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The Local Average Treatment Effect (LATE) interpretation of the IV estimates of the returns 
to schooling is becoming increasingly popular. Typically, researchers reporting LATE 
estimates do not provide systematic evidence that there is substantial heterogeneity across 
different ability levels in returns, and without such evidence, the LATE interpretation is short 
of being compelling. The recent abolition of Grade 13 in Ontario’s secondary school system 
provides a unique opportunity to measure the benefits of an extra year of high school for 
high-ability students (those bound for college), rather than dropouts. I present a simple factor 
model which allows the value-added of Grade 13 (in terms of achievement) to be estimated, 
generalizing the standard difference-in-differences estimator to correct for heterogeneity in 
ability measurement across college subjects. The main finding is that the estimated return to 
an extra year of high school in terms of human capital is small for these high-ability students: 
students coming out of Grade 13 have a 2.2 point advantage (on a 100 point scale) over 
students from Grade 12, the estimated return to Grade 13 being around 2 percent. This 
evidence indicates that there is substantial heterogeneity in the return to an additional year of 
high school in the direction assumed in the prior literature. 
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1 Introduction

Since Angrist and Krueger’s landmark 1991 study of the returns to an additional year of schooling,

a number of economists have found surprisingly high rates of return to education. For example,

Card (2001) lists eight credible studies using features of the school system as instruments, finding

returns in excess of 10 percent; these IV estimates are higher than or equal to the corresponding OLS

estimates.1 Such findings have led economists — following Imbens and Angrist (1994) — to interpret

the IV estimates as giving the Local Average Treatment Effect (LATE): in general, if there is

heterogeneity within a population in the response to a treatment, then the IV estimate will only

capture the response from individuals who were affected by the instrument. Lang (1993) and Card

(1995) provide an economic justification for the IV-estimate LATE interpretation in the context of

estimating the return to schooling: the instruments used in the literature could affect portions of

the population with a higher-than-average return to schooling (higher-than-average discount rates),

resulting in finding IV estimates higher than OLS estimates (higher than the population average

return to schooling). This phenomenon has been labelled ‘discount rate bias’ by Lang (1993).2

Since the instruments used in the literature mainly affect potential school leavers (dropouts),

high returns to education from the IV literature are often linked to students with low educational

attainment.3 If there were no heterogeneity in the response to the treatment, then the LATE justifi-

cation for differences in OLS and IV estimates of the return to schooling would appear questionable

(in this case, any LATE should give us the Average Treatment Effect). In particular, the Lang and

Card models would not explain these differences.

Although the LATE interpretation of the IV estimates of the return to education is increasingly

popular, researchers reporting LATE estimates typically do not provide systematic evidence of

substantial heterogeneity in the returns to schooling. Some studies (e.g. Aavik, Salvanes and Vaage

1Since ability is usually omitted from standard Mincer’s (1974) earnings equations and since ability is expected
to be positively correlated with earnings and schooling, estimated returns to schooling from OLS regressions (in the
absence of any other problems) should be upward-biased. If the IV estimate represents the population average return
to education and the only problem with the OLS estimation is omitted variables, then we would expect OLS estimates
to be higher than the IV estimates.

2A necessary condition for this phenomenon is that the return to schooling declines as schooling increases. See
Angrist and Krueger (1999) and Card (1999) for discussions of discount rate bias.

3For example, Angrist and Krueger (1991), Harmon and Walker (1995), Staiger and Stock (1997), Meghir and
Palme (2005), and Oreopoulos (2006) use either reforms or variables (e.g. quarter of birth) affecting the minimum
legal number of years of schooling of individuals as an instrument.
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2003) find evidence of heterogeneity in the returns to schooling across different levels of education

but these pieces of evidence do not suggest heterogeneity within a given level of education.4 Without

such evidence, Lang and Card’s LATE interpretation is plausible but short of being compelling.

In this paper, I investigate the impact of an extra year of schooling on a group of students

which, despite its size, has attracted little attention in the literature. Most studies concerned

with estimating the return to secondary education concentrate on low educational attainment,

representing the left tail of the academic ability distribution. Here, I focus on students who will

attend university — the right tail of the ability distribution.5 ,6 Since high school serves mainly as

college preparation for college-bound students, I concentrate on college academic performance as

means of capturing the value-added associated with an extra year of high school.7

A recent reform of the Ontario Secondary School (OSS) curriculum provides a unique oppor-

tunity to capture the benefit of an extra year of schooling for high-ability students, allowing me

to analyze the value-added of the final year of high school for students who will attend university.

Motivated by a desire to conform with a majority of North American secondary school curricula and

by the possibility of lowering costs in the educational system, the Ontario government announced

in 1997 that it would compress its secondary school curriculum. Thus, starting in 1999, students

were expected to graduate from high school after four years (i.e. after Grade 12) instead of five

(after Grade 13). In 2003, as a consequence of the abolition of Grade 13, two different groups of

students graduated from Ontario high schools and entered university simultaneously so that On-

tario universities had students with either four or five years of high school in their classrooms at

the same time, starting in September 2003.8

If the reform could be thought of as a random experiment, then simply comparing students’

university performance would capture the value-added of an extra year of high school. But im-

portant features of the reform prevent us from measuring the return to Grade 13 using such an

4Meghir and Palme (2005) present results for which a sample was divided into high- and low-ability students.
They do not find significant differences in the return to schooling between high- and low-ability for male students.

5Note that a majority (more than 55%) of Ontario students will now graduate from either college or university.
In contrast, the dropout rate among 20 year-olds in Ontario is about 10%.

6One paper which also focuses on university-bound students is Krashinsky (2006). Krashinsky (2006) and this
present paper both look at the impact of the same Ontario Secondary School reform on students’ university perfor-
mance. An important difference between the two papers is that students studied in Krashinsky (2006) seem to have
lower academic ability than students in this study.

7Since the outcome variable studied in this paper is academic performance and not earnings, I will refer to the
benefit of schooling as “the value-added of” and not “the return to” schooling in order to avoid any potential confusion.

8For this reason, the cohort of 2003 high school graduates was known as the Ontario “Double Cohort.”
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estimation strategy. First, it is likely that the reform had behavioural effects which could lead

to serious estimation biases if not taken into account. Students from the double cohort expected

that university admission standards would increase dramatically when the two cohorts of students

graduated from high school. It is possible that some students who were expected to graduate from

Grade 13 in 2003 ‘fast-tracked’ high school and graduated a year early in order to avoid having to

face the increased competition for university places. As a result, these students would be missing

when comparing the performance of Grade 12 students to Grade 13 students in the double cohort.

If students who succeeded in ‘fast-tracking’ were better-than-average students, a university per-

formance comparison of Grade 12 and Grade 13 students would lead to a biased estimator of the

value-added of Grade 13. In particular, we could incorrectly fail to reject the null hypothesis of

zero value-added of Grade 13.

Second, the 1997 reform did not affect subjects in a uniform manner. The compression of

the secondary school curriculum clearly affected the delivery of material for some subjects and

not others. This heterogeneity in treatment across subjects allows me to circumvent the problem

associated with comparing two potentially different student populations. By observing students’

university performance in at least two subjects (for example, mathematics versus biology), one of

which was not affected by the reform, it becomes possible to control for potential differences in

ability across groups and to get identification of the value-added of Grade 13.

Third, if ability were measured in the same way across subjects, one could use standard

difference-in-differences techniques to capture the value-added of Grade 13. This is likely to be

an unrealistic assumption. To account for this problem, I present a simple and flexible factor

model which takes into account the possibility that students might differ in ability across groups

but also the possibility that subjects do not measure ability in the same way. In the end, the iden-

tified value-added from the factor model is a generalization of the standard difference-in-differences

estimator which corrects for heterogeneity in ability measurement across subjects.9 The model also

makes it possible to test for other potentially important effects of the reform, such as the presence

of high school grade inflation.10

9An implicit assumption made in this paper is that the amount of time spent studying each subject was not affected
by the reform. This is a possible caveat. However, a study by King et al. (2004), which looks at the evolution of
double cohort students in high school, shows that a majority of university-bound students spend less than 11 hours
a week on homework. This suggests that the study time constraint is not binding.

10The model is estimated using a flexible GMM estimation. This way I can relax the normality assumption of the

3



The main finding of the paper is that, for these high ability students, the estimated (human

capital) return to an extra year of high school is small: students coming out of Grade 13 have a 2.2

point advantage (on a 100 point scale) over students from Grade 12. To put this in perspective,

the standard deviation, in points, is about 13.11 We can convert this value-added of Grade 13

into a LATE estimate of the return to Grade 13. According to the literature, a one-point increase

in GPA translates into a 9-10 percent increase in earnings;12 using these estimates, the return to

Grade 13 would be around 2.2 percent, which is smaller in order of magnitude than the LATE and

OLS estimates of the returns to schooling from the previous literature. In particular, this estimate

is far below the 6-12 percent found in Krashinsky (2006) who looks at the impact of the same

reform on university-bound students with lower high school averages than students studied in this

paper.13 As such, the estimated LATE of this study provides solid evidence that there is substantial

heterogeneity in the return to an additional year of high school in the direction suggested by Lang

and Card. Further, it underlines the importance of the LATE interpretation in the estimation of

the return to schooling.

This paper is organized as follows: I present characteristics of the 1997 Ontario Secondary School

Reform which allow for the identification of the value-added of Grade 13 in the next section. Data

are described in Section 3. Section 4 presents results from estimating the value-added of Grade

13 using popular estimation methods such as simple mean comparison, difference-in-differences

and OLS regression. Shortcomings of these methods in the context of the OSS Reform are then

discussed briefly. A model which accounts for these shortcomings is introduced in Section 5, and

parameters identification and estimation strategies are presented in sections 6 and 7. Key results

are reported in Section 8. Finally, robustness of the results is discussed in Section 9 while Section

10 concludes.

observed variables, which is rejected by the data.
11The effect size is 0.17σ. Krashinsky (2006) finds effect sizes above 1.2σ. See Angrist and Lavy (1999), Krueger

(1999), and Hoxby (2000) for dicussions on effect size in the context of class size reduction.
12See Jones and Jackson (1990) and Loury and Garman (1995).
13Comparing my results to Krashinky’s (2006) is certainly more sensible than comparing to studies found in Card

(2001) since we both look at the effects of the same reform on different student populations, but both comparisons
suggest significant heterogeneity in the returns to schooling.
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2 The Ontario Secondary School Reform

This section highlights features of the Ontario Secondary School (OSS) curriculum reform that will

help in identifying the value-added of Grade 13.

In 1997, the provincial government of Ontario announced that it would compress its secondary

school curriculum from five to four years. This reform would bring Ontario into line with most

surrounding provinces and potentially lower the costs of the educational system in a significant

way. Thus, starting in 1999, students were expected to graduate from high school after four years

(after Grade 12) instead of five. In 2003, the first cohort of students from the new curriculum

graduated from high school, and in the same year, Grade 13 was also abolished. Thus, in 2003,

Ontario colleges had students with two different high school backgrounds in the same classes: some

students had four years of high school (henceforth referred to as ‘G12’ students), while others had

five (‘G13’ students).

If assignment to G12 or G13 were random, then performance of these two groups should capture

the benefits of an extra year of schooling. In practice, selection issues might arise, making the impact

of the reform harder to identify. Fortunately, other characteristics of the reform will help us to

overcome selection issues, beginning with the intensity of the treatment effect.

The intensity of the treatment effect on university preparation should not be seen as being

uniform across subjects: the reform did not simply force students to take one less year of schooling.

Even though students were now expected to graduate after four years instead of five, they still

had to complete the same number of credits (30) as their predecessors in order to satisfy the OSS

Diploma requirements.14 We might think that students from the two curricula (G12 and G13)

learned the same material. But college-bound students — who now represent a majority of students

— also need to satisfy college admission requirements, which depend on the program they plan to

attend.15

A quick inspection of changes in two subject-specific high school curricula (biology and math-

ematics) illustrates the heterogeneity across subjects in the effects of the reform on the amount of

material taught to university-bound students. Figure 1 illustrates the transition between the old

14The Ontario Ministry of Education and Training (1999) defines a credit as “a means of recognition of the successful
completion of a course for which a minimum of 110 hours has been scheduled.”

15 In a recent study presented by King et al. (2002), more than 80% of Grade 11 students interviewed were planning
to attend college (31.1%) or university (50.5%).
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Figure 1: Reform of the Biology Sequence for University-Bound Students

and new biology course sequences imposed on typical university-bound life-science students.16 Prior

to taking a biology course, both groups should have successfully completed Grade 9 and Grade 10

Science courses. Despite the reform, the amount of biology material taught in high school is similar

for both groups. G12 students have to take essentially the same two courses which were offered in

the G13 program.17

While the impacts of the reform on biology and on a majority of subjects were minimal, this

is not true for mathematics and the English course sequences. For these subjects, obtaining the

senior high school year credit requires a sequence of prerequisites starting in Grade 9. Figure 2

illustrates the transition from the G13 to G12 curriculum of the mathematics sequence followed by

a typical university-bound high school student. The reform clearly affected the sequence of courses.

Under the new system, students are now expected to take four courses of mathematics instead of

five. The amount of material covered in class was affected: less material was covered, and probably

less time was spent on each topic.18

If the reform caused behavioural responses from students of the form discussed in the Intro-

16All students interested in pursuing a life-science university education should complete a sequence of two biology
courses prior to attending university. This was true for students enrolled in the G13 curriculum and it is still true
today for G12 students.

17Comparison of covered-topics description of these two biology sequences confirms the similarity between the two
sequences. See Ontario Ministry of Education (1987, 2000b).

18Comparison of covered-topics description of these two mathematics sequences suggests that some material which
used to be covered in the late stage of the G13 sequence (e.g. integration) tended not to be covered in the G12
sequence. See Ontario Ministry of Education (1985, 2000a).
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Figure 2: Reform of the Mathematics Sequence for University-Bound Students

duction, then the experiment can no longer be assumed to be random and identification of the

value-added, by comparing grades in one subject, is impossible. The heterogeneity in the treat-

ment intensity will be very useful in identifying the value-added of Grade 13 in the presence of

selection issues. By observing students’ university performance in at least two subjects — biology

and mathematics — one of which was not affected by the reform, it becomes possible to control for

potential unobserved differences across groups and to get identification of the value-added of Grade

13.19

3 Data

The student data used in this study are provided by the Faculty of Arts and Science of the Univer-

sity of Toronto, one of the largest universities in North America. These administrative data con-

tain information about students’ first-year university academic performance (e.g. grades, dropped

courses, program20), and pre-admission academic history (e.g. high school average, identification of

secondary school institutions attended, and an indicator of secondary school curriculum graduated

from — G12/G13). The data also contain each student’s date of birth, gender, and her/his student

19Even if the biology curriculum was not affected by the reform, the amount of biology-specific human capital
acquired by the students could be affected if study-time constraints were affected. However, variation in time inputs
on homework does not seem to have been important. This supports the hypothesis that the amount of biology-specific
human capital acquired by the students was not affected by the reform.
20 In 2003, students interested in studying at the University of Toronto Faculty of Arts and Science had to apply

to one of the following programs: Commerce, Computer Science, Humanities and Social Sciences, and Life Sciences.
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number.

One advantage of using administrative data for this type of study is that the observations are

practically error-free. For example, since we have an indicator of the secondary school curriculum

attended by each student (G12/G13 indicator), we do not have to rely on her date of birth to decide

which curriculum the student graduated from, though the date of birth allows us to concentrate on

the population we are most interested in, namely students born in 1984 and 1985.

In order to capture the value-added of Grade 13, I analyze the effects of Grade 13 on mathematics

performance. If there really is a positive effect of Grade 13 on university preparation, we would

expect to see the strongest effects on mathematics performance since it is one of the subjects that

was most affected by the reform.

I restrict the sample to students enrolled in the Life Sciences program. The advantages of doing

so are numerous. First, this is a large program which allows the researcher to observe students

taking both a course affected by the reform — mathematics — and another which was not — biology.

Second, these subjects are likely to be “independent” in that knowledge of biology should not affect

a student’s knowledge of mathematics and vice versa.21

The third advantage of focusing on Life Sciences is that students interested in a Life Sciences

discipline have to complete a list of compulsory courses during their first year of university. This

allows me to alleviate course selection issues. All first year students must take the same biology

course (BIO150Y), and almost all programs require an introductory calculus course (MAT135Y).

About 90% of students for whom we observe a grade for BIO150Y also had a grade for MAT135Y.22

Finally, Life-Sciences students’ backgrounds, except for G12/G13 differences, are similar. Be-

fore joining the Life Sciences program, G12 students must have successfully completed Advanced

Functions and Introductory Calculus while G13 must have Calculus. These two courses are the

standard university-preparation courses of their respective curricula. Students should also have a

senior high school biology credit.23 Hence, students are expected to have completed both course

sequences of their respective curriculum; these are shown in Figures 1 and 2.

21English was not analyzed in this paper for this reason. I could not find a program in which we observe students
taking both English and another subject “independent” of it.
22This is true for both groups of students. It is not surprising to observe such a high proportion of students taking

mathematics as well as biology since students may be uncertain about their exact preferences in terms of field of
specialization and might simply insure against this uncertainty.
23Most fields in the Life Sciences (39 out of 43) require students to have a senior high school biology credit.
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Table 1: Descriptive Statistics
G12 (N=502) Mean Std. Dev. Min Max Mean Diff. (G13-G12)
Age 18.2 0.3 17.8 18.7 (-)
Female 0.64 0.5 0 1 (-)
HS Average 90.8 3.4 83.0 98.8 (-)
Number of Courses 5.8 0.6 3 8 (-)
G13 (N=436) Mean Std. Dev. Min Max Mean Diff. (G13-G12)
Age 19.2 0.3 18.8 19.7 1.0
Female 0.67 0.5 0 1 0.03
HS Average 90.9 3.2 83.7 99.2 0.01
Number of Courses 5.7 0.5 4 7 -0.1

Table 1 presents descriptive statistics on these students. Aside from the age difference, the two

groups of students seem very similar: they take the same number of university courses and are both

composed of a majority of female students with excellent high school averages.24 These students

seem to have higher academic ability than students from Krashinsky (2006). Students studied in

Krashinsky (2006) have a high school average around 84 percent while students studied in this

paper have a 91 percent high school average. This difference is considerable: the ‘average’ student

found in Krashinsky (2006) has a high school average close to the minimum average found in this

study (83 percent) and about two standard deviations below this group’s average.

4 Estimating the Value-Added of Grade 13

Consider the situation where two factors influence a student’s average mathematics performance

when comparing G12 and G13 — the curriculum taken and student ability. The expected difference

in mathematics performance (∆M ) could then be characterized by the sum of the value-added of

G13 (∆V ) and the difference in average initial level of ability between G12 and G13 (∆η).25 Thus,

∆M = ∆V +∆η. (1)

If the OSS reform could be thought of as a random experiment, we might expect the difference in

the average level of (initial) ability to be negligible (∆η ' 0). Then the difference in mathematics
24Twelve students were excluded from the original sample since they had grades below 30%. See Section 9.
25The initial level of ability is the general level of academic acquired prior to secondary schooling.
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performance would fully capture the effect of the reform:

∆M = ∆V .

Table 2 presents the students’ performance in MAT135Y. Students from the G12 curriculum do

not do much worse than students with one more year of high school. In fact, we cannot reject the

hypothesis that both groups perform at the same level. G13 students do better than G12 students

Table 2: University Mathematics Performance
Mathematics Mean Standard Error
G13 (N=436) 70.61 0.62
G12 (N=502) 70.16 0.59
G13-G12≡ ∆M 0.45 0.86

which is what we would expect. The results nevertheless suggest that the value-added of Grade

13 is very small, if not zero, since the difference in performance is not statistically significant. If,

however, the randomness assumption of the experiment is violated, then our results are no longer

valid. In particular, if the two groups have different levels of ability, then the effect of Grade 13

could be diluted by the difference in ability.

Notice that in equation (1), if both ∆V and ∆η are different from zero, there is no way to

disentangle the value-added from the difference in ability. In particular, if G12 students have a

higher average level of ability than G13 students, then G12 students’ ability could compensate for

lack of knowledge usually acquired in Grade 13.

4.1 The Ontario Double Cohort

This subsection discusses how the randomness assumption of the double cohort experiment is

violated and why the value-added captured by simple mean comparison confounds the value-added

of Grade 13 with the difference in average ability between Grade 12 and Grade 13 students.

Since two cohorts of students were expected to graduate from secondary school simultaneously

in June 2003, the double cohort created an expected surge of applicants for post-secondary insti-

tutions for September 2003. We can see the dramatic increase in the number of Ontario university

applicants clearly in Figure 3. Between 2001 and 2003, the number of applicants (per year) in-
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Figure 3: Number of Ontario University Applicants (in thousands)

creased from about 60,000 to close to 102,000. This increase was expected both by students and

parents since the announcement of the reform (1997), and is likely to have given rise to behavioural

effects.

The expected increase in the number of applicants for 2003 led naturally to expectations of

increased competition for university admission. This led some students to try to avoid the double

cohort. For example, it was possible under the G13 curriculum to “fast-track” the program and

graduate after four years,26 with the fear of the double cohort probably encouraging some G13

students to try to fast-track and graduate in 2002 instead of 2003.

This idea is supported by Figure 3. The increase in the number of applicants between 2001

and 2002 in the figure is important. The number of applicants rose by about 16% (from 60,000 to

69,000), which is much larger than the average increase prior to 2001, suggesting that some G13

students successfully escaped from the double cohort.27 One could argue that mainly “high” ability

students were able to escape in this way. If high ability G13 students disappeared from the 2003

cohort, the average ability of 2003 G13 students would probably be lower than the average ability

of 2003 G12 students. Also, because of the double cohort, some G12 students were encouraged to

take five years to complete secondary school or to take some time off between secondary school

and university. Even if it might seem costly for a student to delay her university application, it

26Even though it was possible to fast-track secondary school, this was far from being common practice. Prior to
2002, around 8% of Ontario university students had graduated from high school after four years.
27Demographics cannot explain such increase. The number of 19 year-olds in Ontario increased by 3.4% in 2002.
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could be beneficial if she thought that there was a high probability that she would not be accepted

into her intended program due to the increased competition in admissions in 2003. If we think

that this behavior is more likely to occur among “low” ability students, then we have even more

reason to think that the groups of students present in 2003 are different not only in terms of the

curriculum they took but also in terms of their average ability level, in which case the estimator of

the value-added of Grade 13 would be biased downward when comparing mathematics performance.

Matching students’ university grades to their high school average, hoping to control for ability

differences across groups, would not alleviate the problem caused by the double cohort. This is be-

cause the increased competition for university admission might have also led to grade inflation.28 ,29

The model presented in Section 5 will explicitly take this potential problem into account.

4.2 Difference-in-Differences Estimation of the Value-Added

Observing more than one university outcome for each student can help to control for the difference

in ability. We could use biology as a proxy for ability and regress the university mathematics grade

on the university biology grade and a dummy variable equal to 1 for G13 students and 0 otherwise:

Mi = α+G13 ∗ Ii + βBi + εi

where Mi is the student’s university mathematics grade, α is a constant, Ii is an indicator variable

equal to 1 if the student is from the G13 curriculum and Bi is the student’s university biology

grade. G13 measures the value-added of Grade 13.

Table 3 presents OLS regression results, suggesting that the value-added of Grade 13 is small

but significant. They also suggest that the two groups are different since the estimated value of

Grade 13 is close to four times the estimated value when comparing the mathematics performance

through a simple means comparison, as in Table 2 (1.68 vs 0.45). A potential problem with the

OLS interpretation is that we assume that biology measures ability perfectly. If not, the measure

28 In this paper, grade inflation means that one group has been graded more (or less) severely than the other. One
type of grade inflation that cannot be identified here arises if both groups had their grades increased by a same
amount.
29G12 students might have been treated favorably relative to G13 by high school teachers to compensate for the

stress from being the first cohort of the new secondary school curriculum. Alternatively, G13 that finished high school
might have been favored relative to G12. This could be due to the absence of high ability G13 students from the
2003 cohort which could have made it easier to get good high school grades for the G13 students of this cohort.
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Table 3: OLS Regression Results
Dependent variable: University Math. Grade
Independent variables Coefficient Standard Error
Univ. Bio. Grade 0.84 0.03
G13 1.68 0.63
α 6.40 2.25
R2 0.47
N 938

of the value-added of Grade 13 will be biased.30

Since the biology sequence is assumed not to have been affected by the reform, we can use the

difference in average biology grades (∆B) as a measure of the difference in ability (∆η)

∆B = ∆η (2)

We can then construct a difference-in-differences estimator using equations (2) and (1):

∆DD ≡ ∆M −∆B (3)

= ∆V +∆η −∆η

= ∆V

The difference between differences in average university mathematics grades (∆M ) and in average

biology grades (∆B) would give us the value-added of Grade 13 (∆V ). Table 4 presents the difference

in biology performance that we use to control for ability differences in the standard difference-in-

differences estimator. A t-test suggests that G12 students do significantly better in biology than

G13 students, which also suggests that we are facing two different groups in terms of ability levels.

Table 4: University Biology Performance
Biology Mean Standard Errors
G13 (n=436) 74.31 0.51
G12 (n=502) 75.79 0.48
G13-G12≡ ∆B -1.48 0.70

Table 5 presents the difference-in-differences estimate of the G13 value-added based on equa-
30The sign of the bias will depend on the groups’ relative performance in university biology. See Appendix A.2 for

details.
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tion (3). The difference-in-differences estimate is more than four times greater than the average

difference in mathematics performance. It is also statistically significant. The estimate is precisely

estimated but it is still small when compared to the students’ mathematics average (70.4) and

standard deviation (13.1).

Table 5: Difference-in-Differences Estimator
Math - Bio Mean Standard Errors
G13 (n=436) -3.70 0.48
G12 (n=502) -5.62 0.42
G13-G12≡ ∆DD 1.92 0.64

The average G12 student would have had a 2.7% increase in her mathematics performance in

the absence of the reform. For many students, this difference would not affect their GPA. Only

students close a grade cut-off (e.g. between an A and a B) might see their GPA suffer from missing

Grade 13.31

The difference-in-differences estimator is only valid if one of the following two assumptions holds:

1) if students’ average ability levels do not differ across groups or 2) if biology and mathematics

measure students’ ability in exactly the same way. To see that this is true, assume that biology

does not measure ability in the same way that mathematics does, so that

∆B = λB∆η (4)

where λB 6= 1. Then

∆DD = ∆M − λB∆η (5)

= ∆V +

¡
1− λB¢
λB

∆B (6)

where equation (6) is obtained using equations (1) and (4). If both assumptions fail (∆B 6= 0 and
λB 6= 1) then the difference-in-differences estimator will be biased. I have already shown that we
should be suspicious about the former assumption: I now show that we should also be wary of the

latter.

Intuitively, if mathematics and biology measure ability the same way, they should have the

31Grade B covers scores from 70 to 79. Grade A covers covers scores 80 and above.
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same relationship with a third measure of ability. For example, we should expect students’ biology

and mathematics grades to have the same covariance with their overall high school average. But

when we look at Table 6, we can see that the sample covariances between the high school average

and biology and mathematics differ. The difference is consistent across groups. The covariance

Table 6: Means and Covariances of Students’ Grades
G13 (n=436) Mean High School Biology Mathematics
High School 90.86 10.1

(0.2) (0.6)
Biology 74.31 16.7 114.1

(0.5) (1.6) (7.6)
Mathematics 70.61 20.5 91.5 167.8

(0.6) (2.1) (7.5) (11.3)
G12 (n=502) High School Biology Mathematics
High School 90.79 11.8

(0.2) (0.6)
Biology 75.79 20.6 115.3

(0.5) (1.7) (6.3)
Mathematics 70.16 24.3 101.0 176.3

(0.6) (2.1) (6.9) (10.1)

Note: Covariances are presented in the last three columns.
Standard errors are in parentheses.

between biology and high school is between 15 and 20 percent smaller than the covariance between

mathematics and high school (e.g. 16.7/20.5). Not only might the two groups differ in ability, but

the two measures of ability used to capture the value-added of G13 might not do so in the same

way.

Since we know that ∆B is negative, the sign of the bias will depend on whether λB > 1 or

λB < 1. If λB < 1, the difference-in-differences will be downward-biased, which could explain why

we have such a small estimate of the value-added of G13.

This section presented potential problems linked to using simple intuitive techniques (means

comparison, OLS estimation and difference-in-difference) when estimating the value-added of Grade

13. The next section presents a model which will be used to circumvent these important potential

problems. The model, despite its apparent complexity, will prove to be easily linked to the previous

estimation techniques.
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5 A Grading Policy Model

I model the relationship between human capital accumulation and academic performance in the

specific environment of the double cohort. In particular, the model shows how available observables

— university grades, high school grades, and high school curricula — can be linked. It is constructed

such that the estimator of the G13 value-added is a generalization of the standard difference-in-

differences estimator presented above.

Using information from a third measure of ability — a student’s high school average — the esti-

mator from grading policy model is able to account for differences in ability measurement between

mathematics and biology and incorporate these in the estimator. The model allows for grade in-

flation at the high school level, different levels of average ability across groups, and heterogeneity

of ability measurement across subjects.

The first step in constructing the model is to define the concepts involved in identifying the

effect of Grade 13 on student performance. This section introduces these concepts in the context

of a simple grading policy model before moving on to elaborate the model to be estimated.

5.1 Factors Influencing Student Academic Performance

In simple terms, a student’s grade can be thought of as the product of three factors: the student’s

academic ability, the school grading policy, and a curriculum effect.

Students begin high school with an initial level of general academic ability. Instead of seeing

this ability as solely defined by the individual’s innate characteristics or innate ability, we will view

it as the joint product of the individual’s own innate, acquired, and environmental characteristics.32

For example, genetics, acquired study habits, and family resources could represent three of these

attributes. Notice that they should all be considered to be student-specific characteristics which

combine to produce the student’s own general academic ability. Academic ability is assumed to be

partially unobservable; neither the econometrician nor teachers can perfectly measure it.33

A grading policy is a tool that teachers and professors use to signal (via a grade) a student’s

subject-specific human capital. Different subjects measure this human capital differently. If we

think that performance in each subject measures some aspect of general academic ability, we could

32See Cunha, Heckman, Lochner and Masterov (2005) for a discussion of life-cycle skill formation.
33All the econometrician observes are grades.
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think that they might measure different types of skill, in which case there could be different grading

policies for different courses. I assume that the grading policy is under the control of the teacher

or the professor.

Third, student performance is likely to be influenced by a group-specific curriculum effect when

compared to students with different school curriculum backgrounds. In the context of the OSS

reform, the difference in the curriculum effect between G13 and G12 students represents the value-

added of G13. The curriculum determines how much human capital a group will acquire during

high school. Its effect is not only group-specific but also subject-specific. This reflects the fact that

a curriculum change can affect some subjects more than others.

5.2 Model

I now present the model more formally. In order to do so, I first need to model the way that human

capital is accumulated through high school and university and then model how this human capital

is signaled by teachers at each of these levels.

5.2.1 Human Capital Accumulation

There are two institutions superscripted by uppercase I in the model through which students

accumulate subject-specific human capital: high school (I = H) and university (I = U). Assume

there are only two subjects S = {B,M}34 that a student takes in both high school and university.
Two groups of students take different curricula C = {G12,G13} while in high school, and are then
reunited in university. Hence, in general, model coefficients will have three different superscripts.

Student i is initially endowed with a level of general academic ability (ηi) and then accumulates

subject-specific human capital as she attends high school and university. While in high school, G13

students receive a treatment which affects the amount of mathematics-specific human capital they

acquire. G12 students do not receive the treatment, and high school biology is not affected by the

treatment. Hence, both groups are assumed to acquire the same biology material in high school.

By the end of students’ first year of university, they will have accumulated both biology-specific

and mathematics-specific human capital (respectively ηU,Bi and ηU,M,C
i ) discussed below.

34B stands for Biology while M stands for Mathematics.
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Equations (7) and (8) describe the human capital accumulation processes which will drive

students’ academic performance in university (denoted by the U superscripts on both left hand

side variables):

ηU,Bi = ηi + τH,B + τU,B (7)

ηU,M,C
i = ηi + τH,M,C + τU,M (8)

The first term on the right-hand side of each equation is the student’s initial level of general

academic ability, the second term is the amount of subject-specific human capital acquired through

high school (superscripted by H), and the third term is the amount of subject-specific human

capital acquired during first year of university (superscripted by U).

The amount of subject-specific human capital accumulated in high school and university (τH,B, τU,B,

τH,M,C , and τU,M ) should be seen as functions of the amount of material taught and the time spent

on the material.35 Since high school biology was not affected by the treatment, both groups of stu-

dents are assumed to acquire the same amount of biology-specific human capital in high school, so I

can suppress the curriculum superscript (τH,B,G13 = τH,B,G12 = τH,B). G12 and G13 students also

acquire the same amount of human capital in university (τU,B and τU,M ) since they are in the same

classes. In contrast, the amount of mathematics-specific human capital accumulated in high school

will depend on the curriculum attended by the student. Thus we might have τH,M,G13 6= τH,M,G12.

For this reason, the amount of mathematics-specific human capital accumulated by the end of the

first year of university (ηU,M,C
i ) will depend on the curriculum taken by student i.

5.2.2 Grading Policies

For each student, we observe three grades: 1) a mathematics university grade (M), 2) a biology

university grade (B) and, 3) an overall high school average (H). These grades signal the student’s

relative subject-specific levels of human capital when compared to her classmates. Since the two

groups are separated prior to university, high school grades only represent performance with respect

to the student’s own group (i.e. G12 or G13). For example, in high school biology, a teacher would

35This model does not disentangle the effects of ‘time spent on material’ from the effect of ‘more material’. One
could imagine τ = f (time,material), where both time and material have a positive effect on τH,M,C .
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Figure 4: Possible High School Grading Policies

compare a student’s level of human capital (ηi + τH,B) to the group average (EC [ηi] + τH,B ≡
η̄C + τH,B). Since students from the same group learn the same material, a student’s grade will

only depend on her initial general academic ability (ηi) compared to the group average (η̄
C).

The high school grading policies (for biology and mathematics) are assumed to be linear in

the student’s relative level of human capital (ηi − η̄C). As a consequence, the high school average
(HC

i ) is also a linear function of the difference between the student’s initial academic ability and

the average initial ability of the group she belongs to:

HC
i = πH,C + λH,C(ηi − η̄C) + εH,C

i

The slope and the intercept coefficients (respectively λH,C and πH,C) represent averages of slope

and intercept coefficients across high school subject grading policies. These coefficients are under

the teacher’s control. We can rewrite the high school average more simply as

HC
i = υH,C + λH,Cηi + εH,C

i (9)

where

υH,C = πH,C − λH,C η̄C .

Figure 4 illustrates possible high school grading policies for G12 and G13 students. Both the

intercept and the slope coefficients are allowed to vary across high school curricula. The difference

in υH,G13 and υH,G12 represents grade inflation. Grade inflation has two potential sources: one
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source comes from the way teachers link ability to grades, and is measured by πH,C and λH,C . The

other source comes from the student population within each group and is captured by λH,C η̄C .

This term captures the notion that the better are the students from a group, the harder it is to

achieve a high grade within this group. The slope coefficient (λH,C) represents the payoff to ability.

If λH,C = 0, then high school grades are distributed randomly across students and academic ability

plays no role. The error term (εH,C
i ) represents shocks due to measurement error and possible

shocks to student performance (e.g. bad luck or illness). εH,C
i is assumed to have mean 0 and is

uncorrelated with the student’s ability. Notice that only the left-hand-side variable of equation (9)

is observed.

In the same fashion, the university biology grading policy is given by

BC
i = πB + λB(ηU,Bi − η̄U,B) + εB,C

i (10)

Students are now compared to classmates from both groups. For this reason, we have η̄U,B and

not η̄U,B,C in the grading policy equation. I assume that professors do not discriminate against

students based on their high school background.36 The constant and the slope coefficients are

then assumed to be the same for both groups. Similar to the high school grading policy, the error

terms represent shocks that can be due to simple measurement error but also to temporary shocks

affecting students’ performance. These error terms are assumed to be uncorrelated with a student’s

ability but also uncorrelated with each other (E(εB,C
i , εH,C

i ) = 0). We can rewrite (10) more simply

as a function of the student’s initial level of general academic ability and the population average

initial level of general academic ability

BC
i = υB + λBηi + εB,C

i (11)

where

υB = πB − λB η̄.

η̄ represents the total population initial level of general academic ability. The difference between

the average biology performance (B̄G13 − B̄G12 = ∆B) is given by equation (4), i.e. ∆B = λB∆η.

36Typically, university professors do not know the high school background of individual students.
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The mathematics high school sequence was affected by the reform. Thus, we can imagine that

both the student’s initial level of human capital and her curriculum will affect her grade, yielding:

MC
i = πM + λM (ηU,M,C

i − η̄U,M ) + εM,C
i

or

MC
i = υM,C + λMηi + εM,C

i (12)

where

υM,C = πM − λM η̄ + λM
µ
τH,M,C − NG13

N
τH,M,G13 − NG12

N
τH,M,G12

¶
with NG13 being the number of G13 students and N is the total number of students (N = NG13 +

NG12). The last term of the constant, in parentheses, represents the effect of the curriculum on the

students’ performance. The difference between υM,G13 and υM,G12 represents the value-added of

Grade 13.

The grading policy model consists of equations (9), (11) and (12). We can easily see the

resemblance to a standard one-factor model where the driving factor is the initial level of general

academic ability (ηi). One necessary condition for identification of the factor model parameters

is that the latent variable (ηi) must be scaled to one observed variable. That is, the slope and

the intercept coefficients of one equation should be predetermined. Usually, the choice of the

benchmark is irrelevant, but since I am interested in the difference between υM,G13 and υM,G12, a

convenient normalization is to set the constant and slope coefficient of the mathematics grading

policy for G12 students (υM,G12 and λM ) equal to 0 and 1 respectively. This normalization implies

that mathematics professors compensate students such that the direct grade inflation (the grade

inflation under their control) cancels out the indirect grade inflation (due to the population average

ability). Notice that, after the normalization, E(MG13
i −MG12

i ) = ∆V +∆η, just as in equation

(1).
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Overall, the grading policy model can be summarized in six equations:

HG13
i = υH,G13 + λH,G13ηi + ε

H,G13
i (1.9a)

HG12
i = υH,G12 + λH,G12ηi + ε

H,G12
i (1.9b)

BG13
i = υB + λBηi + εB,G13

i (1.11a)

BG12
i = υB + λBηi + εB,G12

i (1.11b)

MG13
i = ∆V + ηi + εM,G13

i (1.12a)

MG12
i = ηi + εM,G12

i (1.12b)

where only the left-hand sides of each equation are observable.

6 Identification

The grading policy model is summarized by a system of equations in which the correlation between

the observables (the left-hand-side variables) is due to a single common factor (ηi). In fact, the

only difference between this model and a pure factor model is that I allow the equations to have

constant terms. The identification strategy follows the approach used in the factor models literature

closely.37 In order to identify the G13 value-added, I will use the basic hypothesis of these models

which stipulates that, if the model is correct, the covariance matrix (ΣC) of curriculum C’s observed

grades should be exactly reproduced by the covariance matrix implied by the model (Σ(Θ)C), so

that

ΣC = Σ(Θ)C (13)

where

ΣC =


var(HC

i ) cov(HC
i ,B

C
i ) cov(HC

i ,M
C
i )

cov(HC
i , B

C
i ) var(BC

i ) cov(BC
i ,M

C
i )

cov(HC
i ,M

C
i ) cov(BC

i ,M
C
i ) var(MC

i )


37See Hayduk (1987) or Bollen (1989) for details.
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and

Σ(Θ)C =


[λH,C ]2σ2

ηC
+ σ2

εH,C λH,CλBσ2
ηC

λH,Cσ2
ηC

λH,CλBσ2
ηC

£
λB
¤2
σ2
ηC
+ σ2

εB,C λBσ2
ηC

λH,Cσ2
ηC

λBσ2
ηC

σ2
ηC
+ σ2

εM,C


where σ2

ηC
= var(ηC) and σ2

εB,C = var(εB,C). We should expect to have the same kind of relation

between the observed-grades’ first moments, µC , and the first moments implied by the model,

µ(Θ)C . Hence:

µC = µ(Θ)C (14)

where

µC =


E(HC

i )

E(BC
i )

E(MC
i )

 and µ(Θ)C =


υH,C + λH,C(EC [ηi])

υB + λB(EC [ηi])

IG13∆V + (EC [ηi])

 ,
where IG13 is an indicator variable equal to 1 if the student is a G13 student and EC [ηi] is the

average level of initial general academic ability of group C. The model has a total of 18 measured

moments and there are 17 coefficients to be estimated (∆V , EG13 [ηi], EG12 [ηi], σ
2
ηG13

, σ2
ηG12

, υB,

λB, υH,G13, υH,G12, λH,G13, λH,G12, σ2
εH,G13 , σ2εH,G12 , σ2εB,G13 , σ2εB,G12 , σ2εM,G13 , and σ2εM,G12).38 The

plausible ‘no-discrimination’ (based on high school curriculum) assumption about the university

grading policies and the normalization of the G12 university mathematics grading policy allow for

the identification of the model parameters. The simplicity of the model makes it easy to write the

parameters of interest as functions of population moments.39 The slope coefficient of the biology

grading policy is

λB =
cov(HC

i ,B
C
i )

cov(HC
i ,M

C
i )
. (15)

Looking ahead, a testable restriction of the model is that the ratio of covariances in equation (15)

should be the same for both groups of students.

The value-added of G13 is

∆V = ∆M − cov(HC
i ,M

C
i )

cov(HC
i ,B

C
i )
∆B (16)

38Each group has six second-moments and three first-moments.
39For simplicity, I only present explicit expressions of the main coefficients of interest. See Appendix A.1 for more

details about the identification of the parameters.
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where ∆M = E(MG13
i )−E(MG12

i ) and ∆B = E(BG13
i )−E(BG12

i ). Equation (16) is equation (5)

written differently since the ratio of the covariances is simply λB. The estimator of the value-added

is thus a modified difference-in-differences estimator allowing for different measures of ability across

courses.

We can link (16) to the naive estimators presented above. If biology and mathematics were to

measure ability in exactly the same way, then equation (16) would become the standard difference-

in-differences estimator. If the two groups of students were identical, then equation (16) would

become a simple mean comparison. Finally, if students’ high school and biology grades were

identical (HC
i = BC

i ), then equation (16) would give the OLS estimator.

The groups’ average initial ability levels (EC(ηi)) are defined by:

EG12(ηi) = E(MG12
i ) (17)

EG13(ηi) =
cov(HC

i ,M
C
i )

cov(HC
i , B

C
i )
∆B +E(MG12

i ). (18)

From equations (17) and (18), we can see that the student performance in the university biology

course will sign the difference in average ability (∆η ≡ EG13 [ηi]−EG12 [ηi]) since 1/λ
B is positive.

7 Estimation

One could use instrumental-variables techniques to get consistent estimates of these parameters,

estimating the model equation by equation. I adopt a different approach, estimating the whole

system simultaneously using GMM.40 I choose GMM over maximum likelihood (ML) since the nor-

mality assumption required for the validity of the ML is rejected for all six outcomes. Nevertheless,

the results are not sensitive to the choice of estimation strategy.41

The empirical strategy is to fit the sample moments to the moments implied by the model. For

each group, we have a fit function defined by

F (θ)C = (s
C − σ(θ)C )́W−1

C (sC − σ(θ)C) + (xC −µ(θ)C )́S−1C (x
C −µ(θ)C) (19)

40The simplicity of the model makes the results from the two estimation strategies similar. The conclusions were
the same whether I used IV or GMM.
41Results from the maximum likelihood estimation are available upon request.

24



where xC and sC are vectors of sample first and second moments respectively while µ(θ)C and

σ(θ)C are vectors of first and second moments implied by the model. θ is the vector of parameters

I wish to estimate, SC is the sample covariance matrix andW
−1
C is a weight matrix to be defined.

The first part of the equation is the standard GMM fit function used in the analysis-of-covariance

literature.42 The second part is the fit function for first moments which is necessary to estimate

the coefficient of G13’s value-added. The results are obtained using as the weight matrix W−1
C

estimates of the fourth-order moments. This estimator is the Optimal Minimal Distance (OMD)

estimator. Following concerns about the use of the OMD estimator voiced by Altonji and Segal

(1994), I also used different weight matrices W−1
C to check for any disparities in the parameters

estimates due to the choice of the weight matrix. The use of the OMD weight matrix, the identity

matrix, or a diagonal weight matrix using fourth-order moments as weight matrices all give very

similar results.43

The global fit function used in the minimization problem is a weighted average of the groups’

fit functions

F (θ) =
NG13

N
F (θ)G13 +

NG12

N
F (θ)G12

and the parameter estimates are given by θOMD=ArgMinθF (θ). These are discussed in the

following section.

8 Results

Table 7 presents results of the GMM estimation using the OMD estimator weight matrix. The

value-added of G13 is positive and precisely estimated. Controlling for ability, Grade 13 increases

a student’s mathematics performance by 2.2 percentage points. Comparing the value of G13 to the

mathematics average and standard deviation,44 the return to Grade 13 is modest in terms of human

capital accumulation. We can get a ballpark LATE estimate of the return to G13 using existing

literature. Loury and Garman (1995) and Jones and Jackson (1990), for example, found that a

42See Abowd and Card (1987, 1989), Altonji and Segal (1996), Baker (1997), or Altonji, Martins and Siow (2002)
for applications of this estimation technique in the labour economics literature.
43These results are available upon request.
44See Table 6.
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one-point in GPA would lead to about 9-10 percent earnings increase.45 Using these estimates, and

assuming that the 2.2 points would translate directly to the GPA, the return to Grade 13 would

be around 2.2 percent.46

Table 7: Parameter Estimates (GMM Estimation)
G13 G12

υ (intercept)
MATH 2.21 (-)

(0.09) (-)
BIO 17.21 17.21

(2.76) (2.76)
HS 78.23 76.55

(1.15) (0.99)
λ (slope)
MATH 1.00 1.00

(-) (-)
BIO 0.83 0.83

(0.04) (0.04)
HS 0.18 0.20

(0.02) (0.01)
η̄ (ability) 68.39 70.16

(0.08) (0.01)

All three subject grading policies are different. The difference between the mathematics and

the biology slope coefficients is 0.17 (1-0.83) and is statistically significant. The interpretation of

this difference is that students’ relative proficiency is more easily signalled in mathematics than in

biology.47 The high school grading policy slope coefficients are much smaller than 1. The admission

standards, combined with bell-shaped university grading, can explain the difference in university

and high school slope coefficients.48 The difference between the university mathematics and the

high school intercepts is about 77 points. This difference captures the greater difficulty of university

45Loury and Garman (1995) look at weekly earnings while Jones and Jackson (1990) look at annual earnings.
Krashinsky (2006) estimates the impact of Grade 13 on earnings assuming that a one-point increase in GPA translates
into a 10% earnings increase.
46 In order to get this estimate I also assumed that an increase in 2.2 points would lead to a 0.22 increase in GPA

since letter grades contain 10 points.
47Many factors could explain this difference. For example, the test formats are different: biology test questions

are all multiple-choice questions while mathematics uses a mixture of question types. Because of the nature of the
multiple-choice questions, luck might play a bigger role, relative to ability, in biology than in mathematics for lower
ability students.
48Students admitted to the university have high school averages above 80%. At the university level, we usually

observe grades varying between 30 and 100%. So, for accepted students, the span of grades is increased between high
school and university while the span of ability is fixed. As a consequence, the payoff of an extra unit of ability has to
be more important at the university level to cover the new span of grades.
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courses and the more intense competition in university classrooms.

The average levels of initial academic ability seem to differ across groups. This finding, combined

with the results suggesting an ability measurement discrepancy across subjects, favors the use of

the grading policy model over difference-in-differences estimation. I test the significance of this

difference by re-parametrizing the model.49 The estimated difference ∆̂η is -1.77, which is just the

difference between estimated levels of initial academic ability (η̄G13 and η̄G12) obtained in Table 7.

Given the standard error of ∆̂η is 0.08, I can reject the hypothesis of equal average ability. G12

students look brighter than G13 students, which is consistent with the selection story in which

brighter G13 students escaped from the double cohort (and from the sample).

Results from high school grading policies do not reveal any clear pattern in the way teachers

graded students in high school. Even though the intercept coefficient of the high school grading

policy for G13 students is more important than for G12 students, the opposite is true for the slope

coefficient. Using LR tests, I successively test for the equality of slope coefficients and the equality

of the intercept coefficients. Table 8 presents the results.

Table 8: Testing for the Equality of High School Grading Policies
d df p-value ∆d df p-value

Baseline model∗ 0.18 1 0.67 - - -
Imposing:
Same slope coefficients 0.92 2 0.63 0.74 1 0.39
Same intercept coefficients 1.48 2 0.48 1.30 1 0.25
Same slope & intercept coefficients 177.5 3 0.00 177.3 2 0.00
∗ The baseline model is the model used to present the results in Table 7.

I test the restrictions of equal slope and intercept coefficients by comparing the fit of the

restricted models to the fit of the model used to measure the value-added of G13 (labeled as the

baseline model). The first step in doing so is to test whether the model presented in Table 7 fits the

data well. If the model is valid, then N times the fit function evaluated at the estimated coefficient

values (d = NF (θ̂)) is asymptotically χ2 distributed: the closer d is to 0, the better the fit. The

model used to measure the value-added of G13 fits the data well, given to the low value of d. In

the case of this model, the test simply looks at whether the ratio of covariances in equation (15)

49 Instead of fixing the intercept term of the G12 mathematics grading policy to zero, as was done above, I fix the
average initial level of general academic ability for the G12 to zero (EG12 [ηi] = 0). This way, the estimate of EG13 [ηi]
will give us the difference in ability, with correct standard errors.
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is the same for both groups since there is only one overidentifying restriction. The second step is

to compare the fit of the restricted models I want to test with the fit of the baseline model. If the

restrictions imposed on the model are valid, then the difference in fit (between the restricted and

unrestricted models) measured by ∆d is also asymptotically χ2 distributed.50 The p-values of these

tests are presented in the last column of Table 8. I cannot reject the hypothesis that both high

school grading policies have the same slope or intercept coefficient, but I do reject the hypothesis

that the grading policies are the same (equal slope and intercept coefficients). The results from the

tests might seem surprising but we have to remember that the variation in high school marks is

small and that no mark is close to zero. As a consequence, it is almost impossible to disentangle a

small shift in intercept from a small shift in slope coefficients.

8.1 Summary of Results

The results all suggest that the value-added to Grade 13 is modest for students who will attend

university. Estimates of the value-added are similar whether I use means comparison (0.45), OLS

estimation (1.68), difference-in-differences (1.92), or the grading policy model (2.21) as way of

capturing the value-added of Grade 13.

That said, the factor model proves to be useful in capturing effects which the other methods

presented in the paper do not account for. The results from the factor model show that difference-

in-differences estimation would lead to biased estimates of the value-added of Grade 13 if biology

and mathematics do not measure ability in the same way. In the present case, the factor model

estimate is 15% above the difference-in-differences estimate and 32% above the OLS estimate. The

factor model estimate is above the OLS estimate because of the correlation between the amount

of schooling and the average level of ability of students. It is also close to five times the means

difference estimate, which shows the importance controlling for heterogeneity in average ability

level across the two groups.

50The number of degrees of freedom of ∆d is given by the difference in degrees of freedom of the compared models.
See Chamberlain (1984) for details.
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8.2 Heterogeneity

When compared to previous studies, results presented here suggest the presence of substantial

heterogeneity in the return to an extra year of high school. There are at least two ways to check for

heterogeneity in the value-added of Grade 13 within the present sample. I first separated the sample

in two groups based on their academic ability. I formed a higher-ability group and a lower-ability

group using the median university biology grade as a cutoff point. Estimating the value-added

separately for each group, I find that the value-added for lower-ability students is 1.4 points greater

than for the higher-ability students. Although modest, the difference has the expected sign — lower-

ability students gain more from an extra year of high school. Alternatively, I can introduce an extra

parameter in the grading policy model since there is one degree of freedom in the baseline model.

For example, it is easy to rewrite equations (7) and (8) to allow for the value-added to be a linear

function of students’ ability:

ηU,Bi = ηi(1+ φ(τH,B + τU,B)) + τH,B + τU,B (20)

ηU,M,C
i = ηi(1+ φ(τH,M,C + τU,M )) + τH,M,C + τU,M (21)

where φ is the heterogeneity coefficient. If the value-added is decreasing with ability we would

expect φ to be negative. Note that equations (20) and (21) are identical to (7) and (8) if there is

no heterogeneity (i.e. φ = 0).

I re-estimated the model allowing for heterogeneity in the value-added (as specified by equations

(20) and (21)) and found that φ̂ = −0.03. The estimate is not statistically significant, as we could
guess from the estimate of d for the baseline model in Table 8. Overall, it is still surprising to

find some evidence of heterogeneity in the value-added of an extra year of high school for such a

homogeneous group of individuals.

9 Robustness

This section considers the robustness of the main results.

The results presented in Table 7 assumed that female and male students get the same benefit

out of Grade 13. However, this might not be the case. In order to investigate the possibility of
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heterogeneity across gender in the value-added of Grade 13, I estimated the grading policy model

separately for females and males. Table 9 presents the results by gender.

Table 9: Parameter Estimates by Gender
Females Males
G13 G12 G13 G12

υ (intercept)
MATH 2.43 (-) 1.97 (-)

(0.08) (-) (0.20) (-)
BIO 15.85 15.85 19.36 19.36

(3.21) (3.21) (5.15) (5.15)
HS 78.38 77.02 76.98 75.18

(1.31) (1.25) (2.45) (1.65)
λ (slope)
MATH 1.00 1.00 1.00 1.00

(-) (-) (-) (-)
BIO 0.86 0.86 0.79 0.79

(0.05) (0.05) (0.07) (0.07)
HS 0.19 0.20 0.19 0.22

(0.02) (0.02) (0.03) (0.02)
η̄ (ability) 66.97 68.42 71.04 73.31

(0.08) (0.01) (0.20) (0.01)
N 291 323 145 179

Table 9 does not suggest that the results presented in Table ?? are driven by a specific gender.

The parameter estimates are similar across genders. Both estimation results suggest that the value-

added of Grade 13 is modest and that G12 and G13 students are different in terms of initial levels

of ability.

I replicated the experiment using chemistry instead of biology. Chemistry is another course

that life science students must take which was not affected by the reform and for which a student’s

performance should not be influenced by her mathematics knowledge. The results are similar to

the ones presented here (the estimated value-added of G13 is 1.7 points). I also replicated the

estimates using chemistry instead of mathematics. In this case, any evidence of value-added of

Grade 13 would be problematic. The estimated value of Grade 13 (∆̂V ) in this case is very small

(0.25). This evidence supports the hypothesis that biology and chemistry were not affected by the

reform.

Because covariances are sensitive to outliers, I did not include 12 students with grades below

30% in either biology or mathematics and assumed that these students dropped out. Including these
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students does not change the results (∆̂V = 2.17 as compared to 2.21). Also, students only get a

grade if they complete the course they are enrolled in. If a disproportionate fraction of G12 students

drop out of mathematics, then the G13 value-added estimator would be biased. Interestingly, there

are no students who officially dropped out of mathematics but who completed biology. This could

be due to the fact that these courses are compulsory for admission into life sciences specialization

fields. When we look at the unconditional drop-out rates in these two courses, we realize that they

are similar, and for both courses relatively low (5% for mathematics and 2% for biology).

G12 students could take fewer courses if they feel less well prepared than G13 students to face

university challenges. This is not the case. G12 students take an average of 5.8 courses over the

first year while G13 take 5.7 from the Faculty of Arts and Science. The difference is very small.

Students also select the program they want to attend. G12 students, perhaps knowing that

their preparation in mathematics is not as good as G13, might have avoided applying to programs

involving mathematics. But students do not differ significantly in terms of the program they chose

(within the Faculty of Arts and Science). In fact, there is a slightly larger proportion of G13

students who chose a humanities over a life science program than G12, which again supports the

hypothesis that G12 did not try to compensate for their lack of mathematics preparation.51

If Grade 13 gives students general human capital that affects all subjects similarly, then the

estimation methods presented in this paper would fail to capture the full extent of the benefit of

this extra year. This would be true if, for some reason, the reform affected a student’s university

biology performance as well as mathematics performance. It is true that schooling might bring

more to students than just specific knowledge — for instance, maturity gained while being in school.

If so, G13 students would be expected to do better than G12 students in every course. Table 10

suggests otherwise:52 G12 students do not do significantly worse than G13. They actually do better

in a majority of courses (except mathematics). I cannot totally rule out the possibility of such an

effect since the higher average ability level of G12 could compensate for the lack of maturity, for

example: the maturity effect could be confounded with academic ability as defined in this paper.

A sign of such a missing variable could be the presence of group-heteroskedasticity. For ex-

51Humanities represent 38% of G12 students and 41% of G13 students applications. Life-Science represents 39%
of G12 students and 34% G13 students applications.
52The subjects analyzed in Table 10 are anthropology, biology, chemistry, economics, history, mathematics (for

business and life sciences), philosophy, psychology, and sociology.
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Table 10: Students Average Marks in 2003
# Obs. Marks H0 : G13 = G12

G13 G12 p-values
ANT100 501 66.8 65.7 0.34
BIO150 1161 73.2 74.4 0.08
CHM138 1016 76.2 76.8 0.47
ECO100 629 68.1 68.2 0.91
HIS109 293 67.2 69.0 0.27
MAT133 281 69.8 67.3 0.14
MAT135 1092 68.5 68.5 0.97
PHL100 448 71.4 72.0 0.49
PSY100 883 70.0 70.3 0.73
SOC101 791 65.5 64.7 0.30

ample, if the G13 students are mature while only some G12 students are, then maturity should

not play a role in the within-group grades variation for G13 grades but should play a role for G12

students. We would expect the two groups to have different variability in the error terms (since the

variability in maturity would be included in the variance of the error term). The null hypothesis

of homoskedasticity cannot be rejected using a similar test used for the equality of high school

grading policies.53 Without ruling out the possibility of such a general effect on students, it is hard

to find support for such an effect with the data I analyzed. If we think that high school teachers are

grading students similarly across groups (and remember that I cannot reject the hypothesis of equal

slope or intercept high-school coefficients), it would be even harder to support such a possibility.

Effort may be a factor influencing students’ performance.54 If the amount of effort is the same

in both groups (G12 and G13) or if it is constant across courses for the same group then effort

should not affect the validity of my results. In the first case, it would not affect the groups’ relative

performance, while in the second case, the difference in effort level would be captured by the

difference in the average ability measure. But students can use effort to compensate for their lack

of preparation in mathematics. G12 students might put more effort into studying mathematics than

G13 students. If there is an important substitution effect between study time for mathematics and

study time for biology, then the effect of Grade 13 would be diluted by the extra effort exerted by

G12 students in mathematics, and the estimate of the value-added of G13 would then be downward-

53∆d = 1.93. The p-value is 0.38.
54See Stinebrickner and Stinebrickner (2005) for an IV estimation of the impact of time allocation on students’

college performance.
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biased. The substitution effect would influence both the mathematics and biology grades. This

means that the difference in ability would also be downward-biased (since the performance of G12

students in biology would be negatively affected).

The absence of information about students’ study habits makes it impossible to formally test

for the presence of effort substitution. But Table 10 does not suggest the presence of such behavior

from G12 students. If G12 students substituted effort from biology or chemistry to mathematics

then we would expect to see the difference in performance between the two groups being more

important for courses in which students are not expected to take any advanced mathematics.

Humanities subjects should favor more G12 students than biology, chemistry, or economics. This is

not the case. Anthropology, history, philosophy, and sociology, as a whole, do not favor G12 more

than biology, chemistry and economics. Overall, there is no strong evidence that the factor model

measure of the value-added of Grade 13 is downward-biased.

10 Conclusion

The 1999 Ontario Secondary School reform provides a valuable opportunity to estimate the return

to a year of secondary schooling for students who will pursue post-secondary education, a population

that represents a large portion of students in most developed countries. The results obtained in

this study suggest that the return to schooling for these students is modest. In particular, I find

that students coming out of Grade 13 only have a 2.2 point advantage (on a 100 point scale) over

students from Grade 12, once I control for ability differences. The estimated return to schooling is

around 2 percent.

These results contrast with findings from previous studies examining the returns to schooling.

The magnitude of the return to Grade 13 is modest compared to previous LATE estimates, es-

pecially compared with estimates found in studies looking at the impact of schooling on potential

high-school dropouts. Whether I use means comparison, OLS estimation, difference-in-differences,

or the factor model presented above, the returns to schooling never reach returns comparable to

the ones found in the previous IV literature. But even if the results suggest returns far below

the usual estimated return to schooling, these results are by no means in conflict with that earlier

literature. Indeed, they support Lang and Card’s LATE interpretation of the IV estimates of the
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return to schooling, representing solid evidence of heterogeneity in the return to schooling across

ability levels. My findings contrast with Krashinsky (2006), who looks at the impact of the same

reform on a population of students with lower high school averages. He finds that the return to

Grade 13 for these students is between 6 and 12 percent, which contrasts with this paper’s 2.2

percent further supporting the heterogeneity in the return to secondary education.55 Whether the

modest value-added of G13 found in this paper will affect students in the longer-run is an issue

that warrants further investigation.
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A Appendix

A.1 Coefficients Identification

Here I simply show one of the different possible strategies. I start by expanding the basic hypotheses

of general structural equation models (Σ(g) = Σ(Θ)(g), and µ(g) = µ(Θ)(g))
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var(HC
i ) =

£
λHC

¤2
σ2ηC + σ2εH,C (22)

var(BC
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£
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¤2
σ2ηC + σ2εB,C (23)

var(MC
i ) = σ2ηC + σ2εM,C (24)

cov(HC
i ,B

C
i ) = λHCλBσ2ηC (25)

cov(HC
i ,M

C
i ) = λHCσ2ηC (26)

cov(BC
i ,M

C
i ) = λBσ2ηC (27)

E(HC
i ) = υHC + λHCEC [ηi] (28)

E(BC
i ) = υB + λBEC [ηi] (29)

E(MG13
i ) = ∆V +EG13 [ηi] (30)

E(MG12
i ) = EG12 [ηi] (31)

The identification of the average academic ability for the G12 students (EG12 [ηi]) is trivial from

the normalization I made. Next, we can isolate λB using (25) and (26)

λB =
cov(HC

i , B
C
i )

cov(HC
i ,M

C
i )

(32)

Dividing (25) by (27) we get

λHC =
cov(HC

i , B
C
i )

cov(BC
i ,M

C
i )

(33)

Equations (32), (31), and (29) give us an expression for the constant term of the biology grading

policy

υB = E(BG12
i )− λBEG12 [ηi]

= E(BG12
i )−E(MG12

i )
cov(HC

i ,B
C
i )

cov(HC
i ,M

C
i )

(34)
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Plugging (34) and (32) in (29) will give us a measure of the average academic ability of G13 students

EG13 [ηi] =
E(BG13

i )− υB
λB

=
cov(HC

i ,M
C
i )

cov(HC
i ,B

C
i )

£
E(BG13

i )−E(BG12
i )

¤
+E(MG12

i ) (35)

Having isolated the average academic ability of G13 students, I am able to identify the value-added

∆V = E(MG13
i )−EG13 [ηi]

= E(MG13
i )−E(MG12

i )− cov(HC
i ,M

C
i )

cov(HC
i , B

C
i )

£
E(BG13

i )−E(BG12
i )

¤
(36)

The constant term of G13 students high school grading policy can be found using (35), (33), and

(28)

υHG13 = E(HG13
i )− λHG13EG13 [ηi]

= E(HG13
i )

− cov(H
G13
i ,BG13

i )

cov(BG13
i ,MG13

i )

½
E(MG12

i ) +
cov(HC

i ,M
C
i )

cov(HC
i ,B

C
i )

£
E(BG13

i )−E(BG12
i )

¤¾

while the same constant for G12 students looks like

υHG12 = E(HG12
i )− λHG12EG12 [ηi]

= E(HG12
i )− cov(HG12

i ,BG12
i )

cov(BG12
i ,MG12

i )
E(MG12

i )

A.2 OLS Estimation Bias

This section shows conditions under which the OLS regression estimation of mathematics grades

on biology grades gives biased estimator of the G13 value-added . I first transform the data in

deviations from mean and work with matrix notation for clarity reasons

M̃i = ∆V Ĩi + λBB̃i + ui
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or

M̃ = X̃β + u

where M̃ is a vector of demeaned mathematics grades and X̃ is the matrix of the now demeaned

variables. The OLS estimator of β, β̂, is

(X̃ 0X̃)−1X̃ 0M̃

Hence plim β̂ is

plim β̂ = β + plim(
X̃ 0X̃
N

)−1plim

Ã
X̃ 0u
N

!
The dummy variable indicating if the student is a member of the G13 group is not correlated with

the error, the first term of plim
³
X̃0u
N

´
will be 0. But since B̃i is correlated with the error term

(because of measurement error) the second term of the vector will be non-zero. This gives

plim

Ã
X̃ 0u
N

!
=

 0

−var(εBi )

λB


Unless we are facing a plim( X̃

0X̃
N
)−1 with 0 off-diagonal elements (e.g. the regressors are uncorre-

lated) we should get a biased estimator of the treatment effect.

plim(
X̃ 0X̃
N

)−1 = plim


NG12NG13

N2

NG13P
i∈G13

B̃i

N

NG13P
i∈G13

B̃i

N

NP B̃2
i

N


−1

Let

plim(
X̃ 0X̃
N

)−1 ≡ plim (A)−1

= plim
1

detA
plim


NP B̃2

i

N
−

NG13P
i∈G13

B̃i

N

−
NG13P
i∈G13

B̃i

N
NG12NG13

N2


≡ plim

1

detA
plim

 B −C
−C D


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Hence

plim β̂ − β = plim
1

detA
plim

 B −C
−C D


 0

−var(εBi )
λA


As long as C 6= 0, the OLS estimator of the G13 value-added will be biased. C could be equal to

0 if the average grades for both groups are equal which could happen if both groups had the same

level of academic ability. Then the dummy variable would be uncorrelated with the student grades

in biology. The sign of the bias will depend on whether the average for G13 students is higher or

lower than G12 students in biology. If the average is higher for the latter group, we should expect

a downward bias.
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