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the method makes it very attractive in empirical applications. However, its finite sample 
performance is not known as of yet. In this paper we investigate the performance of this 
method in comparison with an ideal case in which the initial values are known constants, the 
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form approximation method which is widely used in the literature. The dynamic random-
effects probit and tobit (type1) models are used as the working examples. Various designs of 
Monte Carlo Experiments with balanced and unbalanced panel data sets, and also two full 
length empirical applications are provided. The results suggest that the Wooldridge method 
works very well for the panels with moderately long durations (longer than 5-8 periods). In 
short panels Heckman’s reduced-form approximation is suggested (shorter than 5 periods). It 
is also found that all methods perform equally well for panels of long durations (longer than 
10-15 periods). 
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1 Introduction

One of the crucial issues in the estimation of a dynamic panel data random-e¤ects

models is the initial values problem (Blundell and Smith, 1991; Arellano and Bover,

1997; Blundell and Bond, 1998; Arellano and Honore, 2001; Honore, 2002; Arel-

lano and Carrasco, 2003; De Jong and Herrera, 2005; Arellano and Hahn, 2005;

Wooldridge, 2005; Honore and Tamer, 2006). This problem occurs when the history

of a stochastic process is not observed from the very beginning. Almost all panel data

sets used in microeconometric practice today contain information about individuals

entered into the process before the observation period. Ad hoc treatments of this

problem are prone to bias and inconsistent estimators as well as a wrong inference of

the magnitude of true (structural) and spurious state dependence (Heckman, 1981;

Honore, 2002; Hsiao, 2003; Honore and Tamer, 2006).

This problem is either ignored by assuming that the initial values have not been

in e¤ect with what happened in the unknown past, i.e. exogenous variables, inde-

pendent from the exogenous variables and the unobserved individual-e¤ects (het-

erogeneity), or the stochastic process underlying the model is assumed as is in the

steady state (Heckman, 1981; Card and Sullivan, 1988). The exogenous initial values

assumption is very naive and may lead to severe bias if the initial observations have

been created with the evolution of observed and unobserved characteristics in the

past. The initial stationary assumption is also very unattractive especially when

age-trended variables drive the process (Heckman, 1981, Hsiao, 2003).

A realistic solution strategy is �rst suggested by Heckman (1981) which consid-

ers the initial values are endogenous variables with a probability distribution condi-
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tioned on the exogenous variables and unobserved individual-e¤ects. The strategy

of the method is to approximate the conditional probability of initial values with

reduced-form equations using available pre-sample information. This leads to very

�exible functional forms. Using a small scale Monte Carlo study, Heckman (1981)

shows that this solution method performs very well. The main problem of this

method in practice is that the approximation of the conditional probability of initial

values leads to a simultaneous estimation problem of the reduced-form and structural

model which can create a large computational burden in the estimation process.

One other way to ensure that initial values are not a problem in the estima-

tion is to use a �xed-e¤ects approach. The conditional distribution of unobserved

individual-e¤ects does not play a role in the estimation process of this approach.

However, the �xed-e¤ects approach can be seriously biased as it su¤ers from so-

called incidental parameters problem (Neyman and Scott, 1948). Alternatively, some

of the recently developed nonparametric methods can be used (Honore and Kyriazi-

dou, 2000; Hu, 2002; Honore, 2003). For instance, Honore and Kyriazidou (2000)

provide a �xed-e¤ects logit model based on kernel-weighted GMM estimators which

also absorb the initial values problem. These estimators though have some problems.

For instance, it is not possible to calculate average partial e¤ects (Wooldridge, 2005).

Thus, the random-e¤ects speci�cation is still attractive in practice and a solution

for the initial values problem is inevitable.

Wooldridge (2005) has recently provided a very simple alternative to the Heck-

man�s reduced-form approximation to solve the initial values problem. This method

leads to very simple and tractable likelihoods that is not di¤erent than standard sta-

4



tic random-e¤ects model. It is based on an auxiliary distribution of the unobserved

individual-e¤ects which is conditioned on the initial values and exogenous variables.

It is also very useful in random-e¤ects speci�cations as it is very similar to Cham-

berlain approach (1984) with which one can also deal with the possible correlation

between exogenous variables and unobserved individual-e¤ects. To our knowledge,

although there is a growing literature which routinely uses this method in empiri-

cal applications (Contayannis et al., 2004), there is no rigorous study on the �nite

sample performance of the method as an alternative to Heckman�s reduced-form

approximation.

The main aim of this paper is to provide Monte Carlo Experiments (MCE)

and present real data evidence to investigate the �nite sample performance of the

Wooldridge method. The dynamic panel data random-e¤ects probit and tobit (type

I) models are used as working examples. The paper also aims to compare the

performance of the Wooldridge method with the results produced by the exogenous

initial values assumption and the Heckman�s reduced-form approximation. First,

we conduct various designs of MCE with balanced panel data sets. However, as

explained in Honore (2002), ad hoc treatments of the initial values problem are

especially unappealing with unbalanced panel data sets. This is generally the case

in the empirical applications and thus, various designs of MCE with unbalanced

panel data sets are also presented. The real microeconomic panel data sets contain

more complicated structure compared to any MCE design. The paper also gives

two full scale real data applications which concentrate on intertemporal labor force

participation and hours of work decisions of married women in Sweden between 1992
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and 2001.

Given that the aim of estimating a dynamic panel data models is to identify the

di¤erent sources of persistence, the initial values problem plays a very important

role. The result suggests that misspeci�cation of the conditional distribution of the

initial values leads to a serious bias on both persistence which is due to structural or

spurious reasons. The exogenous initial values assumption, for instance, would lead

to overestimation of the true and underestimation of the spurious state dependence.

We �nd that the Wooldridge method works very well but it is not as successful

as Heckman�s reduced-form approximation for very short panels (shorter than 5).

The Wooldridge method gives almost the same results with the Heckman�s method

for moderately long panels (longer than 5 � 8 periods). One of the other and very

intuitive result is that the performance of all methods tends to be equal for the

panels of very long durations (longer than 10� 15 periods).

The paper is organized as follows: the next section will summarize the mod-

els and estimation strategies with di¤erent solution methods of the initial values

problem. Section 3 presents our MCE designs and the results. Section 4 gives

two empirical applications to the intertemporal labour force participation and hours

of work decisions of married women in Sweden between 1992 and 2001. Section 5

concludes.
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2 The dynamic probit and tobit models and the

solution strategies for the initial values problem

The process with one lag of observed dependent variable that generate the outcome

is as follows.1

y�it = x0it� + yi;t�1 + �it (1)

y�i1 = x0i1� + �i1 (2)

where the dependent variable y�it is latent (unobserved) and y
�
i1 are the initial values

of the process; �it = �i + uit are the composite error terms, and i = 1; :::; N ,

t = 2; :::; T ; xit is a vector of strictly exogenous variables in a sense that they

are independent from all past, current and the future values of the disturbance uit;

�i is the time-persistent unobserved individual-e¤ects which is assumed as �i �

iidN (0; �2�). It is also assumed to be orthogonal to exogenous variables following

the standard random-e¤ects assumption.

The dependent variable is latent and it can be observed with a criteria that

determines the type of the model. The system (1-2) is a dynamic random-e¤ect

probit model if yit = 1 (y�it > 0) and yi1 = 1 (y�i1 > 0), where 1(:) is the indicator

function. The error terms of the probit model are assumed as uit � iidN (0; �2u)

and �2u = 1, due to identi�cation. The correlation between two sequential error

terms is Corr(�it; �ik) = �2�=(�
2
� + 1), (t; k = 1; :::; T ; t 6= k). The system (1-2) is a

1 The other alternative is to consider that the lagged values of the dependent variable is also
latent (unobserved). Considering the lagged dependent variable as observed or latent leads to
di¤erent implications in both economic and estimation terms. See Honore (1993), Hu (2002)
and Hsiao (2003) for useful discussions.
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dynamic random-e¤ects tobit (type I) model if the criteria is yit = max(0; y�it) and

yi1 = max(0; y�i1), where the error terms are assumed as uit � iidN (0; �2u). The

likelihood for the probit (pro) and tobit (tob) models at time t (t > 1) for any

individual i is given by,

f pro
it (yitjyi;t�1; xit; �i; �) = � fDit (x

0
it� + yi;t�1 + ���i)g (3)

f tob
it (yitjyi;t�1; xit; �i; �) =

�
1� � [(x0it� + yi;t�1 + ���i)=�u] ; yit = 0

(1=�u)� [(yit � x0it� � yi;t�1 � ���i)=�u] ; yit > 0

�
(4)

where Dit = (2yit � 1), � denotes the distribution function, � denotes the density

function of the standard normal random variable, and �pro =
�
�  ��

�0
, �tob =�

�  �� �u

�0
are the parameter vectors to be estimated.

Given the probability distribution of the initial values which is conditioned on

the exogenous variables and unobserved individual-e¤ects f pro
1

�
yi1j fxitgTt=1 ; �i; �

�
and f tob

1

�
yi1j fxitgTt=1 ; �i; �

�
=
�
f1[yi1=0]; f1[yi1>0]

	
, and the exogenous variables xit,

the general form of the full log-likelihood function for both models can be speci�ed

as follows:

LogL =
NP
i=1

ln

"Z 1

�1

"
f1(yi1j fxitg

T
t=1 ; �i; �)

TY
t=2

fit (yitjyi;t�1; xit; �i; �)
#
f(�i)d�i

#
(5)

Maximization of the likelihood function (5) is straightforward for both speci-

�cations, if the conditional distribution of the initial values is known. Obviously,

the ideal case would be that the observed panel data set starts just together with

the stochastic process, and the initial values yi1 are known constants (nonstochas-
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tic). In this case, there is no need to deal with the initial values problem and there

is no reason to specify a conditional distribution (Heckman, 1981; Honore, 2002;

Hsiao, 2003). However, if the observed sample data are observed after the process

is operated many periods, the initial values would not be known and a conditional

distribution for the initial values must be speci�ed. If there is no access to S periods

before the sample panel data are observed (t = S+1; S+2; :::; S+T ), the conditional

distribution of the initial values, yi;S+1, is speci�ed as fi;S+1
�
yi;S+1j fxitgS+Tt=1 ; �i; �

�
.2

In empirical applications, it is sometimes naively assumed that initial values have

not been in e¤ect with the unobserved S periods. This assumption implies that the

initial values are exogenous variables, independent from exogenous variables and

unobserved individual-e¤ects. In this case, the conditional distribution of the ini-

tial values would be equal to the marginal distribution fi1 (yi1) and it can be taken

outside the maximization procedure of the likelihood function (5). Therefore, as-

suming exogenous initial values actually means ignoring the problem. If the data is

not collected at the beginning of the process, and if the disturbances that generate

the process are serially correlated (which is inevitable in the presence of the unob-

served individual-e¤ects), then the exogenous initial values assumption is too strong

and causes serious consequences such as bias and inconsistency in the estimators

(Heckman, 1981; Hyslop, 1999; Honore, 2002).3

The more realistic approach is to assume that the initial values are endogenous,

2 For notational simplicity, we will later drop the notation S + t and simply use

fi1

�
yi1j fxitgTt=1 ; �i; �

�
. We assume that S periods is passed and thus here t = 1 (the �rst

period of the panel data set) means S + 1:
3 Note that, in this paper, we assume that the actual disturbance process is serially uncorrelated

(such as �rst order autocorrelation AR(1)) and the dynamic feature of the model is obtained
by including a lagged dependent variable.
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and to specify a conditional distribution. However, it is not an easy to �nd a

closed-form expression for the conditional distribution. One possibility is to assume

that the conditional distribution of initial values is to be at the steady state (in

equilibrium). This assumption is useful in some cases, but it is still di¢ cult to �nd

a closed-form expression for the conditional distribution even for the simplest case

where there are no explanatory variables (Card and Sullivan, 1988). Additionally

the initial stationarity assumption is also very strong if some age-trended variables

are driving the process (Heckman, 1981; Hyslop, 1999; Hsiao, 2003).

Heckman (1981) suggests an approximation method for the conditional distrib-

ution of the initial values using a reduced-form equation which is based on available

pre-sample information. Consider the following reduced-form equations,

y�i1 = z0i1� + �i1 (6)

�i1 = ��i + ui1 (7)

where zi1 is the vector of available strictly exogenous instruments which will be used

as pre-sample information. This vector can consist of the �rst observations of the

exogenous explanatory variables which are available in the sample panel data set.

� and � are the nuisance parameters to be estimated. �i1 is correlated with �i but

it is uncorrelated with uit for t > 1. The reduced-form can be expressed for probit

model as yi1 = 1 (y�i1 > 0) and for tobit model as yi1 = max(0; y
�
i1). The conditional
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distribution of the initial values then can be approximated as

f pro
i1 (yi1jzi1; �i; �; �) = � fDi1 (zi1� + ����i)g (8)

f tob
i1 (yi1jzi1; �i; �; �) =

�
1� � [(z0i1� + ����i)=�u] ; yi1 = 0

(1=�u)� [(yi1 � z0i1� � ����i)=�u] ; yi1 > 0

�
(9)

Simultaneous estimation of the parameters of the structural equation (1) and reduced-

form in (6-7) can be obtained by simply substituting (8) or (9) into the log-likelihood

function (5) without imposing any restrictions (Heckman, 1981; Hsiao, 2003).

Wooldridge (2005) suggests a simple alternative to Heckman�s reduced-form ap-

proximation, which is based on unobserved individual-e¤ects as conditional on the

initial values and exogenous variables. Specifying the distribution of unobserved

individual-e¤ects on these variables can lead to very tractable functional forms and

consistent estimators not only for dynamic panel data random-e¤ects probit or tobit

models but also for many other dynamic nonlinear panel data models such as logit,

poisson or sample selection (tobit type II).

TheWooldridge method suggests specifying f
�
�ij fxitgTt=1 ; yi1

�
instead of fi1 (:)

as a similar strategy to Chamberlain (1984) correlated random-e¤ects model. Simply,

this method uses the following auxiliary distribution of the unobserved individual-

e¤ects which is conditioned on the initial values, yi1; and the within-means of time-

variant explanatory variables, xi:

�i = �0 + �1yi1 + �2xi + �i (10)

where �i is a new unobserved individual-e¤ects which is simply assumed as �i �
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iidN
�
0; �2�

�
; �ijxi; yi1 � N

�
�0 + �1yi1 + �2xi; �

2
�

�
; and xi = 1

T

XT

t=1
xit.4 Thus, we

obtain a conditional likelihood which is based on the joint distribution of obser-

vations conditional on initial values. The resulting likelihood function will be like

those in standard static random-e¤ect probit and tobit models. The parameters

can be easily estimated by using a standard random-e¤ects command in available

softwares.

The likelihood functions of probit and tobit models (5) involve only a single inte-

gral, which can be e¤ectively implemented by using Gaussian-Hermite Quadrature

and this tool will be employed in the maximization of likelihood functions in this

paper (Butler and Mo¢ tt, 1982). This method is less time consuming and more e¢ -

cient in comparison with the other alternative based on Monte Carlo integration with

a proper simulator (Gourieroux and Monfort, 1993; Hajivassiliou and Ruud,1994).

The details of the Gaussian-Hermite Quadrature applied in the paper is provided in

the Appendix together with the likelihood functions used in the estimation process.

3 Monte Carlo Experiments

Various designs of MCE are carried out with balanced and unbalanced panel data

sets to analyze the �nite sample performance of the Wooldridge method in compari-

son with; i) the ideal case, known initial values; ii) the worst case, exogenous initial

values assumption; and iii) Heckman�s reduced-form approximation. Our MCE (as

all calculations in this paper) is designed in Compaq Visual Fortran, and the op-

4 Note that we present the auxiliary conditional distribution of �i with a constant �0: Thus,
the constant in the structural equation should be dropped.
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timization for the likelihood functions is performed using ZXMIN , which is very

fast and robust optimization routine.5

3.1 Balanced Panel Data

We start to experiment with various balanced panel data sets that are based on three

di¤erent data generating processes of a strictly exogenous variable. The benchmark

design,MCE1, is created by using independent and identically distributed standard

normal random variates,

xit � N [0; 1] (11)

It is also important to analyze the bias with non-normal explanatory variables. It

is well known in the literature that normally distributed explanatory variables may

tend to produce less bias compared to MCE designs with non-normally distributed

explanatory variables (Ruud, 1986; Honore and Kyriazidou, 2000). We therefore

modify MCE1 by changing the data generating process of the explanatory variable

to one degree of freedom chi-square distributed random variable, �2(1); which has a

skewed distribution. In order to reveal the comparability with the benchmark design

we also standardize this random variable. The second design, MCE2, is thus based

on the following explanatory variable,6

xit �
�2(1) � 1p

2
(12)

5 The details and the routines written forMCE can be provided upon request from the author.
6 Note that Z =

�
�2(k) � k

�
=
p
2k, where k is the degrees of freedom. Z is the standardized �2

random variable.
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The third design, MCE3, uses an autocorrelated explanatory variable in order

to analyze the solution methods with a higher degree of intra-group variation. In

this design the explanatory variable is given by the following autoregressive process,

xit = �xi;t�1 +  it (13)

where  it � N [0; 1], xi1 =  i1 and � = 0:5.

The data generating process for the latent dependent variable which is based on

a dynamic random-e¤ects speci�cation is given as follows:

y�it = �1xit + yi;t�1 + �i + uit (14)

y�i1 =
�1xi1
1� 

+
�i
1� 

+
ui1p
1� 2

(15)

Where i = 1; :::; N and t = 2; :::; T ; xit is one of the exogenous variables given in

(11), (12) or (13); �i � iidN [0; �2�]; and uit � iidN [0; �2u]. The design adopted for

the initial values in (15) aims �rst at including correlation between initial values

and unobserved individual-e¤ects, and second aims at creating mean stationarity in

the stochastic process. The data generating process leading to a dynamic random-

e¤ects probit model is yit = 1 (y�it > 0) and yi1 = 1 (y
�
i1 > 0); and for the dynamic

random-e¤ects tobit model is yit = max(0; y�it) and yi1 = max(0; y
�
i1). The primary

parameters of interest are the true state dependence, , and the the variance of the

unobserved individual-e¤ects, �2�.

True values of the parameters are set to �1 = 1,  = 0:5, �2� = 1 and �2u = 1.

In each case, L = 200 di¤erent conditioning data sets are produced for N = 200
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individuals who are observed T = 3; 4; 5; 8; 15 and 20 periods. The number of

quadrature points for Gauss-Hermite procedure is 30.7 The average number of

observations that are censored (for both tobit and probit cases) constitute almost

40 to 60% of the total number of observations.

The results of MCE1, MCE2 and MCE3 are summarized in Table 1, 2 and 3,

respectively. For brevity, and considering the limited space, we do not report all

results obtained in the estimation process. It should be stressed in this point that

the parameters which were not reported here (�1 and �2u) were estimated with no

bias almost in every case. Thus, we only present the primary parameters of interest,

b and b�2�.8 Tables report mean bias and root mean square error (RMSE). Since the

estimators of the type considered here often do not have �nite theoretical moments,

median bias and median absolute error (MAE) are also presented. A negative sign

on both mean and median bias shows an underestimation and positive sign shows

an overestimation relative to the true values of the parameters.

Table 1 about here

The �rst block of Table 1, 2 and 3 presents results for the ideal case in which the

initial values are nonstochastic (known initial values). Here, the sample data and

the stochastic process start together at t = 1, and all initial values are censored as

yi1 = 0. This is the ideal case in which there is no initial values problem as there is no

7 The models are estimated for di¤erent number of quadrature points in order to check the
stability of the estimated parameters. We observed that 30 quadrature points produce very
stabile results.

8 The estimation results for these parameters and also the nuisance parameters which are es-
timated in the Heckman�s reduced-form approximation and the Wooldridge method can be
provided upon request from the author.
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correlation between initial values and unobserved individual-e¤ects. Therefore, we

do not expect any positive or negative bias. In line with the expectations, almost no

bias is observed both for the true state dependence and the variance of unobserved

individual-e¤ects. The mean and median bias are very close to each other implying

that the bias has a symmetric distribution with a decreasing variance as the duration

of the panel data set is increased.

In order to create an initial values problem we operate the system S = 25

periods before the sample data are observed for T = 3; 4; 5; 8; 15 and 20. This means

that initial sample values (i.e. S = 26) have been created with the evolution of

the relationship between unobserved individual-e¤ects and the explanatory variable

during past 25 periods. The second block in Table 1, 2 and 3 presents the results

for the worst scenario which is based on the exogenous initial values assumption. In

our case, this assumption is clearly wrong and also very strong, and thus we expect

a sizeable bias on the estimated parameters. The assumption leads to a serious bias

for both parameters (see footnote 7). The true state dependence, , is seriously

overestimated while the variance of the e¤ect, �2�, is seriously underestimated. The

bias is 30 to 60% when T = 3, but it is gradually getting smaller as the duration of

the panel is increased, and there is almost no bias when the panel is longer than 15

periods. It is also observed that the result obtained in MCE1, MCE2 and MCE3

are very close to each other. The methods have not produced bigger bias for non-

normal and autocorrelated explanatory variables and even the bias is smaller for

some cases.

Third blocks in the tables present the results for the Heckman�s reduced-form

16



approximation. This method performs very well for all durations of the panels. The

bias is very small even with the smallest duration (T = 3) one can use with dynamic

panel data models (the bias is about 0 to 7%). The results for the Wooldridge

method are presented in the last block of the each table. This method performs

almost equally well with the Heckman�s reduced-form approximation. The main

di¤erence between these two methods occurs for the panels of very short durations

(T = 3 and 4). Similar to the exogenous initial values assumption, the Wooldridge

method also tends to produce overestimated true state dependence and underes-

timated variance of the unobserved individual-e¤ects for the short panels but the

bias is much smaller (15 to 25%). For a duration which is longer than T = 5, the

magnitude of the bias produced by the Wooldridge method tends to be equal to

Heckman�s reduced-form approximation method. Overall and very intuitively, all

methods tend to perform equally well for the panels of very long durations (longer

than T = 15).

Table 2 about here

Table 3 about here

3.2 Unbalanced Panel Data

Many of the microeconomic panel data sets that are encountered in practice contain

hundreds of individuals who are entering or exiting the data set in di¤erent periods

leading to the panel data sets to be unbalanced. The initial values problem may
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behave di¤erent in these type of panel data sets depending on the degree of unbal-

ancedness. Here, we will analyze the �nite sample performance of the Wooldridge

method using various unbalanced panel data sets by controlling for the degree of

unbalancedness of the panel.

The degree of unbalancedness of panel is controlled for using the Ahrens and

Pincus index (Ahrens and Pincus, 1981, Baltagi and Chang, 1994) which is de�ned

as,

r =
N

T
PN

i=1(
1
Ti
)

(16)

where, r is the degree of unbalancedness (0 < r < 1). When it is close to 1,

the data set gets closer to a balanced panel data set, and it would be strongly

balanced for r = 1. We use di¤erent r by controlling for the number of individuals

N = 200; and average number of periods T in the panel data set. Two di¤erent

types of individuals are assumed with the same number of observationsN1 = 100 and

N2 = 100 (N = N1+N2), and with di¤erent number of time periods T1 and T2. The

same design given withMCE3 is used as a data generating process of the exogenous

variable. The dynamic system in (14-15) is driven 25 periods before the samples

are observed. The unbalanced panels are created by using average duration of T =

10 and di¤erent combinations of the durations leading r = (1:00; 0:99; 0:94; 0:91,

0:84; 0:75; 0:64; 0:51). For instance r = 0:51 corresponds to severe unbalancedness

with T1 = 3 and T2 = 17.

Table 4 and 5 present the results for dynamic random-e¤ects probit and tobit

models respectively. The tables report the results only for the exogenous initial

values assumption and for the Wooldridge method. Heckman�s reduced form ap-
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proximation is not a¤ected by the unbalancedness of panel data and we do not

report the results here.9 The bias and variation is increased by the degree of un-

balancedness for the case of exogenous initial values assumption on both true state

dependence and the variance of the individual-e¤ects. However, the bias produced

by the Wooldridge method is a¤ected very slightly and this method tends to produce

less bias even for very extreme cases. We also observe that this behaviour is the

same for both probit and tobit models.

Table 4 about here

Table 5 about here

4 Two empirical Applications

The data used in practice includes more complicated structures. It is crucial to

analyze the performance of the Wooldridge method with real microeconomic panel

data sets and compare the results with the ones obtained withMCE. In this section,

we will present two empirical applications aiming to analyze the intertemporal labour

supply behavior of married woman either for labour force participation or hours of

work decisions. We will illustrate the performance of the Wooldridge method for

the identi�cation of the di¤erent sources of state dependence in comparison with

exogenous initial values assumption and Heckman�s reduced-form approximation as

in the case of MCE.

9 However, they can be reported upon request from the author.
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The dynamics of labour supply behavior of women has been one of the impor-

tant issues in labour economics. In our empirical applications, we �rst focus on

the relationships between labour force participation decisions, fertility decisions and

non-labor income of married women in Sweden using a dynamic random-e¤ects pro-

bit model. Second, the hours of work decisions of the same individuals will be

analyzed using a dynamic random-e¤ects tobit model. In both applications, we use

husbands�labour income as a proxy for non-labour income for married women. As

in the studies of Heckman (1978) and Hyslop (1999), we try to distinguish di¤erent

sources of state dependence. A true or structural state dependence on labour supply

behavior caused by the past participation experiences and a spurious state depen-

dence due to persistent unobserved individual-e¤ects which can alter participation

propensities independently from actual participation experiences. Controlling for

di¤erent sources for persistence can be rationalized by past experiences that can be

perceived by employers as signal for low productivity, time out for skills or search

cost which di¤er across participation states.

The data that we use is a randomly sampled portion of registered data of Sweden

(LINDA).10 Our sample selection criteria is continuously married N = 2000 couples,

aged 20� 60 in 1992 and followed until 2001 (10 periods), with positive husband�s

annual earnings and hours worked each year. Table 6 presents the characteristics of

the sample used in our empirical applications below.

Table 6 about here

10 Features of LINDA can be found in Edin and Fredriksson (2000)
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4.1 Intertemporal participation decisions of Swedish woman,

1992-2001

We use a very similar model that is used by Hyslop (1999). Individuals current

participation decision depends on their previous employment status, fertility vari-

ables, non-labour income and unobserved individual-e¤ects. The speci�cation of the

model estimated here is given in (1) and (2). The dependent variable is an indicator

variable which is 1 for an individual i (i = 1; :::; 2000) and period t (t = 2; :::; 10),

if she is employed and 0 otherwise. The unobserved individual-e¤ects assumed as

correlated with observed individual characteristics. The error-terms assumed as

uit � iidN [0; 1] for identi�cation. The actual disturbance process is assumed as se-

rially uncorrelated and the serial correlation is assumed as constant and equal to the

proportion of the variance explained by the unobserved individual-e¤ects. The ex-

ogenous variables which are included are age, age-squared, place of birth, highest level

of education, fertility variables and non-labour income. Place of birth is an indicator

variable and equal to 1 if the individual was born in Sweden and 0 otherwise. We use

three indicator variables for to control for education: primary = 1 (Grundskola de-

gree, 9 years of education), secondary = 1 (Gymnasium (high school) degree, more

than 9 years but less than 12 years of education), university = 1 (education more

than Gymnasium). Similar to Hyslop (1999), the fertility variables are considered

as number of children aged 0�2 (#Kidsit(0�2)), 3�5 (#Kidsit(3�5)) and 6�17

(#Kidsit(6 � 17)). The non-labour income is separated as permanent and transi-

tory e¤ects. The permanent non-labour income is calculated as within means of

husband�s labour earnings over time periods, and the transitory non-labour income

21



calculated as deviations from the within means of the husband�s labour earnings.

The unobserved taste for working is possibly correlated with fertility variables

and non-labour income (Hyslop, 1999). Thus, the unobserved individual-e¤ects

should be conditioned on these variables. To keep the analysis simple, and without

loosing the generality, we specify the distribution based only on fertility variables

using the within means of the fertility variables following the correlated random-

e¤ects model:11

�i = �0 + �1#Kids(0�2) + �2#Kids(3�5) + �3#Kids(6�17) +  i (17)

where  i � iidN
�
0; �2 

�
. The auxiliary distribution for the unobserved individual-

e¤ects is modelled using Wooldridge method as follows:

�i = �0 + �1#Kids(0�2) + �2#Kids(3�5) + �3#Kids(6�17) + �4yi1 + �i (18)

where �i � iidN
�
0; �2�

�
:

Having assumed that the distribution of the unobserved individual-e¤ect is cor-

rectly speci�ed, we use (17) with the exogenous initial values assumption and with

Heckman�s method. Note that the only di¤erence between exogenous initial val-

ues assumption and Wooldridge method is that the later includes the initial values,

yi1(�rst period employment status). Thus, by applying a correlated random-e¤ects

11 Note that the distribution of the heterogeneity is speci�ed in Hyslop (1999) as follows

�i =
PT

s=0(�1s(#Kids(0�2)) + �2s(#Kids(3�5)) + �3s(#Kids(6�17))) +
PT�1

s=0 �4symis + �i

where ym is the transitory lon-labour income and �ijxi � N
�
0; �2�

�
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model, we can also directly compare the results from these three approaches. The

reduced-form speci�cation for the Heckman�s method includes a constant, the ini-

tial sample values of age, age-squared, place of birth, highest level of education and

non-labour income.12

Table 7 about here

The estimation results are summarized in Table 7 by solution methods. For

brevity, the table reports results only for the true state dependence and variance

of unobserved individual-e¤ects.13 In each raw, the �rst �gure is the estimated co-

e¢ cient, the second �gure (in parentheses) is the standard error14 and the third

�gure (in brackets and bold) is the relative di¤erence between Heckman�s reduced-

form approximation and the other methods. A positive relative di¤erence repre-

sents an overestimation and a negative values is an underestimation in comparison

with the Heckman�s method.15 Additionally, in order to see the performance of the

Wooldridge method with respect to duration of the panel, we estimate the same

model with di¤erent durations from T = 3 to T = 10. In each estimation pro-

cedure, the same individuals are used and some of the explanatory variables are

12 It is important to note that the estimation results are very much dependent on the speci�cation
of the reduced-form equation. In order to analyze the sensitivity of the result, we also tried
with di¤erent speci�cations of the reduced-form equation using di¤erent combinations of the
pre-sample information (the di¤erent combinations of the exogenous variables). It is observed
that there are only minor changes on the true state dependence and the variance of the
unobserved individual-e¤ects by adding or subtracting the variables used in the reduced-form
equation.

13 The estimation results of the other parameters are not included here as there are no large
and systematic di¤erences between solution methods. However, they can be provided upon
request from the author.

14 The standard errors are obtained by inverting the Hessian at the maximum value of the
likelihood functions.

15 Note that, here there is an intrinsic assumption that the Heckman�s approximation is the
true method to solve the initial values problem and the performance of the other methods
has given relative to Heckman�s approximation. However, it does not mean that Heckman�s
method is actually the true method in the practice.
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recalculated according to the duration. We also present results from pooled dy-

namic probit model (no unobserved individual-e¤ects) as a base result. It is useful

since it is not a¤ected by a misspeci�cation of unobserved individual-e¤ects.

The results produced with real data are in line with our MCE. The exogenous

initial values assumption produced very large true state dependence and very low

variance of unobserved individual-e¤ects for small samples. For instance, when T =

3, the relative di¤erence between Heckman�s method is 1:31 which means that the

exogenous initial values assumption overestimates the true state dependence almost

131% more relative to Heckman�s method. The relative di¤erence for the variance

of the unobserved individual-e¤ects is much larger. The variance of unobserved

individual-e¤ects obtained with the Heckman�s method is �ve times larger than that

of the exogenous initial values assumption for T = 3. When the duration is increased

the di¤erence decreases rapidly which is also in line with MCE. For instance, the

true state dependence is overestimated only 4% and the variance is underestimated

almost 11% for T = 10. The exogenous initial values assumption produces very

similar results with the pooled dynamic probit model when the duration is very

small. It is may be the case that the unobserved heterogeneity is underrepresented

in the short panel data sets compared to a longer one with the same individuals. It

is also observed for the long panels that the pooled dynamic probit model produces

increasingly larger persistence which is due to the lagged dependent variable. The

reason is that this model is not able to account for the persistence in the participation

sequences which is due to unobserved individual-e¤ects.

The real data performance of the Wooldridge method, in comparison with the
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Heckman�s method, is almost the same as is in MCE. The Wooldridge method is

also not able to solve the problem of overestimation of the true state dependence and

underestimation of the variance for panels of short durations. However, the relative

di¤erence between Heckman�s method is much smaller compared to the relative

di¤erence between exogenous initial values assumption and Heckman�s method. For

T = 3, relative di¤erence is almost 12% and 22% for the true state dependence and

variance respectively. The Wooldridge method is more successful for the true state

dependence relative to variance of the unobserved individual-e¤ects. Similar to what

is found by MCE, the Wooldridge method performs as well as Heckman�s method

when the duration is larger than T = 5. All methods tend to produce similar results

for the panels of long durations.

4.2 Dynamics of the hours of work decisions of Swedish mar-

ried women,1992-2001

The second application concentrates on hours of work decisions of married women in

Sweden. Similar to the probit case, we speci�cally test whether there is signi�cant

true state dependence on the labour supply decisions after controlling for observed

and unobserved individual characteristics. The only di¤erence to the �rst empirical

application is the dependent variable. Here the dependent variable is the hours

of work decisions instead of an indicator variable representing the participation

decisions to the labour force. The hours of work data contain either a positive value

for women who are working or a zero for women who are not working. Therefore,

the hours of work data is censored below zero leading to a tobit type I speci�cation.
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We use the same observed characteristics as the above: age, age-squared, edu-

cational status, place of birth, permanent and transitory non-labour income. The

unobserved individual-e¤ects is speci�ed as in (17) and (18), and the reduced-form

speci�cation for the Heckman�s method is the same as in the probit case.

Table 8 summarizes the results by solution methods and duration of the panel

from T = 3 to T = 10.

Table 8 about here

The impact of the initial values problem is almost the same as the above and

this result is also in line with our MCE. The exogenous initial values assumption

leads to serious bias. It overestimates the magnitude of the true state dependence

and underestimates the variance of the unobserved individual-e¤ects relative to the

Heckman�s method. We observe that the relative di¤erence is a function of the

duration of the panel data set. The Wooldridge method performs almost equally

well compared to Heckman�s method for the panels longer than T = 5 (the di¤erence

is 5 and 13 per cent), and the di¤erence is very close to zero for T = 10

5 Conclusions and discussions

The Wooldridge method is based on a very simple and novel strategy as a solu-

tion for the initial values problem in nonlinear dynamic random-e¤ects panel data

models. This character of the Wooldridge method has attracted many researchers.

However, nothing is known about its performance in comparison with the other al-

ternative Heckman�s reduced-form approximation. In this paper, using the dynamic
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random-e¤ects probit and tobit (type I) models, the �nite sample performance of

the Wooldridge method is investigated in comparison with the ideal case in which

the initial values are known constants, the worst case which emerges with the ex-

ogenous initial values assumption, and the Heckman�s reduced-form approximation

method which is based on complicated econometric techniques. Various designs of

Monte Carlo Experiments are provided using balanced and unbalanced panel data

sets. We also provided two real data applications which concentrate on intertempo-

ral participation and hours of work decisions of married women in Sweden between

1992 and 2001.

The evidence obtained fromMCE and real data are in line with each other and

con�rmed the fact that a misspeci�cation for the conditional distribution of initial

values leads to serious bias on the magnitude of the true state dependence and the

variance of unobserved individual-e¤ects. The exogenous initial values assumption is

one of the these cases and leads to serious overestimation of the true state dependence

and serious underestimation of the variance of the unobserved individual-e¤ects.

However, this is a syndrome for small samples and the bias decrease gradually as

the duration of the panel data set increase.

We also obtain clear evidence on the performance of the Wooldridge method in

comparison with the Heckman�s method. The key parameter to select one of them

in the practice is mainly the duration of the panel data set. The Wooldridge method

does not specify an explicit conditional probability distribution for the initial values,

and the bias obtained with this method is behaviourally the same as the exogenous

initial values assumption for very short panels. The persistence which is due to
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structural reasons is overestimated whereas the persistence due to unobserved time-

invariant individual characteristics is underestimated. However, the bias produced

by the Wooldridge method is much smaller than the bias produced by the exogenous

initial values assumption. The main message of our results is that the Wooldridge

method can be used instead of Heckman�s method only for the moderately long

panels, but for the short panels Heckman�s approximation is suggested. The other

message of the paper is very intuitive. For the panels of longer durations, the relative

importance of the initial period likelihood in the joint likelihood of all periods would

be lower leading to a lower bias which is due to the initial values problem. This is

what we observe in our MCE and real data applications that performance of all

methods tends to be equal for the panels of long durations.
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Appendix

The Gaussian-Hermite Quadrature, that we implement to calculate the inte-

gral in the likelihood function (5), is based on approximating the Gaussian inte-

gral,
R1
�1e

�v2h (v) dv �
PM

m=1wmh (vm); where v1; v2; :::; vM roots of the Hermite

polynomial H(v); M (m = 1; 2; :::;M) is the number of evaluation points in the

approximation process; and wm is the corresponding weight for the root vm. The

pairs of (vm; wm), for di¤erent M , can be easily obtained by using existing tables in

the literature. Having assumed that the unobserved individual-e¤ects is normally

distributed, and given the conditional distribution of initial values, the integral in

the likelihood function of probit model can be calculated as follows:

=
1p
2���

Z 1

�1

"
fi1(yi1jxit; �i)

TY
t=2

� fDit (x
0
it� + yi;t�1 + ���i)g

#
e
� �2

(
p
2��)2 d� (19)

where Dit = (2yit � 1). By using the transformation, e� = �p
2��
, d� =

p
2��de� and

considering that vm = e�,
h(vm) = fi1(yi1jxit;

p
2��vm)

TY
t=2

�
n
Dit

�
x0it� + yi;t�1 +

p
2��vm

�o
(20)
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The full log-likelihood function is,

LogL =
NP
i=1

ln

�
1p
�

MP
m=1

wmh(vm)

�
(21)

Note that the solution methods for the initial values can also be easily adopted to

the above procedure. The exogenous initial values assumption leads to ignoring

f1(:), and it can be taken outside of (19). The likelihood function for the Heckman�s

method is given as,

h(vm) = �
n
Di1

�
zi1� +

p
2���vm

�o TY
t=2

�
n
Dit

�
x0it� + yi;t�1 +

p
2��vm

�o
(22)

and for the Wooldridge method,

h(vm) =
TY
t=2

�
n
Dit

�
x0it� + yi;t�1 + �0 + �1yi1 + �2xi +

p
2��vm

�o
(23)

The same procedure can be easily implemented for the integral which will appear in

the likelihood function of the dynamic random-e¤ects tobit model by simply using

the same strategy given the above.

33



T
ab

le
 1

. R
es

ul
ts

 o
f M

C
E 

1:
 N

or
m

al
 re

gr
es

so
r(

Tr
ue

 v
al

ue
s:

1
1

β
=

,
0.

5
γ

=
,

1
α

σ
=

,
1

u
σ

=
)

D
yn

am
ic

 P
ro

bi
t M

od
el

D
yn

am
ic

 T
ob

it 
M

od
el

0.
5

γ
=

1
α

σ
=

0.
5

γ
=

1
α

σ
=

T
M

ea
n

B
ia

s
R

M
SE

M
ed

ia
n

B
ia

s
M

A
E

M
ea

n
B

ia
s

R
M

SE
M

ed
ia

n
B

ia
s

M
A

E
M

ea
n

B
ia

s
R

M
SE

M
ed

ia
n

B
ia

s
M

A
E

M
ea

n
B

ia
s

R
M

SE
M

ed
ia

n
B

ia
s

M
A

E

K
no

w
n 

(n
on

 st
oc

ha
st

ic
) i

ni
tia

l v
al

ue
s

3
–0

.0
11

0.
24

6
–0

.0
18

0.
16

3
–0

.0
15

0.
26

9
–0

.0
42

0.
17

4
0.

01
2

0.
09

2
   

0.
00

5
0.

06
1

–0
.0

14
0.

11
5

–0
.0

01
0.

07
1

4
   

 0
.0

08
0.

14
0

 0
.0

04
0.

09
1

 0
.0

00
0.

18
7

–0
.0

38
0.

12
9

0.
01

0
0.

06
0

0.
00

2
0.

03
8

–0
.0

09
0.

09
4

–0
.0

11
0.

07
0

5
   

 0
.0

21
0.

12
5

 0
.0

25
0.

08
7

 0
.0

01
0.

14
0

0.
01

8
0.

08
6

0.
00

9
0.

04
9

0.
01

3
0.

03
1

–0
.0

09
0.

08
7

–0
.0

16
0.

06
3

8
   

 0
.0

08
0.

09
3

   
   

0.
01

7
0.

07
2

 0
.0

02
0.

10
2

0.
00

4
0.

06
4

0.
00

3
0.

02
9

0.
00

3
0.

02
1

  0
.0

02
0.

07
6

–0
.0

02
0.

04
9

15
   

 0
.0

14
0.

06
3

  0
.0

14
0.

04
7

–0
.0

12
0.

07
3

–0
.0

22
0.

04
5

  0
.0

02
0.

02
0

 0
.0

01
  0

.0
14

–0
.0

08
0.

06
0

–0
.0

06
0.

03
6

20
   

 0
.0

09
0.

04
7

  0
.0

16
0.

04
0

–0
.0

18
0.

06
9

–0
.0

19
0.

04
1

  0
.0

02
0.

01
7

0.
00

3
0.

01
3

–0
.0

09
0.

06
0

–0
.0

09
0.

03
4

E
xo

ge
no

us
 in

iti
al

 v
al

ue
s a

ss
um

pt
io

n
3

   
0.

26
4

0.
28

9
0.

24
9

0.
24

9
–0

.2
41

0.
32

3
–0

.2
43

0.
25

8
0.

24
5

0.
24

9
   

 0
.2

43
0.

24
3

–0
.4

89
0.

51
2

–0
.4

61
0.

46
1

4
   

0.
17

5
0.

21
7

0.
15

3
0.

15
3

–0
.1

28
0.

21
1

–0
.1

54
0.

18
2

0.
18

7
0.

19
4

0.
18

9
0.

18
9

–0
.3

20
0.

34
1

–0
.3

24
0.

32
4

5
   

0.
11

4
0.

15
6

0.
10

4
0.

10
8

–0
.0

79
0.

15
6

–0
.0

72
0.

12
4

0.
12

7
0.

13
5

0.
12

5
0.

12
5

–0
.2

07
0.

22
7

–0
.2

17
0.

21
7

8
   

0.
05

3
0.

10
5

   
  0

.0
50

0.
06

3
–0

.0
21

0.
09

3
–0

.0
22

0.
06

9
0.

04
3

0.
05

4
0.

04
9

0.
04

5
–0

.0
60

0.
09

2
–0

.0
69

0.
07

5
15

   
0.

02
3

0.
07

2
 0

.0
20

0.
05

4
–0

.0
11

0.
07

8
–0

.0
10

  0
.0

57
 0

.0
11

0.
02

1
  0

.0
11

  0
.0

16
–0

.0
22

0.
06

7
–0

.0
21

0.
04

4
20

   
0.

01
7

0.
05

4
 0

.0
19

0.
04

3
–0

.0
18

0.
06

6
–0

.0
11

0.
04

9
  0

.0
09

0.
01

9
0.

01
1

0.
01

5
–0

.0
09

0.
06

1
–0

.0
10

0.
03

8

H
ec

km
an

’s
 re

du
ce

d-
fo

rm
 a

pp
ro

xi
m

at
io

n
3

   
0.

01
3

0.
13

8
0.

01
2

0.
07

8
0.

00
3

0.
26

2
–0

.0
17

0.
15

8
 0

.0
09

0.
08

3
0.

01
9

0.
06

1
–0

.0
65

0.
22

6
–0

.0
89

0.
17

1
4

   
0.

01
1

0.
13

4
0.

00
1

0.
10

0
–0

.0
05

0.
18

4
–0

.0
26

0.
15

1
 0

.0
03

0.
07

0
   

0.
00

6
0.

04
9

–0
.0

28
0.

16
2

–0
.0

35
0.

11
0

5
   

0.
00

0
0.

11
1

0.
00

2
0.

07
4

–0
.0

03
0.

14
2

–0
.0

01
0.

08
0

0.
00

8
0.

05
7

   
0.

01
5

0.
03

4
–0

.0
19

0.
13

8
–0

.0
31

0.
08

9
8

   
0.

00
4

0.
09

0
   

  0
.0

01
0.

05
6

0.
00

2
0.

09
3

   
  0

.0
00

0.
06

6
0.

00
5

0.
03

9
   

0.
00

2
0.

02
7

–0
.0

17
0.

12
6

–0
.0

23
0.

07
9

15
   

0.
00

6
0.

06
8

 0
.0

02
0.

05
1

–0
.0

04
0.

07
7

–0
.0

04
0.

04
2

–0
.0

04
0.

02
9

–0
.0

03
0.

01
8

–0
.0

14
0.

09
4

–0
.0

13
0.

07
0

20
   

0.
00

9
0.

05
2

 0
.0

09
0.

03
9

–0
.0

18
0.

06
6

–0
.0

17
0.

04
1

–0
.0

02
0.

02
4

–0
.0

01
0.

01
3

–0
.0

09
0.

09
3

–0
.0

07
0.

06
5

W
oo

ld
ri

dg
e 

m
et

ho
d

3
   

0.
16

8
0.

38
5

0.
19

1
0.

27
3

–0
.1

52
0.

46
7

–0
.2

21
0.

35
6

0.
09

8
0.

18
2

   
0.

08
4

0.
12

2
–0

.1
39

0.
22

8
–0

.1
33

0.
14

9
4

   
0.

09
9

0.
25

0
0.

11
3

0.
19

5
–0

.0
70

0.
22

3
–0

.1
07

0.
15

9
0.

03
5

0.
13

9
0.

04
0

0.
10

2
–0

.0
73

0.
17

9
–0

.0
54

0.
12

3
5

   
0.

02
6

0.
18

2
0.

04
5

0.
14

1
–0

.0
21

0.
16

6
–0

.0
23

0.
10

4
0.

02
1

0.
08

7
0.

01
8

0.
06

0
–0

.0
60

0.
15

4
–0

.0
56

0.
10

2
8

   
0.

02
0

0.
11

5
   

  0
.0

11
0.

06
7

–0
.0

10
0.

09
9

–0
.0

21
0.

06
1

0.
00

4
0.

04
5

   
0.

00
2

0.
03

4
–0

.0
29

0.
12

2
–0

.0
26

0.
07

4
15

   
0.

00
9

0.
07

4
 0

.0
05

0.
05

2
–0

.0
05

0.
07

8
–0

.0
08

  0
.0

56
–0

.0
06

0.
03

0
–0

.0
07

0.
01

8
–0

.0
12

0.
09

9
–0

.0
19

0.
07

1
20

   
0.

00
1

0.
05

1
 0

.0
04

0.
03

6
  0

.0
01

0.
06

9
 0

.0
09

0.
05

2
   

0.
00

1
0.

02
2

 0
.0

02
0.

01
4

–0
.0

01
0.

06
5

–0
.0

01
0.

05
5

34



T
ab

le
 2

. R
es

ul
ts

 o
f M

C
E2

: N
on

-n
or

m
al

 re
gr

es
so

r(
Tr

ue
 v

al
ue

s:
1

1
β

=
,

0.
5

γ
=

,
1

α
σ

=
,

1
u

σ
=

)
D

yn
am

ic
 P

ro
bi

t M
od

el
D

yn
am

ic
 T

ob
it 

M
od

el
0.

5
γ

=
1

α
σ

=
0.

5
γ

=
1

α
σ

=

T
M

ea
n

B
ia

s
R

M
SE

M
ed

ia
n

B
ia

s
M

A
E

M
ea

n
B

ia
s

R
M

SE
M

ed
ia

n
B

ia
s

M
A

E
M

ea
n

B
ia

s
R

M
SE

M
ed

ia
n

B
ia

s
M

A
E

M
ea

n
B

ia
s

R
M

SE
M

ed
ia

n
B

ia
s

M
A

E

K
no

w
n 

(n
on

 st
oc

ha
st

ic
) i

ni
tia

l v
al

ue
s

3
–0

.0
03

0.
21

3
0.

00
5

0.
15

3
0.

01
3

0.
25

0
0.

00
6

0.
18

1
–0

.0
03

0.
08

6
–0

.0
05

0.
04

3
–0

.0
10

0.
12

0
–0

.0
05

0.
07

1
4

 0
.0

07
0.

14
4

0.
00

5
0.

09
2

 0
.0

11
0.

16
1

  0
.0

09
0.

10
6

–0
.0

01
0.

04
7

–0
.0

01
0.

03
0

–0
.0

02
0.

08
5

–0
.0

04
0.

06
5

5
 0

.0
03

0.
13

8
0.

00
4

0.
08

8
0.

00
1

0.
14

5
0.

01
0

0.
09

2
–0

.0
01

0.
04

6
 0

.0
01

0.
03

2
–0

.0
04

0.
07

3
–0

.0
07

0.
05

5
8

 0
.0

12
0.

09
5

0.
01

6
0.

06
7

 0
.0

15
0.

11
2

  0
.0

18
0.

06
2

 0
.0

04
0.

02
5

 0
.0

04
0.

01
8

–0
.0

03
0.

07
2

–0
.0

06
0.

05
0

15
 0

.0
04

0.
05

5
0.

00
2

0.
04

3
 0

.0
07

0.
06

9
  0

.0
09

0.
04

3
 0

.0
01

0.
01

8
 0

.0
01

0.
01

4
–0

.0
09

0.
06

3
–0

.0
03

0.
03

6
20

   
  0

.0
07

0.
04

6
0.

00
8

0.
04

2
 0

.0
16

0.
06

2
  0

.0
19

0.
04

2
 0

.0
00

0.
01

5
–0

.0
01

0.
01

0
–0

.0
07

0.
06

0
–0

.0
06

0.
03

5

E
xo

ge
no

us
 in

iti
al

 v
al

ue
sa

ss
um

pt
io

n
3

  0
.3

09
0.

34
4

   
0.

30
5

0.
30

5
–0

.2
64

0.
36

0
–0

.2
72

0.
28

5
0.

21
3

0.
21

8
0.

21
1

0.
21

1
–0

.3
95

0.
41

9
–0

.3
86

0.
38

6
4

  0
.2

30
0.

26
2

   
0.

22
2

0.
22

2
–0

.1
59

0.
27

1
–0

.1
83

0.
20

7
0.

15
1

0.
16

0
0.

15
2

0.
15

2
–0

.2
42

0.
27

5
–0

.2
52

0.
25

2
5

  0
.1

48
0.

19
2

   
0.

13
2

0.
13

2
–0

.1
26

0.
14

4
–0

.1
33

0.
14

4
0.

09
7

0.
10

7
0.

10
0

0.
10

0
–0

.1
53

0.
17

8
–0

.1
55

0.
15

5
8

  0
.0

69
0.

11
6

   
0.

05
8

0.
07

5
–0

.0
29

0.
08

3
–0

.0
35

0.
04

9
0.

03
3

0.
04

3
0.

03
3

0.
03

4
–0

.0
45

0.
08

3
–0

.0
54

0.
06

5
15

  0
.0

16
0.

05
9

   
0.

02
0

0.
04

1
–0

.0
12

0.
07

2
–0

.0
17

0.
05

0
0.

00
6

0.
01

8
0.

00
8

0.
01

4
–0

.0
17

0.
06

2
–0

.0
21

0.
04

1
20

  0
.0

11
0.

05
4

   
0.

00
9

0.
04

0
–0

.0
13

0.
06

5
–0

.0
18

0.
04

9
0.

00
5

0.
01

6
0.

00
7

0.
01

0
–0

.0
08

0.
05

5
–0

.0
11

0.
03

8

H
ec

km
an

’s
re

du
ce

d-
fo

rm
ap

pr
ox

im
at

io
n

3
–0

.0
16

0.
16

7
–0

.0
01

0.
09

7
  0

.0
34

0.
30

6
0.

02
5

0.
18

3
–0

.0
01

0.
08

1
0.

00
2

0.
04

8
–0

.0
52

0.
21

7
–0

.0
70

0.
12

8
4

  0
.0

13
0.

13
4

–0
.0

05
0.

07
6

  0
.0

20
0.

21
7

–0
.0

15
0.

12
4

  0
.0

03
0.

05
3

   
0.

00
6

0.
03

6
–0

.0
29

0.
14

2
–0

.0
27

0.
09

6
5

  0
.0

04
0.

12
0

–0
.0

01
0.

09
2

  0
.0

14
0.

12
1

  0
.0

09
0.

09
4

  0
.0

05
0.

05
3

   
0.

00
3

0.
03

0
–0

.0
28

0.
13

7
–0

.0
27

0.
09

0
8

  0
.0

09
0.

09
1

 0
.0

07
0.

05
8

  0
.0

00
0.

07
8

–0
.0

05
0.

05
4

  0
.0

01
0.

03
4

   
0.

00
1

0.
02

1
–0

.0
19

0.
10

5
–0

.0
17

0.
07

0
15

–0
.0

01
0.

05
6

 0
.0

04
0.

05
3

–0
.0

08
0.

07
0

–0
.0

14
0.

04
6

   
  0

.0
00

0.
02

8
–0

.0
03

0.
01

8
–0

.0
05

0.
09

5
–0

.0
08

0.
06

8
20

  0
.0

02
0.

05
3

–0
.0

03
0.

03
9

–0
.0

24
0.

06
5

–0
.0

25
0.

04
7

 0
.0

00
0.

01
4

   
0.

00
1

0.
01

2
–0

.0
01

0.
09

1
–0

.0
03

0.
06

0

 W
oo

ld
ri

dg
e 

m
et

ho
d

3
0.

07
6

0.
47

7
0.

07
5

0.
23

5
–0

.0
61

0.
70

0
–0

.0
36

0.
28

0
0.

09
8

0.
18

6
0.

11
0

0.
13

9
–0

.1
35

0.
25

2
–0

.1
42

0.
16

3
4

0.
07

2
0.

23
5

0.
07

9
0.

15
9

–0
.0

39
0.

28
4

–0
.0

32
0.

15
7

0.
04

7
0.

11
1

0.
04

5
0.

07
4

–0
.0

53
0.

18
0

–0
.0

57
0.

13
1

5
0.

02
2

0.
19

0
0.

02
3

0.
12

0
–0

.0
29

0.
14

7
–0

.0
25

0.
08

8
0.

02
2

0.
07

4
0.

02
3

0.
05

1
–0

.0
31

0.
19

8
–0

.0
37

0.
10

7
8

0.
02

1
0.

11
2

0.
02

3
0.

08
1

–0
.0

18
0.

08
2

–0
.0

18
0.

05
1

  0
.0

01
0.

03
0

0.
00

2
0.

02
1

–0
.0

10
0.

10
3

–0
.0

10
0.

06
2

15
–0

.0
02

0.
05

8
–0

.0
01

0.
03

9
–0

.0
12

0.
07

4
–0

.0
20

0.
05

2
–0

.0
06

0.
02

5
–0

.0
06

0.
01

6
–0

.0
03

0.
06

9
–0

.0
05

0.
04

3
20

0.
00

0
0.

05
6

0.
00

7
0.

04
1

–0
.0

08
0.

06
4

–0
.0

14
0.

05
9

–0
.0

02
0.

01
5

–0
.0

03
0.

01
2

  0
.0

01
0.

05
3

 0
.0

02
0.

03
9

35



T
ab

le
 3

. R
es

ul
ts

 o
f M

C
E

3:
  A

ut
oc

or
re

la
te

d 
re

gr
es

so
r(

Tr
ue

 v
al

ue
s:

1
1

β
=

,
0.

5
γ

=
,

1
α

σ
=

,
1

u
σ

=
)

D
yn

am
ic

 P
ro

bi
t M

od
el

D
yn

am
ic

 T
ob

it 
M

od
el

0.
5

γ
=

1
α

σ
=

0.
5

γ
=

1
α

σ
=

T
M

ea
n

B
ia

s
R

M
SE

M
ed

ia
n

B
ia

s
M

A
E

M
ea

n
B

ia
s

R
M

SE
M

ed
ia

n
B

ia
s

M
A

E
M

ea
n

B
ia

s
R

M
SE

M
ed

ia
n

B
ia

s
M

A
E

M
ea

n
B

ia
s

R
M

SE
M

ed
ia

n
B

ia
s

M
A

E

K
no

w
n 

(n
on

 st
oc

ha
st

ic
) i

ni
tia

l v
al

ue
s

3
   

0.
00

8
0.

21
5

0.
00

0
0.

12
5

0.
03

3
0.

58
9

   
   

   
0.

02
2

0.
24

1
–0

.0
15

0.
14

0
–0

.0
17

0.
09

6
–0

.0
34

0.
20

0
–0

.0
18

0.
11

4
4

   
0.

00
0

0.
16

7
0.

00
6

0.
12

2
0.

00
1

0.
22

0
–0

.0
16

0.
15

0
   

  0
.0

01
0.

08
2

–0
.0

03
0.

05
3

–0
.0

08
0.

13
2

–0
.0

11
0.

08
8

5
–0

.0
11

0.
13

0
–0

.0
12

0.
09

6
–0

.0
09

0.
14

1
–0

.0
07

0.
09

2
–0

.0
03

0.
06

5
   

   
0.

00
2

0.
04

7
–0

.0
15

0.
12

5
–0

.0
14

0.
07

2
8

   
 0

.0
09

0.
09

3
   

   
0.

00
4

0.
06

1
0.

01
0

0.
08

7
   

 0
.0

09
0.

05
6

–0
.0

05
0.

04
1

   
   

  0
.0

01
0.

03
0

–0
.0

09
0.

09
4

–0
.0

08
0.

06
3

15
   

 0
.0

10
0.

06
8

 0
.0

11
0.

04
5

–0
.0

05
0.

06
9

–0
.0

06
   

 0
.0

47
   

  0
.0

00
0.

02
3

   
0.

00
1

0.
01

5
–0

.0
15

0.
08

9
–0

.0
15

0.
06

1
20

–0
.0

02
0.

06
0

–0
.0

03
0.

03
7

–0
.0

12
0.

06
1

–0
.0

09
0.

04
2

   
  0

.0
01

0.
02

1
   

   
0.

00
0

0.
01

4
–0

.0
10

0.
08

8
–0

.0
13

0.
06

0

E
xo

ge
no

us
 in

iti
al

 v
al

ue
s a

ss
um

pt
io

n
3

   
0.

25
8

0.
30

7
0.

25
8

0.
25

8
–0

.2
22

0.
76

1
–0

.2
76

0.
37

7
 0

.2
07

0.
21

4
   

   
0.

20
8

0.
20

8
–0

.4
38

0.
48

7
–0

.4
12

0.
41

2
4

   
0.

15
0

0.
24

5
0.

14
9

0.
16

8
–0

.1
42

0.
30

4
–0

.1
39

0.
20

6
 0

.1
43

0.
15

9
 0

.1
50

0.
15

0
–0

.2
69

0.
31

9
–0

.2
66

0.
26

6
5

   
0.

11
0

0.
20

9
0.

12
0

0.
14

4
–0

.0
57

0.
25

8
–0

.0
68

0.
14

8
 0

.0
88

0.
10

4
 0

.0
93

0.
09

3
–0

.1
54

0.
20

7
–0

.1
67

0.
17

2
8

   
0.

06
0

0.
14

1
   

  0
.0

72
0.

10
8

–0
.0

31
0.

13
2

–0
.0

30
0.

08
3

 0
.0

32
0.

04
9

 0
.0

34
0.

03
7

–0
.0

48
0.

11
9

–0
.0

42
0.

07
9

15
   

0.
02

5
0.

10
3

0.
01

5
0.

06
7

–0
.0

27
0.

10
5

–0
.0

20
  0

.0
73

   
 0

.0
05

0.
02

8
   

0.
00

4
   

0.
02

2
–0

.0
22

0.
09

3
–0

.0
24

0.
06

6
20

   
0.

00
4

0.
08

1
0.

00
8

0.
05

3
–0

.0
14

0.
09

7
–0

.0
27

   
 0

.0
68

   
 0

.0
02

0.
02

1
 0

.0
02

0.
01

4
–0

.0
10

0.
09

2
–0

.0
12

0.
05

8

H
ec

km
an

’s
re

du
ce

d-
fo

rm
ap

pr
ox

im
at

io
n

3
   

0.
02

7
0.

37
4

 0
.0

45
0.

23
4

–0
.0

45
0.

47
9

–0
.0

38
0.

27
6

   
0.

00
1

0.
08

8
–0

.0
02

0.
06

2
–0

.0
43

0.
21

9
–0

.0
52

0.
15

0
4

   
0.

02
2

0.
28

7
 0

.0
23

0.
19

4
–0

.0
36

0.
34

9
–0

.0
17

0.
19

0
–0

.0
03

0.
06

7
   

   
0.

00
1

0.
04

2
–0

.0
33

0.
17

4
–0

.0
37

0.
11

9
5

 0
.0

06
0.

24
7

–0
.0

12
0.

14
6

–0
.0

11
0.

26
7

–0
.0

13
0.

15
1

  0
.0

04
0.

04
9

   
   

0.
00

3
0.

03
3

–0
.0

30
0.

13
6

–0
.0

23
0.

08
1

8
   

0.
01

7
0.

15
8

   
   

0.
00

6
0.

09
7

–0
.0

05
0.

13
8

–0
.0

08
0.

09
1

  0
.0

05
0.

03
8

   
   

0.
00

2
0.

02
4

–0
.0

15
0.

11
1

–0
.0

14
0.

07
2

15
   

0.
00

9
0.

10
9

  0
.0

05
0.

06
3

–0
.0

15
0.

10
7

–0
.0

12
  0

.0
72

   
   

 0
.0

01
0.

02
5

   
   

0.
00

2
0.

01
9

–0
.0

11
0.

09
5

–0
.0

12
0.

06
6

20
   

0.
00

0
0.

08
9

  0
.0

02
0.

05
1

–0
.0

08
0.

09
9

–0
.0

09
 0

.0
68

   
   

  0
.0

01
0.

02
1

   
   

 0
.0

00
0.

01
5

–0
.0

09
0.

08
9

–0
.0

10
0.

06
1

W
oo

ld
ri

dg
e 

m
et

ho
d

3
   

0.
05

6
0.

40
9

0.
09

7
0.

26
6

–0
.0

83
0.

45
1

–0
.0

76
0.

28
4

  0
.0

44
0.

18
1

   
   

0.
02

6
0.

10
8

–0
.0

48
0.

29
0

–0
.0

40
0.

19
1

4
   

0.
04

2
0.

33
0

0.
04

4
0.

20
8

–0
.0

43
0.

37
8

–0
.0

61
0.

23
1

   
0.

00
5

0.
10

6
 0

.0
04

0.
07

4
–0

.0
38

0.
19

8
–0

.0
38

0.
14

0
5

  0
.0

38
0.

23
7

0.
03

9
0.

15
2

–0
.0

31
0.

27
3

–0
.0

36
0.

15
9

   
0.

00
9

0.
07

6
 0

.0
08

0.
04

6
–0

.0
27

0.
14

8
–0

.0
28

0.
09

3
8

   
0.

02
9

0.
16

2
   

   
0.

01
6

0.
10

0
–0

.0
27

0.
13

8
–0

.0
14

0.
08

8
–0

.0
01

0.
04

2
–0

.0
03

0.
02

8
–0

.0
17

0.
10

9
–0

.0
11

0.
07

4
15

   
0.

01
6

0.
10

9
  0

.0
10

0.
06

2
–0

.0
23

0.
10

8
–0

.0
18

   
0.

07
4

–0
.0

03
0.

02
9

–0
.0

02
0.

01
9

–0
.0

16
0.

08
8

–0
.0

10
0.

06
2

20
   

0.
00

1
0.

08
9

–0
.0

07
0.

05
3

–0
.0

18
0.

09
8

–0
.0

25
0.

07
2

   
   

0.
00

0
0.

02
2

–0
.0

01
0.

01
6

–0
.0

11
0.

08
7

–0
.0

09
0.

05
9

36



T
ab

le
 4

.D
yn

am
ic

pr
ob

it 
m

od
el

 w
ith

un
ba

la
nc

ed
 p

an
el

 d
at

a:
 a

ut
oc

or
re

la
te

d 
re

gr
es

so
r (

Tr
ue

 v
al

ue
s

1
1

β
=

,
0.

5
γ

=
,

1
α

σ
=

,
1

u
σ

=
)

D
yn

am
ic

 P
ro

bi
t M

od
el

0.
5

γ
=

1
α

σ
=

T
2

1
T

T
−

r
M

ea
n

B
ia

s
R

M
SE

M
ed

ia
n

B
ia

s
M

A
E

M
ea

n
B

ia
s

R
M

SE
M

ed
ia

n
B

ia
s

M
A

E

E
xo

ge
no

us
 in

iti
al

 v
al

ue
s a

ss
um

pt
io

n

10
-1

0
1.

00
0.

03
4

0.
12

8
0.

03
9

0.
08

5
–0

.0
16

0.
14

3
–0

.0
20

0.
10

4
9-

11
0.

99
0.

03
9

0.
12

3
0.

04
3

0.
08

8
–0

.0
11

0.
13

5
–0

.0
21

0.
10

3
8-

12
0.

96
0.

03
6

0.
10

5
0.

03
2

0.
07

2
–0

.0
12

0.
13

4
–0

.0
12

0.
09

6
7-

13
0.

91
0.

03
7

0.
12

0
0.

02
8

0.
07

3
–0

.0
15

0.
13

1
–0

.0
27

0.
09

1
6-

14
0.

84
0.

06
1

0.
13

6
0.

05
2

0.
09

7
–0

.0
20

0.
14

5
–0

.0
36

0.
09

6
5-

15
0.

75
0.

05
6

0.
13

0
0.

05
8

0.
08

6
–0

.0
31

0.
13

0
–0

.0
44

0.
09

5
4-

16
0.

64
0.

05
1

0.
12

0
0.

05
2

0.
07

6
–0

.0
30

0.
14

3
–0

.0
39

0.
09

2

10

3-
17

0.
51

0.
05

3
0.

12
4

0.
05

3
0.

08
1

–0
.0

37
0.

14
7

–0
.0

43
0.

09
1

W
oo

ld
ri

dg
e 

m
et

ho
d

10
-1

0
1.

00
0.

02
1

0.
13

8
0.

00
8

0.
08

9
–0

.0
11

0.
14

4
–0

.0
18

0.
09

5
9-

11
0.

99
0.

00
7

0.
13

8
–0

.0
01

0.
08

4
–0

.0
12

0.
14

3
–0

.0
16

0.
10

2
8-

12
0.

96
0.

00
8

0.
12

4
0.

01
5

0.
08

6
–0

.0
10

0.
14

1
–0

.0
08

0.
10

0
7-

13
0.

91
0.

01
2

0.
13

6
0.

01
7

0.
10

0
–0

.0
04

0.
13

7
–0

.0
12

0.
08

6
6-

14
0.

84
0.

03
3

0.
14

8
0.

02
6

0.
10

2
–0

.0
11

0.
14

2
–0

.0
20

0.
09

5
5-

15
0.

75
0.

01
0

0.
14

1
0.

00
9

0.
09

0
–0

.0
10

0.
12

9
–0

.0
09

0.
07

5
4-

16
0.

64
0.

00
3

0.
12

6
0.

00
8

0.
08

9
–0

.0
07

0.
14

8
–0

.0
06

0.
09

4

10

3-
17

0.
51

0.
00

8
0.

12
9

0.
01

1
0.

08
4

–0
.0

01
0.

15
1

–0
.0

04
0.

01
1

37



T
ab

le
 5

.D
yn

am
ic

 to
bi

t m
od

el
 w

ith
un

ba
la

nc
ed

 p
an

el
 d

at
a:

 a
ut

oc
or

re
la

te
d 

re
gr

es
so

r (
Tr

ue
 v

al
ue

s
1

1
β

=
,

0.
5

γ
=

,
1

α
σ

=
,

1
u

σ
=

)
D

yn
am

ic
 T

ob
it 

M
od

el
0.

5
γ

=
1

α
σ

=

T
2

1
T

T
−

r
M

ea
n

B
ia

s
R

M
SE

M
ed

ia
n

B
ia

s
M

A
E

M
ea

n
B

ia
s

R
M

SE
M

ed
ia

n
B

ia
s

M
A

E

E
xo

ge
no

us
 in

iti
al

 v
al

ue
s a

ss
um

pt
io

n

10
-1

0
1.

00
0.

01
7

0.
04

0
0.

01
8

0.
03

1
–0

.0
24

0.
12

1
–0

.0
35

0.
08

3
9-

11
0.

99
0.

01
6

0.
03

9
0.

01
7

0.
02

9
–0

.0
24

0.
11

0
–0

.0
29

0.
06

9
8-

12
0.

96
0.

01
8

0.
03

8
0.

02
0

0.
02

9
–0

.0
28

0.
10

6
–0

.0
39

0.
07

5
7-

13
0.

91
0.

01
8

0.
03

7
0.

02
0

0.
02

5
–0

.0
33

0.
10

7
–0

.0
47

0.
08

6
6-

14
0.

84
0.

02
4

0.
04

2
0.

02
3

0.
03

1
–0

.0
36

0.
10

8
–0

.0
34

0.
08

0
5-

15
0.

75
0.

02
3

0.
04

2
0.

02
4

0.
03

0
–0

.0
49

0.
11

5
–0

.0
57

0.
07

6
4-

16
0.

64
0.

02
9

0.
04

4
0.

03
2

0.
03

3
–0

.0
50

0.
11

3
–0

.0
56

0.
07

9

10

3-
17

0.
51

0.
02

9
0.

04
2

0.
03

1
0.

03
4

–0
.0

56
0.

11
1

–0
.0

47
0.

07
5

W
oo

ld
ri

dg
e 

m
et

ho
d

10
-1

0
1.

00
0.

00
0

0.
03

8
0.

00
6

0.
02

6
–0

.0
09

0.
11

3
–0

.0
20

0.
07

7
9-

11
0.

99
–0

.0
04

0.
03

6
–0

.0
02

0.
02

2
–0

.0
09

0.
10

4
–0

.0
14

0.
06

9
8-

12
0.

96
–0

.0
03

0.
03

2
–0

.0
01

0.
02

1
–0

.0
05

0.
09

4
–0

.0
20

0.
06

9
7-

13
0.

91
–0

.0
04

0.
03

5
–0

.0
03

0.
02

1
–0

.0
07

0.
10

2
–0

.0
28

0.
07

2
6-

14
0.

84
0.

00
0

0.
03

6
0.

00
2

0.
02

5
–0

.0
11

0.
10

3
–0

.0
13

0.
06

7
5-

15
0.

75
0.

00
1

0.
03

2
0.

00
4

0.
02

3
–0

.0
15

0.
08

8
–0

.0
22

0.
06

2
4-

16
0.

64
0.

00
2

0.
03

2
0.

00
0

0.
02

2
–0

.0
10

0.
09

8
–0

.0
09

0.
05

9

10

3-
17

0.
51

–0
.0

01
0.

03
1

–0
.0

01
0.

02
2

–0
.0

08
0.

10
5

–0
.0

13
0.

06
1

38



T
ab

le
6.

Sa
m

pl
e 

C
ha

ra
ct

er
is

tic
s

Fu
ll

Sa
m

pl
e

E
m

pl
oy

ed
 a

ll
10

 y
ea

rs
E

m
pl

oy
ed

0 
ye

ar
s

Si
ng

le
tr

an
si

tio
n

fr
om

 w
or

k

Si
ng

le
tr

an
si

tio
n 

to
w

or
k

M
ul

tip
le

tr
an

si
tio

ns

Pa
rti

ci
pa

tio
n

0.
81

9
(0

.3
95

)
-

-
0.

60
4

(0
.4

17
)

0.
71

3
(0

.4
55

)
0.

71
2

(0
.4

56
)

H
ou

rs
 o

f W
or

k
13

13
.7

2
(8

09
.2

4)
17

39
.1

2
(4

18
.2

6)
-

88
1.

13
(8

31
.2

1)
77

5.
30

(8
24

.9
7)

99
3.

85
(7

64
.9

9)

A
ge

43
.3

8
(8

.3
00

)
45

.4
3

(7
.1

81
)

46
.1

2
(8

.0
12

)
42

.1
1

(8
.5

57
)

41
.3

7
(8

.7
37

)
60

.1
6

(7
.9

66
)

Pl
ac

e 
of

 B
irt

h 
(B

or
n 

in
 S

w
ed

en
=1

)
0.

90
1

(0
.3

03
)

0.
92

8
(0

.2
59

)
0.

77
1

(0
.4

20
)

0.
89

2
(0

.3
11

)
0.

86
6

(0
.3

41
)

0.
85

3
(0

.2
99

)

Ed
uc

at
io

n 
(P

rim
ar

y)
0.

20
0

(0
.4

00
)

0.
17

0
(0

.3
75

)
0.

48
7

(0
.5

00
)

0.
20

0
(0

.4
00

)
0.

24
5

(0
.4

29
)

0.
17

1
(0

.4
00

)

Ed
uc

at
io

n 
(H

ig
h-

Sc
ho

ol
)

0.
49

8
 (0

.5
00

)
0.

47
8

 (0
.5

00
)

0.
42

5
(0

.4
94

)
0.

51
7

(0
.5

00
)

0.
51

1
(0

.5
00

)
0.

55
4

(0
.5

00
)

Ed
uc

at
io

n 
(U

ni
ve

rs
ity

)
0.

30
2

(0
.4

59
)

0.
35

2
(0

.4
77

)
0.

08
8

(0
.2

83
)

0.
28

3
(0

.4
50

)
0.

24
5

(0
.4

29
)

0.
27

5
(0

.4
60

)

#K
id

s(
0-

2)
0.

12
1

(0
.3

62
)

0.
04

5
(0

.2
22

)
0.

08
6

(0
.3

14
)

0.
15

6
(0

.4
06

)
0.

18
8

(0
.4

42
)

0.
29

2
(0

.5
22

)

#K
id

s(
3-

5)
0.

18
8

(0
.4

41
)

0.
09

7
(0

.3
25

)
0.

13
5

(0
.3

91
)

0.
23

5
(0

.4
81

)
0.

27
8

(0
.5

17
)

0.
41

3
(0

.6
04

)

#K
id

s(
6-

17
)

0.
90

8
(1

.0
06

)
0.

84
2

(0
.9

51
)

0.
78

9
(1

.0
64

)
0.

94
6

(1
.0

19
)

0.
99

7
(1

.0
72

)
0.

99
8

(1
.0

45
)

H
us

ba
nd

’s
 e

ar
ni

ng
s(

SE
K

 1
00

,0
00

)
2.

35
3

(1
.3

95
)

2.
49

7
(1

.8
03

)
1.

71
1

(1
.6

52
)

2.
34

7
(1

.8
55

)
2.

19
3

(1
.6

27
)

2.
37

2
(1

.6
27

)
N

ot
e:

(S
ta

nd
ar

d 
de

vi
at

io
ns

 in
 p

ar
en

th
es

es
)

39



T
ab

le
7.

 E
st

im
at

io
n 

re
su

lts
, i

nt
er

te
m

po
ra

l p
ar

tic
ip

at
io

n 
de

ci
si

on
s o

f m
ar

rie
d 

w
om

en
 in

 S
w

ed
en

, 1
99

2-
20

01
.

D
yn

am
ic

 P
ro

bi
t M

od
el

T
Po

ol
ed

dy
na

m
ic

pr
ob

it
m

od
el

E
xo

ge
no

us
 in

iti
al

 v
al

ue
s

as
su

m
pt

io
n

H
ec

km
an

’s
re

du
ce

d-
fo

rm
ap

pr
ox

im
at

io
n

W
oo

ld
ri

dg
e

m
et

ho
d

La
gg

ed
em

pl
oy

m
en

t s
ta

tu
s

3
1.

82
5 

 (0
.1

20
)[

  1
.3

25
]

1.
81

7 
 (0

.1
28

)[
  1

.3
13

]
0.

78
5 

 (0
.2

41
)

0.
87

7 
 (0

.3
89

)[
  0

.1
17

]
4

1.
84

5 
 (0

.0
91

)[
  1

.2
15

]
1.

83
0 

 (0
.1

05
)[

  1
.1

97
]

0.
83

3 
 (0

.1
66

)
0.

89
4 

 (0
.1

80
)[

  0
.0

73
]

5
1.

92
3 

 (0
.0

82
)[

  1
.0

99
]

1.
72

1 
 (0

.0
63

)[
  0

.8
79

]
0.

91
6 

 (0
.1

35
)

0.
94

6 
 (0

.1
70

)[
  0

.0
32

]
6

2.
00

0 
 (0

.0
79

)[
  0

.9
63

]
1.

55
2 

 (0
.1

80
)[

  0
.5

23
]

1.
01

9 
 (0

.1
26

)
1.

02
6 

 (0
.1

34
)[

  0
.0

07
]

7
2.

06
4 

 (0
.0

74
)[

  0
.9

43
]

1.
56

5 
 (0

.1
01

)[
  0

.4
74

]
1.

06
2 

 (0
.1

19
)

1.
05

7 
 (0

.0
48

)[
–0

.0
04

]
8

2.
13

6 
 (0

.0
61

)[
  0

.7
89

]
1.

45
1 

 (0
.0

67
)[

  0
.2

15
]

1.
19

4 
 (0

.1
02

)
1.

17
0 

 (0
.0

96
)[

  0
.0

21
]

9
2.

17
8

(0
.0

58
)[

  0
.7

42
]

1.
38

8 
 (0

.1
24

)[
  0

.1
10

]
1.

25
0 

 (0
.0

90
)

1.
24

9 
 (0

.1
01

)[
–0

.0
01

]
10

2.
21

2 
 (0

.0
63

)[
  0

.6
98

]
1.

35
9 

 (0
.0

85
)[

  0
.0

43
]

1.
30

3 
 (0

.0
84

)
1.

30
0 

 (0
.0

80
)[

  0
.0

02
]

V
ar

ia
nc

e 
of

 th
e

un
ob

se
rv

ed
 in

di
vi

du
al

-e
ff

ec
ts

3
-

0.
19

7
 (0

.1
11

)[
–4

.9
70

]
1.

17
6 

 (0
.2

64
)

0.
91

6 
 (0

.3
95

)[
–0

.2
21

]
4

-
0.

19
0 

 (0
.0

77
)[

–5
.0

63
]

1.
15

2 
 (0

.1
41

)
0.

86
4 

 (0
.1

79
)[

–0
.2

50
]

5
-

0.
20

5 
 (0

.0
99

)[
–4

.8
73

]
1.

20
4 

 (0
.1

21
)

1.
02

3 
 (0

.0
69

)[
–0

.1
50

]
6

-
0.

60
6 

 (0
.0

90
)[

–1
.0

35
]

1.
23

3 
 (0

.1
39

)
1.

08
0 

 (0
.1

13
)[

–0
.1

24
]

7
-

0.
75

8 
 (0

.0
69

)[
–0

.6
10

]
1.

22
0 

 (0
.1

27
)

1.
05

3 
 (0

.0
46

)[
–0

.1
37

]
8

-
0.

88
2 

 (0
.0

63
)[

–0
.3

67
]

1.
20

6 
 (0

.1
08

)
1.

07
8 

 (0
.0

35
)[

–0
.1

06
]

9
-

0.
94

1 
 (0

.0
90

)[
–0

.2
64

]
1.

18
9 

 (0
.1

06
)

1.
09

9 
 (0

.0
98

)[
–0

.0
76

]
10

-
1.

02
1 

 (0
.0

52
)[

–0
.1

34
]

1.
15

8 
 (0

.0
97

)
1.

12
9 

 (0
.0

67
)[

–0
.0

25
]

N
ot

e:
 A

ll 
sp

ec
ifi

ca
tio

ns
 in

cl
ud

e 
ag

e,
 a

ge
-s

qu
ar

ed
, e

du
ca

tio
na

l s
ta

tu
s 

(e
le

m
en

ta
ry

, G
ym

na
si

um
–h

ig
h 

sc
ho

ol
 a

nd
 u

ni
ve

rs
ity

 e
du

ca
tio

n;
el

em
en

ta
ry

 s
ch

oo
li

s
th

e 
ba

se
ca

te
go

ry
), 

pl
ac

e 
of

 b
irt

h 
(im

m
ig

ra
nt

 is
 th

e 
ba

se
 c

at
eg

or
y)

, f
er

til
ity

 v
ar

ia
bl

es
, n

un
-la

bo
r i

nc
om

e 
(tr

an
si

to
ry

 a
nd

 p
er

m
an

en
t) 

an
d 

m
ea

n 
fe

rti
lit

y 
va

ria
bl

es
ar

e
us

ed
 in

th
e 

sp
ec

ifi
ca

tio
n 

of
 th

e 
un

ob
se

rv
ed

 in
di

vi
du

al
-e

ff
ec

ts
. T

he
 n

ui
sa

nc
e 

pa
ra

m
et

er
s 

es
tim

at
ed

 w
ith

 W
oo

ld
rid

ge
 a

nd
 H

ec
km

an
’s

 m
et

ho
d 

is
 n

ot
 re

po
rte

d 
he

re
.S

ta
nd

ar
d

er
ro

rs
 a

re
 in

 p
ar

en
th

es
es

. T
he

 fi
gu

re
s 

in
 b

ra
ck

et
s 

(a
nd

 b
ol

d)
 in

di
ca

te
 th

e
re

la
tiv

e
di

ff
er

en
ce

 b
et

w
ee

n
so

lu
tio

n 
m

et
ho

ds
 a

nd
H

ec
km

an
’s

 re
du

ce
d-

fo
rm

 a
pp

ro
xi

m
at

io
n

(a
 n

eg
at

iv
e 

va
lu

e 
is

 a
n 

un
de

re
st

im
at

io
n 

an
d 

a 
po

si
tiv

e 
va

lu
e 

is
 a

n 
ov

er
es

tim
at

io
n)

.

40



T
ab

le
8.

 E
st

im
at

io
n 

re
su

lts
,h

ou
rs

 o
f w

or
k 

de
ci

si
on

s o
f m

ar
rie

d 
w

om
en

 in
 S

w
ed

en
, 1

99
2-

20
01

.
D

yn
am

ic
 T

ob
it 

M
od

el

T
Po

ol
ed

dy
na

m
ic

pr
ob

it
m

od
el

E
xo

ge
no

us
 in

iti
al

 v
al

ue
s

as
su

m
pt

io
n

H
ec

km
an

’s
re

du
ce

d-
fo

rm
ap

pr
ox

im
at

io
n

W
oo

ld
ri

dg
e

m
et

ho
d

La
gg

ed
ho

ur
s o

f w
or

k

3
0.

99
2 

 (0
.0

13
)[

  3
.7

24
]

0.
98

8 
 (0

.0
15

)[
  3

.7
05

]
0.

21
0 

 (0
.0

23
)

0.
24

6 
 (0

.0
33

)[
  0

.1
71

]
4

0.
98

9 
 (0

.0
11

)[
  2

.8
18

]
0.

97
8 

 (0
.0

14
)[

  2
.7

76
]

0.
25

9 
 (0

.0
19

)
0.

28
6 

 (0
.0

23
)[

  0
.1

04
]

5
0.

99
8 

 (0
.0

10
)[

  2
.2

51
]

0.
91

0 
 (0

.0
21

)[
  1

.9
64

]
0.

30
7 

 (0
.0

20
)

0.
32

2 
 (0

.0
18

)[
  0

.0
50

]
6

1.
00

9 
 (0

.0
09

)[
  1

.5
16

]
0.

82
0 

 (0
.0

20
)[

  1
.0

45
]

0.
40

1 
 (0

.0
18

)
0.

41
0 

 (0
.0

15
)[

  0
.0

23
]

7
1.

01
1 

 (0
.0

07
)[

  1
.1

28
]

0.
76

0 
 (0

.0
17

)[
  0

.6
00

]
0.

47
5 

 (0
.0

15
)

0.
47

9 
 (0

.0
14

)[
  0

.0
08

]
8

1.
00

3 
 (0

.0
06

)[
  0

.7
91

]
0.

73
1 

 (0
.0

15
)[

  0
.3

05
]

0.
56

0 
 (0

.0
12

)
0.

55
8 

 (0
.0

13
)[

–0
.0

04
]

9
1.

00
8 

 (0
.0

05
)[

  0
.6

13
]

0.
72

9 
 (0

.0
15

)[
  0

.1
66

]
0.

62
5 

 (0
.0

12
)

0.
62

4 
 (0

.0
11

)[
–0

.0
01

]
10

1.
12

0 
 (0

.0
05

)[
  0

.5
80

]
0.

72
7 

 (0
.0

13
)[

  0
.0

25
]

0.
70

9 
 (0

.0
11

)
0.

71
4 

 (0
.0

11
)[

  0
.0

07
]

V
ar

ia
nc

e 
of

 th
e

un
ob

se
rv

ed
 in

di
vi

du
al

-e
ff

ec
ts

3
0.

62
3 

 (0
.0

61
)[

–3
.7

17
]

2.
93

9 
 (0

.1
57

)
2.

23
1 

 (0
.1

39
)[

–0
.2

41
]

4
0.

84
4 

 (0
.0

38
)[

–2
.2

53
]

2.
74

6 
 (0

.1
41

)
2.

29
6 

 (0
.1

36
)[

–0
.1

64
]

5
1.

02
9 

 (0
.2

22
)[

–1
.2

66
]

2.
33

2 
 (0

.1
38

)
2.

16
6 

 (0
.1

24
)[

–0
.1

25
]

6
1.

32
6 

 (0
.2

98
)[

–0
.7

14
]

2.
27

3 
 (0

.1
20

)
2.

04
1 

 (0
.1

15
)[

–0
.1

02
]

7
1.

44
8 

 (0
.2

46
)[

–0
.3

06
]

2.
08

6 
 (0

.1
14

)
1.

90
9 

 (0
.1

07
)[

–0
.0

85
]

8
1.

53
3 

 (0
.1

70
)[

–0
.1

61
]

1.
82

7 
 (0

.1
01

)
1.

68
7 

 (0
.0

94
)[

–0
.0

77
]

9
1.

49
0 

 (0
.1

55
)[

–0
.0

42
]

1.
55

5 
 (0

.0
92

)
1.

49
1 

 (0
.0

87
)[

–0
.0

41
]

10
1.

37
6 

 (0
.1

46
)[

  0
.0

35
]

1.
32

9 
 (0

.0
90

)
1.

30
4 

 (0
.0

82
)[

–0
.0

19
]

N
ot

e:
Th

e 
va

ria
nc

e 
of

 th
e 

un
ob

se
rv

ed
 in

di
vi

du
al

-e
ff

ec
ts

 a
nd

 it
s s

ta
nd

ar
d 

er
ro

r a
re

 sc
al

ed
 b

y 
10

0.
 S

ee
 th

e 
no

te
 in

 T
ab

le
 7

)

41




