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spatially autoregressive process, allowing us to sign and quantify the endogenous 
interactions between competitors. Doing so speaks to significant regularities in the data that 
suggest that a player’s own performance generally tends to improve with the improving 
performance of competitors. However, we also find significant asymmetries in the 
interdependency of player performance that suggest that social interactions, even those 
found in a fairly straightforward game, can be rather complex. For example, while the positive 
complementarity in performance is particularly strong between tied players, own performance 
suffers in response to improving performance of lagging, lower-ability competitors. 
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 While much has been learned from the peer effect and social interaction literatures, 

relatively little attention has been paid to the potential interdependencies in player performance in 

competitive settings.  We contribute to understanding such relationships as we document patterns 

of performance that are strongly suggestive of real interactions among competitors.  The 

complexity of the relationships evident in the data suggest that fruitful research might consider 

more fully the potential asymmetries in how players best respond to each other’s performance in 

competitive environments.   

The existence of peer effects implies that one’s peers can influence one’s own outcome.  It 

is this potential interdependency that we address through our empirical analysis.  In broad terms, 

Manski (2000) discusses how social interactions might affect preferences, constraints, and/or 

expectations of another person with resulting effects on their behavior.  For example, classroom 

peer environments can offer temptations or distractions that make it harder for students to 

complete their schoolwork.  Likewise, repeated or long interactions in such environments may 

afford the opportunity for learning from peers or for each other’s sense of what is important to be 

influenced, indirectly affecting achievement or performance.   

In our analysis we exploit data available from the Professional Golf Association’s (PGA) 

2004 Tour.  With that said, our hope is that this will not be viewed as just another golf paper, per 

se, for in several ways these data should not be discounted and offer a valuable proving ground.  

For example, compared to many other environments, the observed peer environments are 

relatively simple in nature and are short-lived, both lessening the opportunity for confounding 

effects to materialize.  Further, the prize structures for each tournament are well defined, the 

cardinal ranking of players is observable, and reasonable measures of tournament and player 
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characteristics that influence cardinal rankings are readily available.  With such a data source, we 

are also able to rule out certain factors as contributing to peer effects.1  

First, we suspect that key information is common across players (e.g., the rules are clear 

and well understood, relative standing is updated continuously) and that any observed regularity is 

not due to information spillovers.  Second, preferences are likely to be relatively simple and 

unchanged over the sequence of interactions (e.g., performance is not measured differently across 

players, the concept of what constitutes superior performance is common). Third, given the 

technology of the competitive task being undertaken, we posit that there are no opportunities for 

learning from competitor-peers.  In the end, to the extent we document interactions in player 

performance we will be inclined toward assuming that it is not explained by heterogeneity in 

preferences (in the cross section of players or over time for individual players) or “on the job” 

learning, leaving an appeal to differences in noncognitive attributes among potential explanations. 

 In the following section, we provide some discussion of the existing literature and the 

relevant context for our analysis.  We then provide some quick set up of an empirical model that 

easily provides a comparison to existing results in the literature.  Namely, as the literature is 

somewhat divided on the coefficient associated with monetary returns, Section 2 provides this 

result for the data assembled, but acknowledges the difficulty in interpreting such estimates in this 

and previous literature and quickly moves to the focus of our analysis – estimating the slope of 

player best-response functions.   

 In Section 3, we provide a brief theoretical context for examining potential 

interdependencies in player performance within a commonly understood tournament setting, 

                                                   
 
1 There are a variety of ways to parameterize a model of peer effects, a useful taxonomy of which is provided in 
Hoxby and Weingarth (2006) where they discuss several competing models.  The thrust of the discussion in the 
literature, however, is often with respect to the policy ramifications of various models (e.g., linear-in-means, shining 
light, bad apple, boutique, single crossing). 



 3  

noting that the explicit modeling of a representative dynamic game is beyond the scope of this 

paper.  In Section 4 we discuss an empirical strategy that exploits the proximity of competitors of 

certain type.  However, it is in our last step toward the full specification that we make our most 

significant contribution as we set up a spatial econometric empirical model that exploits the 

contemporaneous performance of competitors of different type.  Answering whether players 

perform differently when facing different types of competitor and whether players perform 

differently when competitors perform differently, our identification of significant response 

differentials suggests that it may be overly restrictive in some settings to have in mind a model of 

tournament play that precludes heterogeneous best responses across tournament participants.2  We 

share some concluding remarks in Section 5. 

1. Context and placement in existing literature  

Important social interactions have been documented empirically in a variety of arenas.  For 

example, Glaeser, Sacerdote, and Scheinkman (1996) has been widely cited as arguing that social 

interactions explain a significant portion of the variation in community crime rates.  Steinberg, 

Brown, and Dornbusch (1996) goes as far as arguing that peer groups are more important in 

predicting high school performance than are parental influences.  As is often the case in the literature, 

however, the peer effect is identified off of variation in aggregates, which neither requires that all 

individual-level interactions work in a common fashion nor speaks to the degree to which one-on-one 

interactions might matter.  Our data permit the analysis of interactions at much-less-aggregate levels.  

While analyses of roommate peer effects often exploit individual level interactions (e.g., Sacerdote, 

                                                   
 
2 See also, McMillen, Singell and Waddell (2007), Viladecans-Marsal (2004), Brueckner and Saavedra (2001) and 
Brueckner (1998) for evidence of spatially dependent competition in other settings. 
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2001; Zimmerman, 2001) they must also accept a certain complexity to the peer relationship being 

observed that leaves the working of the peer effect unrevealed.3 

While somewhat tangential to our focus, Case and Katz (1991) document an increased 

probability of social ills in one neighborhood where social ills in adjacent neighborhoods are more 

prevalent, which is of interest here insofar as the literature is otherwise lacking in papers that analyze 

contemporaneous outcomes.4  For example, roommate peer effects are typically identified with co-

variation in a roommate’s SAT score prior to college admission and own GPA, without exploiting 

the contemporaneous relationship between roommate GPAs.  In their context, Case and Katz 

implicitly absorb the contemporaneous in a way that we also intend. 

Turning to empirical tournament literature, we note a growing body of work that focuses 

on testing theoretical predictions.  Adopting an experimental strategy, Bull, Schotter and Weigelt 

(1987) find that in competition between players of equal ability, effort levels approximate those 

predicted by theory.  In asymmetric tournaments, however, they observe that the effort levels of 

disadvantaged players are higher than predicted.  Tong and Leung (2002) extend this analysis to 

two-player, multiple-round tournaments in which each agent is informed of his opponent’s output 

after each round.  They find that average effort levels are higher in multiple-round tournaments 

than in single-round tournaments.  Notable for our analysis due to the source of data, Ehrenberg 

and Bognanno (1990a, 1990b) also test the propositions of tournament theory, reporting that 

average player performance in professional golf tournaments improves with higher prize spreads.  

In a replication exercise, however, Orszag (1994) reports no significant effect of prize spread on 

performance.  
                                                   
 
3 For example, there is an implicit first stage that often goes unmodeled that might speak to the choice of interaction 
and the intensity of interaction.  
4 In a related paper, Brock and Durlauf (2001) model individual choice in the presence of social interactions, 
documenting equilibrium properties and ultimately deriving an estimable likelihood function in a discrete choice 
framework. 
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Before we introduce our new results we will first weigh in on these previously documented 

results, ultimately re-affirming that player performance improves with higher marginal returns to 

performance.  In so doing, we caution the reader of the interpretive difficulties associated with 

these and previous results.  In short, many hold that the set of available instruments is insufficient 

to cope with the endogeneity of return-type measures that tend to be the focus in the related 

literature.  We acknowledge this criticism (here, and again below) and further emphasize that our 

focus is not on revisiting the relationship between effort and marginal rewards.  

Having made this obligatory comparison we then make our departure into new territory by 

modeling player performance as spatially autoregressive.  That is, we will determine the extent to 

which variation in one’s performance is determined by the contemporaneous performance of one’s 

close competitors.  Using data from Arabian horse races, Lynch (2005) finds that race times fall 

with smaller variance in race times.  This relates much more closely to our analysis than the 

Ehrenberg and Bognanno analyses, for example, as it represents the first formal evidence that 

contemporaneous cardinal differences in the performance of competitors determine the tournament 

outcomes.  While this evidence does not point to asymmetries in players’ best responses, it is 

consistent with our results insofar as we find that one’s performance generally tends to correlate 

positively with that of one’s close competitors.   

Through our analysis we learn of the following empirical regularities.  First, we find that 

the performance of one’s competitors is significant in determining one’s own performance, with 

performance tending to improve on average as that of close competitors improves.  (Below we 

will subsequently define what we mean by “close” competitors.)  Second, we find strong 

asymmetries in the interdependency of player performance, both across leading or lagging 

competitors and across ability classifications.  For example, with respect to competitors of similar 
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ability we find performance to be more sensitive to the play of tied competitors than to leading 

competitors, and not sensitive to those trailing in the tournament.  The only inverse performance 

relationship we observe in the data is with respect to competitors of lower ability, and, in 

particular, lagging lower-ability competitors.  That is, our analysis suggests that as the 

performance of lower-ability competitors improves, one’s own performance declines.  This is in 

stark contrast to the performance-enhancing effect of lower-ability but leading competitors. 

2. Data and Baseline Specification 

 As discussed above, our empirical strategy will ultimately focus on estimating the slope of 

player best-response functions.  We first present a standard OLS specification without 

acknowledging the potential for strategic interactions between players, and then focus on 

specifying a spatially autoregressive model of performance that explicitly accounts for strategic 

interactions.  Along the way, we discuss the data and empirical specifications, the endogeneity of 

player performance and associated econometric concerns.   

2.1  Data  

We have assembled an original data set containing performance information for the 2004 

tour of the Professional Golf Association (PGA).  This collection is similar to others used in 

previous empirical analyses.  It represents the entire 2004 season with the exception of three 

“major” tournaments and 14 tournaments in which the payoff structure differs from the norm.5  

Key variables of interest include all player scores for each round across 35 tournaments, measures 

of course difficulty, weather condition at the time of the event, and the prize structure for each 

tournament.  Controlling for player-specific skill will be important in our subsequent tests, so we 

                                                   
 
5 In particular, we exclude tournaments from the analysis if a tournament consists of more than four rounds, if a cut is 
not made after the second round of play, if rewards are determined by methods other than the rank-ordering of total 
strokes or if professionals and amateurs are mixed within the field of players. 
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also assemble a comparable data for the entire 2003 PGA Tour, which will allow all variation in 

outcomes from the previous season to control for relative player ability.  For example, in 

predicting final-round performance in tournament t, we will use data from the 2003 PGA Tour to 

control for i’s scoring average, putting average, proportion of greens made in regulation, and 

fraction of cuts made.6  We obtain all player-specific variables from the PGA, including course-

specific variables such as par and yardage.7  The Golf Course Superintendents Association of 

America provided another course variable, rating, which measures the difficulty of the course and 

is the average score on the course of all rounds played by scratch golfers.  In addition, we control 

for any time trends in player scores by including the week in which the tournament was played, 

and it’s square to capture non-linearity in trends, and weather information on the day of play that 

includes temperature and the maximum sustained wind speed.8 

 2.2  Baseline specification 

Testing the standard tournament-theory hypothesis regarding player responses to marginal 

effort rewards is relatively straight forward.  It pays, however, to first consider the three sources of 

variation that can be exploited for such purposes.  First, within each tournament, the monetary 

return to effort will differ across players’ ordinal rankings.  That is, two differently ranked players 

heading into the final round of a given tournament will face different returns to effort depending 

on both ordinal rank and on their particular cardinal separation from their closest competitors.  

Second, the marginal return to effort will vary across tournaments for a given player – due to the 

player finding himself at a different rank in one tournament than in another.  Third, given variation 

                                                   
 
6 While previous studies have also included such measures, they have done so using contemporaneous outcomes (i.e., 
from the same season).  By adopting lagged measures of ability from the 2003 Tour we avoid the simultaneity bias 
introduced by including contemporaneous measures.   
7 The official webpage of the PGA Tour can be found at pgatour.com. 
8 Data accessed in December 2005 from weatheralmanac.com. 
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in the total purse awarded across tournaments, being in the same ordinal position going in to the 

final round will leave the player with a higher monetary return to a change in rank when the total 

purse is larger, which introduces variation in rewards holding ordinal rank constant.9 

Our baseline specification controls for all observable characteristics available in our 

dataset.  In subsequent specifications, we will later absorb all other time-invariant player 

heterogeneity into the error structure.  As such, we initially specify the following model of final-

round (i.e., fourth-round) scores, Sit, for player i in tournament t: 

[1]  0 1 2it it i t itS RETURN P T! " " " #= + + + + ,   

where we compute each player’s monetary RETURNit to improving by a single stroke assuming 

that all other player-scores in t are unchanged.  That is, for each player-tournament observation we 

specifically calculate the change in monetary reward that would be associated with a one-stroke 

improvement, accounting for the possibilities that such a change may or may not yield a change in 

player i’s ordinal rank in tournament t, may or may not break a tie in ordinal rank between i and 

other players, and may or may not create a tie between i and other players.10  Across all 

tournaments, we intend for Pi to capture observable player characteristics (i.e., exemption status 

and tour affiliation as of 2004) and for Tt to capture observable tournament characteristics (i.e., 

course rating, par, yardage).  In [1], it! is a traditional error term.  (Unlike previous literature, our 

contribution does not relate to the estimated coefficient on RETURN, and we are content to 

                                                   
 
9 The PGA Tour has adopted a standard formula for the allocation of monetary prizes to ranks.  For example, in all 
tournaments in our sample, first place is always awarded 18 percent of the total purse, second place is awarded 10.8 
percent, 6.8 percent, 4.8 percent, etc. 
10 Others have exploited variation across tournaments in the total purse, noting that prizes paid to a player of a given 
ordinal rank are based on a fixed percent of the tournament-specific purse.  For a given rank, a larger total purse 
therefore generally implies a larger marginal return to effort.  However, there is some evidence suggesting that purse 
is not independent of course difficulty.  Further, we contend that once the margin has been included in the model 
(calculated for an individual player at his particular rank, taking into account the contemporaneous distribution of 
players around him) there is little else of interest in the variation in purse across tournaments.  While all specifications 
are robust to the inclusion of purse size, we limit our attention to our preferred measure of the marginal return. 
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assume that the potential shortcomings of this identification strategy are limited to interpreting 

only this coefficient and not the estimated interactions of player performance.  See below for 

additional discussion.) 

2.3  Baseline results 

 Results shown in Table 1 suggest that player scores are decreasing (i.e., are better) with 

greater marginal returns to effort.  This confirms with our data a fundamental hypothesis of 

tournament models that has received mixed empirical support in the past – re-affirming the 

reported result of Ehrenberg and Bognanno (1990b).  In addition, we document, trivially perhaps, 

that scores increase with course difficulty, as measured by par and yardage.  Higher maximum 

sustained wind speeds also lead to higher scores, while temperatures below 60 degrees tend to 

improve scores on average.   

 While the inclusion of each player’s 2004 exemption status and tour affiliation should 

absorb at least some of the variation in player ability, it could be easily argued that there is 

important heterogeneity in player ability beyond that picked up by these controls.  Thus, we 

absorb all time-invariant heterogeneity that is specific to a player across t with the inclusion of 

player fixed effects, with the results reported in Column (2), where the estimated RETURN 

coefficient is smaller but remains significant.  Player fixed effects should also absorb any time-

invariant heterogeneity in non-tournament returns that may influence performance (advertising 

revenue, for example).  

Before we continue with our focus on the potential for interdependencies in final-round 

performance, we pause to consider the formulation of our baseline specification in one important 

dimension.  Namely, as has been recognized in earlier literature (e.g., Ehrenberg and Bognanno, 

1990), within a given tournament, a player’s rank at the beginning of the final round, and therefore 
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his RETURN to performance, is determined by his own past performance.  Of course, in predicting 

final-round performance, one’s performance in the first three rounds is predetermined and could 

therefore be treated as exogenous.11  However, if performance in the first three rounds correlates 

with an ability that we have not held constant in our estimation strategy, this would ultimately be 

absorbed in the error term of [1].  Given that we absorb all time-invariant unobserved 

heterogeneity specific to players into the error structure directly, we are not much troubled by this 

possibility, at least in general.  However, were ability to be time varying for a given player, as 

would be the case if one can just have a “bad weekend,” for example, player fixed effects would 

not adequately account for this.  Thus, we acknowledge that even with player fixed effects, 

RETURN may well be endogenous, as is true of its use in previous literature.  

 Employing an instrumental variables technique, we exploit as instrumental variables all 

available tournament-day information (i.e., maximum temperature, maximum wind speed, 

precipitation level, and average humidity on each of the first three days of the tournament), as well 

as player-specific information (i.e., scoring average, fraction of cuts made, scoring average pre-

cut, and third round scoring average over the 2003 PGA Tour).  Further, we include the 

tournament purse, and stroke totals from each of first three rounds as instruments for RETURN.12  

As evident in columns (3) and (4) of Table 1, the results are robust to this treatment.  However, 

one is wise to acknowledge that even with this IV method, one should be cautious in interpreting 

estimated coefficients on RETURN.  It is this difficulty in the several studies that have focused on 
                                                   
 
11 Note that our specifications do not include first- through third-round scores as dependent variables.  As such, 
considering these predetermined scores as exogenous is legitimate, even in specifications that control for unobserved 
heterogeneity in player performance.   
12 In predicting final-round performance, one’s performance in each of the first three rounds is exogenous to the extent 
that it is predetermined.  Conditional on the set of included determinants and all unobserved time-invariant 
heterogeneity across players, there seems to be little reason to believe that there would be significant correlation 
remaining between the error term and RETURN.  In unreported specifications, we follow Ehrenberg and Bognanno 
and instrument for player-scores in each of the first three rounds and include them as regressors in the second stage.  
Results are qualitatively similar and available upon request. 
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measuring the RETURN coefficient that can have one also tempted to abandon our analysis.  Yet, 

our contribution does not hang on this estimated coefficient. 

3. Theoretical context 

 We are expressly interested in empirically identifying the variation in performance as it 

relates to that of one’s competition.  In particular, we will exploit observed player heterogeneity 

(in ability, for example) to question whether competitors interact differently with players of 

different type.  While modeling the intricacies of a dynamic tournament with heterogeneous 

players is beyond the scope of this paper, the theoretical ambiguity motivating our empirical 

analysis is illustrated by considering a modification of Lazear and Rosen (1981) even though it is 

admittedly somewhat of an abstraction here.13  

 Lazear and Rosen (1981) document the comparative-static results of a Principal-Agent 

model in which realized compensation is a function of the Agent’s ordinal rank – the winner being 

determined randomly in equilibrium from among a set of homogeneous tournament participants.  

Within such a framework, an agent exerts costly effort to increase the probability of winning, and 

thus the probability of receiving a larger prize.14  The assumption of homogeneous agents results 

in symmetry on multiple dimensions.  First, agents choose common effort levels in equilibrium – 

where effort is higher when prizes for winning are larger.  Second, agent best-response functions 

are symmetric, implying that players respond similarly to out of equilibrium events. 

                                                   
 
13 For discussion of dynamic tournaments see Aoyagi (2003) and Radner (1985). 
14 Exploiting the agent’s incentive to choose higher effort levels for correspondingly higher expected payoffs, the 
Principal can increase the agent’s effort in two ways: by increasing the ex ante probability an individual player wins 
(e.g., adopting a tournament with fewer players), or by increasing the spread between individual tournament prizes 
(which increases the marginal reward to winning the tournament while holding constant the probability of winning).  
When the agents’ effort levels are unobservable, when relative outputs are less costly to measure than are absolute 
outputs, or when directly monitoring productivity is costly to the Principal, a compensation scheme based on rank-
order may be less costly to implement.  Further, as such costs increase, effort levels converge to those in an 
observable-effort scenario. 
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  In such a framework, the agent’s objective function can be written generally as an 

expected utility, 

[2]  [ ( , ; , )]i i j iE U e e W X F! , 

where ei and ej denote the efforts of agents i and j, respectively, and W represents the reward for 

winning the two-player tournament.  We capture the potential for player heterogeneity in Xi, a 

vector of unspecified characteristics that may influence the agent’s expected payoff.  In general, 

the player’s expected net return to effort is dependent on the cost of effort at the margin, the 

spread between tournament prizes (e.g., the monetary return associated with winning in a two-

player game, or with an increase in ordinal rank more generally), and player-specific 

characteristics.  However, it is also dependent on the mapping of efforts into the probabilities of 

various outcomes – own effort and that of other tournament participants.  It is this last facet of the 

player’s problem on which we focus.  

 Assuming that agents compete strategically according to Nash behavior, agent i chooses 

effort, ei, to maximize [2], taking as given the effort choices of competitors – just agent j in the 

two-player tournament.  The first-order condition is then an implicit function of ei and  ej  such as: 

[3]  [ ] ( , ; , ) 0
i

i
e i j i

i

E U F e e W X
e

!
" =

!
. 

Solving for ei , agent i’s effort depends on ej, W, and Xi, and can be expressed as 

( ; , )i j ie R e W X!
= , a function that yields player i’s best response to the effort choice of player i’s 

competitor, j.   

 With the objective being to explore the interdependency of player performance in 

tournaments, our empirical strategy will focus on estimating the slope of this best-response 

function.  However, before doing so, we note the theoretical ambiguity at the root of such an 



 13  

undertaking.  Applying the implicit function theorem to [3], the slope of the best-response 

function is given by 

[4]  ,

,

.i j

i i

e ei

j e e

Fe
e F
!

= "
!

 

Assuming an interior solution, ,i ie eF must be negative where the second-order condition is satisfied.  

However, ,i je eF is ambiguous in sign and depends on the mapping of ie and je into the probability 

that i wins the tournament.  If an increase in je raises the marginal utility of ie then ,i je eF is 

positive, and i’s reaction function is an upward-sloping function of je .  Conversely, if an increase 

in je  decreases the marginal utility of ie then the reaction function is downward sloping.  If the 

probability of winning, P, is logistic in effort levels, such that  

[5]  ( , ) i
i i j

i j

eP e e
e e

=
+

 , 

then , 3( )i j

i j
e e

i j

e e
P

e e
!

=
+

 , which implies a non-monotonicity in the marginal probability of i winning 

the tournament as a function of j’s effort.15  Given that the only value to one’s effort is through 

influencing this probability, the non-monotonicity of 
ie

P  in je implies that 
ie

F  is itself non-

monotonic in je .  It is this type of ambiguity that motivates, in part, our empirical analysis. 

                                                   
 
15 Without explicitly modeling the uncertainty as in Lazear and Rosen (1981), where one’s performance is additively 
separable in effort and a noise parameter, this serves to illustrate the relevant ambiguity.  It is more common, though, 
in the related strand of contest literature.  Tullock (1980) first developed the model of rent seeking in which two 
homogeneous agents undertake costly investments in order to win a contest and its associated prize.  The emphasis in 
Tullock-type models is more often on the efficiency of contests, rent dissipation, and social welfare, with variations on 
this basic theoretical model to include imperfect discrimination, larger numbers of agents, asymmetry in agents’ 
technology, contests of multiple rounds, and multiple prizes.   
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4. Does One’s Competition Matter? 

4.1  Relevant competition 

  To consider the ambiguity inherent to the best-responses requires that we define the set of 

relevant competitors for each player.  As our dependent variable is final-round performance, we 

base this designation on the rank order of players as of the end of three rounds (i.e., the rank order 

at the commencement of the final round of each tournament t).  This will later contribute to a 

spatially autoregressive model that accounts for the strategic interactions.   

 As our identification strategy will, in part, exploit within-tournament variation in 

performance and competitor characteristics, the entire (final-round) field of 80 players cannot 

serve as player i’s relevant competitors.  Given the variation in scores we observe however, we do 

not view this as troubling in the sense of miss-identifying relevant competitors.  In defining 

relevant competitors, we rely on an empirical regularity that we observe in the data that suggests a 

reasonable rule, in the sense that a player may feasibly surpass (or fall behind) any competitor 

within his group of relevant competition.  Namely, seven strokes is the largest difference in 

cumulative strokes between any two contiguously ranked players going into the final round of any 

tournament on the 2004 season of the PGA Tour.  As such, at the end of the third round we define 

i’s relevant competitors as all those with end-of-third-round cumulative performance that is within 

seven strokes of i’s.16   

 Defining one’s relevant competition allows us to test whether the size of one’s group of 

relevant competitors explains one’s performance.  Additionally, consider the variation introduced 

into each player’s group of competitors by classifying them into categories based upon observable 

characteristics such as relative standing and ability.  

                                                   
 
16 We also restrict competitors to have been on the field of play with enough time to respond (i.e., not finishing their 
round fourth round before a “competitor” even begins play). 
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4.1.1 Players’ relative standings  

Abstracting away from the two-player tournament, one might reasonably argue that only 

the effort of the set of i’s relevant competitors need influence i’s marginal probability of winning, 

where the set of relevant competitors captures all competitors who still have a positive probability 

of beating i in the tournament conditional on past performance.  In that way, one’s pattern of play 

should only be influenced by the play of those within “close” standing.  In particular, then, we 

should anticipate an empirical methodology that is flexible to having certain “close” competitors 

matter differently than other irrelevant competitors.  If a player j is truly irrelevant to the 

probability of i winning (the corollary in the two-player model being that , 0
i je eF = ) then there 

should be no correlation in their final-round efforts or their observable performance.17  Empirically, 

in each tournament we classify competitors as ahead, tied, or behind based on the rank-order of 

players at the conclusion of third round play.  

4.1.2 Players’ relative abilities 

 As an alternative, one might consider the implications of heterogeneity in ability.  First, 

one could allow marginal costs of effort to differ, with the suggestion that players are endowed 

with different abilities that translate into different effort costs.  While it can be shown that each 

player’s best response function is invariant to changes in the opponent’s effort costs, a player’s 

own effort (as a best-response, that is) is everywhere lower when effort is more costly.  Second, 

one could model differences in ability, not as differences in marginal costs but, as differences in 

                                                   
 
17 Of course, if ei and ej are additively separable within the function that determines the probability of winning, 
implying that Fei,ej = 0, the reaction function’s slope would be zero.  However, such a technology seems somewhat 
implausible as a general rule within the context of explicit tournaments.  We will therefore interpret a zero slope as 
suggestive of no significant strategic interactions between players.  There are exceptions to this, however, that seem 
particularly reasonable given our particular empirical application, each seemingly relating to some dimension of 
player heterogeneity. 
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some ceteris paribus probability of winning – essentially, ability differences other than those 

captured by differences in effort costs.  As an extension, then, one might consider the potential for 

competition among unequal peers to yield private returns to relative performance that go beyond 

monetary rewards, yielding reward values that are dependent on who has been beaten in the 

tournament.  In particular, it may be reasonable to consider that marginal rewards to out-

performing competitors of higher ability (and in that sense, deliver an “upset”) may exceed those 

that result from out-performing competitors of like or lower ability.  

 With respect to player ability, we classify relevant competitors based on a comparison of 

the deciles of players’ average scores over all rounds played on the 2003 PGA Tour, with higher 

deciles corresponding to higher average scores (which should be interpreted as lower average 

ability).  The implication is that i’s opponents with a 2003 scoring average in a lower decile are 

considered higher ability players (relative to i).  We further classify competitors in the same decile 

as similar in ability and those in higher deciles as lower ability.  Given these discrete 

classifications, we can further define the intersecting sets as proper sub-groups (i.e., higher ability 

and ahead, higher ability and behind, etc.).  

4.2  Do players perform differently when facing different types of competitor? 

 All together, by introducing asymmetries in effort costs or in rewards that are endogenous 

to players’ relative ex ante abilities, to consider player heterogeneity suggests that an appropriate 

empirical methodology should be flexible to having certain “higher-ability” or “lower-ability” 

competitors matter differently than others.  In Table 2, we exploit the variation in such 

characteristics within one’s group of relevant competitors and allow player performance to differ 

with the make-up of this group.   In particular, given that each player may face a different number 

of total competitors within a seven-stroke range, we control for each player’s relevant competition 
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by including the proportion of i’s relevant competitors falling into each sub-group.  Here again, 

however, the composition of one’s relevant group of competitors is not exogenous.  Rather, a 

player’s competition at the end of the third round is determined by the cumulative performance of 

his opponents over the tournament’s first three rounds.  As with RETURN, we will treat the 

composition of one’s competition as endogenous, using an IV strategy similar to that which we 

described above.  Column (1) of Table 2 delineates sub-groups by ability classifications, with the 

omitted group capturing the interaction of final-round performance with those competitors with 

similar ability.  Column (2) delineates sub-groups by relative ranking, with the omitted group 

capturing the interaction of final-round performance with those competitors with equal strokes (as 

of the end of the third round).  Here we learn that, on average, player-performance is better when 

the field is less similar in ability.  The larger is either the proportion of higher or lower-ability 

competitors the better is performance, on average. 

Column (3) allows for the intersection of these groups, controlling for both ability and 

relative rank.  The results in Table 2 provide little evidence that the composition of players’ peer 

groups influences player performance.  However, this simple empirical strategy takes no account 

of the contemporaneous performance of competitors, or changes in group composition during the 

final round, as the composition of a player’s group of relevant competitors is defined at the 

beginning of the final round.  We therefore forego any additional discussion, since such a strategy 

leaves us unable to appropriately address our primary interest – the interdependency of 

contemporaneous player behavior in tournaments. 

4.3  Do players perform differently when competitors perform differently? 

Having considered the potential for player performance to vary with the characteristics of 

the relevant competition, we now reflect on the possible dynamics that produced the data.  In 
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particular, consider that the fourth round (rather than being a single event) can be divided into 18 

sequential holes, each one revealing new information to player i regarding the performance of i’s 

relevant competition.  Thus, even though we as econometricians are unable to observe the 

variation in performance hole by hole, we suspect that players respond to this information.  As we 

observe only the (more-aggregate) end-of-third- and end-of-fourth-round scores, we must adopt a 

specification that allows us to sign and measure the correlation between a player’s end-of-fourth-

round score and that of his competitors.   

 We therefore adopt a spatially autoregressive model of final-round performance that 

identifies exactly potential patterns underlying the endogenous determination of all fourth-round 

performances.18  Such a model is captured by modifying Eq. [1] as follows: 

[6]  S Z WS! " #= + + , 

where Z captures all right-rand-side variables in [1], !  is the spatial-lag coefficient to be 

estimated, and W  is the spatial weighting matrix.  Given our rule for determining the relevant 

group of competitors with which one competes, W  assigns equal weight to each of i’s tournament-

t competitors.  Thus, WS!  can be interpreted as the average fourth-round performance of one’s 

relevant competitors. 

Of course, given strategic interaction in tournament competition, player scores are jointly 

determined.  Solving [6] for equilibrium player scores yields 

[7]    S = (I ! "W )!1#Z + (I ! "W )!1$   ,  

in which the random component of the kth player’s score is equal to the inner product of the kth 

row of the matrix   (I ! "W )!1 and the error vector! .  Thus, each player’s final-round score is a 
                                                   
 
18 We do not argue that the fourth-round performance of i and of i’s competition is determined contemporaneously in 
a literal sense.  However, not observing hole-by-hole performance amounts to treating final-round performance as 
contemporaneously determined. 
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function of all the ! ’s.  Such correlation results in inconsistent OLS estimates of parameters in 

[6] and therefore requires alternative estimation techniques.  Following Anselin (1988), we correct 

for the endogeneity of player scores with an instrumental variables procedure, in which we regress 

the WS on Z and WZ and use the fitted values of   WS!  as instruments for WS. 

 Results in columns (1) and (2) of Table 3 suggest that !  is positive and significantly 

different from zero, confirming that a player’s realized end-of-fourth-round score does correlate 

positively with that of his competitors.  However, a check for the robustness of the estimated 

spatial lag suggests that including the weighted average of the absolute performance of a player’s 

competitors may be restrictive.  That a player’s performance correlates cross-sectionally with the 

average performance of his relevant competition is consistent with explanations other than the 

existence of peer effects.19  In general, we might expect players of similar ability to be of similar 

rank at both the end of the third round (where we define them as relevant competitors) and at the 

end of the fourth round.  It is therefore possible that a specification that includes absolute 

performance, such as in [6], will not permit the separation of the endogenous interdependency 

between competitors from a general correlation between players of similar ability.  

We therefore modify the spatial lag term such that the performance of player i’s group of 

competitors is measured relative to the competitors’ past performance, removing these potential 

level-effects (i.e., like players performing similarly) and instead capturing whether competitors are 

gaining or losing ground on player i.  Defining each player’s past performance as the mean strokes 

per round during the first three rounds of play, we calculate the spatial lag as the average mean-

differenced performance over all players in the group.  For example, a negative lag in this context 

                                                   
 
19 Of course, were all players in the fourth round to post scores that were exactly equal to their average over the first 
three rounds, player performance would correlate (one-to-one) with cross-sectional variation in competitor 
performance. 



 20  

will indicate that, on average, the group improved during the fourth round, which, all else equal, 

implies that relative to his group, a player’s cardinal ranking has fallen.   

The results from regressions using this group-relative measure of peer performance are 

shown in columns (3) and (4) of Table 3, where we see again that players respond positively to the 

performance of relevant competitors, on average.  While we have controlled broadly for player 

ability with the inclusion of players’ exemption status and tour affiliations, it would be easily 

argued that these early specifications do not adequately control for player ability.  Thus, we next 

limit the variation to that specifically around individual players.  In so doing we assume that 

player ability is time-invariant within a single season, after controlling for the trends in 

performance.  Controlling for players’ fixed attributes reveals the robustness of the earlier result to 

a specification where we limit the variation to differences across tournaments for individual 

players.  By including player fixed effects we are exploiting the fact that in each tournament, an 

individual player will be matched to a different group of relevant competitors, based on relative 

rank going into the final round.  Given that match, each player will have better-performing 

competitors in some tournaments than in others.  Coefficient estimates in Column (4) suggest that 

individual players perform better when facing better-performing competition.  If anything, 

exploiting only the time-series variation across the multiple tournaments suggests that the strategic 

interdependency is even stronger.  In all subsequent specifications we therefore account for all 

player-specific heterogeneity. 

4.4  Asymmetric responses to the performance of competitors: Do ability and rank matter? 

Estimation in Table 3 restricts players’ responses to competitor performance to be uniform 

across different types of competitors.  It ignores any distinction between better competitors and 

worse competitors or between leading and lagging competitors.  Theory suggests, however, that it 
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may be informative to differentiate sub-groups by ability, ordinal rank at the end of the third 

round, or a combination of both, to which we now turn.  In Table 4, we decompose the relevant 

competitor group into sub-groups based on ability and rank.  In considering the ability-breakdown 

reported in Column (1), note that results suggest that players only respond to the performance of 

similarly-able competitors and appear  unaffected by the performance of either higher-ability or 

lower-ability competitors.20  The point estimate implies that an average one-stroke improvement 

(i.e., a decline in final-round strokes) in the performance of similarly able competitors elicits an 

improvement in a player’s performance of 0.65 strokes.   

In the second column of Table 4 we distinguish sub-groups based on relative rank.  In such 

a specification, competitor-groups that are classified as competing from behind appear to elicit no 

competitive response in the final round of play.  However, point estimates suggest that from 

within one’s group of relevant competitors, there are sizeable responses to the performance of 

those who are either tied or leading as of the end of round three.  

In our most flexible specification, we classify each player’s relevant competitors into one 

of nine sub-groups defined by both their relative rank and relative ability.  In Column (3) of Table 

4, strategic interactions are significant in six of the nine sub-groups.  From these six, with the 

exception of less-able competitors competing from behind, the correlation in player performance 

within these sub-groups is positive, suggesting a pattern of behavior that responds to lower scores 

with lower scores and to higher scores with higher scores. 

Consider first players’ responses to competitors with whom they are tied.  Of those players 

who are tied, the slope of the best-response function is significantly positive for competitors of 

similar ability and of higher ability.  Notably, the magnitude of the response to similarly-able 
                                                   
 
20 Or, at least, if they are influenced by individual competitors within the group of relevant competitors, it nets out to 
no significant dependency overall. 
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competitors is twice as large as the response to higher-ability competitors, even thought they are 

both tied.  Specifically, a single-stroke improvement in the final round from tied, similarly-able 

competitors is associated with a player lowering his own score by 0.27 strokes versus only 0.14 

strokes for single-stroke improvement from tied, higher-ability competitors.  This difference may 

highlight how competitor characteristics influence the degree to which they are considered “close” 

peers, the closest peers being those who are similarly able (“close” in a longer-term sense) and 

also tied going into the final round (“close” in a particular tournament).  By extension then, tied, 

higher-ability competitors are not as close, yet appear sufficiently close to warrant strategic 

interaction.  Thus, players who observe their closest peers improving may be relatively more 

motivated to lower their scores, simply because they feel they should perform as well as their 

peers. 

Also of note is that, of similarly-able competitors, the average player’s response to the 

performance of those who are tied is larger than the response to the performance of those who are 

either ahead or behind.  This may not be surprising since improvement from tied competitors 

implies a potential drop in one’s rank order and therefore payoff.  The same cannot be said, for 

example, for the improved performance of lagging peers as an individual’s payoff is affected only 

in the case that the improvement results in a tie.  Likewise, when leading peers improve, the 

cardinal separation increases between an individual and his leading peers yet, all else equal, the 

individual’s ordinal rank and payoff remain unchanged. 

A slightly different pattern occurs with competitors of similar and lower ability who are 

ahead in the tournament, though both responses are also positive.  Of the observed responses to 

leading competitors, the competitive response to lower-ability competitors appears considerably 

larger than the response to similar-ability players.  We suspect that asymmetry in this context may 



 23  

imply that expectations of competitor performance play a role in effort decisions.  For example, 

the response to lower-ability competitors may be larger than to similarly able competitors if lower-

ability competitors are expected to have relatively inferior final-round performance, which would 

tend to decrease their ordinal ranking.  By extension, the average player’s expected return to effort 

should be higher in relation to lower-ability, leading competitors.  In this sense, the effect of peers 

being ahead may be offset countered by those peers being of lower ability.   

Distinct from those relationships above, players appear to respond quite differently to the 

performance of competitors who are of lower-ability and are behind.  With a negative point 

estimate, this response is markedly different from the others, implying that the better is the 

performance of lagging, lower-ability competitors, the worse is a player’s own performance.  

Specifically, a one-stroke improvement in final-round score from this comparator group implies a 

final-round score that is 0.20 strokes worse (i.e., higher), on average.21  This result may imply a 

level of importance in the psychological effects of being outperformed by players who are behind 

or less able.  Since these competitors are both lower ability (i.e., they tend to perform poorly in a 

long-term sense) and behind (i.e., are performing poorly in a short-term sense), it is not likely the 

case that one would be expecting them to improve in the final round.  When they do, then, this 

may amount to psychic costs imposed on others.  Perhaps unexpected pressure from these 

competitors is psychologically disturbing and results in a player posting higher scores. 

Given the discrete nature of our scoring data, it is difficult to assign an exact monetary 

value to the influence of competitors.  Rough indicators of this value suggest, however, that the 

estimated responses above may affect final payoffs quite significantly.  For example, while the 

                                                   
 
21 Recall that a player’s improvement is measured against the player’s average score over the first three rounds. 
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median player’s potential gain in prize money from improving his final-round score by a single 

stroke varies considerably across tournaments, the inner-quartile range is $14,000 to $35,000.  

5.  Conclusion 

 Existing tournament theory and empirical studies that aim to test such theory largely 

neglect the issue of player interdependency.  Perhaps a main reason for this is that the non-

monotonicity of players’ best-response functions in the standard theory results in ambiguous 

predictions.  As the slope of the best-response function is highly sensitive to any additions to the 

standard model, casting such models into dynamic contexts, for example, often proves intractable.  

Similarly, even relatively simple modifications of standard tournament models – introducing 

endowed standings, heterogeneous costs, or heterogeneous ability coupled with endogenous prizes 

– are sufficient to yield complex relationships between tournament competitors.  

 Using a spatial econometric approach, we analyze data from tournaments during the 2004 

PGA tour and find that players are indeed influenced by their competitors’ contemporaneous 

performance, quite substantially in some cases.  In particular, our analysis reveals a tendency for 

players to respond strongly to the performance of players with whom they are tied going into the 

final round of competition.  This may be expected, as tied competitors are unique insofar as a 

player’s monetary reward must change with either an improvement or decline in the performance 

of tied competitors, suggesting a larger marginal return with respect to efforts that separate one 

from a tied competitor.  Single-stroke changes in the performance of leading and lagging 

competitors would not be expected to have the same degree of influence over a player’s payoff as 

such changes need not result in changes to ordinal rankings, on which monetary prizes are 

determined.  Our results are consistent with one experiencing a larger increase in payoff for a 

single-stroke gain on a tied competitor than for the same gain on a leading competitor.  We 
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likewise document a general tendency for more-pronounced positive responses where the 

combination of competitors’ rank and ability increase the degree to which they would be 

considered “close” competitors. 

 Finally, we find a negative response to performance of lagging, lower-ability players.  This 

finding may result from the influence of other unobservable factors that affect player performance 

– psychological aspects of tournament competition, perhaps.  Future research could be directed 

toward understanding more fully these psychological factors.  In the end, these results suggest that 

existing models take an over-simplified view of tournaments when players’ relative rank and 

relatively ability are observed but not incorporated.  Overall, the significant regularities in the data 

suggest that social interactions, even those found in a fairly straightforward game, can be rather 

complex.  
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Table 1: The determination of final-round performance. 
Dependent Variable: Final-round strokes.  In columns (3) and (4), we instrument for player-tournament specific `Return’ using the tournament 
purse, player’s stroke totals from each of first three rounds of the same tournament, and information from the player’s 2003 season (i.e., scoring 
average, fraction of cuts made, scoring average pre-cut, and third-round scoring average).  Standard errors are in parentheses. 
 
 

Player performance Player performance 
(Instrument for RETURN) 

Independent Variables (1) (2) (3) (4) 
RETURN (to a one-stroke decrease -0.006*** -0.003* -0.016*** -0.011*** 
     in stroke count) (0.002) (0.002) (0.003) (0.003) 
Player is exempt -0.869**  -0.751***  
 (0.185)  (0.189)  
Player on Nationwide Tour -1.315  -1.430  
 (1.541)  (1.552)  
Player on Champions Tour 1.027  0.879  
 (1.023)  (1.031)  
Course par 0.478*** 0.465*** 0.467*** 0.459*** 
 (0.113) (0.115) (0.114) (0.116) 
Course yardage 0.002*** 0.002*** 0.002*** 0.002*** 
 (0.000) (0.000) (0.000) (0.000) 
Course rating -0.056 -0.071 -0.044 -0.062 
 (0.077) (0.078) (0.078) (0.079) 
Week of year 0.034 0.038 0.038 0.042 
 (0.028) (0.029) (0.028) (0.029) 
(Week of year)2 -0.001** -0.001** -0.001*** -0.001** 
 (0.001) (0.001) (0.001) (0.001) 
Hot (maximum temp > 90f) 0.046 -0.130 0.033 -0.137 
 (0.325) (0.334) (0.328) (0.335) 
Cold (maximum temp < 60f) -0.685** -0.958*** -0.666* -0.928*** 
 (0.338) (0.346) (0.341) (0.347) 
Maximum wind speed (mph) 0.089*** 0.081*** 0.088*** 0.082*** 
 (0.016) (0.016) (0.016) (0.016) 
Constant 26.605 29.181*** 24.894*** 29.392*** 
 (7.081) (7.240) (7.134) (7.273) 
Player Fixed Effects No Yes No Yes 
Observations / Unique players 2221 2221 / 227 2221 2221 / 227 
 F(12, 2208) = 19.76 F(9, 1985) = 20.93 F(12, 2208) = 21.18 F(236, 1985) = 21.88 
*** p<0.01, ** p<0.05, * p<0.1. Variables are defined as follows: Return – gain in prize money from improving cardinal rank by one stroke 
during final round; Exempt – players’ exemption status; Nationwide Tour, Champions Tour – player is member of Nationwide Tour/Champions 
Tour; par, rating – in number of strokes; yardage – in thousands of yards; week of year, (week of year)2 – week of the year (and its square) in 
which the tournament was played; Hot/Cold – indicate whether or not maximum temperature on day of play was greater than 90 and less than 
60 degrees Fahrenheit, respectively; Max. Wind speed – maximum sustained wind speed (in mph). 
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Table 4: Spatially autoregressive performance: Asymmetries in responsiveness to 
competitor performance. 
Dependent Variable: Final-round strokes. Following Anselin (1988), we correct for the endogeneity of player scores with an 
instrumental variables procedure, in which we regress competitor performance on Z and WZ (as described in the above text) and use the 
fitted values as instruments for competitor performance.  While estimated coefficients are not reported, all specifications include course 
par, course yardage, course rating, week of year, (week of year)2, hot and cold indicators and maximum wind speed.   
    
Independent Variable (1) (2) (3) 
Performance of relevant competition categorized as:    
   Lower Ability 0.118   
 (0.130)   
   Similar Ability 0.645***   
 (0.100)   
   Higher Ability 0.146   
 (0.104)   
   Behind  -0.169  
   (0.108)  
   Tied  0.292**  
  (0.099)  
   Ahead  0.298***  
  (0.095)  
   Lower Ability / Behind   -0.200** 
   (0.084) 
   Similar Ability / Behind   0.116* 
   (0.064) 
   Higher Ability / Behind   0.032 
   (0.074) 
   Lower Ability / Tied   -0.033 
   (0.072) 
   Similar Ability / Tied   0.267*** 
   (0.077) 
   Higher Ability / Tied   0.137** 
   (0.061) 
   Lower Ability / Ahead   0.293*** 
   (0.079) 
   Similar Ability / Ahead   0.189*** 
   (0.056) 
   Higher Ability / Ahead   -0.059 
   (0.059) 
RETURN (to a one-stroke decrease in stroke count) a -0.009*** -0.009*** -0.005* 
      (0.003) (0.003) (0.003) 
Player fixed-effects Yes Yes Yes 
Constant 37.993*** 27.869*** 31.213*** 
 (7.557) (7.504) (7.624) 
Observations 2221 /227 2221 /227 2221 /227 
 F(239, 1982) = 22.00 F(239, 1982) = 18.36 F(245, 1976) = 14.68 
Standard errors in parentheses.  *** p<0.01, ** p<0.05, * p<0.1. a We instrument for RETURN as in earlier specifications. 

 




