -0.11**  0.01    0.03    0.00   0.00   
Grade 12 or higher  0.10*** -0.08***  0.03   -0.20***  0.13***  0.11*   0.03   -0.04    0.10*   0.06   
Highest degree = HS/GED -0.03   -0.15***  0.01   -0.01    0.14***  0.03   -0.03   -0.07*  -0.04    0.01   
Lives public/subss house  1.12*** -0.43*** -0.14***  0.26*** -0.42***  0.07   -0.12**  0.01   -0.05    0.17*  
1-2 moves in past 2 years -0.03   -0.05**  0.02   -0.07***  0.10***  0.05    0.05    0.05    0.07    0.06   
3+ moves in past 2 years -0.29*** -0.33***  0.24***  0.17***  0.18*** -0.05   -0.08** -0.04    0.05   -0.01   
On welfare < 2 years -0.19*** -0.29***  0.12*** -0.03    0.30***  0.02    0.08*  -0.01   -0.02    0.05   
On welfare for 2-5 years -0.09*** -0.10***  0.05*   0.17*** -0.02   -0.06   -0.02    0.01   -0.03   -0.06   
On welfare 5-10 years  0.11***  0.11*** -0.09***  0.07** -0.15***  0.09   -0.07   -0.02    0.05   -0.01   
On welfare Q1 before RA  0.45***  0.28*** -0.16*** -0.10*** -0.33*** -0.03   -0.04    0.02   -0.11** -0.01   
On welfare Q2 before RA  0.56***  0.41*** -0.04    0.08*** -0.69*** -0.06   -0.04   -0.02   -0.04    0.03   
On welfare Q3 before RA  0.42***  0.44***  0.01    0.09*** -0.67*** 0.00   -0.03   -0.02   -0.02    0.08   
On welfare Q4 before RA  0.21***  0.48***  0.06**  0.11*** -0.63*** -0.05   -0.05   -0.03   -0.05    0.09   
On welfare Q5 before RA  0.18***  0.51***  0.07**  0.07*** -0.61*** -0.02   -0.03   -0.01   -0.04    0.10   
On welfare Q6 before RA  0.17***  0.52***  0.05*   0.05*  -0.59***  0.01   -0.04    0.03    0.01    0.11*  
On welfare Q7 before RA  0.18***  0.53*** -0.01    0.04   -0.56***  0.02   -0.03    0.04    0.00    0.11   
Rec. FS in Q1 before RA  0.46***  0.40***  0.08***  0.13*** -0.74***  0.09**  0.01   0.00   -0.08*  -0.04   
Rec. FS in Q2 before RA  0.59***  0.47***  0.09***  0.25*** -0.97***  0.06   -0.01   -0.02   -0.08*   0.02   
Rec. FS in Q3 before RA  0.53***  0.49***  0.07**  0.25*** -0.93***  0.10** -0.02   -0.01   -0.05    0.01   
Rec. FS in Q4 before RA  0.41***  0.53***  0.13***  0.26*** -0.93***  0.06    0.01    0.01   -0.06    0.01   
Rec. FS in Q5 before RA  0.36***  0.53***  0.10***  0.24*** -0.88***  0.04   -0.02    0.03   -0.03    0.06   
Rec. FS in Q6 before RA  0.34***  0.53***  0.09***  0.24*** -0.86***  0.08   -0.02    0.04    0.00    0.04   
Rec. FS in Q7 before RA  0.34***  0.54***  0.05*   0.22*** -0.82***  0.07   -0.02    0.03    0.01    0.03   
Employed Q1 before RA -0.10*** -0.11***  0.20***  0.04    0.00   -0.04   -0.02    0.04   0.00    0.02   
Employed Q2 before RA -0.15*** -0.15***  0.19***  0.06**  0.06** -0.03   -0.03   0.00   -0.01    0.08   
Employed Q3 before RA -0.12*** -0.18***  0.16***  0.04    0.09***  0.01   -0.04   -0.01   -0.01    0.13   
Employed Q4 before RA -0.06** -0.20***  0.15*** -0.02    0.12***  0.01   -0.05    0.05   -0.03    0.08   
Employed Q5 before RA -0.01   -0.22***  0.16*** -0.02    0.10***  0.01   -0.02    0.06   -0.03    0.14*  
Employed Q6 before RA  0.01   -0.24***  0.21*** -0.03    0.08***  0.03   -0.05    0.03   -0.07    0.08   
Employed Q7 before RA  0.04   -0.25***  0.24*** -0.02    0.05**  0.02   -0.03    0.03   -0.05    0.04   
Employed Q8 before RA  0.04   -0.29***  0.28*** -0.01    0.06**  0.08   -0.04   0.00   -0.10**  0.13   
Emply at RA (self reported) -0.10*** -0.13***  0.12*** -0.06**  0.13*** -0.06   -0.02    0.03    0.01    0.07   
Ever wrkd FT 6+ mths same job  0.15*** -0.52*** -0.04    0.28***  0.16***  0.01   -0.09** -0.01    0.01   -0.05   
Earnings Q1 before RA -0.11*** -0.15***  0.05    0.01    0.15*** 0.00   -0.02    0.08    0.00    0.05   
Earnings Q2 before RA -0.17*** -0.20***  0.08*** -0.03    0.23***  0.03   -0.01    0.06    0.02    0.09   
Earnings Q3 before RA -0.17*** -0.21***  0.07** -0.06***  0.27***  0.04   -0.01    0.03    0.03    0.04   
Earnings Q4 before RA -0.07*** -0.24***  0.03   -0.06***  0.26***  0.05   -0.02    0.04    0.02   -0.02   
Earnings Q5 before RA -0.03   -0.23***  0.02   -0.07***  0.24***  0.05   -0.04    0.07   0.00    0.04   
Earnings Q6 before RA  0.03   -0.24***  0.03   -0.06***  0.21***  0.06   -0.02    0.07   -0.01    0.03   
Earnings Q7 before RA  0.07** -0.25***  0.04   -0.07***  0.19***  0.03    0.01    0.06   0.00    0.01   
Earnings Q8 before RA  0.07** -0.26***  0.04   -0.06**  0.19***  0.05    0.01    0.05    0.00    0.02   
Any earns yr before RA (slf-rep) -0.26*** -0.36***  0.31***  0.08***  0.20*** -0.05   -0.08** -0.05    0.02    0.10   
Emp/pop gr. rate 2 yrs before RA -0.42***  0.98***  0.09***  1.05*** -1.34*** -0.04    0.07** -0.02    0.47*** -0.94***

Notes: * Significant at 10%; ** Significant at 5%; *** Significant at 1%.
           Variables have been standardized to mean zero and standard deviation 1 (before imposing overlap).
           GPS-based balancing tests are applied only to observations that satisfy the overlap condition.

Raw difference of means (standardized) Difference of means after blocking on GPS (std)



Appendix Table A3. Balancing of covariates based on joint equality of means tests across all sites - 4 sites 

Variable
Raw GPS IPW ATL DET GRP POR ATL DET GRP POR

Black 0.000 0.968 0.69 0.56 -0.42 -0.86 0.10 0.14 0.15 0.16
Age 30-39 years old 0.000 0.873 0.25 -0.07 -0.18 0.03 -0.01 0.03 0.07 0.02
Age 40+ years old 0.000 0.206 0.11 0.03 -0.06 -0.07 -0.11 -0.09 0.00 0.01
Became mother as a teenager 0.000 0.197 0.04 0.03 0.15 -0.19 -0.09 0.14 0.02 -0.02
Never married 0.000 0.912 0.04 0.18 -0.04 -0.22 0.04 0.00 0.06 0.02
Any child 0-5 years old 0.000 0.076 -0.43 0.06 0.14 0.17 0.14 0.05 -0.08 -0.07
Any child 6-12 years old 0.000 0.630 0.36 -0.10 -0.20 -0.01 -0.07 -0.04 0.04 -0.03
2 children in household 0.002 0.891 0.02 -0.07 0.06 0.01 0.01 0.01 -0.04 -0.02
3+ children in household 0.000 0.596 0.09 0.00 -0.18 0.07 -0.06 0.01 0.06 -0.01
10th grade 0.013 0.692 -0.03 -0.01 -0.05 0.07 -0.11 0.00 -0.02 -0.02
11th grade 0.000 0.644 -0.10 0.09 -0.04 0.00 0.05 -0.06 0.01 -0.02
Grade 12 or higher 0.000 0.572 0.13 -0.02 0.06 -0.12 0.09 0.07 -0.02 0.06
Highest degree = HS/GED 0.001 0.788 0.02 -0.08 0.05 0.04 -0.01 -0.01 -0.06 -0.09
Lives public/subss house 0.000 0.003 0.77 -0.43 -0.23 0.08 -0.08 0.18 0.04 -0.13
1-2 moves in past 2 years 0.161 0.759 0.00 -0.01 0.05 -0.03 0.07 0.09 0.03 0.11
3+ moves in past 2 years 0.000 0.336 -0.21 -0.21 0.27 0.20 -0.17 0.01 -0.10 -0.06
On welfare < 2 years 0.000 0.037 -0.07 -0.14 0.20 0.06 -0.04 0.12 -0.07 -0.11
On welfare for 2-5 years 0.000 0.821 -0.09 -0.08 0.04 0.13 0.03 0.00 0.04 -0.02
On welfare 5-10 years 0.000 0.277 0.04 0.04 -0.12 0.01 0.18 -0.06 -0.03 0.04
On welfare Q1 before RA 0.000 0.307 0.31 0.13 -0.26 -0.20 -0.04 0.09 0.15 0.07
On welfare Q2 before RA 0.000 0.554 0.31 0.13 -0.28 -0.17 -0.11 0.04 0.07 0.07
On welfare Q3 before RA 0.000 0.303 0.17 0.16 -0.22 -0.14 0.17 0.01 0.07 0.07
On welfare Q4 before RA 0.000 0.097 -0.01 0.20 -0.15 -0.11 0.17 -0.05 0.05 0.04
On welfare Q5 before RA 0.000 0.102 -0.03 0.23 -0.13 -0.13 0.18 -0.04 0.02 0.03
On welfare Q6 before RA 0.000 0.031 -0.03 0.24 -0.14 -0.15 0.22 -0.06 0.07 0.06
On welfare Q7 before RA 0.000 0.094 -0.02 0.25 -0.18 -0.14 0.21 -0.04 0.07 0.08
Rec. FS in Q1 before RA 0.000 0.035 0.22 0.12 -0.20 -0.16 0.19 0.12 0.08 0.05
Rec. FS in Q2 before RA 0.000 0.816 0.27 0.10 -0.27 -0.11 0.12 0.06 0.06 0.03
Rec. FS in Q3 before RA 0.000 0.753 0.21 0.12 -0.27 -0.09 0.11 0.01 0.06 0.04
Rec. FS in Q4 before RA 0.000 0.801 0.08 0.15 -0.20 -0.08 0.10 0.01 0.05 0.02
Rec. FS in Q5 before RA 0.000 0.597 0.05 0.17 -0.20 -0.08 0.08 -0.03 0.06 0.04
Rec. FS in Q6 before RA 0.000 0.155 0.04 0.17 -0.21 -0.07 0.14 -0.06 0.09 0.04
Rec. FS in Q7 before RA 0.000 0.524 0.04 0.19 -0.22 -0.08 0.08 -0.04 0.07 0.06
Employed Q1 before RA 0.000 0.870 -0.08 -0.09 0.17 0.03 -0.09 -0.04 -0.03 -0.07
Employed Q2 before RA 0.000 0.866 -0.11 -0.10 0.18 0.06 -0.01 -0.02 -0.05 -0.09
Employed Q3 before RA 0.000 0.809 -0.08 -0.11 0.17 0.06 0.05 -0.05 -0.05 -0.08
Employed Q4 before RA 0.000 0.540 -0.02 -0.12 0.17 0.02 0.05 -0.02 0.01 -0.08
Employed Q5 before RA 0.000 0.973 0.02 -0.14 0.17 0.02 0.02 0.00 0.01 -0.03
Employed Q6 before RA 0.000 0.602 0.04 -0.16 0.21 0.00 -0.05 0.00 -0.01 -0.09
Employed Q7 before RA 0.000 0.528 0.05 -0.19 0.22 0.00 -0.05 -0.02 -0.02 -0.11
Employed Q8 before RA 0.000 0.097 0.05 -0.21 0.26 0.01 0.03 -0.03 -0.04 -0.16
Emply at RA (self reported) 0.000 0.157 -0.05 -0.07 0.15 -0.01 -0.12 -0.08 -0.01 -0.03
Ever wrkd FT 6+ mths same job 0.000 0.926 0.17 -0.36 0.01 0.27 0.01 0.00 -0.02 -0.06
Earnings Q1 before RA 0.000 0.851 -0.06 -0.08 0.10 0.06 0.03 -0.02 0.00 -0.05
Earnings Q2 before RA 0.000 0.422 -0.09 -0.10 0.17 0.06 0.14 0.02 -0.02 -0.08
Earnings Q3 before RA 0.000 0.573 -0.08 -0.10 0.17 0.04 0.13 0.01 -0.04 -0.06
Earnings Q4 before RA 0.000 0.657 0.02 -0.13 0.13 0.03 0.13 0.05 -0.03 -0.02
Earnings Q5 before RA 0.000 0.713 0.06 -0.13 0.11 0.02 0.08 -0.02 -0.02 -0.05
Earnings Q6 before RA 0.000 0.758 0.10 -0.14 0.10 0.01 -0.03 0.02 0.03 -0.05
Earnings Q7 before RA 0.000 0.596 0.13 -0.16 0.10 0.00 -0.03 0.05 0.03 -0.06
Earnings Q8 before RA 0.000 0.610 0.13 -0.17 0.10 0.01 0.01 0.02 0.00 -0.07
Any earns yr before RA (slf-rep) 0.000 0.936 -0.17 -0.22 0.33 0.13 -0.17 -0.12 -0.11 -0.11
Emp/pop gr. rate 2 yrs before RA 0.000 0.000 -0.83 0.38 -0.35 0.48 0.17 -0.18 -0.13 0.29

Notes: Variables have been standardized to mean zero and standard deviation 1 (before imposing overlap).
          GPS-based balancing tests are applied only to observations that satisfy the overlap condition.

Means using GPS IPW
Standardized means by siteP-value joint equality of means test

across all sites Raw means



Appendix Table A4. Balancing of covariates based on difference of means tests in each site versus all other sites pooled - 4 sites

Variable
ATL DET GRP POR ATL DET GRP POR

Black  0.87***  0.81*** -0.53*** -1.17***  0.26***  0.12***  0.02    0.07***
Age 30-39 years old  0.32*** -0.10*** -0.23***  0.04   0.00   -0.05    0.02   0.00   
Age 40+ years old  0.14***  0.05*  -0.08*** -0.10***  0.00   -0.01   -0.03   -0.02   
Became mother as a teenager  0.05*   0.04*   0.19*** -0.26***  0.02    0.06    0.02   -0.06   
Never married  0.05*   0.27*** -0.05   -0.30***  0.07    0.04    0.02   -0.01   
Any child 0-5 years old -0.55***  0.08***  0.17***  0.23*** -0.08    0.01    0.00    0.04   
Any child 6-12 years old  0.45*** -0.14*** -0.25*** -0.01    0.09   -0.03   -0.03    0.03   
2 children in household  0.03   -0.10***  0.08**  0.01    0.04    0.02   -0.01   -0.01   
3+ children in household  0.12***  0.00   -0.23***  0.09*** -0.02   -0.01    0.02    0.05   
10th grade -0.03   -0.01   -0.06**  0.09*** -0.07   0.00   0.00   -0.05   
11th grade -0.13***  0.14*** -0.05*   0.00   -0.07    0.01    0.02    0.00   
Grade 12 or higher  0.16*** -0.03    0.08*** -0.17***  0.12*   0.00   -0.01    0.08   
Highest degree = HS/GED  0.02   -0.11***  0.06**  0.05*   0.05   -0.04   -0.04   -0.03   
Lives public/subss house  0.97*** -0.62*** -0.29***  0.10*** 0.00   -0.14***  0.00   -0.07   
1-2 moves in past 2 years  0.00   -0.02    0.06** -0.04   0.00    0.04    0.06    0.07   
3+ moves in past 2 years -0.26*** -0.31***  0.34***  0.27***  0.02   -0.04   -0.02    0.08   
On welfare < 2 years -0.09*** -0.20***  0.25***  0.09***  0.05    0.07    0.01    0.01   
On welfare for 2-5 years -0.11*** -0.12***  0.05    0.18*** -0.08   -0.01    0.03   -0.01   
On welfare 5-10 years  0.05*   0.06** -0.15***  0.01    0.10*  -0.07*  -0.02    0.04   
On welfare Q1 before RA  0.40***  0.19*** -0.33*** -0.27*** -0.05   -0.01    0.01   -0.13** 
On welfare Q2 before RA  0.39***  0.18*** -0.36*** -0.23*** -0.09   -0.03   -0.03   -0.08   
On welfare Q3 before RA  0.21***  0.23*** -0.28*** -0.19*** -0.05   -0.03   -0.02   -0.05   
On welfare Q4 before RA -0.01    0.29*** -0.19*** -0.15*** -0.03   -0.03   -0.04   -0.08   
On welfare Q5 before RA -0.04    0.33*** -0.17*** -0.18*** -0.01   -0.02   -0.04   -0.09   
On welfare Q6 before RA -0.04    0.35*** -0.18*** -0.20***  0.00   -0.02    0.00   -0.05   
On welfare Q7 before RA -0.02    0.37*** -0.23*** -0.19***  0.01   -0.02    0.01   -0.04   
Rec. FS in Q1 before RA  0.28***  0.18*** -0.26*** -0.21*** -0.01    0.02   -0.01   -0.13** 
Rec. FS in Q2 before RA  0.34***  0.14*** -0.34*** -0.15*** -0.06   -0.01   -0.01   -0.15** 
Rec. FS in Q3 before RA  0.26***  0.17*** -0.34*** -0.12*** -0.02   -0.03   -0.01   -0.10*  
Rec. FS in Q4 before RA  0.10***  0.22*** -0.25*** -0.12*** -0.03   0.00   0.00   -0.12** 
Rec. FS in Q5 before RA  0.06**  0.25*** -0.26*** -0.11*** -0.04   -0.04   0.00   -0.09*  
Rec. FS in Q6 before RA  0.05    0.25*** -0.26*** -0.09*** -0.03   -0.05    0.02   -0.06   
Rec. FS in Q7 before RA  0.05*   0.27*** -0.28*** -0.10*** -0.01   -0.04    0.02   -0.05   
Employed Q1 before RA -0.11*** -0.13***  0.22***  0.04    0.03   -0.01    0.02    0.00   
Employed Q2 before RA -0.14*** -0.15***  0.23***  0.09*** -0.01   -0.02   0.00   0.00   
Employed Q3 before RA -0.10*** -0.17***  0.21***  0.09***  0.06   -0.03   0.00    0.00   
Employed Q4 before RA -0.02   -0.18***  0.21***  0.03    0.06   -0.01    0.04   -0.01   
Employed Q5 before RA  0.03   -0.21***  0.22***  0.02    0.04    0.00    0.04   -0.01   
Employed Q6 before RA  0.05   -0.24***  0.26***  0.00    0.03   -0.03    0.01   -0.05   
Employed Q7 before RA  0.07** -0.27***  0.28***  0.00    0.01   -0.04    0.01   -0.04   
Employed Q8 before RA  0.07** -0.31***  0.32***  0.01    0.07   -0.05    0.00   -0.08*  
Emply at RA (self reported) -0.06** -0.09***  0.19*** -0.01    0.01   -0.01    0.02    0.03   
Ever wrkd FT 6+ mths same job  0.22*** -0.52***  0.02    0.37***  0.05   -0.05    0.01    0.04   
Earnings Q1 before RA -0.08** -0.12***  0.13***  0.09***  0.03   -0.01    0.02    0.02   
Earnings Q2 before RA -0.12*** -0.14***  0.21***  0.08***  0.05    0.01    0.00    0.04   
Earnings Q3 before RA -0.10*** -0.15***  0.22***  0.06**  0.09   0.00   -0.01    0.05   
Earnings Q4 before RA  0.02   -0.19***  0.16***  0.05    0.08    0.02    0.00    0.05   
Earnings Q5 before RA  0.08** -0.19***  0.14***  0.02    0.06   -0.01    0.01    0.02   
Earnings Q6 before RA  0.13*** -0.21***  0.12***  0.02    0.05   -0.01    0.00    0.00   
Earnings Q7 before RA  0.17*** -0.23***  0.13***  0.00    0.02    0.01    0.00    0.00   
Earnings Q8 before RA  0.17*** -0.24***  0.13***  0.02    0.06   -0.01    0.00    0.01   
Any earns yr before RA (slf-rep) -0.21*** -0.33***  0.42***  0.18*** -0.01   -0.05   -0.02    0.06   
Emp/pop gr. rate 2 yrs before RA -1.05***  0.56*** -0.45***  0.66*** -0.04    0.03   -0.08***  0.34***

Notes: * Significant at 10%; ** Significant at 5%; *** Significant at 1%.
           Variables have been standardized to mean zero and standard deviation 1 (before imposing overlap).
           GPS-based balancing tests are applied only to observations that satisfy the overlap condition.

Difference of means after blocking on GPS (std)Raw difference of means (standardized)



Appendix Table A5. Estimated average employment rate in two years after random assignment - 5 sites

Estimator ATL DET GRP POR RIV
A. Outcome in levels
Raw Mean - No Ovlp 0.04 0.05 0.27 0.05 -0.22

[-0.01,0.09] [0.01,0.09] [0.22,0.31] [0.01,0.10] [-0.25,-0.19]
Raw Mean - Ovlp 0.04 0.06 0.24 0.03 -0.29

[-0.02,0.09] [0.02,0.09] [0.18,0.30] [-0.02,0.08] [-0.35,-0.24]
Linear regression-based
Partial Mean Linear X - No Ovlp 0.08 0.07 0.15 0.03 -0.18

[0.01,0.13] [0.02,0.12] [0.11,0.20] [-0.02,0.08] [-0.22,-0.14]
Partial Mean Linear X - Ovlp 0.08 0.05 0.12 0.01 -0.19

[0.01,0.13] [0.00,0.10] [0.07,0.18] [-0.04,0.07] [-0.26,-0.13]
Partial Mean Flex X - No Ovlp 0.09 0.07 0.15 0.03 -0.18

[0.03,0.15] [0.02,0.12] [0.10,0.20] [-0.03,0.08] [-0.23,-0.14]
Partial Mean Flex X - Ovlp 0.09 0.05 0.12 0.01 -0.19

[0.02,0.15] [0.00,0.10] [0.07,0.17] [-0.04,0.07] [-0.26,-0.13]
GPS-based (imposing Ovlp)
Parametric Partial Mean 0.08 0.01 0.13 0.09 -0.20

[-0.02,0.17] [-0.07,0.09] [0.06,0.22] [-0.02,0.19] [-0.41,-0.05]
Nonparametric Partial Mean 0.13 0.08 0.12 0.09 -0.27

[-0.01,0.24] [-0.04,0.19] [0.03,0.21] [-0.08,0.19] [-0.50,-0.09]
IPW No Covariates 0.04 0.14 0.13 0.08 -0.30

[-0.38,0.24] [-0.02,0.33] [0.04,0.22] [-0.04,0.19] [-0.50,-0.09]
IPW With Covariates 0.07 0.10 0.12 0.07 -0.25

[-0.19,0.22] [-0.05,0.25] [0.00,0.21] [-0.07,0.19] [-0.51,-0.10]

B. Outcome in differences (with respecto to years 1 and 2 before RA)
Raw Estimator - No Ovlp 0.06 0.20 -0.02 0.02 -0.18

[0.01,0.11] [0.16,0.24] [-0.06,0.03] [-0.02,0.06] [-0.21,-0.15]
Raw Estimator - Ovlp 0.07 0.21 -0.01 0.04 -0.15

[0.02,0.13] [0.17,0.25] [-0.07,0.04] [-0.01,0.09] [-0.22,-0.10]
Linear regression-based
Partial Mean Linear X - No Ovlp 0.10 0.07 0.02 0.01 -0.12

[0.04,0.16] [0.02,0.12] [-0.03,0.08] [-0.04,0.06] [-0.16,-0.07]
Partial Mean Linear X - Ovlp 0.15 0.08 0.03 0.04 -0.07

[0.08,0.22] [0.03,0.14] [-0.02,0.09] [-0.02,0.10] [-0.15,-0.01]
Partial Mean Flex X - No Ovlp 0.07 0.08 0.12 0.02 -0.16

[0.02,0.13] [0.03,0.12] [0.08,0.17] [-0.03,0.06] [-0.20,-0.12]
Partial Mean Flex X - Ovlp 0.11 0.09 0.13 0.04 -0.13

[0.04,0.15] [0.05,0.14] [0.08,0.17] [-0.02,0.09] [-0.20,-0.08]
GPS-based (imposing Ovlp)
Parametric Partial Mean 0.09 0.14 0.09 0.21 -0.11

[-0.01,0.18] [0.05,0.23] [0.02,0.18] [0.09,0.31] [-0.29,0.03]
Nonparametric Partial Mean 0.12 0.10 0.11 0.25 -0.13

[-0.01,0.23] [-0.04,0.22] [0.03,0.25] [0.13,0.41] [-0.30,0.02]
IPW No Covariates 0.12 0.17 0.10 0.19 -0.14

[-0.04,0.33] [-0.07,0.47] [0.02,0.19] [0.09,0.28] [-0.31,0.04]
IPW With Covariates 0.11 0.18 0.10 0.12 -0.01

[-0.04,0.27] [-0.01,0.38] [0.02,0.21] [0.02,0.26] [-0.22,0.15]

Note: Bootstrap confidence intervals in brackets (based on 1,000 replications).



Appendix Table A6. Estimated average employment rate in two years after random assignment - 4 sites

Estimator ATL DET GRP POR
A. Outcome in levels
Raw Mean - No Ovlp -0.05 -0.05 0.18 -0.04

[-0.10,-0.01] [-0.08,-0.01] [0.13,0.22] [-0.08,0.00]
Raw Mean - Ovlp -0.06 -0.04 0.14 -0.07

[-0.11,0.00] [-0.07,0.00] [0.09,0.19] [-0.12,-0.02]
Linear regression-based
Partial Mean Linear X - No Ovlp 0.01 -0.02 0.07 -0.04

[-0.04,0.06] [-0.06,0.02] [0.02,0.11] [-0.09,0.01]
Partial Mean Linear X - Ovlp 0.00 -0.03 0.04 -0.05

[-0.05,0.07] [-0.08,0.01] [-0.02,0.09] [-0.11,0.00]
Partial Mean Flex X - No Ovlp 0.03 -0.02 0.07 -0.05

[-0.03,0.09] [-0.07,0.02] [0.02,0.11] [-0.10,0.00]
Partial Mean Flex X - Ovlp 0.02 -0.04 0.04 -0.06

[-0.03,0.08] [-0.08,0.01] [-0.02,0.09] [-0.12,0.00]
GPS-based (imposing Ovlp)
Parametric Partial Mean 0.00 -0.06 0.10 0.00

[-0.12,0.09] [-0.13,0.01] [0.02,0.18] [-0.09,0.09]
Nonparametric Partial Mean 0.03 0.00 0.07 -0.01

[-0.11,0.13] [-0.10,0.08] [-0.02,0.15] [-0.13,0.08]
IPW No Covariates -0.08 0.03 0.07 -0.01

[-0.39,0.17] [-0.08,0.15] [-0.03,0.15] [-0.13,0.10]
IPW With Covariates -0.08 0.01 0.08 0.00

[-0.25,0.13] [-0.11,0.12] [-0.03,0.17] [-0.14,0.10]

B. Outcome in differences (with respecto to years 1 and 2 before RA)
Raw Estimator - No Ovlp -0.02 0.12 -0.09 -0.06

[-0.06,0.03] [0.09,0.16] [-0.14,-0.05] [-0.10,-0.02]
Raw Estimator - Ovlp -0.01 0.13 -0.09 -0.04

[-0.05,0.05] [0.09,0.17] [-0.14,-0.04] [-0.08,0.02]
Linear regression-based
Partial Mean Linear X - No Ovlp 0.07 0.00 -0.03 -0.03

[0.01,0.13] [-0.04,0.05] [-0.08,0.02] [-0.09,0.02]
Partial Mean Linear X - Ovlp 0.09 0.02 -0.04 -0.02

[0.04,0.16] [-0.03,0.07] [-0.09,0.02] [-0.08,0.04]
Partial Mean Flex X - No Ovlp 0.02 0.00 0.04 -0.05

[-0.03,0.06] [-0.04,0.04] [0.00,0.09] [-0.09,0.00]
Partial Mean Flex X - Ovlp 0.04 0.01 0.04 -0.03

[-0.02,0.09] [-0.02,0.06] [0.00,0.09] [-0.09,0.02]
GPS-based (imposing Ovlp)
Parametric Partial Mean 0.04 0.06 0.03 0.11

[-0.05,0.15] [-0.01,0.14] [-0.03,0.12] [0.03,0.21]
Nonparametric Partial Mean 0.03 0.02 0.04 0.13

[-0.09,0.14] [-0.08,0.13] [-0.03,0.14] [0.04,0.24]
IPW No Covariates 0.05 0.06 0.05 0.12

[-0.10,0.35] [-0.10,0.22] [-0.04,0.14] [0.02,0.23]
IPW With Covariates 0.02 0.09 0.07 0.08

[-0.12,0.25] [-0.02,0.22] [-0.01,0.18] [-0.01,0.20]

Note: Bootstrap confidence intervals in brackets (based on 1,000 replications).
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