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At the firm level, revenue and costs are well measured but prices and quantities are not. This 
paper shows that because of these data limitations estimates of returns to scale at the firm 
level are for the revenue function, not production function. Given this observation, the paper 
argues that, under weak assumptions, micro-level estimates of returns to scale are often 
inconsistent with profit maximization or imply implausibly large profits. The puzzle arises 
because popular estimators ignore heterogeneity and endogeneity in factor/product prices, 
assume perfect elasticity of factor supply curves or neglect the restrictions imposed by profit 
maximization (cost minimization) so that estimators are inconsistent or poorly identified. The 
paper argues that simple structural estimators can address these problems. Specifically, the 
paper proposes a full-information estimator that models the cost and the revenue functions 
simultaneously and accounts for unobserved heterogeneity in productivity and factor prices 
symmetrically. The strength of the proposed estimator is illustrated by Monte Carlo 
simulations and an empirical application. Finally, the paper discusses a number of 
implications of estimating revenue functions rather than production functions and 
demonstrates that the profit share in revenue is a robust non-parametric economic diagnostic 
for estimates of returns to scale. 
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1 INTRODUCTION 
Production functions estimated on establishment level data provide essential insights into micro- 

and macroeconomic phenomena. Estimated returns to scale and measured productivity 

differences are important inputs to economic theories and policy analyses. However, micro level 

datasets have significant limitations and recognizing these limitations can dramatically change 

the economic interpretation of estimated parameters and various measures of relative 

performance.  

Specifically, at the establishment level revenue and costs are well measured but prices 

and quantities are not.1 Economic theory suggests that firms with at least some degree of 

monopoly power should charge different prices if there is heterogeneity in productivity across 

firms. Since most firms face a downward sloping demand curve, it is not surprising that there is, 

as I argue below, overwhelming evidence of firms charging different prices even for highly 

homogenous products. Since the purpose of using micro-level data is often to unearth differences 

in productivity across firms, it follows that one should be careful in distinguishing quantities and 

revenues as the latter is a product of quantities and prices varying across firms. In most studies, 

however, firm revenues are typically deflated by industry price indices to get a measure of 

quantity. I argue that this measure of quantity, when used as the dependent variable in production 

function regressions, is effectively the firm’s revenue rather than (physical) output precisely 

because firms have different productivity levels and, consequently, charge different prices. Thus, 

the estimated returns to scale are returns in revenue, not production. This has important 

implications for the estimation and interpretation of returns to scale as well as productivity 

measurement. Despite these data limitations, micro level estimates can still be highly informative 

for positive and normative economics. There are two outstanding questions. First, does economic 

theory make predictions about plausible magnitudes of returns to scale in the revenue function? 

Second, how could one estimate consistently returns to scale with the data actually available?  

To answer the first question, I show that under weak assumptions the profit share is 

intimately related to the elasticity of the total cost with respect to inputs, returns to scale in 

production, and the markup. With the standard assumption of perfectly elastic factor supply 

curves, I demonstrate that returns to scale in the revenue function are equal to one minus the 

                                                 
1 I use firm and establishment interchangeably.  
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profit share. Given that the share of economic profits is small, there is a tight restriction on the 

estimates of returns to scale in the revenue function. Importantly, since I make only a few 

assumptions about the nature of production functions, costs, and market structure, the profit 

share can serve as a simple litmus test for whether the estimates of returns to scale make 

economic sense. As I show below, many of the available estimates fail to pass the simple test of 

this diagnostic.  

To answer the second question, it is important to remember that estimation of production 

(revenue) function parameters is inseparable from simultaneity problem because the volumes of 

inputs and output are optimizing choices of firms. This fundamental problem is particularly acute 

in single-equation approaches because in these approaches the researcher does not model the 

choice of inputs while, as Marschak and Andrews (1944) warn, one cannot treat inputs as 

independent variables. Modeling the choice of inputs should be an integral part of the production 

(revenue) function estimation. I show that that one can turn the simultaneity weakness of single-

equation estimators into the strength of simple structural estimators as optimizing choices of 

inputs and output help in identification and estimation of the deep parameters governing the 

behavior of firms.  

Specifically, I extend the full information maximum likelihood estimator of Marschak 

and Andrews (1944) and Schmidt (1988) to dynamic production (revenue) function models with 

serially correlated measurement errors and factor prices correlated with productivity. This 

estimator, which I call the covariance estimator, deals simultaneously with the production and 

cost sides and with unobserved technology and factor prices. The key idea of the estimator is to 

use the covariance structures for the firms’ observed optimizing choices (inputs, output) to 

identify and estimate parameters of interest using the restrictions imposed by the economic 

model on the response of observed variables to unobservables such as productivity and factor 

prices. In this estimator, the researcher not only focuses on the production (revenue) function 

relationship but also utilizes information from firm’s optimizing choices of inputs. The 

covariance estimator is easy to implement and interpret since the estimator can have an 

instrumental variable interpretation.  

The covariance estimator adds to a large set of alternative estimators of production 

(revenue) functions and, therefore, it is important to contrast this estimator with popular rival 

estimators. I use both simulations and economic arguments to highlight the differences. First, I 

show that the covariance estimator outperforms popular alternatives in Monte Carlo experiments 



 4

in a wide range of setups including empirically important cases such as correlated productivity 

and factor prices, serially correlated measurement errors, upward sloping factor supply curves, 

etc. Furthermore, my simulations suggest that popular estimators often yield productivity 

measures that are poorly correlated with true productivity and, thus, the researcher or 

policymaker can reach strikingly different (and likely incorrect) conclusions about the relative 

productivity of firms and the magnitudes of productivity differences. On the other hand, the 

covariance estimator measures productivity well. The covariance estimator also yields 

economically more reasonable estimates than those achieved by alternative estimators when 

confronted with real data.  

Second, I use the profit share to show that under the standard assumption of perfectly 

elastic factor supply curves many estimates of returns to scale are inconsistent with profit 

maximization or imply implausible large profits. Specifically, returns to scale (RTS) in the 

revenue function cannot exceed unity otherwise the profit share in revenue is negative. Estimates 

of RTS frequently exceed unity not only in simple least squares cases (e.g., Griliches and 

Ringstad 1971, Tybout and Westbrook 1996, Bartelsman and Dhrymes 1998), but also after 

correcting for the endogeneity of inputs—i.e., the transmission bias (e.g., Pavcnik 2002, 

Levinsohn and Petrin 2003). In other words, these estimates suggest that firms systematically 

violate the profit maximization principle. At the other extreme, studies often find low returns to 

scale that imply a much larger profit share in revenue than is observed in the data. For example, 

0.8 returns in the revenue function entails that the share of pure economic profits in revenue is 

20% (or 50% in value added if the share of materials is 0.6). In most data, the profit share is 3% 

or less (Rotemberg and Woodford 1995, Basu and Fernald 1997).  

These results raise legitimate concerns about the validity of the applied economic model 

and statistical estimator. I show that one can reconcile increasing returns to scale in the revenue 

function and a small profit share by relaxing the assumption of perfectly elastic factor supply 

curves. Likewise, one can explain large decreasing returns to scale and a small profit share. 

Unfortunately, available estimators either do not estimate the elasticity of the cost or depend 

critically on the assumption that factor supply curves are perfectly elastic. Thus, the researcher 

using these alternative assumptions about factor supply can be unable to check if the estimates 

make economic sense when he or she uses single-equation approaches.  

Furthermore and most importantly, some of the popular estimators ignore that firms 

optimize given their technology and factor/product prices. Sweeping the latter variation under 
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the “ceteris paribus” rug can greatly distort estimates of returns to scale, measures of 

productivity and resource reallocation, calibration of economic models, etc. I emphasize that 

consistent estimation requires modeling not only unobserved technology but also unobserved 

factor prices and, possibly, other structural shocks. It is equally important to model both the 

revenue and cost sides of optimizing firms. Finally, optimization imposes restrictions on how 

firms react to changes in technology and prices and, thus, makes certain moment conditions 

redundant. I show that this reduction in the number of informative moments can be so acute that 

certain estimators become not identified. Likewise, tight theoretical restrictions on 

contemporaneous and dynamic responses of observed choices of firms to structural shocks such 

as productivity suggest that estimators based on inverting factor demands to construct proxy 

variables for unobserved productivity can be underidentified. In fact, the problem can be so acute 

that these types of estimators can be forced to make internally inconsistent assumptions to 

“achieve” identification, which means that these estimators cannot yield consistent estimates 

even in theory. I demonstrate that puzzling estimates of returns to scale can be an artifact of these 

misspecifications while simple structural estimators such as the proposed covariance estimator 

can address these problems. 

In summary, this paper makes three important contributions to measuring productivity 

and estimating returns to scale with the micro level data. First, I show that because of data 

limitations many of the available estimates of returns to scale are for the revenue function, not 

production function. I argue that this alternative concept, the returns to scale in revenue, is 

economically meaningful and can be robustly estimated with the data that are actually observable 

at the establishment level. Second, I show how one can fruitfully merge economic theory and 

statistical methods into simple structural estimators to obtain consistent estimates of returns to 

scale. Furthermore, I prove that the profit share (i.e., the share of economic profits in total 

revenue) can work as a robust, non-parametric diagnostic for returns to scale in the revenue 

function. Third, I demonstrate that many of the popular estimators of returns to scale are 

inconsistent with simple economic arguments and tend to perform poorly in a wide range of 

settings. 

In the following section of the paper I elaborate on the ideas and claims I make in this 

introduction. In the next section, I present theoretical results, discuss the sources of identification 

in production (revenue) functions, and examine the variables used in the production (revenue) 

function regressions. In Section 3, I present the covariance estimator and discuss identification 
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and estimation issues. In Section 4, I derive the theoretical predictions about the performance of 

OLS, instrumental variables and inversion estimators. Monte Carlo experiments in Section 5 

illustrate the performance of alternative estimators. In Section 6, I use a well-known Chilean 

firm-level data set to compare RTS estimates from the covariance estimator and popular 

alternatives. I present conclusions in Section 7. 

  

2 SETUP 
In this section, I derive the relationship between the markup, returns to scale in production, the 

elasticity of the cost and the profit share. I demonstrate that the profit share can serve as a robust 

non-parametric diagnostic for economic tests of the estimates of production (revenue) functions.  

2.1 ECONOMIC MODEL OF PRODUCER BEHAVIOR 
Consider a firm that minimizes cost in expectation or non-stochastically. I assume that the cost of 

inputs is separable in inputs and factor prices, i.e., cross-partial derivatives of the cost with 

respect to factor prices and inputs are equal to zero. Hence, the cost can be written as 

1
( , ) ( , )n

j j jj
C L w C L w

=
= ∑  where L and w are vectors of inputs and factor prices, Lj is the jth 

input, and wj is its price. The elasticity of the cost Cj with respect to input j is 

( , )
( , )

j j j j
j

j j j j

C L w L
L C L w

φ
∂

= ⋅
∂

. The share of input j in total cost is ( , ) / ( , )j j j jC L w C L wω = .  

Returns to scale in production γ is defined as 
1
( ) / ( )n

j jj
Q L L Q Lγ

=
= ∂ ∂∑ , where Q(L) is 

the production function. Analogously, RTS in the revenue function η is defined as 

1
( ) / ( )n

j jj
Y L L Y Lη

=
= ∂ ∂∑ , where Y is total revenue. I define the markup μ as the ratio of the 

output price to the marginal cost. The share of economic profits in revenue (henceforth, profit 

share) is ( )s Y C Yπ ≡ − . Note that I make no assumptions about the production function or the 

structure of product and factor markets. 

To simplify exposition, assume that firms freely adjust factors of production to avoid 

unnecessary complications arising from dynamic optimization. This assumption implies that 

firms solve a static profit maximization problem in every period and inputs and output are 

chosen simultaneously. One can interpret this assumption as describing a large cross-section of 
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firms or the long run when firms can adjust all inputs. In this general setup, the following result 

can be proven:  

 

Proposition 1. 
Suppose a firm minimizes cost, all inputs are variable, and its cost is separable in inputs. Then 

(1 )sπγ μ φ= − , where μ is the markup, 
1

n
j jj

φ φ ω
=

= ∑  is the elasticity of the cost with respect to 

inputs, jφ  is the elasticity of the jth factor cost, ωj is the share of input j in total cost, γ is returns 

to scale in production, and sπ is the profit share in revenue. Furthermore, if the firm maximizes 

profit, then η γ μ= , where η is returns to scale in the revenue function.  

Proof: see Appendix B. 

 

One can draw several conclusions from Proposition 1. First, consider the case where factor 

supplies are perfectly elastic (i.e., 1jφ =  for all j). Since the profit share sπ is close to zero 

(Rotemberg and Woodford 1995, Basu and Fernald 1997), by Proposition 1 the returns in the 

revenue function η, which is equal to γ μ , should be approximately unity. Furthermore, 

industries with large RTS in production γ should have a large markup μ such that μ γ≈ . Hence, 

finding constant RTS in revenue is likely to indicate that there are increasing RTS in production 

since the markup is often greater than 1.05-1.1 (e.g., Bresnahan 1988). Proposition 1 also shows 

that low RTS in the revenue function imply a large profit share. For instance, η=0.8 implies 

sπ=20%.2 Similarly, finding η>1 is not consistent with profit maximization since η>1 implies a 

negative profit share. More generally, if the profit share implied by an estimate of η is far from 

the profit share observed in the data, then one has a signal that either the statistical or economic 

model is incorrect. This point is first raised by Basu and Fernald (1997) in the context of 

estimating aggregate production functions. Because Proposition 1 makes weak assumptions 

about producer behavior, the profit share serves as a robust non-parametric economic diagnostic 

for statistical estimates of η.  

                                                 
2 Griliches and Hausman (1986) attribute low returns to large, (possibly) serially correlated measurement errors, 
which are hard to handle in the instrumental variables (IV) framework as there are few good instruments to cope 
with measurement errors. It is not clear, however, why measurement errors are so pervasive in some industries and 
not others. 
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Second, consider the case where factor supplies are not perfectly elastic (i.e., 1jφ ≠  for 

some j). In this case, there is no tight link between the profit share sπ and RTS in the revenue 

function η. Increasing RTS in the revenue function η and a small positive profit share sπ can be 

reconciled by a steep cost (i.e., large φ ). For example, monopsony power or a shift premium can 

result in an upward-sloping labor supply schedule. Likewise, decreasing RTS in revenue or 

production functions can be consistent with a small profit share if φ  is less than unity, i.e., the 

marginal unit cost of inputs is (locally) declining. Table 1 summarizes the relationship between 

sπ, η and φ .  

Note that in the case with 1φ ≠  the cost-based Solow residual does not measure 

technology (or revenue-generating ability) correctly because cost shares are not equal to the 

elasticities of output with respect to corresponding inputs. Specifically, the cost-based Solow 

residual depends on factor ratios and thus can be procyclical and serially correlated.  

 For the case with some inputs being fixed, Proposition 1 needs a slight modification:  

Corollary 1 
Suppose that the assumptions of Proposition 1 hold. Also suppose that the first k inputs are 

variable and the other n–k inputs are fixed. Then, * * * *(1 )sπγ μ φ ω= − , where *
1

k
j jj

φ φ ω
=

= ∑  is 

the elasticity of the cost with respect to variable inputs, *ω  is the cost share of variable inputs in 

total cost, *γ  is returns to scale in production with respect to variable inputs, and *sπ  is the 

profit share in revenue. Furthermore, if the firm maximizes profit, then returns to scale in 

revenue with respect to variable inputs is * *η γ μ= . 

Proof: see Appendix B. 

 

Corollary 1 suggests that the argument about the profit share should be applied to 

variable inputs only. The corollary explains that the profit share can be temporarily large since 
*γ  can be significantly less than unity or temporarily small since the short term elasticity of the 

variable factor supplies can be low (i.e., *φ  large). Since there is no optimization with respect to 

fixed inputs, cross-sectional variation in the fixed inputs is sufficient to identify the RTS with 

respect to fixed inputs and, hence, RTS with respect to all inputs.  
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In summary, Proposition 1 justifies using the profit share as an economic check to verify 

that statistical estimates of returns to scale make economic sense.3 Put differently, since the 

parameter φ  can be interpreted as RTS in the cost, RTS in the revenue function η is always less 

than RTS in the cost but the difference is small. Furthermore, since the profit share is typically 

small, a consistent estimate of RTS in the revenue function can inform the researcher about the 

properties of the cost, specifically φ . Likewise, one can infer η from φ .  

2.2 FIRST ORDER APPROXIMATION  
To make further progress in the analysis of estimated RTS, I make a few assumptions about 

production, demand, and cost.4 Specifically, the inverse demand function is 

2( , ) ( )it it it it itP D G Q G D Q= = ⋅  , where i and t index firms and time, Pit is the price of the good, Qit 

is the quantity of the good, Git is a separable demand shifter (e.g., quality of a good, 

macroeconomic conditions). If σ is the elasticity of demand, then the markup is /( 1)μ σ σ= − . 

The production function is 2( , ) ( )it it it it itQ F A Z A F Zμ μ= = ⋅  where Ait is Hicks-neutral firm-specific 

productivity (the power of Ait is a normalization to simplify notation), and Zit is a composite 

input. Inputs are measured in physical units. The cost of employing Zit is 

2( , ) ( )it it it itC W Z W C Z= ⋅  where Wit is the separable base price of the input. To be consistent with 

previous notation, γ is local returns to scale in production and φ  is the elasticity of the cost with 

respect to the input Zit. The case of 1φ =  corresponds to supply of Zit being perfectly elastic. 

Hence, profits are ( , )it it it itY C W Zπ ≡ − , where it it itY P Q=  is the revenue function. The profit 

function is (locally) concave in the input if and only if 0sπγ μ φ φ− = − < . 

After log-linearizing the first order conditions, suppressing uninteresting constants, and 

partialing out industry-wide shocks, one obtains the following expressions for profit-maximizing 

input and revenue: 

1 1 ( )it it it itz w a g
η φ η φ

= − +
− −

, (1) 

( )it it it ity w a gη φ
η φ η φ

= − +
− −

, (2) 

                                                 
3 Of course, some caution is warranted since measured profits can be deviate from economic profits.  
4 This model of producer behavior is similar to the model analyzed by Marschak and Andrews (1944) and Klette and 
Griliches (1996). 
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where small letters denote log deviation of the respective variables from steady state (or industry 

averages), and η=γ/μ is the RTS in the revenue function. Note that demand shocks Git and 

technology shocks Ait are isomorphic and, thus, are not identified separately.5 Henceforth, I treat 

Git as if it were a shock to technology and consider only Ait. It will be convenient in further 

analysis to write (1)-(2) in matrix form:  
1 1

it it
it it

it it

z w
y a

η φ η φ
η φ

η φ η φ

−
− −

−
− −

⎡ ⎤⎡ ⎤ ⎡ ⎤
≡ = ≡ Λ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎣ ⎦

X F . (3) 

Equations (1) and (2) indicate that output and input demand are increasing in productivity ait and 

decreasing in the factor price wit. Equations (1)-(2) are a first-order log-linear approximation to 

the optimal behavior of firms. This approximation is exact if demand and factor supply are 

isoelastic and production function is Cobb-Douglas. Since variation in technology ait across 

firms is not controversial (e.g., Bartelsman and Doms 2000), in the next section I focus on factor 

price wit as a source of variation in (1)-(2).  

2.3 ON SOURCES OF VARIATION  
In the model (1)-(2), I use variation in the factor price wit to address two stylized facts. First, 

inputs and output are not collinear in the data. Second, there is enormous variation in input 

mixes. For example, the interquantile (Q3-Q1) range of log(capital/labor) and log(materials/labor) 

for Chilean and U.S. manufacturing firms is typically above 100% even at four-digit SIC 

industries. Note that in any model that assumes Hicks-neutral technology such variation in input 

mixes can happen only if firms face different input prices or technology or firms cannot satisfy 

profit maximizing (cost minimizing) conditions (e.g., because of managerial errors).  

This paper does not seek to explain why firms face different input prices. Possible 

reasons include unionization, regulation, location, composition of capital, and subjective beliefs 

of the management about factor prices. Search and information costs result in equilibrium price 

dispersion even if firms are identical ex ante (e.g., Stigler 1961, Salop and Stiglitz 1982, Burdett 

and Judd 1983, Stahl 1989).  

There is substantial direct evidence on the dispersion of prices even for precisely defined 

products (Stigler 1961, Pratt, Wise and Zeckhauser 1979, Dahlby and West 1986, Abbott 1992, 

Sorensen 2000). Using firm-level U.S. Census data, Abbott (1992) reports that the mean 

                                                 
5 Under stronger assumptions it is possible to separate demand and technology shocks. For example, Katayama, Lu 
and Tybout (2003) assume Bertrand pricing and constant marginal cost to identify demand and technology shocks.  



 11

coefficient of variation for output prices at 7-digit product codes is at least 55% (see also Roberts 

and Supina 1996). Even prices of homogenous inputs such as cement have significant dispersion 

at local markets (Abbott 1992, Adams 1997, Lach 2002, Yoskowitz 2002). For 70% of firms, 

other firms are the main customers (Fabiani et al 2004) and, thus, such price dispersion is an 

important source of variation in input mixes.  

Likewise, there is voluminous evidence that similar workers are paid different wages 

(e.g., Mortensen 2003 and references cited therein). Abowd, Creecy and Kramarz (2002) find 

that approximately 40-50% of wage dispersion in France and the state of Washington in U.S. is 

determined by firm effects. Price dispersion in capital/financial markets is less documented yet it 

exists (see Hortaçsu and Syverson (2004) for an example of dispersion of fees charged by mutual 

index funds). Multiplicity of interest rates also suggests that different firms face different prices 

of capital even within the same industry and location. Furthermore, firms may have different 

shadow prices of inputs (because of adjustment costs, for example) even when they face the 

same posted market prices for inputs.  

There are alternative explanations for variation in input mixes. Early studies (e.g., 

Marschak and Andrews 1944, Hoch 1961, Zellner, Kmenta and Dreze 1966) assumed that 

managerial errors determine the variation in input ratios. In another interpretation (e.g., Stigler 

1976, McElroy 1987), managerial errors reflect constraints known to the management but 

unobserved by the econometrician.6  

Although the managerial errors theory may be right, it can hardly explain immense 

variation in input mixes. (Recall that the interquantile range of log input ratios is generally above 

100%.) In addition, all measures of dispersion for input ratios increase with aggregation. It is 

hard to reconcile these facts with managerial errors theory because there is no reason to expect 

                                                 
6 Another explanation of variability in input mixes is variation in parameters of the production function. A typical 
approach to estimate models with parameter heterogeneity (e.g., Mairesse and Griliches 1990, Biorn, Lindquist and 
Skjerpen 2002) is to use the random coefficients estimator (Swamy 1970) that assumes zero covariance between 
random coefficients and regressors. This assumption is, however, clearly violated in the context of production 
functions if management knows the parameters of its production function. Consider the model in (1)-(2) with no 
measurement errors, 1μ =  and random firm-specific RTS parameter γi such that 2~ ( , )i iid γγ γ σ  and 

cov( , ) cov( , ) 0it i it iw aγ γ= = . The estimated model is it i it ity z uγ= + . It is not hard to find 
2 2 2cov( , ) [ ( 1)( 2) /( 1) 0]

it i
x

γ
γ γ γ γ σ γ≈ − − − + − < . Because cov( , ) 0it ix γ ≠ , the estimator is not consistent and results 

should be interpreted very carefully. 
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that managerial errors become more important with aggregation. In contrast, variation in prices 

for labor, capital and materials can approximately explain the volatility in input mixes.7  

 Differences in interpretation, however, do not generally imply differences in estimates of 

RTS. For example, suppose that factor prices are the same across firms and consider a Cobb-

Douglas production function with labor Lit and capital Kit inputs and managerial errors ,K L
it itζ ζ  in 

the first order conditions so that exp( )K
K it it t itY K Rβ ζ=  and exp( )L

L it it t itY L Wβ ζ= , where βK 

and βL are elasticities of the revenue function with respect to capital and labor, Yit is revenue, Rt 

is the cost of capital and Wt is wages. After taking logs and ignoring uninteresting constants, one 

has K
it it ity k ζ= +  and L

it it ity l ζ= + . If one assumes firm-specific factor prices, the corresponding 

first order conditions lead to it it ity k r= +  and it it ity l w= + . Thus, the models are observationally 

equivalent and give identical estimates of parameters in the revenue function. As a result, I treat 

factor prices as generic shocks to input ratios.  

2.4 WHAT DO “PRODUCTION FUNCTION” REGRESSIONS ESTIMATE? 
Firm-level data sets (e.g., Longitudinal Business Database at the U.S. Census Bureau) rarely 

contain information about prices paid/charged by firms or quantities consumed/produced by 

firms. In the vast majority of cases, the econometrician observes only inputs and revenue of the 

firm and, hence, a typical production function regression is  

it t it ity p bz u− = + ,  (4) 

where tp  is the industry price index, b is estimated RTS, uit is the error term, and the dependent 

variable is the firm revenue deflated by industry price index.8 In the standard framework of 

monopolistic competition (Dixit and Stiglitz 1977), the demand function is 
1

it t it itp p q g constσ= − + +  and 

                                                 
7 For example, Abowd, Creecy and Kramarz (2002) report that the standard deviation of log real hourly wages is 
53%. If one takes the coefficient of variation as a proxy for the standard deviation of log deviations from the mean, 
then the standard deviation of material prices is 55% (Abbott 1992) at the 7-digit level. At the 4-digit level, the 
standard deviation is likely to be several times larger. Hence, variation in the ratio of prices for labor and materials, 
which is equal to log(labor/materials), can be as large as 100%. Likewise, the standard deviation of log fees in 
mutual funds is about 50% (Hortaçsu and Syverson 2004), which, however, can be an upper bound. Hence, variation 
in the log wage-to-capital price, which is equal to the log labor-to-capital ratio, can also be as volatile as 100%. Of 
course, the observed variation can be endogenous, yet this calculation is suggestive. Note that this simple calculation 
ignores possible variation in shadow prices which can be considerably larger than the variation in posted prices 
because shadow prices can differ across firms due to adjustment costs, complementarity of inputs, composition of 
inputs (especially vintages of capital), etc.  
8 Foster, Haltiwanger and Syverson (2005) is an important exception. They consider firms producing homogenous 
goods so that information on revenue and physical output is available.  
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  1( ) (1 )it t it it t it ity p p q p q g constσ− = + − = − + +  

(1/ )( ) ( )it it it it it itz a g const z a g constμ γ μ η= + + + = + + + . (5) 

Clearly, the coefficient b in (4) reflects returns in the revenue function η, not returns to scale in 

production γ. Furthermore, because firms face different productivity and/or wage realizations, the 

price of the good varies across firms and, as I discussed in the previous section, dispersion of 

prices is not trivial even in narrowly defined industries. Therefore, deflating the firm’s revenue 

with an industry price index tp  does not generally yield the firm’s output. In the limiting case 

where the share of the firm in industry output converges to zero and shocks to productivity and 

factor prices are not perfectly correlated across firms, the cross-sectional variation of ( )it ty p−  

converges to the cross-sectional variation in yit, i.e., the dependent variable in typical firm-level 

production function regressions is effectively the firm’s revenue yit, not the firm’s output qit.9  

One has to be careful with the interpretation of the residual in (4). Note that the error term 

in (5) combines demand shocks Git and technology shocks Ait and, hence, one should not 

attribute large residuals to high technology because a large residual can stem from a large 

demand shock. Likewise, large variation of uit in (4) should not be interpreted as large variation 

in technology.  

Nonetheless, uit is an extremely interesting object from the economic standpoint. The 

entry/exit decisions of firms depend on both technology and demand conditions and uit 

conveniently summarizes this information about profitability or revenue generating ability of 

firms (see e.g. Foster, Haltiwnager, and Syverson 2005). Specifically, firms with large uit are 

more likely to survive and to attract resources than firms with low uit. Thus, even when one does 

not measure technology ait, the measured uit is still a very useful statistic.  

2.5 DISCUSSION 
This section makes several points. First, because of data limitations, typical production function 

regressions based on firm level data use revenue as the dependent variable and, hence, estimate 

RTS in the revenue function and do not yield the Solow residual measuring technical efficiency 

of firms. However, residual from the revenue function regression contains important economic 

information about firms’ viability. Second, profit share in revenue sπ should be used as a robust 

nonparametric diagnostic for the estimates of RTS in the revenue function. Third, increasing or 
                                                 
9 See Klette and Griliches (1996) for further discussion. Also note that time dummies are often included in (4) so 
that deflation by tp  is irrelevant. 
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decreasing RTS in the revenue function and a small profit share sπ can be reconciled by φ , the 

elasticity of the cost with respect to inputs. Hence, the parameter φ  is of central importance. 

Fourth, there is sizable variation in factor prices across firms.  

Unfortunately, available estimators either do not yield an estimate of φ  or hinge critically 

on the assumption that 1φ =  (see Section 4). To address this problem, I develop a full-

information estimator that deals with the production and cost sides simultaneously.  

3 COVARIANCE ESTIMATOR 
To consistently estimate parameters of production (revenue) and cost functions, I suggest an 

estimator based on explicit specification and modeling of unobserved shocks (i.e., productivity, 

demand, wages, etc.) where factor price shocks are treated symmetrically with productivity 

shocks, instead of just focusing on productivity shocks. The idea of the estimator is to identify 

and estimate parameters of the model by matching the covariance matrix implied by the model to 

the empirical covariance matrix of observed choices of firms.10 In contrast to single equation 

estimators (e.g., OLS), this structural estimator models outputs and inputs simultaneously 

(system approach) by deriving optimal output and factor demands from a profit maximization or 

cost minimization problem. In this section I explain the intuition behind the estimator, which I 

call the covariance estimator, and discuss identification and estimation.  

3.1 INTUITION 
To illustrate the workings and intuition of the estimator, consider model (1)-(2) and assume—for 

reasons discussed later—that 1φ =  and ait and wit have variances 2
aσ  and 2

wσ  with ( , ) 0it ita wρ = . 

These assumptions are restrictive and later I will show that the estimator works under less 

stringent conditions.  

Because ait and wit are not observed, one cannot run a regression of zit and/or yit on these 

shocks to estimate the RTS in the revenue function η . Note, however, that 
2 2 2var( ) ( 1) ( )it w az η σ σ−= − + , 2 2 2 2var( ) ( 1) ( )it w ay η η σ σ−= − + , and 2 2 2cov( , ) ( 1) ( )it it w ay z η ησ σ−= − +  

with unknowns 2 2, ,a wη σ σ . One can solve this system of equations for η: 

var( ) cov( , )
cov( , ) var( )

it it it

it it it

y y z
y z z

η −
=

−
.  (6) 

                                                 
10 This approach is also called structural equation modeling, MIMIC, LISREL and other names (see Bollen 1989 for 
a general discussion).  
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Thus, one can estimate η from the observed second moments of the data. This was the insight of 

the seminal paper by Marschak and Andrews (1944). I will call (6) and expressions analogous to 

(6) the covariance (COV) estimator. Why is the estimator working?  

Equations (1)-(2) describe the optimal profit-maximizing behavior of firms and 

optimization imposes restrictions on how firms respond to shocks. Specifically, the assumption 

of Hicks-neutral technology and perfectly elastic factor supply curve result in the restriction that 

revenue and input demand respond equally strongly to an innovation in technology. In other 

words, the coefficient on the structural shock ait is the same in equations (1) and (2). 

Furthermore, the assumption of the perfectly elastic factor supply curve implies the restriction 

that the response of revenue to a shock in the factor price wit is η times stronger than the response 

of the factor demand zit to the factor price shock. Put differently, the coefficient on wit in 

equation (2) is equal to the coefficient on wit in (1) multiplied by η. The economic restrictions of 

Hicks-neutral technology and perfect elasticity of the factor supply are complemented with the 

technical restriction ( , ) 0it ita wρ = . This latter condition ensures that one can separate technology 

shocks and factor price shocks. If technology and factor prices are correlated, this simple model 

is not identified.  

This estimator can have an instrumental variables interpretation. Equation (6) can be 

equivalently written as  

cov( , )
cov( , )

it it it

it it it

y y z
z y z

η −
=

−
 (7) 

and, hence, yit-zit is an instrumental variable for zit. Because of the Hicks-neutral technology and 

perfectly elastic factor supply, profit maximization imposes that revenue yit and input zit respond 

equally strongly to productivity shocks ait and, hence, it it ity z w− ∝ . Given the assumption 

( , ) 0it ita wρ = , it ity z−  is correlated with zit and uncorrelated with ait. In this simple case, 

covariance and instrumental variable estimators are equivalent. However, as I will discuss below, 

explicit instrumental variables like it ity z−  are not always available and typically the instrument 

depends on an unknown parameter. In section 3.3 I consider identification of the covariance 

estimator in a more general setting.  

3.2 MODEL FRAMEWORK  
The basic model (3) (or model (39) describing a more general specification) can be extended 

along several dimensions. First, I specify the dynamics of unobserved technology and factor 
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prices collected in the vector Fit. Second, measurement errors are salient in micro-level data sets. 

To address this important fact, I augment (3) with measurement errors. In summary, the general 

model is  

it it i it= Λ + +X F X ε , (8) 

, 1i t it it+ = Π +F F υ , (9)  

where Xit is the vector of n observed variables (inputs and revenue), Fit is the vector of m 

unobserved variables (factor prices, productivity), the matrix Λ summarizes the responses of 

observed variable to Fit, iX  is a vector of unobserved permanent firm-specific effects for Xit, εit 

is a vector of i.i.d. zero-mean measurement or expectations errors, υit is a vector of i.i.d. 

structural zero-mean innovations to Fit, and the matrix Π captures the dynamics of Fit.11 The 

matrix Λ for the n-input case is given in equation (39), Appendix A. I collect parameters of the 

model in the vector θ and assume here and henceforth that the mapping from θ to 

, , ( )it itE ′Π Λ Ω ≡ υ υ  and ( )it itE ′Ψ ≡ ε ε  is one-to-one in the admissible domain of θ. 

This state space representation of the problem nests many important cases such as 

dynamic factor models (m<n), log-linearized rational expectations models in state-space form 

and serially correlated measurement errors.12 I do not take a stand on time series properties of Fit 

and the contemporaneous correlation of innovations in υit as economic theory may have few 

restrictions on how variables in Fit evolve over time or how υit is correlated. Note that variables 

in Fit can be correlated because either Π or Ω is not diagonal. Likewise, I do not impose any 

structure on iX .  

The model (8)-(9) has much in common with dynamic factor models. However, in 

contrast to dynamic factor models, the factor loadings embodied in the matrix Λ can be identified 
                                                 
11 Since dependence of Xit on observed exogenous variables (e.g., time dummies) can be easily eliminated by 
projection methods, I abstract from such dependence without loss of generality. 
12 The latter is important in practice because econometricians rarely have reliable estimates of capital stock, effort, 
etc. For example, there are two popular estimates of capital: 1) real capital stock computed by inventory methods; 2) 
book value of fixed assets. In either case, measurement error is likely to be serially correlated. Suppose that the 
econometrician uses a noisy measure of investment such that et, the error in true investment *

tI , is classical (the 
measurement error can arise from using an investment price index to deflate firm-level investment expenditures). 
The true capital stock evolves according to * * *

1(1 )t t tK K Iδ
−

= − + . Then the estimated capital stock is 

1(1 )t t tK K Iδ
−

= − + = *

0
(1 ) s

t t ss
K eδ

∞

−=
+ − =∑  *

t

k
tK ε= +  with 1(1 ) t

k k
t t eε δ ε −= − + , that is, measurement error 

~ (1)k
t ARε . Importantly, serially correlated measurement errors invalidate instrumental variables based on 

leads/lags of inputs/outputs or input mixes. Similarly, true labor input may be measured with serially correlated error 
because of labor hoarding.  
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under certain conditions and, thus, factors can have a structural interpretation. In the next section, 

I present the conditions under which θ is identified.  

3.3 IDENTIFICATION  
The key question for the COV estimator is the identification of parameters because many models 

can be consistent with observed covariances. Local identification of these parameters in the static 

model (8) and dynamic model (8)-(9) is discussed elsewhere (e.g., Hoch 1958, Maravall and 

Aigner 1977, Maravall 1979, Bollen 1989, Bekker, Merkens and Wansbeek 1994). In effect, 

local identification requires showing that the appropriate Jacobian has full rank. Obviously, the 

necessary condition for identification is that the number of parameters in θ is not greater than the 

number of unique moments in the considered covariance and autocovariance matrices. 

Global identification is more subtle. In factor analysis terminology, global identification 

reduces to proving that there is no rotation matrix T producing { , , , }Λ Π Ω Ψ =� � ��  
1 1 1{ , , , }T T T T T− − −′Λ Π Ψ Ω  that satisfies the restrictions imposed on { , , , }Λ Π Ω Ψ  (see Theorem 5 

in Tse and Anton 1972). Profit maximization imposes many restrictions on the matrix Λ and, 

thus, on admissible rotation matrices T. Yet, these restrictions do not eliminate rotational 

equivalence in (8)-(9). Further restrictions on Ω and Π can guarantee identification. The 

following proposition proves global identification for two important special cases. 

 

Proposition 2 
Assume that  

i) the matrix Π is invertible,  

ii) the eigenvalues of Π are in the unit circle,  

iii) the system in (8)-(9) is observable and controllable,  

iv)  ( ) ( ) 0it itE E= =ε υ  and ( ) ( ) ( ) ( ) ( ) 0it jt it is it jp it is it jtE E E E E′ ′ ′ ′ ′= = = = =υ υ υ υ ε υ ε ε ε ε  for any t,i,p,j 

and s t≠ , 

v) firms maximize profits so that the matrix of loadings Λ is as in (39),  

vi) at least one of the factors is supplied in a competitive market.  

Then the model (8)-(9) is uniquely globally identified if  

a) innovations in υit are not correlated (i.e., the covariance matrix Ω is diagonal), or 

b) the matrix Π is diagonal (i.e., there are no dynamic cross-variable responses in Fit) 

Proof: see Appendix B. 
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The first three assumptions are technical: the system does not have redundant (linearly 

dependent) shocks; unobservables are stationary; and one can back out the behavior of the 

system if one can control unobservables. The assumption that one of the factors is supplied in a 

perfectly competitive market fixes the elasticity of the factor supply curve for other inputs which, 

in turn, fixes the parameters of the revenue function. Note that factor price and productivity can 

be correlated in both (a) or (b). Identification is achieved by imposing restrictions on the 

correlation of innovations in factor prices and technology (Ω is diagonal) or by imposing 

restrictions on the propagation of the shocks to technology and factor prices (Π is diagonal). It is 

also possible to identify θ if combinations of restrictions on Π or Ω are available.13  

Local identification of models with serially correlated measurement error is discussed in 

Maravall (1979) and Maravall and Aigner (1977). In the next proposition, I present conditions 

under which the model is globally identified. 

 

Proposition 3 
Suppose that (i) serially correlated measurement errors in observed inputs and outputs are not 

correlated across inputs and outputs at all leads and lags; (ii) measurement errors are not 

correlated with factor prices and productivity and the number of serially correlated 

measurement errors k cannot exceed the number of observed variables n; (iii) serially correlated 

measurement errors are AR(1) and covariance stationary. Then Λ, Π, and Ω identified almost 

everywhere if and only if Λ, Π, and Ω are identified in the absence of measurement errors.  

Proof: see Appendix B. 

 

Note that in Proposition 2 and Proposition 3 I use only time series variation in factor 

prices and technology to identify parameters of the model. In other words, I do not use variation 

in iX . However, it is possible to use restrictions on the distribution of iX  to achieve 

identification in otherwise underidentified models. For example, one may be willing to impose 

                                                 
13 Glover and Willems (1974) show that one needs to modify the conditions slightly if observed and latent variables 
can respond contemporaneously for the same set of shocks. 
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i i= ΛX F  with ( )iVar F  being diagonal. Such restrictions can be particularly important if 

between variation is large relative to within variation.14  

3.4 ESTIMATION AND INFERENCE 
Since I do not model entry and exit decisions, I assume that the panel of the firms is balanced 

with t=0,…,T observations for each cross-section.15 The number of i.i.d. cross-sections is N. I 

collect the parameters of interest in the vector θ, which I assume to be locally identified. I 

assume that Xit is stationary. The estimation strategy is to find θ that minimizes the distance 

between the appropriate sample covariance matrix and the covariance structure implied by θ. 

There are many possible ways to construct a metric of discrepancy between the sample and 

model-implied covariance matrices. I focus on maximum-likelihood methods since they tend to 

have somewhat better performance in estimating covariance structures in finite samples (see e.g. 

Clark 1996).  

It is convenient for further derivations to stack observed choices for each firm in vector 

0 1[ ... ]i i i iT
′′ ′ ′=X X X X  where it i it it= + Λ +X X F ε  and , 1it i t it−= Π +F F υ . Suppose that 

0 1[ ... ] ~ (0, )i i i Ti TN Iυ υ υ ′′ ′ ′= Ω⊗υ  and 0 1 1[ ... ] ~ (0, )i i i T TN Iε ε ε ′′ ′ ′= Ψ⊗ε  (i.e., 

measurement error εit and structural shocks υit are normally distributed and serially uncorrelated) 

and ( ) 0i iE ′ =υ ε  (i.e., structural shocks and measurement errors are not correlated at all leads and 

lags). Provided 0i =X , one can find that ~ (0, )i TN ΦX  where  

0 0

1 0

1 0 0 0 0

( )T i i

T
T

E

′Σ ΛΓ Λ + Ψ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥′Σ ΛΓ ΠΛ⎢ ⎥ ⎢ ⎥′Φ ≡ = =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥′ ′ ′Σ Σ Σ ΛΓ Π Λ ΛΓ ΠΛ ΛΓ Λ + Ψ⎣ ⎦ ⎣ ⎦

X X
% %

# % % # % %
" "

, (10) 

with ,( )s it i t sE −′Σ = X X , ,( )s it i t sE −′Γ = F F , 0 0 0: ′Γ Γ = ΠΓ Π +Ω . To simplify the notation, I use Φ 

instead of ΦT(θ), which explicitly indicates that ΦT is a function of parameters collected in the 

vector θ. Hence, the likelihood function is given by  
                                                 
14 In applications, it may happen that η, returns to scale in the revenue function, is identified while other parameters 
in θ are not. In such cases, one can impose fairly arbitrary restrictions on unidentified parameters to have a well-
defined estimation problem without affecting the identification of η (see Bollen 1989 for a discussion). If η is 
identified locally but not globally, it may be possible to rule out implausible cases, e.g., η<0. If η is not locally 
identified, one can follow Marschak and Andrews (1944) and put economic bounds on possible values of η. This 
amounts to constructing the set of values that parameters can take for all admissible rotations. 
15 One may use weighting techniques similar in spirit of Olley and Pakes (1995) to control for entry/exit decisions. 
Modeling exit/entry is beyond the scope of this paper.  
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1
1

ˆ ˆ( , ) ln | | { } ln | |N
i T T T Ti

l trace Tnθ −
=

= Φ + Φ Φ − Φ −∑ X  (11) 

where 1
1

ˆ N
T i iN i=

′Φ = ∑ X X , n is the number of observed choices of firms and the maximum 

likelihood estimate of θ maximizes (11). Since rational expectations models can be represented 

in a state-space form like (8)-(9), it is an easy step to extend (11) to estimate models with 

elements of rational expectations (see Appendix A).16  

For the case where steady state levels of inputs and output are treated as random, suppose 

that ~ (0, )i N ΞX  and ( ) 0i iE ′ =X u  and observe that ( ) ( )T i i T T TE J J′ ′Φ = = Ξ⊗ +ΦX X� , where 

JT is the ( 1) 1T + ×  vector of ones. It is straightforward to find that the associated likelihood 

satisfies 1
1

ˆ( , ) ln | | { }N
i T T Ti

l traceθ −
=

∝ − Φ − Φ Φ∑ X � � . If iX  is treated as a fixed parameter, one can 

transform the data to eliminate the incidental parameters iX , e.g., apply first differencing as in 

Hsiao, Pesaran, and Tahmiscioglu (2002). The log-likelihood for first-differenced Xi satisfies: 
1

1
ˆ( , ) ln | | {( )( ) }N

i T T Ti
l D D D trace D D D Dθ −

=
′ ′ ′∝ − Φ − Φ Φ∑ X  where D is the ( 1)nT n T× +  first-

difference matrix. Alternatively, one can use a conditional likelihood approach, which under 

certain conditions is equivalent to applying a transformation (e.g., Arellano 2003). 

Since Xi is not necessarily normally distributed, one may want to use the standard quasi-

maximum likelihood tools to construct standard errors for the estimates, i.e.,  
1 1 1ˆ( )Var N H GHθ − − −=  where 1 2

1

N

i
H N lθ

−
=

= ∇∑  and 1
1

N

i
G N l lθ θ

−
=

′= ∇ ⋅∇∑ . In the course of 

specification searches, one can use overidentifying restrictions tests since dynamic models such 

as (8)-(9) are typically overidentified. If the researcher is not satisfied with standard asymptotic 

inference, he or she can evaluate the distribution of a test statistic using bootstrap procedures 

(e.g., Horowitz 1998) or rely on a statistic that is more robust to non-normality in finite samples 

(e.g., Bollen 1989).17 

                                                 
16 A popular alternative is generalized method of moments (GMM) with the objective function 

1ˆ ˆ[ ( ) [ ( )] ]T T T TJ N Wθ θ−∗ ∗ ∗ ∗= Φ − Φ Φ − Φ′  where 0 1[ ( ) ( ) ( ) ]qT vech vec vec∗′ ′ ′ ′Φ ≡ Σ Σ Σ… , ˆ
T
∗Φ  is a sample 

estimate of T
∗Φ , W is a weighting matrix of conformable size. GMM and ML are asymptotically equivalent 

(Anderson and Amemiya 1988). If factor prices and productivity are uncorrelated, GMM and MLE are equivalent to 
IV estimator with (if necessary, leads or lags of) input ratios as instruments (Schmidt 1988).  
17 Monte-Carlo experiments (not reported here) suggest that finite sample performance of the COV estimator can be 
improved if a relatively small number of moments (sufficient for identification) are used in estimation. This 
enhancement is possible because low-order autocovariances can be estimated more precisely than in the presented 
formulation. For example, the first-order autocovaraince can be estimated using NT observations while in the 
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3.5 DISCUSSION 
The structural approach embodied in the suggested estimator is built on earlier works by 

Marschak and Andrews (1944) and Schmidt (1988). I extend their static full-information 

maximum likelihood (FIML) estimators to dynamic settings and improve upon their FIML in 

several respects. First, I allow factor prices to be correlated with technology. This correlation can 

arise because of rent/profit sharing, complementarity of worker skills and technology, 

monopsony power, overtime premia, etc. In contrast, the static models considered in previous 

studies are not identified if ait and factor prices are correlated. Furthermore, many popular 

dynamic estimators of returns to scale do not allow correlation between technology and factor 

prices or innovations in technology and factor prices. Second, my extension permits i.i.d. and 

serially correlated measurement errors while static FIML is not identified if there is any 

measurement error. Third, I show that static and dynamic models can be identified and estimated 

when factor markets are imperfectly competitive, i.e., factor supply curves are not perfectly 

elastic. Specifically, I show that having at least one input with a perfectly elastic factor supply is 

sufficient for identification. Furthermore, I show in Appendix A that the covariance estimator 

can be extended to cases where the profit-maximizing firm faces adjustment costs or production 

function is constant elasticity of substitution (CES).  

There is a cost of using the covariance estimator. Like any other FIML estimator, the 

COV estimator is more sensitive to misspecification than single-equation methods (e.g., OLS). 

Since the COV estimator works with higher moments, it may be more sensitive to outliers.  

 

4 ALTERNATIVE ESTIMATORS OF THE RETURNS TO SCALE 
In this section I analyze alternative estimators. I start with OLS to highlight the problems of 

estimating production (revenue) functions and then proceed with the analysis of popular 

solutions to these problems. To contrast estimators, I use the dynamic model (8)-(9) with 

observed input z and output (revenue) y, measurement errors ,z y
it itε ε , and unobserved factor price 

wit and technology ait:  
1 1 z

it it it itz w aη φ η φ ε− −= − + , (12) 

                                                                                                                                                             
presented formulation only N observations are used for the estimation. This issue is similar to choosing optimal 
number of moments in GMM application and is left for future research.  
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y
it it it ity w aη φ

η φ η φ ε− −= − + , (13) 

, 1
w

i t w it itw wρ υ+ = + , (14) 

, 1
a

i t a it ita aρ υ+ = + . (15) 

To simplify the presentation, I abstract from firm-specific effects. The estimated equation is  
y

it it it it ity z a z errorη ε η= + + = + . (16) 

This model makes exposition clear, yet my conclusions apply to more realistic cases as well.  

4.1 OLS 
Consider a firm characterized by (12)-(15) and assume that variables are measured without error 

and ait and wit are uncorrelated i.i.d. zero-mean shocks with 0aρ =  and 0wρ =  and variances 

2
aσ  and 2

wσ .18 Using the structural equations in (12)-(15), I find the probability limit of ˆOLSη  in 

(16):  
2 2 2 2

2 2 2 2

cov( , )ˆlim ( )
var( ) 1

it it a w a w
OLS

it a w a w

y zp
z

φσ ησ σ ση η φ η η
σ σ σ σ

+
= = = + − >

+ +
. 

The upward bias in the OLS estimates is “the transmission bias” identified by Marschak and 

Andrews (1944). The asymptotic bias is decreasing in the variance of factor prices and, if the 

only source of variation is productivity, the OLS estimate is φ , the elasticity of the cost, 

irrespective of the true η, the elasticity of the revenue function.  

How big is the bias? If wage and productivity shocks are uncorrelated, then 
2

2 2

( ) ( )a

a w

bias sπ
φ η σ φ η φ
σ σ
−

= < − =
+

 because sπφ η φ− =  by Proposition 1. Since the profit share is 

3% or less (e.g., Basu and Fernald, 1997) and φ  is likely to be no greater than 1.5, the bias is 

positive but likely to be smaller than 0.045. Intuitively, the OLS estimate is between η and φ . 

Because these two quantities are close to each other, there is only a narrow range in which the 

OLS estimate can fall. Even if wage and productivity shocks are correlated, the asymptotic bias 

                                                 
18 If firm-specific productivity is time invariant, then one can use panel data techniques to control productivity with 
firm-specific fixed effects (FE). This happy situation is not universally applicable and FE is not consistent if 
productivity is time varying. Furthermore, as Griliches and Mairesse (1995) observe, FE aggravates other problems 
(e.g., attenuation bias of measurement errors) precisely because of assuming time invariant differences in 
productivity across firms. 
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is likely to be small.19 The same conclusion is likely to hold for cases with multiple inputs.20 A 

relatively small bias in RTS, however, does not imply a small bias in the OLS estimate of the 

coefficient for a given input. Put differently, an upward bias in one of the coefficients is offset by 

a downward bias in other coefficients. This result, however, can be distorted by measurement 

errors. 

It is also instructive to consider the correlation between true productivity shocks and 

measured productivity shocks. Using (12)-(13), one can show that the measured productivity 

shock is  

2 2

2 2 2 2

2 2
1 1

2 2
ˆˆ ( ) ( )

1
w a

w a w a

a w
it it it it it it it it

a w

a y z a w a a wσ σ
η φ η φ σ σ σ σ

σ ση η φ
σ σ − − + +

= − = + − − = +
+

 

and therefore  
2 2 2 2ˆvar( ) /( ) var( )it w a w a ita aσ σ σ σ= + < , 

2 2 2 2ˆcov( , ) /( ) var( )it it a w w a ita a aσ σ σ σ= + < , 

2

1ˆ( , ) 1
1 ( / )

it it

a w

a aρ
σ σ

= <
+

.  

Apparently, the measured productivity is necessarily less volatile than and imperfectly 

correlated with the true productivity. Note that, for example, correlation does not depend on 

( )φ η−  as long as it is non-zero because productivity and factor price shocks are amplified in the 

same proportion and comovement between measured and true shocks depends only on the ratio 

of volatilities of productivity and factor price shocks. 

 

                                                 
19 If wage and productivity shocks are correlated, the asymptotic bias is 2 2 2( )( ) /( 2 )a a w a w a wφ η σ ρσ σ σ σ ρσ σ− − + −  
where ρ ≡ ρ(ait,wit). The OLS estimate of η can exceed φ  if and only if –ρ > σw/σa or fall below η if and only if ρ > 
σa/σw. The first case requires a negative correlation between productivity and factor price, which is a possible but a 
less likely case. The second case is more plausible but it still requires that productivity be less volatile than base 
wage. Bartelsman and Doms (2000) report that the ratio of the ninth decile of the distribution of ait across firms to 
the first decile is typically about two to three. Juhn, Murphy and Pierce (1993) report that the log wage differential 
between the 90th and 10th percentiles in the private sector is about 1.5 and the differential is about 1.1 after 
controlling for observed labor force characteristics. Hence, σa/σw is likely to be large. If the correlation between ait 
and wit is in the range (–σw/σa ,σa/σw), the bound presented above is still appropriate, i.e., the bias is likely to be less 
than 0.045. 
20 The expression for the bias becomes complicated with multiple inputs and the upper bound for the bias depends 
on the elasticities of cost for specific inputs and relative variability of factor prices. Note that a small bias in the 
estimates of returns to scale does not imply that individual elasticities (e.g., elasticity of revenue with respect to 
labor input) have small biases.  
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4.2 IV/GMM ESTIMATORS 
The transmission bias can be eliminated if the researcher has an instrumental variable (IV) 

explaining variation in zit unrelated to productivity shocks ait. In the simple setup of uncorrelated 

wit and ait, the best instrument is wit, the price of zit. The problem is that factor prices wit are 

almost never collected and therefore such an IV is infeasible in the vast majority of cases. To 

rectify this problem, Schmidt (1988) suggests using input/output ratios as instruments, e.g., yit – 

zit in (7). If the production function is Cobb-Douglas, then Schmidt’s IV (SIV) is identical to the 

IV estimator with factor prices as instruments. However, SIV is not consistent if factor prices 

and productivity are correlated, supply curve for at least one of the factors is not perfectly elastic 

(i.e., 1φ ≠ ), or if either the output (revenue) or inputs are measured with a serially correlated 

error. All of these cases are empirically important and, hence, although SIV can help in certain 

circumstance, its assumptions may be too restrictive. 

Alternatively, Blundell and Bond (1998, 1999, henceforth BB) suggest using (i) 

transformations of the variables to eliminate ait from (16) and (ii) lags of inputs and outputs as 

instruments. Specifically, BB suggest two types of moment conditions: levels and differences.21 

Define , 1 , 1it it i t it i ty y z zϑ ρ η ρη− −≡ − − + , the residual from the quasi-differenced production 

(revenue) function (16). The differences moment condition is ( ) 0it itE sϑΔ = , where sit is any 

combination of , ,, , 3i t j i t jy z j− − ≥ . The levels moment condition is ( ) 0it itE sϑ = , where sit is any 

combination of , ,, , 2i t j i t jy z j− −Δ Δ ≥ . Since technology is an AR(1) process by assumption, the 

two sets of moment conditions are valid. Two options for estimation are available. First, estimate 

the unrestricted model (i.e., let 1 , 1 2 3 , 1it it i t it i ty b y b z b zϑ − −≡ − − −  with b1, b2, b3 being free 

parameters) and take the coefficient on zit as η̂ . Second, estimate the restricted model.  

The following result can be proven for the restricted specification:  

 

Proposition 4 
Consider profit-maximizing firms as in (8)-(9) and estimate the production (revenue) function 

using the restricted specification of the BB estimator. Then the model is not globally identified. 

In particular, the model has multiple locally-identified solutions, provided that the matrix П has 

                                                 
21 Since Arellano and Bond (1991) consider a subset of moments in Blundell-Bond estimator the subsequent 
discussion applies to Arellano-Bond estimator as well.  
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distinct eigenvalues. The number of solutions is no greater than n+1 where n is the number of 

inputs. If the matrix П has repeated eigenvalues, then the model is not identified.  

Proof: see Appendix B. 

 

To get the intuition behind this result, consider, without loss of generality, the “levels” 

moments , 1 , 1{( ) } 0it i t it i t itE y y z z sρ η ρη− −− − + =  where sit is a subset of 

, 2 , 3 , 2 , 3, ,..., , ,...i t i t i t i ty y z z− − − −Δ Δ Δ Δ . Use (12)-(13) to eliminate yit and zit from the moment condition 

and observe that two sets of parameter values satisfy the moment condition:  

Solution #1: ˆ ˆ,aρ ρ η η= =  which yields , 1 , 1ˆ ˆ ˆ ˆ( ) a
it i t it i t ity y z zρ η ρη υ− −− − + = , 

Solution #2: ˆ ˆ, 1wρ ρ η= =  which yields , 1 , 1ˆ ˆ ˆ ˆ( ) w
it i t it i t ity y z zρ η ρη υ− −− − + = . 

In this simple case technology is Hicks-neutral and factor supply is perfectly elastic. Under these 

assumptions, profit maximization imposes that it it ity z w− ∝  and it it ity z aη− ∝ . After 

appropriate quasi-differencing, each of these expressions is proportional to a serially 

uncorrelated shock. Thus, the objective function of the estimator in this simple case has two local 

minima. 

In principle, the standard prescription is to choose a solution that gives the global 

minimum of some objective function (e.g., residual sum of squares), yet this heuristic may 

choose the incorrect solution #2. It may be hard to rule out some of the solutions on economic 

grounds. For example, in the presented one-input/one-output case, both solutions can be 

appealing. Furthermore, since the empirically observed profit share is small, η is likely to be 

close to unity (given perfect competition in factor markets) and, hence, the estimator may be 

poorly identified even locally.  

The consequences of having multiple solutions become particularly acute in the 

unrestricted specification since it is possible to take linear combinations of solutions such as 

above so that the model is not identified locally. The following proposition shows this formally.  

 

Proposition 5 
Consider profit-maximizing firms as in (8)-(9) or in a modification of (8)-(9) that allows for a 

contemporaneous response of observed variables to innovations in Fit. Then in the unrestricted 
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specification, the Jacobian of the moment conditions (either in levels or differences or both) 

based on lags of inputs or revenue or their differences does not have full rank.  

Proof: see Appendix B. 

 

This proposition demonstrates that the rank of the Jacobian for the moment conditions is 

smaller than the number of parameters to be estimated in the unrestricted specification and, 

hence, the model is not identified. Note that the problem is not in the weak correlation of lags of 

variables with their current values (which is the point addressed by using level moment 

conditions). The reduced rank problem arises because profit maximization imposes restrictions 

on how inputs and outputs comove over time so that some moments are collinear. In other words, 

one cannot treat choices of firms as independent. Optimization not only ensures the simultaneity 

in the choice of inputs and output but also it puts a precise structure on how the outcomes are 

related to each other. Such relationship in the context of profit-maximizing firms is so tight that 

observed choices (moment conditions) are linearly dependent. Because of the weak 

identification, the estimator is likely to have a flat density. Furthermore, I show in Appendix A 

that, to a first order approximation, BB can be poorly identified even when it is costly to adjust 

inputs. It is critical to use the restricted specification to attenuate the problem of weak 

identification. Mavroeidis (2004) notes a similar problem with using lags as instruments in 

estimation of rational-expectations macroeconomic models.  

Note that Proposition 4 and Proposition 5 do not show poor identification of system 

GMM rather they show that poor identification can be a serious problem when the estimator is 

applied to estimating returns to scale for optimizing firms.22  

4.3 INVERSION (CONTROL FUNCTION) ESTIMATORS 
In this section I consider inversion estimators that use demands for inputs, investment or other 

observable choices of firms to construct a proxy for firm’s productivity and condition inputs in 

                                                 
22 The BB estimator can be identified from nonlinearities in decision rules captured by second-order effects. In 
addition, one may expect a better performance of the BB estimator if shocks to factor prices have higher orders of 
correlation than shocks to productivity. For example, factor prices with AR(2) structure are sufficient to guarantee 
identification of the BB estimator if productivity is AR(1). However, if the roots (other than the largest root) of the 
lag polynomial for factor prices are small, the BB moments can be almost collinear in finite samples and the 
estimator can behave erratically. Furthermore, there is no a priori reason to believe that wage shocks have a higher 
order of autocorrelation than productivity shocks. Likewise, identification from second-order effects can be fragile. 
BB can be identified if it is costly to adjust all inputs.  
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the production (revenue) function on the proxy. A typical regression in this control-function 

approach is  

it it it it it ity z a z a errorη λ ϑ η λ= + + = + +� � ,  (17) 

where a�  is the proxy for the productivity of a firm. The critical assumption of these estimators is 

that the mapping (inversion function) from observed characteristics to productivity (or its proxy) 

is non-stochastic. I focus on the Levinsohn-Petrin (2003, henceforth LP) estimator but my 

conclusions are also relevant to similar estimators (e.g., Olley and Pakes 1996, Pavcnik 2002).  

Following LP, consider the Cobb-Douglas revenue function with capital, labor and 

material inputs, that is, exp( ) K L M
it it it it itY a K L Mβ β β=  where the productivity shock ait is an AR(1) 

process: , 1
a

it a i t ita aρ υ−= +  and 2~ (0, )a
it aiid υυ σ . In the notation of LP, it itaω =  and a

it itξ υ=  and, 

for convenience, define , 1 , 1( | )it it i t a i tE aτ ω ω ρ− −= = . Capital is chosen in the beginning of period t 

when ξit is not observed but τit and factor prices are observed. Labor and materials are chosen 

when ξit is known, that is, variable inputs can be adjusted when more information is available. I 

denote (log) factor prices for capital, labor and materials with rit, wit, and M
itp . All factors are 

supplied in perfectly competitive markets. There is no measurement error. The rest of the 

problem is unchanged and the estimated production (revenue) function is  

it K it L it M it ity k l mβ β β ω= + + + , (18) 

where K L Mη β β β= + +  is RTS in the revenue function.  

 The idea of the LP estimator is to invert demands for capital and materials to infer 

productivity shocks ωit and then use the estimated productivity shock as a regressor in the 

production (revenue) function—that is, condition (18) on ωit. The problem, however, is in the 

poor quality of the estimates of the productivity shocks. 

Note from profit maximization that the observed variables kit, lit, mit and yit can be 

expressed in terms of unobserved variables rit, wit, M
itp , τit, and ξit:  

( 1) (1 ) M
it K it L it M it itk r w pη β η β β τ− = + − + + − , (19) 

1( 1) (1 ) ( 1)( 1 )M
it K it L it M it it K itl r w pη β β η β τ η η β ξ−− = + + − + − − − − − , (20) 

1( 1) (1 ) ( 1)( 1 )M
it K it M it M it it K itm r w pη β β β η τ η η β ξ−− = + + + − − − − − − , (21) 

1( 1) ( 1)( 1 )M
it K it L it M it it K ity r w pη β β β τ η η β ξ−− = + + − − − − − . (22) 

It is straightforward to invert factor demands to firm’s productivity it it itω τ ξ= + : 
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(1 ) (1 ) M
it it K it L it M itk r w pτ η β η β β= − + + − + + , (23) 

(1 )( )M
it K it it it itk m r pξ β η= − + − − + − . (24) 

There is a one-to-one non-stochastic mapping between factor demands and productivity 

shocks if and only if factor prices are the same across firms. But if factor prices are the same 

across firms then labor and materials are collinear. To see this point, suppose that factor prices 

are the same across firms in any given period t. Because inversion of factor demands is indexed 

by time, one can conveniently set rit=rt=0, wit=wt=0, and 0M M
it tp p= = . Clearly, this leads to 

1 1
1 1 Kit it it itm l η η βτ ξ− −
− − −= = +  and, thus, mit and lit are collinear. Even if the responses of lit and mit to 

τit and ξit are different (e.g., factor supply curves for labor and materials have different slopes), 

there is no unexplained variation in lit after it is conditioned on mit and kit: 

( | , ) ( | , ) 0it it it it it it it it it itl E l k m l E l l lτ ξ− = − = − = . Put differently, once (18) is conditioned on ωit 

there is no variation in labor/materials ratio and coefficients ,L Mβ β  are not identified.23 This 

point is raised by Basu (1999) and further discussed in Ackerberg and Caves (2003) and Bond 

and Soderbom (2005).24 

On the other hand, if factor prices are not the same across firms, then the assumption of a 

non-stochastic inversion function is violated. Therefore, inversion of factor demands and 

conditioning (18) on estimated productivity shocks are internally inconsistent. In applications, 

identification of LP must come from misspecification of the model.  

What happens if volatility in factor prices is ignored? After all, LP indeed moves the 

estimates in the direction predicted by the theory, e.g., OLS LP
L Lβ β>  and OLS LP

K Kβ β< . To 

understand why LP can improve upon OLS, observe that the control function that combines kit, 

mit and ωit in (18) is  

( , ) (1 )( )M
it it K it M it it M K it it L itk m k m m p wζ β β ω β β η β= + + = + + − + + , (25) 

which is correlated with prices wit and M
itp . What are the consequences? Consider a simple case 

of one input with perfectly elastic supply and it it ita a wχ= +�  as a control function in (17) where 

( ), 0it ita wρ ≠�  if 0χ ≠ . Using projection methods, one can find  

                                                 
23 Likewise labor and materials are collinear if one augments the conditioning set with factor prices. 
24 Ackerberg and Caves (2003) propose alternative timing assumptions to remove this identification problem. Bond 
and Soderbom (2005) propose to utilize non-linearities and to introduce shocks to adjustment costs to all inputs to 
identify parameters.  
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  2

cov( , ) var( ) cov( , )cov( , )ˆlim (1 )
var( ) var( ) cov( , ) 1

it it it it it it it
OLS

it it it it

y z a y a z ap
a z z a

χη η η
χ

−′ = = + −
− +

� � �
� �

. 

Clearly, the estimated coefficient is inconsistent unless 0χ = . From (25), it is likely that χ is 

positive and ˆOLSη′  is biased upward. The performance of LP depends critically on the parameter 

χ. Specifically, as χ increases, the bias in LP estimate increases. However, for small χ, LP is 

likely to have large standard errors since variation of zit condition on ait is small. (To reiterate, if 

χ = 0, LP is not identified.) Hence, for reasonably small χ, LP can have a smaller bias than OLS 

does.25 Using nonparametric techniques or polynomials does not resolve the misspecification in 

(25) and the subsequent identification problem in (18) because identification of LP does not 

depend on the functional forms. Furthermore, this exercise shows that LP cannot have 

technology shocks correlated with factor prices.  

Measurement errors present another problem in the inversion estimators because the 

assumption of non-stochastic inversion of observable choices does not hold and upward biases 

are likely to arise. More generally, conditioning on a proxy variable contaminated with 

measurement error leads to inconsistent estimates. To get intuition, consider a simple case of one 

input and it it ita a ζ= +�  as a control function in (17), where 2~ (0, )it iid ζζ σ  is a classical 

measurement error. It follows that 

 
2 2

2 2 2 2 2 2

cov( , ) var( ) cov( , )cov( , )ˆlim (1 )
var( ) var( ) cov( , ) ( )

ait it it it it it it
OLS

it it it it a w a w

y z a y a z ap
a z z a

ζ

ζ

σ σ
η η η

σ σ σ σ σ
−′′ = = + −

− + +
� � �

� �
. 

Clearly, this estimate is not consistent unless 2 0ζσ = . Intuitively, because zit is correlated with ait, 

the attenuation bias in the estimate λ translates into upward bias in the estimate of η. Note that 

the bias in ˆOLSη′′  is strictly increasing in 2
ζσ  and, as informativeness of ita�  falls (i.e., 2

ζσ → ∞ ), 

the probability limit of ˆOLSη′′  converges to the probability limit of ˆOLSη . Thus, measurement error 

in the productivity proxy leads to inconsistent estimates of η although the bias is smaller than in 

the case of OLS estimates. 

Overall, LP estimates of RTS are likely to be biased upward, although the bias is likely to 

be smaller than in OLS. The same problems can arise in other inversion-based estimators (e.g., 

Olley-Pakes 1996, Pavcnik 2002) because the dispersion of factor prices across firms does not 

allow non-stochastic inversion of firm’s observed choices into firm’s unobserved productivity. 
                                                 
25 If χ is very large, the OLS bias 2 2 2 2(1 )( / ) /(1 / )a w a wη σ σ σ σ− +  can be smaller than the LP bias (1 ) /(1 )η χ χ− + .  
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Inversion estimators can be a tenuous solution to the transmission bias problem because they 

ignore the variation in input mixes and/or measurement errors in inputs.  

5 MONTE CARLO EXPERIMENTS 
In this section I run a series of Monte Carlo experiments to evaluate the performance of the COV 

estimator and its alternatives. In each of these experiments, I draw factor prices, productivity and 

other shocks from the normal distribution and for given realizations of the shocks I compute 

profit maximizing choices of revenue and inputs. Starting values of shocks are drawn from the 

corresponding unconditional distributions. For each replication, I generate a panel of 1,000 firms 

observed for 10 periods, which is close to typical sizes in applied work. I feed the generated data 

into various estimators and compute the estimates for structural parameters. I repeat the 

procedure 1,000 times and report median bias, standard deviation and root mean squared error 

(MSE) for each of the considered estimators.  

In all experiments, RTS is 1.1γ = , which is consistent with the estimates of RTS from 

reports compiled by engineers (e.g., Pratten 1988), and the markup is 2μ = . RTS in the revenue 

function is 0.55η γ μ= = . Factors are supplied in perfectly competitive markets unless 

otherwise specified. I choose a large markup to contrast the performance of the estimators (recall 

that bias increases in profit share which is 1-η in the considered case).  

I consider the following estimators: OLS, fixed effects (FE), Schmidt’s instrumental 

variables (SIV), Blundell-Bond (BB), COV and, where possible, Levinsohn-Petrin (LP). I use 

STATA’s commands xtabond2 and levpet for the BB and LP estimators, respectively. 

Schmidt’s (1988) IV estimator uses (if necessary leads or lags of) input ratios as instruments for 

inputs. In designing COV estimator, I impose restrictions that are relevant for the given data 

generating process. Identification of the covariance estimator is ensured by Proposition 2 and 

Proposition 3.  

5.1 ONE-INPUT/ONE-OUTPUT 
The data generating process (DGP) for this set of experiments is given in (12)-(15). I start with 

the simplest calibration that allows no measurement error (Panel A, Table 2). SIV with ( )it ity z−  

as the instrument for zit is consistent. Note, however, that COV is overidentified while SIV is 
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exactly identified and thus SIV has larger variance than COV.26 OLS and FE have a predictably 

large bias in the estimated RTS. Although BB has a smaller bias than OLS, the reduction in the 

bias is small and the standard deviation of the estimates increases substantially. Figure 1 presents 

the kernel densities of the estimates. In agreement with my theoretical predictions, the density of 

the BB estimator is essentially flat, which is typical for all experiments and parameterizations 

that I consider.  

Next, I add measurement error to y and z (Panel B, Table 2). SIV with , 1 , 1( )i t i ty z− −−  as 

the instrument is consistent but it has standard deviation larger than that of COV. BB is 

considerably worse than FE in terms of MSE. Even OLS has a smaller MSE than BB. The 

somewhat better performance of OLS and FE can be explained by the fact that the measurement 

error attenuation (downward bias) partially offsets the upward transmission bias. This is 

particularly important for FE because the signal to noise ratio for FE falls more than that for OLS 

(see Griliches and Hausman 1986).  

In the next experiment, I add serially correlated measurement errors to the input zit (Panel 

C, Table 2). In particular, I assume that the measurement error is , 1
z z
it z i t iteε ρ ε −= +  with 

20.8, 1z eρ σ= = . Note that SIV is not consistent because the input/output ratio is correlated with 

the measurement error and, consequently, the SIV’s instrument is correlated with the error term 

in the revenue function at all leads and lags. Serial correlation of the measurement error 

deteriorates the signal to noise ratio and the attenuation bias becomes stronger. The performance 

of BB (quasi-differenced twice) remains poor: the bias and standard error are large.  

Finally I consider the case when the factor price and productivity shocks are positively 

correlated (Panel D, Table 2). Specifically, I set ( , ) 0.7it ita wρ = . This correlation invalidates the 

SIV estimator because any lead/lag of ( )it ity z−  is correlated with the residual in the revenue 

function. To highlight the consequences of the correlation, I assume no measurement errors. 

Because ( , ) 0it itw aρ ≠ , SIV has a very large downward bias so that the estimate of RTS is 

negative. COV is the only consistent estimator. Note that the bias in OLS, FE and BB estimates 

of RTS increases considerably because there is less exogenous variation in factor prices. FE is 

more biased than BB but FE dominates BB in terms of MSE.  

                                                 
26 In fact, SIV does not have even first moments because it is exactly identified (Kinal 1980). It is an easy extension 
to make SIV overidentified by using leads or lags of input ratios wherever appropriate.  
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Note that in all simulations productivity measured according to OLS, FE or BB estimates 

is poorly correlated with the true productivity. SIV provides a good correlation only when it is 

consistent. In contrast, COV estimates yield productivity measures that are highly correlated with 

true productivity.  

5.2 MULTI-INPUT/ONE-OUTPUT 
In this section I consider a more realistic setup with multiple inputs (capital, labor and materials) 

as in Section 4.3. The data generating process is given by (19)-(22) and the estimated revenue 

function is (18). I set 0.1 , 0.2 , 0.7K L Mβ η β η β η= = = . I assume diagonal Ω  and Π , i.e., factor 

price and productivity are uncorrelated. Because capital is predetermined at time t, the 

appropriate instrument for capital in SIV is 1
, 1 , 1 , 1 1( ) ( 1 ) a

i t i t K i t ity k rη β υ−
+ + + +− = − − − +  that is 

uncorrelated with ai,t-1 and a
itυ .27  

In the first experiment, I consider the case with no measurement error (Panel A, Table 3). 

COV has the smallest median bias and MSE. SIV has no bias in estimated RTS in the revenue 

function η but the variance of the estimate is large (recall that SIV is exactly identified). The LP 

estimator does better than OLS but LP still has a sizable upward bias, which is consistent with 

my theoretical predictions. Furthermore, computationally simpler FE has performance very close 

to that of the LP estimator. The BB estimator has a large negative bias in the coefficient on 

materials and a large upward bias on the coefficient on labor. Nonetheless, BB has a relatively 

small bias in the estimated RTS. I plot the kernel density of the estimators in Figure 2. Observe 

that the density of the LP estimator almost coincides with FE’s density. Also note the flat density 

of the BB estimator.  

To show the importance of the small profit share for the estimate of the bias, I vary the 

demand elasticity so that profit share ranges from 50% to 0.1%. Figure 3 plots the bias as a 

function of the profit share. Note that BB, SIV, and LP reduce the bias relative to OLS but as 

profit share falls these estimators yield only a minor reduction in the bias. Interestingly, LP only 

marginally improves upon FE. Given that LP and BB tend to have larger variance than OLS, it is 

not clear if popular solutions to the transmission bias are better in terms of MSE than the OLS 

estimate.  

                                                 
27 Timing of shocks modifies the moments used in the BB estimator. However, the fact that output, labor and 
materials are determined simultaneously and the response of labor, materials and revenue to υa is identical leads to 
the reduced rank problem for the BB estimator (see proof of Proposition 5).  
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In the next experiment, I add a small measurement error to inputs and revenue to assess 

the sensitivity of BB and inversion-based LP to measurement errors (Panel B, Table 3). 

Predictably, the attenuation bias partially offsets the transmission bias and, thus, the estimates of 

RTS are less biased than in the absence of measurement errors. Nonetheless, BB has an 

increased bias because one has to take more distant lags in the moment conditions. This greatly 

deteriorates the performance of the estimator. Although the LP estimator has a smaller bias in the 

estimated RTS η, the upward bias in the coefficient on materials is reallocated to the upward bias 

in the coefficients on capital and labor. Overall, LP is very similar to FE. Only SIV and COV 

yield consistent estimates in this experiment.  

Next I examine the case with an upward-sloping labor supply curve. I set the elasticity of 

the labor cost to 1.5Lφ =  and I assume no measurement error (Panel C, Table 3). Importantly, 

although the base wage log(Wit) is uncorrelated with productivity ait, the log of wage 1
it itW Lφ−  is 

correlated with ait. Since the log wage is correlated with ait, SIV is not consistent. Note that the 

OLS, BB and FE estimates exceed unity although the true RTS in the revenue function is 0.55. 

Only COV estimate the parameters consistently. Note that in this scenario the correlation 

between true productivity and productivity measured according to SIV estimates becomes 

negative.  

In the next series of experiments, I assume quadratic costs of adjustment for capital and 

keep the rest of the assumptions unchanged. In brief, the firm solves the following dynamic 

problem:  
21
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where I is investment, ψ is the adjustment cost parameter, small letter denote logs of the 

respective variables. In all simulations I set 6ψ = , which is consistent with the available 

estimates of adjustment costs (e.g., Gordon 1992), and estimate other parameters of the model. I 
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log-linearize the first-order conditions and constraints given perfect foresight. Because the 

analytical solution to the above problem is complicated, it is hard to establish that the covariance 

estimator is uniquely globally identified. However, since the numeric solution can be readily 

written in the state-space form (see Appendix A), it is straightforward to establish local 

identification of the parameters by checking the rank of the Jacobian.  

Using the log-linearized solution to the model, I generate artificial data sets and feed 

them into various estimators. Table 4 presents the results for the cases with perfectly and 

imperfectly elastic factor supply curves and with/without measurement errors. In the baseline 

experiment with perfect competition in factor markets ( 1φ = ) and no measurement errors (panel 

A, Table 4), OLS, FE and BB estimates are biased so much that the estimated RTS are increasing 

(recall that the true RTS in the revenue function is equal to 0.55). Consistent with the argument 

in section 4.2, BB estimates have large standard errors, which indicate poor identification of the 

estimator. Although the LP estimator has a smaller bias than other estimators, the size of the bias 

remains very large. SIV produces implausible estimates because the shadow price of capital is 

correlated with technology and, hence, no lead or lag of the output-to-capital ratio is a valid 

instrument for the level of the capital stock. This correlation of the shadow price of capital and 

technology is the key to understanding why the conventional estimators yield increasing RTS 

even when true returns are well below unity. Because of the attenuation bias, adding 

measurement error (panel B, Table 4) reduces the bias in the estimated RTS. In the case with an 

upward-sloping labor supply curve ( 1.5φ = , panel C, Table 4) the bias tends to increase in the 

estimate of Lβ  and decrease in the estimate of Kβ . Nonetheless, because Lβ  and Kβ  have a 

small contribution to the RTS (recall that the elasticity of output with respect to material is 0.7), 

the bias in the estimate of RTS barely changes.  

Note that in all simulations with multiple inputs popular estimators lead to inferior 

productivity measures. Specifically, small departures from the assumptions required by SIV can 

produce a negative correlation between true productivity and productivity measured according to 

SIV estimates. In all simulations, other estimators (OLS, LP, FE, BB) yield low correlation 

between true and measured productivity. Typically, the correlation for these estimators is well 

below 0.4. The covariance estimator performs well in terms of measuring productivity and 

capturing returns to scale, although the standard error of the coefficient on capital is somewhat 

large.   
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5.3 DISCUSSION 
The results of Monte Carlo experiments are in agreement with my theoretical predictions that LP 

is biased upwards and BB is poorly identified. SIV is extremely sensitive to serially correlated 

measurement errors and (shadow) factor prices being correlated with technology. The 

experiments show that simpler OLS and FE have performance comparable to that of BB and LP. 

If the profit share is small, the reduction in the bias from using BB and LP is offset by an 

increase in the variance of the estimates. Hence, in empirically plausible settings with small 

profit shares, it is useful to compare estimates from sophisticated techniques with OLS estimates.  

Furthermore, the researcher can reach incorrect conclusions about relative productivity of 

firms and magnitudes of productivity differences across firms when he or she uses inconsistent 

estimates. Specifically, the experiments suggest that OLS, FE, BB, and LP tend to yield 

productivity measures that are poorly correlated with true productivity.28 SIV’s performance 

varies from good to disastrous. If the assumptions of SIV are satisfied, the correlation is close to 

one. Slight departures from SIV’s assumptions can lead to a negative correlation between 

measured and true productivity. These results are true irrespective of the absolute size of the bias 

in the estimates because productivity and factor price shocks are amplified in the same 

proportion for observed optimized choices of firms. In contrast, productivity measures 

constructed on the basis of COV estimates are highly correlated with true productivity.  

Importantly, the Monte Carlo experiments suggest that the puzzling estimates of RTS in 

the revenue function can arise because statistical estimators fail to provide consistent estimates. 

In the next section, I contrast the estimates of competing techniques when applied to real data.  

6 APPLICATION 
In this section, I apply the COV estimator to a well-known data set of Chilean manufacturing 

plants. Lui (1991, 1993), Lui and Tybout (1996), Pavcnik (2002) and Petrin and Levinsohn 

(2005) describe the data in detail. To illustrate the estimator, I focus on the SIC 3240 industry 

(manufacture of footware).29 The annual data spans from 1982 to 1996. Descriptive statistics for 

logs of real value added, real capital stock and labor are presented in Table 5 and Table 6. 

I assume that the inverse demand function is given by 1
it itP Q σ−∝  where σ is the demand 

elasticity so that the markup is ( 1)μ σ σ= − . The production function is described by 

                                                 
28 Productivity measured as a cost-based Solow residual can be poorly correlated with the true productivity when 
factor supply curves are upward sloping.  
29 I am grateful to Jim Levinsohn for providing me with the data.  
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min{ , }K L
it it it it itQ A M cK Lα αμ= , where Qit is output in physical units, Mit is the input of materials, Kit 

is capital, Lit is the number of employees, Ait is the level of Hicks-neutral technology ( itA  to the 

power of μ is a normalization), and c is a constant of proportionality. This functional form 

imposes zero substitution between materials and combined capital/labor inputs. Since at the 

optimum no resources are wasted, K L
it it itM cK Lα α=  and, hence, the profit function is given by 

M
it it it it it it it it itP Q p M R K W Lπ = − − − = it it it it itVA R K W L− − K L

it it it it it it itA K L R K W Lβ β= − − , where VAit 

is the value added, Rit and Wit are the cost of capital and labor for firm i at time t.30 In the data, 

the share of materials in total cost is 0.66.  

I assume that capital is supplied in perfectly competitive markets. The slope of the labor 

supply curve is a free parameter. In particular, I assume that the wage function is given by 
1( )it it itW L W Lφ−=  so that the wage bill is ( )it it it it itW L L W Lφ= . I further assume that capital, labor, 

and revenue are chosen simultaneously. I allow serially correlated errors in all observed 

variables, which are capital, labor and revenue. Unobserved technology and factor prices are 

serially correlated and there could be feedback from technology to factor prices and vice versa. I 

assume that innovations to technology and factor prices are uncorrelated. In summary, the 

estimated model is  
* *
it it ity k r− = , (27) 
* * *( 1)it it it ity l w lφ− = + − ,  (28) 
* * *
it it K it L ity a k lβ β= + + , (29)  

, 1 , 1 , 1
a

it aa i t aw i t ar i t ita a w rρ ρ ρ υ− − −= + + + ,  (30) 
0 0

, 1 , 1 , 1
w

it wa i t ww i t wr i t itw a w rρ ρ ρ υ− − −= + + + , (31) 

, 1 , 1 , 1
r

it ra i t rw i t rr i t itr a w rρ ρ ρ υ− − −= + + + ,  (32) 
* y

it it ity y u= + ,  (33) 
* k

it it itk k u= + ,  (34) 
* l

it it itl l u= + ,  (35) 

                                                 
30 Since I analyze value added, I do not need to measure the quantity of the materials input. Note that in the vast 
majority of cases the researcher knows only the nominal spending on materials and the quantity of the material input 
is obtained by deflating the nominal spending with the industry-level material price index. Since the mix of 
intermediate inputs varies across firms and the price index is the same for all firms in any given period, the 
computed quantity of the material input can be poorly correlated with the true quantity of the material input. In the 
case of the Cobb-Douglas production function, nominal spending on materials is proportional to revenue and, hence, 
including the deflated expenditures on materials should yield perfect collinearity. Stochastic errors (e.g., 
optimization errors, measurement errors) can break the collinearity but the coefficient is still likely to be close to 
unity, which is often the case in applications. 
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, 1
y y y
it y i t itu uρ ε−= + ,  (36) 

, 1
k k k
it k i t itu uρ ε−= + ,  (37) 

, 1
l l l
it l i t itu uρ ε−= + ,  (38) 

where small letters denote logs of the respective variables with lnit ity VA= , stars denote true 

values, and { , , , , , }a w r y k l
it it it it it itυ υ υ ε ε ε  are uncorrelated i.i.d. innovations. Parameters of interest are 

Kβ , Lβ , φ  and K Lη β β= + . Equations (27) and (28) are the first order conditions for capital 

and labor. Equation (29) is the value-added function (analogue to the revenue function). 

Equations (30)-(32) describe the evolution of structural shocks to productivity and factor prices. 

Measurement equations are collected in (33)-(35). Dynamics of the measurement errors are in 

equations (36)-(38). The equations can be succinctly rewritten in the matrix form that 

corresponds to the state space representation in (8)-(9):  
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The model has 21 parameters: 

{ , , , , , , , , , , , , , , , , , , , , }K L aa aw ar wa ww wr ra rw rr a w r y k l y k lυ υ υ ε ε εθ β β φ ρ ρ ρ ρ ρ ρ ρ ρ ρ σ σ σ σ σ σ ρ ρ ρ= ,  

where , ,a w rυ υ υσ σ σ  are standard deviations of innovations to productivity ( a
itυ ), wages ( w

itυ ) and 

the interest rate ( r
itυ ), and , ,y k lε ε εσ σ σ  are innovations to measurement errors in value added 

( y
itε ), capital stock ( k

itε ), and labor input ( l
itε ). Global identification is guaranteed by Proposition 

2 and Proposition 3. I use MLE given in (11) to estimate the model with T=5.  
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I report the estimation results in Table 7, column 1. Since the data are not normally 

distributed, I bootstrap the estimates to correct the bias and improve the confidence intervals.31 

Using bootstrapped critical values, I do not reject the model at any conventional significance 

level (p-value=0.4). To contrast the results, I estimate the value-added function 

it K it L it ity k lβ β ξ= + +  by OLS, FE, LP, and BB estimators and report these results in columns 2 

to 7 in Table 7. I report two versions of the BB estimator: quasi-differenced (column 6) and 

twice-quasi-differenced (column 7).  

BB, LP and FE estimators yield RTS in a 0.62 to 0.9 range. These estimates suggest a 

very large 10-38% profit share in value added if factor markets are perfectly competitive. In 

contrast, the observed (accounting) profit share in value added is 2%.32 Also observe that, 

consistent with our theoretical results and Monte Carlo experiments, the BB estimator has very 

large standard errors and LP estimates are close to FE estimates. On the other hand, the OLS 

estimate (RTS=1.30) is inconsistent with profit maximization if factor markets are perfectly 

competitive. In addition, the OLS estimate of βL implies increasing returns in labor. The SIV 

estimator yields implausibly large RTS. This cacophony in the estimates can be reconciled by the 

COV estimates.  

First, note that the COV estimates RTS in the revenue function to be 1.17, which is in 

line with our argument that the bias in the OLS estimate of RTS is likely to be relatively small. 

Second, the estimate of φ  is greater than unity and, thus, firms face an upward-sloping labor 

supply curve. Since the OLS estimate is biased to φ , the OLS estimate of RTS is greater than 

COV estimate of RTS. Third, I find relatively large serially correlated measurement errors. 

These errors tend to attenuate the estimates toward zero, especially when estimates are from 

within variation. This can explain why FE, BB, and LP produce low RTS. Note that the small 

coefficient on capital in BB is consistent with strong downward bias in βK in my Monte Carlo 

experiments with serially correlated measurement errors. Finally, since the SIV estimator uses 

output to input ratios as instruments and measurement error is present in inputs and factor prices 

                                                 
31 I use non-parametric bootstrap with resampling firms. See Horowitz (1998) for the discussion of bootstrap for 
covariance structures.  
32 The profit share is computed as the ratio of aggregate gross profit to aggregate value added. Although it is hard to 
sign the bias of the accounting profit as a measure of economic profit, the small magnitude of the profit share is 
consistent with the discussion in section 2. Alternative definitions of the profit share are in the range of 0.2% to 
2.5%.  
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are correlated with technology, the instruments used in the SIV are correlated with the error term 

in the revenue function so that the estimates of βL and βK behave wildly.  

Increasing returns in the revenue function do not contradict profit maximization because 

the labor supply curve is upward sloping. Specifically, the elasticity of the labor cost 1.42φ =  

(i.e., the wage premium is 42%) is generally in agreement with the estimates from previous 

studies. For example, Shapiro (1986, 1996) and Bils (1987) estimate from aggregate US data that 

the shift premium is about 25-40%. Manning (2004) observes that a plausible elasticity of labor 

supply is between 2 and 10. In the present case, the point estimate of the implied elasticity of the 

labor supply curve 1/( 1) 2.4φ − =  falls nicely in this interval.  

According to (41) in Appendix A, I find that the implied elasticity of the cost of capital 

and labor is 1.21 and elasticity of the cost of all inputs is 1.07. Using (42) in Appendix A to 

compute the profit share from the COV estimates, I find that the profit share in value added is 

1.3%, which is a significant improvement in comparison to other estimators.  

The correlation between productivity measured according to COV estimates and 

productivity measured according to OLS, FE, SIV, LP, BB and BB2 estimates is 0.884, 0.637, 

0.248, 0.361, 0.666, and 0.671 respectively. Given these low correlations, one can reach 

strikingly different conclusions about which firms are relatively productive when he or she uses 

different estimates to construct productivity measures. In light of Monte Carlo simulations, one 

may trust COV measures of productivity more than measures of productivity constructed on the 

basis of other estimators.33  

Note that variation in factor prices is comparable to variation in productivity ait. 

Specifically, the point estimates in Table 7 imply that ( ) 0.332itaσ = , ( ) 0.513itwσ = , 

( ) 0.230itrσ = . This supports other evidence on the dispersion of prices even in narrowly defined 

industries. I also conclude that ignoring variation in factor prices across firms can lead to serious 

identification problems for the inversion-based estimators. Finally, since the markup 1μ ≥  and 

returns to scale in the production function γ μη η= ≥ , one can expect sizable increasing returns 

to scale in production.   

                                                 
33 It would be highly informative to compare various productivity measures with measurements based on detailed 
case studies or expert assessments of relative performance. Unfortunately, this external information is not available.  
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7 CONCLUSION 
This paper has critical and constructive parts. In the critical part, I demonstrate that under weak 

assumptions estimates from production function regressions using firm-level data are often 

inconsistent with profit maximization or imply implausibly large profits. Specifically, I argue 

that firm-level data limitations lead to estimating returns to scale in the revenue function, not 

production function. On the other hand, I show that returns to scale in the revenue function 

cannot be greater than unity or significantly less than unity as long as the profit share in revenue 

is non-negative and factor supplies are perfectly elastic. This prediction sharply contrasts with 

the frequent finding that returns to scale in the revenue function at the firm level exceed unity or 

are well below unity. On the econometric front, I point out that inversion-based estimators (e.g., 

Olley and Pakes 1996, Pavcnik 2002, Levinsohn and Petrin 2003) lead to inconsistent estimates 

because they ignore variation in input mixes (factor prices). I also show that GMM/IV estimators 

using lags of endogenous variables as instruments (e.g., Blundell and Bond 1998, 1999) can be 

poorly identified in the context of estimating production (revenue) functions because of 

economic restrictions on the comovement of inputs and output. Furthermore, I show that these 

misspecifications greatly distort measures of productivity so that the researcher using these 

estimators can be led to grossly incorrect conclusions about the relative productivity of firms and 

magnitudes of productivity differences across firms. In summary, puzzling estimates can stem 

from applying misspecified or poorly identified estimators.  

In the constructive part, I show that under weak assumptions the elasticity of the factor 

supply can reconcile increasing or large decreasing returns in the revenue function and a small 

non-negative profit share. Furthermore, I argue that simple structural estimators that model the 

cost and the revenue function simultaneously and treat unobserved heterogeneity in productivity 

and factor prices symmetrically can resolve many of the problems I identify above. I provide an 

example and illustrate the strength of the suggested estimator in Monte Carlo simulations and in 

an empirical application.  

The paper has broader implications. First, I argue that the profit share can be used as a 

robust non-parametric economic diagnostic for estimates of returns to scale. Second, although I 

analyze only one industry, it is clear that variation in product and factor prices at the firm-level is 

not trivial. This entails important consequences for aggregating firm-level data (and devastating 

effects on the inversion-based estimators). Specifically, reallocation effects due to heterogeneity 

in factor prices are likely to be of first-order importance. Furthermore, productivity aggregates 
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measure revenue-generating ability in the industry rather than technical efficiency. Third, since it 

is fairly common to find constant returns to scale in the revenue function at the firm level and the 

markup is not less than unity, returns to scale in production at the firm level can be sizeable. 

Hence, business cycle and trade models appropriately calibrated to capture increasing returns to 

scale in production (not constant returns to scale in revenue!) can produce qualitatively different 

results. In addition, the gap between RTS in production at the aggregate level and RTS in 

production at the firm level is smaller than thought before because RTS in production at the 

aggregate level were compared to RTS in revenue at the micro level. Fourth, factor supply 

curves are likely to be upward-sloping at the firm level. This means that the cost-weighted 

composite input does not measure total input correctly and, hence, cost-based Solow residual can 

be procyclical.  
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Table 1. Profit share sπ as a function of returns to scale in the revenue 
function and the elasticity of the cost with respect to inputs 

 
Elasticity of the cost  
with respect to inputs 

Returns to scale 
in the revenue 

function 1φ <  1φ ≈  1φ >  

1η <  small sπ large sπ large sπ 

1η ≈  negative sπ small sπ large sπ 

1η >  negative sπ negative sπ small sπ 
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Table 2. Estimates of returns to scale: One input 

  OLS FE BB SIV COV 
  (1) (2) (3) (4) (5) 

 
Panel A: no measurement error 

 Median bias 0.359 0.272 0.221 -0.001 0.001 
η Standard deviation 0.003 0.003 0.112 0.013 0.006 
 Root MSE 0.359 0.272 0.251 0.013 0.006 
       

ˆ( , )it ita aρ  Median estimate 0.658 0.454 0.381 1.000 1.000 
       

Panel B: i.i.d. measurement error 
 Median bias 0.332 0.217 0.225 -0.001 0.001 

η Standard deviation 0.004 0.005 0.259 0.039 0.007 
 Root MSE 0.332 0.217 0.348 0.039 0.008 
       

ˆ( , )it ita aρ  Median estimate 0.450 0.341 0.281 1.000 1.000 
       

Panel C: serially correlated measurement error 
 Median bias 0.288 0.192 0.145 -0.267 0.000 

η Standard deviation 0.006 0.005 0.200 0.024 0.018 
 Root MSE 0.288 0.193 0.247 0.269 0.018 
       

ˆ( , )it ita aρ  Median estimate 0.501 0.412 0.339 0.916 0.997 
       

Panel D: correlated factor prices and productivity 
 Median bias 0.423 0.313 0.223 -1.773 0.001 

η Standard deviation 0.004 0.005 0.413 0.323 0.008 
 Root MSE 0.423 0.313 0.475 1.844 0.008 
       

ˆ( , )it ita aρ  Median estimate 0.465 0.322 0.240 0.975 0.987 
 
Note: The table reports median bias, standard deviation and root MSE for OLS, Schmidt’s 
instrumental variables (SIV), covariance (COV), fixed effects (FE), and Blundell-Bond (BB) 
estimators. The data generating process is (12)-(15): one input and one output. Each experiment 
is simulated 1,000 times. In all experiments, 0.9, 0.5, 1a w a wυ υρ ρ σ σ= = = = . In panel A, 

( , ) 0, 0w a
it it z yε ερ υ υ σ σ= = = . In panel B, ( , ) 0, 1w a

it it z yε ερ υ υ σ σ= = = . In panel C, ( , ) 0w a
it itρ υ υ = , 

0yεσ = , ,
z z
it z i t e iteε ρ ε −= + , 2 1eσ = , 0.8zρ = . In panel D, ( , ) 0.7, 0w a

it it z yε ερ υ υ σ σ= = = . 
ˆ( , )it ita aρ  is the correlation between true productivity ita  and measured productivity ˆita  given 

the estimate of η . See text for further details.  
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Table 3. Estimates of returns to scale: Multiple inputs 

OLS FE BB LP SIV COV Parameter values (1) (2) (3) (4) (5) (6) 
 

Panel A: no measurement error 
Median bias 0.033 -0.011 -0.019 0.001 -0.009 0.000 βK St. Dev. 0.004 0.003 0.054 0.003 0.100 0.007 

        

Median bias 0.265 0.270 0.482 0.265 -0.001 -0.001 βL St. Dev. 0.006 0.006 0.206 0.006 0.034 0.010 
        

Median bias 0.123 0.096 -0.302 0.087 0.004 0.000 βM St. Dev. 0.006 0.006 0.130 0.006 0.049 0.007 
        

Median bias 0.421 0.356 0.161 0.353 -0.006 0.000 
St. Dev. 0.002 0.003 0.074 0.004 0.054 0.007 η 

Root MSE 0.421 0.356 0.177 0.353 0.054 0.007 
        

ˆ( , )it ita aρ  Median est. 0.505 0.389 0.342 0.666 1.000 1.000 
        

Panel B: i.i.d. measurement error 
Median bias 0.077 0.032 0.042 0.048 -0.017 0.000 βK St. Dev. 0.006 0.006 0.230 0.007 0.144 0.011 

        
Median bias 0.269 0.259 0.254 0.269 -0.007 0.001 βL St. Dev. 0.007 0.008 0.274 0.007 0.077 0.025 

        

Median bias 0.069 0.042 0.092 0.014 0.000 0.000 βM St. Dev. 0.007 0.008 0.264 0.010 0.099 0.038 
        

Median bias 0.415 0.334 0.388 0.331 -0.024 0.001 
St. Dev. 0.003 0.005 0.260 0.008 0.126 0.025 η 

Root MSE 0.415 0.334 0.467 0.331 0.129 0.025 
        

ˆ( , )it ita aρ  Median est. 0.612 0.420 0.391 0.709 1.000 1.000 
(continued on next page) 



 49

Table 3 (continued) 
OLS FE BB LP SIV COV Parameter values (1) (2) (3) (4) (5) (6) 

        
Panel C: upward sloping labor supply curve 

Median bias 0.044 -0.002 -0.017 0.010 -0.075 0.000 βK St. Dev. 0.004 0.004 0.052 0.003 0.069 0.008 
        

Median bias 0.443 0.446 0.791 0.443 1.810 -0.001 βL St. Dev. 0.009 0.009 0.285 0.009 0.120 0.017 
        

Median bias 0.117 0.093 -0.297 0.083 -0.500 0.000 βM St. Dev. 0.006 0.006 0.108 0.006 0.026 0.008 
        

Median bias 0.604 0.536 0.477 0.536 1.235 -0.001 
St. Dev. 0.004 0.005 0.178 0.006 0.045 0.013 η 

Root MSE 0.604 0.536 0.509 0.536 1.236 0.013 
        

ˆ( , )it ita aρ  Median est. 0.310 0.253 0.203 0.552 -0.414 0.999 
        

 
Note: The table reports median bias, st. dev. and MSE of OLS, Schmidt’s instrumental variables 
(SIV), covariance (COV), fixed effects (FE), Blundell-Bond (BB), and Levinsohn-Petrin (LP) 
estimators. The data generating process is (19)-(22): three inputs and one output. The estimated 
revenue function is (18). Each experiment is simulated 1,000 times. In all parameterizations, 
βK=0.1η, βL=0.1η, βM=0.1η, η=0.55, ρr=0.5, ρw=0.6, Mp

ρ =0.4, ρa=0.9, 

1Mr w apυ υ υυ
σ σ σ σ= = = = . In panel A, συy= σεk= σεl=0, 1φ = . In panel B, συy= σεk= σεl=1, 1φ = . 

In panel C, συy= σεk= σεl =0, 1.5φ = . ˆ( , )it ita aρ  is the correlation between true productivity ita  
and measured productivity ˆita  given the estimates of βK, βL, and βM. See text for further details.  
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Table 4. Estimates of returns to scale: Multiple inputs with adjustment costs 
 

OLS FE BB LP SIV COV Parameter values (1) (2) (3) (4) (5) (6) 
 

Panel A: no measurement error 
βK Median bias 0.169 0.250 0.285 0.187 3.714 -0.002 
 St. Dev. 0.011 0.025 0.495 0.014 0.512 0.044 
        

βL Median bias 0.442 0.389 0.345 0.442 -0.093 0.000 
 St. Dev. 0.007 0.006 0.170 0.007 0.084 0.018 
        

βM Median bias -0.096 -0.087 0.106 -0.186 -0.079 0.000 
 St. Dev. 0.005 0.005 0.163 0.007 0.035 0.011 
        

Median bias 0.516 0.552 0.735 0.443 3.542 -0.002 
St. Dev. 0.009 0.023 0.454 0.011 0.444 0.045 η 

Root MSE 0.266 0.305 0.747 0.197 12.741 0.002 
        

ˆ( , )it ita aρ  Median est. 0.361 0.276 0.121 0.487 -0.486 1.000 
        

Panel B: i.i.d. measurement error 
βK Median bias 0.153 0.059 0.032 0.154 -0.055 0.008 
 St. Dev. 0.011 0.014 0.178 0.011 61.911 0.061 
        

βL Median bias 0.369 0.317 1.105 0.369 2.385 -0.001 
 St. Dev. 0.008 0.008 0.339 0.008 51.015 0.034 
        

βM Median bias -0.037 -0.047 -0.696 -0.086 -1.893 -0.002 
 St. Dev. 0.008 0.007 0.312 0.010 35.505 0.018 
        

Median bias 0.486 0.329 0.441 0.437 0.437 0.005 
St. Dev. 0.009 0.015 0.230 0.014 46.387 0.057 η 

Root MSE 0.236 0.108 0.248 0.191 2151.950 0.003 
        

ˆ( , )it ita aρ  Median est. 0.294 0.206 0.065 0.218 -0.436 0.999 
(continued on next page) 
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Table 4 continued 
OLS FE BB LP SIV COV Parameter values (1) (2) (3) (4) (5) (6) 

        
Panel C: upward sloping labor supply curve 

βK Median bias -0.014 -0.021 0.339 -0.004 3.026 0.000 
 St. Dev. 0.005 0.013 0.454 0.016 0.369 0.046 
        

βL Median bias 0.455 0.398 0.628 0.455 -0.014 -0.001 
 St. Dev. 0.005 0.005 0.228 0.005 0.059 0.028 
        

βM Median bias 0.039 0.062 -0.140 0.021 -0.012 0.000 
 St. Dev. 0.004 0.004 0.074 0.010 0.032 0.011 

        

Median bias 0.481 0.439 0.827 0.472 2.999 -0.001 
St. Dev. 0.003 0.011 0.442 0.011 0.315 0.048 η 

Root MSE 0.231 0.193 0.880 0.223 9.096 0.002 
        

ˆ( , )it ita aρ  Median est. 0.267 0.237 0.349 0.154 -0.492 0.989 
        

 
Note: The table reports median bias, st. dev. and MSE of OLS, Schmidt’s instrumental variables 
(SIV), covariance (COV), fixed effects (FE), Blundell-Bond (BB), and Levinsohn-Petrin (LP) 
estimators. The data generating process is (26). The estimated revenue function is (18). Each 
experiment is simulated 1,000 times. In all parameterizations, βK=0.1η, βL=0.1η, βM=0.1η, 
η=0.55, ρr=0.5, ρw=0.6, Mp

ρ =0.4, ρa=0.9, 1Mr w apυ υ υυ
σ σ σ σ= = = = , 6ψ = . In panel A, συy= 

σεk= σεl=0, 1φ = . In panel B, συy= σεk= σεl=1, 1φ = . In panel C, συy= σεk= σεl =0, 1.5φ = . 
ˆ( , )it ita aρ  is the correlation between true productivity ita  and measured productivity ˆita  given 

the estimates of βK, βL, and βM. See text for further details.  
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Table 5. Descriptive statistics 

Variable variation Mean Std. Dev. Min Max 
overall 4.190 1.636 0.269 9.437 

between  1.548 0.793 8.816 Ln(real value added) 
within  0.528 1.790 6.355 
overall 7.649 1.799 3.432 12.492 

between  1.701 3.935 12.330 Ln(real capital stock) 
within  0.448 4.973 9.627 
overall 3.763 1.078 2.303 7.145 

between  0.986 2.303 6.709 Ln(number of employees) 
within  0.325 1.982 5.095 

 

Note: This table reports descriptive statistics for Chilean manufacturing plants in SIC 3240 
industry (Manufacture of footware). The time span is from 1982 to 1996. Real value added is 
nominal value added deflated by the industry price index. Employment includes production and 
non-production workers. Capital stock, which includes machines and structures, is constructed 
by perpetual inventory method. See references cited in the text for further information.  
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Table 6. Covariance and autocovariance matrices 

 Yt Kt Lt 
Yt 261.5 256.3 168.0 
Kt 256.3 344.8 176.3 
Lt 168.0 176.3 126.0 

Yt-1 244.8 251.3 163.7 
Kt-1 249.2 333.4 171.9 
Lt-1 163.5 172.5 120.0 
Yt-2 239.3 248.0 160.7 
Kt-2 244.0 324.0 167.8 
Lt-2 159.5 169.2 116.0 
Yt-3 233.3 245.1 157.3 
Kt-3 239.5 316.1 164.2 
Lt-3 155.6 166.5 112.3 
Yt-4 230.4 243.6 155.3 
Kt-4 234.1 308.2 159.9 
Lt-4 152.4 163.5 109.2 

 

Note: This table presents covariance and autocovariance matrices for logs of value added (Yt), 
capital stock (Kt) and labor (Lt) after projecting these variables on the complete set of time 
dummies. See note to Table 5 for further details.  
 

 



 54

Table 7. Estimation results  

 COV OLS FE SIV  LP  BB BB-2 
 (1) (2) (3) (4) (5) (6) (7) 

0.498 0.198 0.146 -0.398 0.135 0.197 0.2099 βK 
[0.423, 0.514] (0.017) (0.029) (0.050) (0.054) (0.130) (0.123) 

0.697 1.105 0.677 2.952 0.672 0.676 0.6897 βL 
[0.510, 0.730] (0.029) (0.047) (0.131) (0.073) (0.132) (0.128) 

1.420       φ  
[1.307, 1.578]       

η  1.172 1.302 0.822    2.554    0.807    0.874    0.899 
 [1.008, 1.226] (0.017) (0.043) (0.089) (0.112) (0.161) (0.160) 

Factor prices and technology: standard deviation of innovations and serial correlation 
0.0306 0.9059 -0.0602 -0.2719 συa 

[0.002, 0.408] 
ρaa 

[0.732, 0.961]
ρaw 

[-0.163, 0.031]
ρar 

[-0.463, -0.042]
0.0163 0.3118 0.8177 0.0398 συw 

[0.001, 0.442] 
ρwa 

[-0.315, 0.533]
ρww 

[0.074, 0.915]
ρwr 

[-0.090, 0.264]
0.0657 -0.5024 -0.0359 0.1579 συr 

[0.001, 0.520] 
ρra 

[-0.795, -0.147]
ρrw 

[-0.181, 0.097]
ρrr 

[-0.443, 0.408]

(continued on next page) 
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Table 7 continued 

Measurement errors: standard deviation of innovations and serial correlation 
1.862 0.143     σεv 

[1.665, 2.008] 
ρv 

[-0.110, 0.439]     
1.8052 0.9305     σεk 

[1.581, 1.972] 
ρk 

[0.903, 0.957]     
1.5222 0.7609     σkl 

[1.331, 1.668] 
ρl 

[0.651, 0.844]     
 

Note: The COV model is described in (27)-(38). 95% bootstrap confidence interval is in square parentheses. FE is fixed 
effects, LP is Levinsohn-Petrin estimator, BB is Blundell-Bond estimator, SIV is Schmidt’s instrumental variables 
estimator. BB estimator is unrestricted and the reported coefficients are on the current kit and lit. Standard errors are in 
parentheses. R2 in the OLS regression is 0.92. The LM test does not reject AR(1) model for the error term in the BB 
estimator.  
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Figure 1. Kernel density of estimates for returns to scale: One input 
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Note: The figure plots Epanechnikov kernel densities of the returns to scale in the revenue 
function for OLS, Schmidt’s instrumental variables (SIV), covariance (COV), fixed effects (FE), 
and Bond-Blundell (BB) estimators. Parameter values of the data generating process are for the 
scenario reported in Panel A, Table 2. Returns to scale are on horizontal axis. The data 
generating process is (12)-(15). The estimated revenue function is (16). Each experiment is 
simulated 1,000 times. See text and Table 2 for further details.  
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Figure 2. Kernel density of estimates for returns to scale: Multiple inputs 
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Note: The figure plots Epanechnikov kernel densities of the returns to scale in the revenue 
function for OLS, Schmidt’s instrumental variables (SIV), covariance (COV), fixed effects (FE), 
and Bond-Blundell (BB), and Levinsohn-Petrin (LP) estimators. Parameter values of the data 
generating process are for the scenario reported in Panel A, Table 3. Returns to scale are on 
horizontal axis. The data generating process is (19)-(22): three inputs and one output. The 
estimated revenue function is (18). Each experiment is simulated 1,000 times. See text and Table 
3 for further details.  
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Figure 3. Profit share and bias in returns to scale  
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Note: The figure reports the bias in the estimated returns to scale in the revenue functions for 
various values of the profit share. The lines are from lowess which smoothes over 100 
replications for each value of the profit share. Parameterization is as in Panel A of Table 3. The 
data generating process is (19)-(22): three inputs and one output. The estimated revenue function 
is (18). BB is Blundell-Bond estimator, FE is fixed effects, SIV is Schmidt’s IV, LP is 
Levinsohn-Petrin estimator, COV is the covariance estimator. SIV essentially coincides with 
COV in this figure.  
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Appendix A: Extensions  
 
Multi-input case 
This section presents the n-input analogue for the model considered in Section 2.1. One could 
derive results as first order approximations but without loss of generality it is convenient to work 
with specific functional forms. The production function is assumed to be Cobb-Douglas: 

,1
jn

it it j itj
Q A Lαμ

=
= ∏  where i, t, j index firms, time, and inputs, 

1

n
jj

γ α
=

= ∑  is returns to scale in 

production, Ait is Hicks-neutral firm-specific productivity, and Lj,it is jth input. The inverse 

demand function is isoelastic 1/
it it itP G Q σ−= ⋅  where Pit is the price of the good, Qit is the quantity 

of the good, G is a demand shifter, and σ  is the elasticity of demand. The markup is 

/( 1)μ σ σ= − . Hence, the revenue function is 

1 1
, ,1 1

( )j jn n
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η β
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the revenue function. Also note that Ait and Git are isomorphic in the revenue function so that the 
econometrician cannot separate these shocks. Hence, I drop Git from the analysis and concentrate 

on Ait only. The cost for input j is given by , ,( ) j
j j j it j itC L W Lφ=  where jφ  is the elasticity of the cost 

of input j. The profit maximization problem is then 
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I take logs of the first order conditions, suppress uninteresting constants, partial out industry-

wide shocks, and get the following expressions for optimal input choices and revenue  
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,

n
ij ss i j

ψ φ
≠

=∏  and 1ijψ =  if ,s i j≠  is an empty set. Observe that 

1 1
det 0n n

j jj ij i
β ψ φ

= =
Λ = − <∑ ∏  which is the necessary and sufficient condition for the profit 

function to be concave.  
One can use information from the first order conditions to compute the cost shares. 

Observe that for each input j, the first order condition is 1
, , ,

j
j it j it j j it j itY L W Lφβ φ −= . Hence, 

, ,( ) j
j j j it j it j it jC L W L Yφ β φ= = . If follows that the cost share for input j is given by  

1 1

( )

( )
j j j j

j n n
h h h hh h

C L

C L

β φ
ω

β φ
= =

= =
∑ ∑

.  (40) 

The elasticity of the cost with respect to all inputs is  

1
1

1

n
n hh

h h nh
h hh

β
φ ω φ

β φ
=

=

=

= = ∑∑
∑

. (41) 

Using this expression one can find the profit share in terms of cost and revenue elasticities:  

1
1 1 n

h hh
sπ

γ β φ
μφ =

= − = −∑ .  (42) 

 
Constant elasticity of substitution (CES) production function 
Consider the CES production function /( )K LQ A K Lμ ρ ρ γ ρω ω= +  where 1

1 ρ−  is the elasticity of 

substitution. In this example, I assume that productivity and factor prices are mutually 
uncorrelated. Otherwise the structure is the same as in the Cobb-Douglas case. The profit 

function is given by: ( )( )K LA K L RK WLρ ρ γ μρπ ω ω= + − − . The first order conditions with 

respect to capital and labor are: /Ks Y K Rη = , /Ls Y L Wη =  where /( )K K K Ls K K Lρ ρ ρω ω ω= + , 

1L Ks s= − . After log-linearizing first-order conditions and the revenue function, one has the 

following structural equations: K Ly s k s l aη η= + + , ( )Ly k s k l rρ− + − = , 

( )Ky l s l k wρ− + − = . The reduced form is  

1 (1 )
1 1 1

1 1 ( ) ( )(1 ) .
1 (1 )(1 ) (1 )(1 )

1 ( ) 1 ( )
1 (1 )(1 ) (1 )(1 )

K K

K K

K K

s s

y a
s sX k r

l w
s s

η η
η η η

η η ρ η ρ
η ρ η ρ η

η ρ ρ η ρ
η ρ η ρ η

⎡ ⎤−
− −⎢ ⎥− − −⎢ ⎥⎡ ⎤ ⎡ ⎤

− + − − −⎢ ⎥⎢ ⎥ ⎢ ⎥= = − −⎢ ⎥⎢ ⎥ ⎢ ⎥− − − − −⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦− − − −⎢ ⎥− −⎢ ⎥− − − − −⎣ ⎦
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The model has six parameters: { , , , , , }K a w rsθ η ρ σ σ σ= . It is straightforward (but tedious) to 

show that ( )E XXθ ′∇  has full rank and, hence, the model is locally identified almost everywhere.  

 

Rational Expectations models 
Following Blanchard and Kahn (1980), one can show that, after log-linearization, rational profit-
maximizing producer behavior can be summarized as follows: 

12 13 1 1

22 23 1 2 1

33 1 3

0
0
0 0

t t

t t t t t t

t t

B
B B
B

−

− −

−

Π Π⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥≡ = Π Π + = Π +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

Π⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

G G
S H H υ S υ

Z Z
, (43) 

where Gt is p×1 vector of endogenous non-predetermined variables (e.g., materials), Ht is m×1 

vector of endogenous predetermined variables (e.g., capital), Zt is n×1 vector of exogenous 

variables, tυ  is vector of serially uncorrelated innovations. The econometrician observes only Gt 

and Ht. The number of shocks is not less than the number of observed variables, i.e., n m p≥ + . 

No assumptions are made about the sources of shocks υt, which can be shocks to adjustment 
costs, factor prices, productivity, etc. Hence, the setup is very general.  

The autocovariance matrix of the observed variables collected in [ ]t t t t
′′ ′= = ϒX G H S  

with [ 0]p mI +ϒ ≡  is given by 0( ) k
k t t kE −

′′Γ ≡ = ϒΠ Γ ϒX X� , k=0,1,…, where 0 ( )t tE ′Γ ≡ S S , 

1
0( ) ( ) ( )m p nvec I vec B B−

+ + ′Γ = − Π⊗Π Ω , and ( )t tE ′Ω ≡ υ υ . Given that kΓ� , k=0,1,…, and 

matrices , BΠ  are deterministic one-to-one functions of structural parameters, one can use 

methods presented in section 3.4 to set up likelihood function for MLE. Specifically, the log-
likelihood function for the no-firm-specific-effects and no-measurement-error case is given by 

1
1

ˆ ˆ( , ) ln | | { } ln | |N
i T T T Ti

l trace Tnθ −
=

= Φ + Φ Φ − Φ −∑ X  where 1
1

ˆ N
T i iN i=

′Φ = ∑ X X , n is the number 

of observed choices of firms, and  

00

1 0

1 0
0 0 0

T

TT

⎡ ⎤′ϒΓ ϒ⎡ ⎤Γ ⎢ ⎥⎢ ⎥ ′⎢ ⎥Γ ϒΠΓ ϒ⎢ ⎥Φ ≡ = ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥Γ Γ Γ⎣ ⎦ ′ ′ ′ϒΠ Γ ϒ ϒΠΓ ϒ ϒΓ ϒ⎣ ⎦

�
� % %
# % % # % %
� � �" "

. 

The likelihood can be easily extended to cases with measurement errors and firm-specific effects.  



 62

Note that model (43) is highly nonlinear in structural parameters. Hence, global identification 
is hard to prove in general. Local identification is easy to verify (numerically) by checking the 
rank of the relevant Jacobian.  
 
Identification in models with adjustment costs 
In this section I show that, under certain assumptions, the Blundell-Bond estimator is not 
identified even in the presence of adjustment costs. In the spirit to the results in Section 4.2, poor 
identification arises because profit maximization imposes restrictions on the dynamic and 
contemporaneous comovement of inputs and output. The following proposition gives the 
necessary condition for identification of the BB estimator for any rational expectation model 
described by (43).  
 

Proposition 6 
Consider rational profit-maximizing firm characterized by the reduced-form dynamics as in (43). 
Then if n < 2p+m–1, the unconstrained Blundell-Bond estimator is not identified.  
Proof: see Appendix B.  

 

Profit maximization can impose further restrictions on the dynamic and contemporaneous 
correlation between variables so that the estimator is not identified even when the presented 
necessary condition is satisfied. The following proposition provides an important example where 
BB is not identified although the necessary condition is satisfied.  

 

Proposition 7 
Consider rational profit-maximizing firm characterized by the reduced-form dynamics as in (43). 
Suppose that 33Π  is diagonal and that output and one of the inputs are free to adjust 
contemporaneously in response to shocks. Then, irrespective of the number of the structural 
shocks, the unconstrained Blundell-Bond estimator is not identified to a first-order log-linear 
approximation.  
Proof: see Appendix B. 

 
If production function is Cobb-Douglas, then log-linear approximation is exact and, thus, 

even higher order approximation cannot identify the parameters. Using the argument of 
Proposition 4 it is straightforward to show that even when BB is locally identified, there could be 
several solutions. 
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Appendix B: Proofs  
 
Proof of Proposition 1.  

Consider cost minimization problem, which is implied by profit maximization: 

1 1
( ,..., ) arg min{ ( ) : ( ) }n

s j jjL
L L L C L f L Q

=
≡ = =∑ , where f is the production function, ( )j jC L  is 

the cost of input Lj, Q is output.  
The first order condition gives ( ) ( )j j jC L f Lλ′ ′=  for 1,...,j n=  where λ  is the Lagrange 

multiplier and f is the production function. Multiply both sides by Lj for each j and sum over j to 
get  

1 1
( ) ( )n n

j j j j jj j
C L L f L Lλ

= =
′ ′= ⇔∑ ∑  

( )1 1

( ) ( )
( ) ( ) ( )

( )

n n
j j j j j

j j
j jj j

C L L C L
Q AC Q MC Q f L L

C L TC Q= =

′
′⋅ ⋅ = ⋅ ⇔∑ ∑   

1 1

( ) 1 ( )
( )

n n

j j j j
j j

AC Q f L L
MC Q Q

φ ω
= =

⎛ ⎞
′= ⇔⎜ ⎟

⎝ ⎠
∑ ∑  (by Euler’s theorem) ( )

( )
AC Q
MC Q

φ γ= ,  

where jφ  is the elasticity of jth factor price, ωj is the share of factor i in total cost TC(Q), 

1

n
j jj

φ φ ω
=

= ∑  is the elasticity of the cost with respect to inputs, AC(Q) and MC(Q) are average 

and marginal costs. If factor markets are competitive, 1jφ =  for all j and hence 1φ = . Now 

observe that profit share is equal to ( ) ( )1PQ AC Q Q AC Qs
PQ Pπ

− ⋅
= = − . It follows that 

( ) ( ) (1 ) (1 )AC Q MC Q s sπ πγ φ φ μ γ μφ= = − ⇔ = − , where ( )P MC Qμ =  is the markup.  

Since marginal revenue (MR) is equal to marginal cost for a profit-maximizing firm, one 

has 
1 1

( ) ( ) ( ) ( )n n
j j j j j jj j

TR L MR Q L TR L L MC Q L L MC P PQγ
= =

∂ ∂ = ∂ ∂ ⇒ ∂ ∂ = ∂ ∂ =∑ ∑  and 

hence 1
( )n

j jj
TR L L

PQ
γη
μ

=
∂ ∂

= =
∑

.■ 

 

Proof of Corollary 1. 
Consider cost minimization problem: 

1
1 1 1,...,

( ,..., , ,..., ) arg min{ ( ) : ( ) }
k

n
k k n j jjL L

L L L L L C L f L Q+ =
≡ = =∑ , where ( )j jC L  is the cost of input 

Lj, f is the production function and Q is output and k+1,…,n inputs are fixed. Using the 
arguments of Proposition 1, one can show that the first order condition with respect to variable 

( ) ( )j j jC L f Lλ′ ′=  for 1,...,j k=  (λ  is the Lagrange multiplier) yield: 
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1 1
( ) ( )k k

j j j j jj j
C L L f L Lλ

= =
′ ′= ⇔∑ ∑  

* * *1

1 1

( )( ) 1 ( )( )
( ) ( ) ( )

k
k k

i i ii
j j j j

j j

C L LAC Q AC Qf L L
MC Q TC Q Q MC Q

φ ω φ ω γ=

= =

⎛ ⎞
′= ⇔ =⎜ ⎟

⎝ ⎠

∑ ∑ ∑ ,  

where *ω  is the cost share of variable inputs in total cost, *
1

k
j jj

φ φ ω
=

= ∑  is the elasticity of cost 

with respect to variable inputs, *γ  is RTS in production with respect to variable inputs, AC(Q) 
and MC(Q) are average and marginal costs. Now observe that profit share is equal to 

* 1 ( ) /s AC Q Pπ = − . It follows that  

* * * * * * * * * *( ) ( ) (1 )
( ) ( )

AC Q AC Q P s
MC Q P MC Q πφ ω γ φ ω γ μφ ω γ= ⇔ = ⇔ − =  

where ( )P MC Qμ =  is the markup.  
Since marginal revenue (MR) is equal to marginal cost for a profit-maximizing firm, one 

has  

1 1

( )

ˆ( ) ( ) ( )

j j

k k
j j j jj j

TR L MR Q L

TR L L MC Q L L MC P PQγ
= =

∂ ∂ = ∂ ∂ ⇒

∂ ∂ = ∂ ∂ = ⇒∑ ∑
  

*
1*
( )k

j jj
TR L L

PQ
γη
μ

=
∂ ∂

= =
∑

, 

where *η  is RTS in the revenue function with respect to variable inputs. By combining the 

results, one can find: * * * * *(1 )sπη γ μ φ ω= = − .■ 

 
Proof of Proposition 2 

Without loss of generality assume that there are two inputs and one output, the first input 

is supplied in a competitive market. Suppose there are two solutions θ  and θ� . To satisfy 
restrictions imposed by profit maximization, the matrix Λ�  must possess the same structure and 
properties as Λ .  

Because , ,TΛ Λ�  are invertible, 1T −Λ = Λ�  implies that  
1

1 2 2 2

1 2 2 2 2 1 2 2
1 2 2 2

1 1 1 2 1 2 1 1 2 2 1 1 2 2 1

0 0
1 ( )  (1 )

( ) - (1 )+ (1 )

T

β φ β φ
β φ φ β φ β φ φ

β φ β φ
β φ β β β φ β β β β β β β φ β

−= Λ Λ

⎡ ⎤+ −
⎢ ⎥= − − − −⎢ ⎥+ − ⎢ ⎥− − − + − − − −⎣ ⎦

�

� � � �
� � � � �

� � � �
� � � � � � � �

 (44) 

Note that 1 2 2 2 1 2 2 2det( ) ( ) ( ) 0T β φ β φ β φ β φ= + − + − ≠� � � �  and the solution θ�  must have 

1 2 2 2 0β φ β φ+ − <� � � � . Thus, the model is not identified unless further restrictions are imposed.  

Now consider  
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11

21 222
1 2 2 2

31 32 33

1
( )

D
T T D D

D D D
β φ β φ

⎡ ⎤
⎢ ⎥′Ω = Ω = ⎢ ⎥+ −
⎢ ⎥⎣ ⎦

�
� � � � , 

where D11, D22, D33 are positive quantities and 

21 2 1 2 2 1 2 2 11( + ) ( )D β β φ φ β φ φ σ= − −� � � � � � � , 31 2 1 2 2 1 2 2 1 2 2 11( + )[ ( - ) ( )]D β β φ φ β φ β β φ β σ= − − + −� � � � � � � � � ,  

32 1 2 2 1 2 2 1 2 2 11 2 2 1 2 1 2 2 1 22

2 2 1 2 2 2 33

( )[ ( ) ( )] +[ (1- )][ (1- )] +

+( )( + ) .

D β φ φ β φ β β φ β σ β φ β β β β β β σ

φ φ β φ β φ σ

= − − − − − − −

− −

� � � � � � � � � � �� �
� � � �

 

The restriction that Ω  is diagonal implies that 21 31 32 0D D D= = = . From D21=0 it 

follows that 2 2φ φ=�  since 1 0β ≠� . Hence, 31 32 0D D= =  implies that  

1 2 2 1 2 2( ) ( - ) 0β φ β β φ β− − =� �  (45) 

2 1 2 1(1 ) (1- ) 0β β β β− − =� �  (46) 

The only solution to this system of equations is 1 1β β= �  and 2 2β β= �  implying that T=I 

and, thus, the model is uniquely globally identified.  
For a general model with a productivity shock and n inputs and associated factor prices, 

the first entry of the first row of T in (44) will continue to be non-zero while other entries of the 

row are zeros. This fixes j jφ φ=�  for j=2,…,n and then it is an easy step to show that n-input 

analogue of (45)-(46) has unique solution j jβ β=�  for j=1,…,n. This proves part a. 

To prove part b, again, without loss of generality, assume that there are two inputs and 
one output and that the first input is supplied in a competitive market. Suppose there are two 

solutions θ  and θ� . Then by assumptions of the proposition, the following matrix must be 
diagonal 

11
1

21 22 23

31 32 33

0 0
1

| || |

D
T T D D D

T
D D D

−

⎡ ⎤
⎢ ⎥Π = Π = ⎢ ⎥Λ
⎢ ⎥⎣ ⎦

�
�  

where D11, D22, D33 are non-zero quantities and 

21 2 2 1 11 1 2 2 2 1 22 1 2 2 1 2 2 33( )[| | ( ) ( ( ) ( - )) ]D φ φ β β φ β φ β β φ β β φ β= − Λ Π − + − Π − − − Π� � � � � � � �� ,  

31 1 2 2 1 2 2 11 1 2 1 2 1 2 2 22

1 2 2 2 1 2 2 1 2 2 33

| | [ ( )- ( )] -[ (1 )- (1 )] ( ) +

+( )[ ( ) ( )] ,

D β φ β β φ β β β β β β φ φ

β φ β φ β φ β β φ β

= Λ − − Π − − − Π

+ − − − − Π

� � � � � ��
� � � � � �  

32 2 1 2 1 1 2 2 2 33 22[ (1 ) (1 )]( )( )D β β β β β φ β φ= − − − + − Π −Π� � � � , 

23 1 2 2 2 2 2 22 33( )( )( )D β φ β φ φ φ= + − − Π −Π� � � . 
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The restriction that 1T T− Π  is diagonal, implies that 21 23 31 32 0D D D D= = = = . Suppose 

that 22 33Π ≠ Π . From D23=0, 2 2 1 2 2 2( )( ) 0φ φ β φ β φ− + − =� � � . Suppose that 2 2φ φ= � . Then D21=0 and 

D31=D32=0 imply that 

1 2 2 1 2 2( ) ( ) 0β φ β β φ β− − − =� �  (47) 

2 1 2 1(1 ) (1 ) 0β β β β− − − =� �  (48) 

provided that 33 11 0Π −Π ≠� � . The only solution to (47) and (48) is 1 1β β= �  and 2 2β β= �  implying 

that T=I and, thus, the model is uniquely globally identified almost everywhere. 

Now suppose that 2 2φ φ≠ �  so that 1 2 2 2 2 2 10 (1 )β φ β φ φ β β+ − = ⇔ = −� � � . Suppose that 

2 1 2 1 2 2 1 1(1 ) (1 ) 0 (1 ) (1 )β β β β β β β β− − − = ⇔ = − −� � � �  from D32=0. Substitute 2 2,φ β� �  in D21=0 and 

reach the contradiction that 2 0β =� . Now suppose that 1 2 2 2 2 2 10 (1 )β φ β φ β φ β+ − = ⇔ = −� � � �  from 

D32=0. Substitute 2 2,φ β� �  into | |Λ�  and find that | | 0Λ =�  which contradicts | | 0T ≠ . Hence, 2 2φ φ≠ �  

leads to contradiction.  

For a general case with n inputs, one again uses the fact that 1 1φ =  to fix j jφ φ=�  for 

j=2,…,n and then it is a tedious but straightforward step to show that n-input analogue of (47)-

(48) has unique solution is j jβ β=�  for j=1,…,n almost everywhere. This proves part b. ■ 

 
Proof of Proposition 3. 
Under assumptions of the proposition, system (8)-(9) can be re-formulated as follows:  

[ | ] it
it it

it

B
⎡ ⎤

= Λ +⎢ ⎥
⎣ ⎦

F
X ε

M
,  (49) 

, 1

, 1

0
0

i tit it

i tit itR
−

−

Π⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦⎣ ⎦

FF υ
MM ω

,  (50) 

where B is the known matrix whose columns are selection vectors ei (that is ei is the ith column of 
matrix In) with unity in the row corresponding to the variable with a serially correlated 
measurement error, Mit is a vector of measurement errors, R  is a diagonal nonsingular matrix 
with entries less than unity in absolute value (stationarity of measurement errors), 1( )it itE ′ = Ωω ω  

is a diagonal nonsingular matrix, ( ) 0it jsE ′ =ω ω  for all i, j and 0s ≠ , and 

( ) ( ) 0it js it jsE E′ ′= =ε ω υ ω  for all i, j, s.  

To prove global identification, it is sufficient to show that there is no rotation matrix T 
that preserves the structure of the model. Suppose that such T exits. Then a rotationally 
equivalent solution must satisfy 
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11 12
11 21 12 22

21 22
[ ] [ ] [ ]

T T
B B T BT T BTT T

⎡ ⎤
Λ = Λ = Λ + Λ +⎢ ⎥

⎣ ⎦
� .  

Hence,  
1 1

11 21 11 21T BT T BT− −Λ = Λ + ⇔ = Λ Λ − Λ� �  (51) 
1

12 22 12 22( )B T BT T B I T−= Λ + ⇔ = Λ −  (52) 

Furthermore, there are nonlinear restrictions imposed by uncorrelatedness of tυ  and tω  and 

block diagonal structure of 
0

0 R
Π⎡ ⎤
⎢ ⎥
⎣ ⎦

. In particular,  

n k×  restrictions: 21 11 22 1 12 0T T T T′ ′Ω + Ω =  (53) 
1
2 ( 1)k k − restrictions: 21 21 22 1 22T T T T′ ′Ω + Ω  is a diagonal matrix (54) 

n k× restrictions: 1
12 12 22 22 0T T T RT−Π − =  (55) 

n k× restrictions: 1 1 1
21 11 12 22 21 11 12 22 21 21( ) ( )T T T T T T T T T RT− − −− Π − =  (56) 

one restriction: 22det | | 0T ≠  (57) 

one restriction: 11det | | 0T ≠  (58) 

Because matrices , , ,B RΛ Π  have full rank, (51)-(58) form an overidentified system of quadratic 
equations. It is easy to verify that 11 12 21 22, 0, 0,n kT I T T T I= = = =  is a solution to the system for 

any 1, , , RΩ Ω Π . It is straightforward to verify for low dimensional systems (i.e., 3k n≤ ≤ ) that 

12 21 220, 0, kT T T I= = =  is the unique real solution. For higher dimensional cases, consider the 

worst case when n=k so that B=I. Substitute T12 from (52) into (55) so that after rearranging 
terms 

22 22AT T R=    (59) 

where 1A −≡ ΛΠΛ  and 1
22 22( )T I T −≡ − . Note that A has full rank. It is convenient to treat 

matrices as linear operators. Note that the space X on which a linear operator Q is defined is 
given by Im( ) ( )X Q Ker Q= ⊕ , where Im(Q) is the image of Q and Ker(Q) is the core of Q.  

Suppose that 22( )x Ker T∈ . Then by the definition of the core, 22 220 AT x T Rx= =  

22( )Rx Ker T⇒ ∈  22 22( ( )) ( )R Ker T Ker T⇒ ⊂ . Since R is invertible by assumption, 

22 22( ( )) ( )R Ker T Ker T=  and, consequently, 22 22(Im( )) Im( )R T T=  from the orthogonal 

decomposition.  
On the other hand, for 22Im( )x T∈  one has 22 22Im( )T x y T= ∈ . Then 

22 22, Im( )Ay T z Rx z T= = ∈  22Im( )Ay T⇒ ∈ . Since A is invertible, it follows that 

22 22(Im( )) Im( )A T T= .  
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Note that by the properties of the core, the operator T22 on 22( )Ker T  is equal to I. Consider 

equation (59) on 22Im( )T . As has been established, there is a 1
22T −  operator defined on 22Im( )T . 

Apply this operator to both sides of (59) and get 1
22 22R T AT−= . Suppose that the dimension of 

22Im( )T  is at least one. In this case, operators A and R are equal on 22Im( )T  (Korn and Korn, 

1968, §14.6-2). The measure of this event, however, is zero. Hence, almost everywhere the 
dimension of 22Im( )T  is zero, 22( )Ker T X=  and 22T I=  on X. Since Ω  has full rank and 1Ω  is 

diagonal, it follows that T12 = I and T21=0 and, hence, 12 21 220, 0, kT T T I= = =  is the unique 

solution almost everywhere. 
Restrictions on T22, T21 and T12 do not pin down the matrix T11. Even if 

12 21 220, 0, kT T T I= = = , 1
11T −= Λ Λ�  and, therefore, the model is identified if model (8)-(9) is 

uniquely identified. The “only if” direction follows trivially. ■ 
 

Proof of Proposition 4. 
Without loss of generality, consider the system without firm specific effects and measurement 
error itε . Collect inputs in vector Lit and partition matrix 1 2[ ]′ ′ ′Λ = Λ Λ  so that 1Λ  and 2Λ  

correspond to Lit and yit respectively. The residual of the quasi-differenced production (revenue) 
function is 

, 1 , 1 2 1 2 1 , 1
ˆ ˆ ˆ ˆˆ ˆ ˆ( ) ( )( )it it i t it i t it i ty y b b b b Iϑ ρ ρ ρ− − −= − − + = Λ − Λ + Λ − Λ Π −L L υ F , 

where ˆˆ,bρ  are “candidate” parameter values for the serial correlation of technology and 
elasticities of output with respect to inputs. This residual is orthogonal to inputs and output 

lagged two or more periods if and only if 2 1
ˆ ˆ( )( ) 0b IρΛ − Λ Π − =  (Fit is serially correlated while 

itυ  is not).  

Note that b̂  is a 1 ( 1)n× −  vector and ρ̂  is a scalar. Hence, both 2 1
ˆ 0bΛ − Λ =  and 

ˆ 0IρΠ − =  are overidentified because each system has n equations. However, some rows of 

ˆ IρΠ −  can be non-zero when the corresponding columns of 2 1b̂Λ − Λ  are equal to zero and vice 

versa.  
Consider first a simple case where the matrix Π is diagonal. If ρ̂  is equal to Πjj, one of 

the diagonal entries of Π, one of the equations in 2 1
ˆ 0bΛ − Λ =  can be eliminated, the system 

becomes just identified and 1
1 2

ˆ
j jb −= Λ Λ  where ijΛ  is the matrix iΛ  without the jth column. The 

Blundell-Bond estimator assumes that the ρ̂  is equal to the autocorrelation coefficient for 

productivity aρ  so that b̂ β= . However, there are other solutions. For example, the above logic 

suggests that ρ̂  can be equal to the autocorrelation coefficient for wage shocks wρ  and this 
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choice of ρ̂  gives a different solution for b̂ . It is straightforward to verify that these solutions 
are locally identified, i.e., the rank of the Jacobian is full:  

( ) ( )
1

1 2

1
2 1 2 1, 1 , 1

, 1
, 1 1,jj j j

j ji t i t
it i t it

it i t jja b

y bL
rank E rank E n

L L I
ρ

ρ
−

−
− −

−
−

= =Λ Λ

⎧ ⎫ ⎧ ⎫⎡ ⎤Λ − Λ Λ Λ− +⎛ ⎞⎡ ⎤⎪ ⎪ ⎪ ⎪′ ′= =⎢ ⎥⎜ ⎟⎨ ⎬ ⎨ ⎬⎢ ⎥⎜ ⎟− + Λ Π −Π⎢ ⎥⎣ ⎦⎝ ⎠⎪ ⎪ ⎪ ⎪⎣ ⎦⎩ ⎭⎩ ⎭

S F S
� �

� �
, 

where Sit is the vector of appropriately transformed lags of right hand side variables. It follows 

that there can be n different solutions to 2 1
ˆ ˆ( )( ) 0b IρΛ − Λ Π − =  for the case with n inputs.  

Now suppose that Π is not diagonal. Let ρ̂  be equal to an eigenvalue of Π. Then 

ˆ( ) 1rank I nρΠ − = −  and, thus, one is back to the case with a diagonal Π, i.e., multiply 

2 1b̂Λ − Λ  by a singular matrix. Hence, for each eigenvalue of Π there is a unique locally-

identified solution for b̂ . Since Π can have n distinct eigenvalues (for n-1 inputs), there can be n 

solutions for b̂ .  
To prove the last result, note that if ρ̂  is equal to a repeated eigenvalue, the rank of 

ˆ( )IρΠ −  is at most n-2. Hence, at least two columns in 1 2,Λ Λ  can be deleted and 2 1
ˆ 0bΛ − Λ =� �  

is underidentified so that there are infinitely many solutions for b̂ . ■ 
 
Proof of Proposition 5.  
This proof is for the case with multiple inputs which are collected in the vector Lit. Partition 

matrix Λ  so that 1

2

it iti i
it it it

it iti ia
Λ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤

= Λ + + = + +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥Λ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

L wL L
F ε ε

Y Y Y
, where ,i iL Y  are time invariant 

effects. For convenience, I define ( )it itE ′ = ΣF F . It is sufficient to show that the rank of the 

Jacobian for the moment conditions does not have full rank, i.e., the rank of the Jacobian is 
smaller than the number of parameters in the model. Define 

, 1 , 1[ ]it it it i t i t it itϑ γ γ− −
′′ ′ ′≡ − = −Y L L Y Y V , which corresponds to the residual from quasi-

differenced production (revenue) function. Apart from having a permanent component, the error 
term itϑ  has MA(1) structure because of the error term itε .  

Consider the level moments ( ) 0it itE ϑ ′ =S  where 

, 2 , , 2 ,[ ]it i t i t k i t i t p− − − −
′′ ′ ′ ′= Δ Δ Δ ΔS L L Y Y… … . The expected value of the Jacobian of the moment 

conditions is  

( )
, 3 , 2 , 1 , , 3 , 2 , 1 ,

, 1 , 3 , 2 , 1 , 1 , , 1 , 3 , 2 , 1 , 1 ,

, 1 , 3

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
(

it i t i t it i t k i t k it i t i t it i t p i t p

it it i t i t i t i t i t k i t k i t i t i t i t i t p i t p

i t i t

E E
− − − + − − − − + −

− − − − − + − − − − − − + −

− −

′ ′ ′ ′− − − −
′ ′ ′ ′ ′− = − − − −

L L L L L L L Y Y L Y Y
V S L L L L L L L Y Y L Y Y

Y L

… …
… …

, 2 , 1 , 1 , , 1 , 3 , 2 , 1 , 1 ,) ( ) ( ) ( )i t i t i t k i t k i t i t i t i t i t p i t p− − − + − − − − − − + −

⎛ ⎞
⎜ ⎟

=⎜ ⎟
⎜ ⎟′ ′ ′ ′− − − −⎝ ⎠L Y L L Y Y Y Y Y Y… …

  



 70

2 2
1 1 1 1 1 2 1 2

1 1
1 1 1 1 1 2 1 2

1 1
2 1 2 1 2 2 2 2

2 2
1 1 1 1 1 2 1 2

1 1
1 1 2 2

,

k p

k p

k p

k p

k p

D D D D
D D D D
D D D D

D D D D
D D D D

− −

− −

− −

⎡ ⎤Λ Π Λ Π Λ Π Λ Π
⎢ ⎥

= − Λ Π Λ Π Λ Π Λ Π =⎢ ⎥
⎢ ⎥Λ Π Λ Π Λ Π Λ Π⎣ ⎦
⎡ ⎤Λ Π Λ Π Λ Π Λ Π

= − ⎢ ⎥ΛΠ ΛΠ ΛΠ ΛΠ⎢ ⎥⎣ ⎦

… …
… …
… …

… …
… …

 

where 1 1 2 2( ) , ( )D I D I′ ′= − Π ΣΛ = −Π ΣΛ . Observe that the first row is 1
1

−Λ ΠΛ  times the second 

row; hence, the matrix ( )it itE ′−V S  does not have full rank and parameters of the model are not 

identified.  
Now consider the difference moment conditions ( ) {( ) } 0it it it it itE Eϑ γ′ ′Δ = Δ − Δ =S Y V S  

where , 3 , , 3 ,[ ]it i t i t k i t i t p− − − −
′′ ′ ′ ′=S L L Y Y… … . Find that the Jacobian is  

( )
, 1 , , 3 , 1 , , , , 1 , , 3 , 1 , ,

, 2 , 1 , 3 , 2 , 1 , , 2 , 1 , 3 , 2 , 1 ,

, 2 ,

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
(

i t i t i t i t i t i t i t k i t i t i t i t i t i t p

it it i t i t i t i t i t i t k i t i t i t i t i t i t p

i t i

E E
− − − − − − − −

− − − − − − − − − − − −

−

′ ′ ′ ′− − − −
′ ′ ′ ′ ′−Δ = − − − − −

−

L L L L L L L L L Y L L Y
V S L L L L L L L L Y L L Y

Y Y

… …
… …

1 , 3 , 2 , 1 , , 2 , 1 , 3 , 2 , 1 ,) ( ) ( ) ( )t i t i t i t i t k i t i t i t i t i t i t p− − − − − − − − − − −

⎛ ⎞
⎜ ⎟

=⎜ ⎟
⎜ ⎟′ ′ ′ ′− − −⎝ ⎠L Y Y L Y Y Y Y Y Y… …

 

2 2
1 1 1 1 1 2 1 2

1 1
1 1 2 2

.
k p

k p

D D D D
D D D D− −

⎡ ⎤Λ Π Λ Π Λ Π Λ Π
= ⎢ ⎥ΛΠ ΛΠ ΛΠ ΛΠ⎢ ⎥⎣ ⎦

… …
… …

 

Hence, the difference moment conditions do not have full rank either because the first row is 
1

1
−Λ ΠΛ  times the second row. The same conclusion follows for the case without measurement 

errors, i.e., 0it =ε .  

Now suppose that there is no firm-specific effect. Then {( ) } 0it it itE γ ′− =Y V S  with 

, 2 , , 2 ,[ ]it i t i t k i t i t p− − − −
′′ ′ ′ ′=S L L Y Y… …  is a set of valid moment conditions. However, the 

reduced rank is still a problem as the Jacobian does not have full rank:  

( )
2 2

1 1 1 1 1 2 1 2
1 1

1 1 2 2

k p

k pit itE − −

′ ′ ′ ′⎡ ⎤Λ Π ΣΛ Λ Π ΣΛ Λ Π ΣΛ Λ Π ΣΛ
′ = ⎢ ⎥′ ′ ′ ′ΛΠΣΛ ΛΠ ΣΛ ΛΠΣΛ ΛΠ ΣΛ⎢ ⎥⎣ ⎦

V S
… …
… …

 

where the first row is 1
1

−Λ ΠΛ  times the second row.  

Now consider 1

2

it i i
it it it it it it

it i i

B
B

B
⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤

= Λ + + + = Λ + + +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

L L L
F υ ε F υ ε

Y Y Y
 that nests models 

where some of the inputs can response contemporaneously to changes in productivity (the matrix 
B is square). This modification also results in level and difference moments not having full rank 
because the structure of the moment conditions is not changed. For example, consider the 
difference moment conditions and find that the Jacobian is:  

( )
2 2

1 1 1 1 1 2 1 2
1 1

1 1 2 2

k p

k pit it

D D D D
E

D D D D− −

⎡ ⎤Λ Π Λ Π Λ Π Λ Π
′−Δ = +⎢ ⎥ΛΠ ΛΠ ΛΠ ΛΠ⎢ ⎥⎣ ⎦

V S
… …
… …
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1 1
1 3 1 3 1 4 1 4

2 2
3 3 4 4

k p

k p

D D D D
D D D D

− −

− −

⎡ ⎤Λ Π Λ Π Λ Π Λ Π
+ ⎢ ⎥Λ ΛΠ Λ ΛΠ⎢ ⎥⎣ ⎦

… …
… …

,  

where ( )it itEυ ′Σ = υ υ , 3 1( )D I Bυ ′= − Π Σ  and 4 2( )D I Bυ ′= − Π Σ . This matrix does not have full 

rank because the first row is equal to 1
1

−Λ ΠΛ  times the second row. ■ 

 
Proof of Proposition 6.  
It is shown in Proposition 5 that level and difference moment conditions yield the same Jacobian 
matrix: 

2 3 3 4 1

1 2 2 3 1

( ) ( ) ... ( )
...

d d

d d

D +

−

⎡ ⎤Ψ Γ − Γ Ψ Γ − Γ Ψ Γ − Γ
= ⎢ ⎥Γ − Γ Γ − Γ Γ − Γ⎣ ⎦

� � � � � �
� � � � � � , 

where 1[0 ]p mI + −Ψ ≡ . Given assumptions of the problem, identification of the Blundell-Bond 

estimator requires that ( ) 2( ) 1rank D m p= + − .  

Observe that 1 0( )k
k k I+ ′Γ − Γ = ϒΠ −Π Γ ϒ� � . Consider matrix 12

22

0 0
0 0

P
Π⎡ ⎤

= Ψ ⎢ ⎥Π⎣ ⎦
. 

Multiply the second row of D by P and subtract from the first row of D. Denote the resulting 
matrix with D1:  

†
* 1
1

2 1
0 0 0

1 2 1
0 0 0

2 * †
0 0 0 1 1

( ) ( ) ... ( )
( ) ( ) ... ( )

( ) ( ) ... ( )

d

d

d

D
D

I I ID
I I I

I I I D D

−

−

−

⎡ ⎤′ ′ ′ΦΠ −Π Γ ϒ ΦΠ −Π Γ ϒ ΦΠ −Π Γ ϒ= =⎢ ⎥
′ ′ ′ϒΠ −Π Γ ϒ ϒΠ −Π Γ ϒ ϒΠ −Π Γ ϒ⎢ ⎥⎣ ⎦

ΦΠ⎡ ⎤ ⎡ ⎤′ ′ ′= − Π Γ ϒ Π −Π Γ ϒ Π −Π Γ ϒ =⎢ ⎥ ⎣ ⎦ϒΠ⎣ ⎦�����������	����������
�	


 

where 13

23

0 0
0 0

Π⎡ ⎤
Φ = Ψ ⎢ ⎥Π⎣ ⎦

. Observe that  

* †
1 1 1( ) ( ) min{ ( ), ( )}rank D rank D rank D rank D= ≤  and 

13 33

23 33*
1

12 13

22 23

0 0
0 0

( )
0
0

rank D rank rank m n

⎛ ⎞Π Π⎡ ⎤⎡ ⎤
Ψ⎜ ⎟⎢ ⎥⎢ ⎥Π ΠΦΠ⎛ ⎞⎡ ⎤ ⎣ ⎦⎜ ⎟⎢ ⎥= = ≤ +⎜ ⎟⎢ ⎥ ⎜ ⎟⎢ ⎥ϒΠ Π Π⎡ ⎤⎣ ⎦⎝ ⎠ ⎜ ⎟⎢ ⎥⎢ ⎥⎜ ⎟Π Π⎢ ⎥⎣ ⎦⎣ ⎦⎝ ⎠

.  

Hence the model can be identified if 2( ) 1 2 1m n p m n p m+ ≥ + − ⇔ ≥ + − . ■ 
 
Proof of Proposition 7.  
Order entries of Xt so that the first element in Xt (and Gt) is output y. Without loss of generality 
suppose that there is only one freely-adjusted input l (labor) such that the first-order condition 
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with respect to this input is t t ty l wφ− =  where φ  is some constant, t w tw e= X  is an exogenous 

shock, and ew is the selection vector (i.e., ew is equal to one at the position of wt in Xt and zero 
otherwise). Also, without loss of generality, assume that all other inputs are predetermined. 
Define yΠ  and lΠ  as rows of the matrix Π  that correspond to the output yt and the freely 
adjusted input lt. By (43),  
 1 1( ) ( )y l y l

t t t t t w t w t w tB B y l w e e e Bφ φ φ− −Π − Π + − = − = = = Π +X υ X X υ .  

Since this holds for any Xt and υt, ( )y l
weφΠ − Π =  and ( )y l

wB B eφ− = . It follows that 

12 12 0y lφΠ − Π =  and 13 13 33
y l

weφΠ − Π = Π . To a first-order log-linear approximation, production 

(revenue) function t L t t ty l K aα α= + +  imposes another restriction on Π : 

13 13 33 23
y l

L aeα αΠ − Π − Π = Π  and 12 12 22
y l

Lα αΠ − Π = Π . Using these restrictions and the proof of 

Proposition 6, one finds that the rank of the Jacobian matrix D is: 

13 33

23 33*
1

12 13

22 23

1
13 23 3313 33

23 3323 33

13 2312 13

12 13

22 23

0 0
0 0

( ) ( )
0
0

0 ( )0
00
0

0

L

L

ll

yy y

l l

rank D rank D rank

rank rank

φ α

φ
φ α

α

α

−

−

⎛ ⎞Π Π⎡ ⎤⎡ ⎤
Ψ⎜ ⎟⎢ ⎥⎢ ⎥Π Π⎣ ⎦⎜ ⎟⎢ ⎥≤ = ⎜ ⎟⎢ ⎥Π Π⎡ ⎤⎜ ⎟⎢ ⎥⎢ ⎥⎜ ⎟Π Π⎢ ⎥⎣ ⎦⎣ ⎦⎝ ⎠

Π − Π Π⎛ ⎞Π Π
⎜ ⎟ Π ΠΠ Π⎜ ⎟
⎜ ⎟ Π − Π= =Π Π
⎜ ⎟
Π Π Π⎜ ⎟

⎜ ⎟Π Π⎝ ⎠

1
13 23

22 23

L

l
φ α α−

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟− Π
⎜ ⎟⎜ ⎟Π Π⎝ ⎠

21 1
33

23 3323 33

3333

3333

22 2322 23

0 ( ) 0 0
00
0 2( ) 20
00

L La w

ww

aa

e e

rank rank e p me
ee

φ α φ α− −⎛ ⎞− Π ⎛ ⎞
⎜ ⎟ ⎜ ⎟Π ΠΠ Π⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= = Π ≤ + −Π
⎜ ⎟ ⎜ ⎟ΠΠ⎜ ⎟ ⎜ ⎟

⎜ ⎟⎜ ⎟ Π ΠΠ Π ⎝ ⎠⎝ ⎠

 

The last equality follows from 33Π  being diagonal. Since the rank is less than 2(p+m)-1, the 

estimator is not identified. ■ 
 




