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Many economic phenomena are characterized by the observation of a se-
quence of events on a continuous interval of time. Think, for instance, to
observing the dates of a specific type of financial transactions, or to observ-
ing the dates of changes of the individual labour market situation (full-time
employed, part-time employed, unemployed, etc.). The length of the interval
between two successive events is called a duration. A duration is a positive
random variable, denoted T , representing the length of a time period spent
by an individual or a firm in a given state. For simplicity, we assume that the
distribution of T is not defective, i.e. Pr(T = ∞) = 0. This variable is also
called a failure time when the date of change is interpreted as a breakdown
or a failure.
The most elementary duration model is based on a “death process” {Xt,
t ∈ R+}, for which Xt takes its values in the discrete state space {E0, E1}.
At the time origin, called the birth date, the process is in state E0, i.e.
X0 = E0. Trajectories of the process Xt have at most a unique transition
from state E0 to state E1, which occurs at time T , called the death date.
Consequently, the duration T generated by a trajectory of the death process
Xt is defined as follows:

T = inf{t | Xt = E1}.

In most structural models, T is a continuous random variable, but the em-
pirical distribution function is a discrete time process and nonparametric
methods are often based on (functional) transformations of the empirical
distribution function, considered as the best estimator of the “true” dis-
tribution function. Therefore, in this chapter, we explicitly consider both
continuous and discrete durations.
The first section of this survey concentrates on marginal models of durations,
i.e. models without explanatory variables. It presents the main functions
characterizing the distribution of a duration variable, the survivor and haz-
ard functions among others. Section two is devoted to the presentation of
conditional duration models, and more particularly, proportional hazards
and accelerated life models, which incorporate the effects of explanatory
variables in two different ways. In this section, a special emphasis is put
on the problem of unobserved individual heterogeneity. The basic duration
model treats a single spell (of unemployment, for example) ending with a
given kind of transition (from unemployment to employment, for example).1

But, in general, as a death could be due to various causes, an individual
could exit from unemployment to enter one among different states: full-
time employment, part-time employment, or training, for example. When a
single-spell duration has many (at least two) outcomes, the duration model

1Recently, duration models have been used to analyze the determinants of time intervals
between two successive changes in the price of a product sold in a given outlet (see, for
instance, Fougère, Le Bihan and Sevestre [2007]).
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may be modelled by means of a so-called competing risks model. Compet-
ing risks models are presented in the third section, which also contains a
discussion on their identifiabiliaty. The right–censoring issue is presented
here as a particular case of a competing risks duration model. The fourth
section is concerned with statistical inference, with a special emphasis on
non- and semi- parametric estimation of single-spell duration models.
The remaining part of this chapter is devoted to point processes, which
can be viewed as a generalization of duration models. Such processes are a
mathematical formalization which allows to examine individual mobilities
or transitions between a finite number of discrete states through (continu-
ous) time. They are particularly useful for the microeconometric analysis of
labour market dynamics. Section 5 sets forth the main definitions for point
and counting processes. Distribution, intensity and likelihood functions of
such processes are also examined. Section 6 presents important elemen-
tary examples of point processes, namely Poisson, Markov and semi-Markov
processes. Such processes are of great interest because they are well adapted
to the case of observed censored or truncated realizations. The last section
presents a general semiparametric framework for studying point processes
with explanatory variables. It also focuses on the definition of martingale
estimators, which are particularly useful in this framework.

1 Marginal duration models

1.1 Distribution, survivor and density functions

We first recall the general definition of the distribution function and of
its complement, the survivor function. Next, we give more details for the
continuous and the discrete cases, particularly from the point of view of the
continuity of these functions.

Definition 1.1 : Distribution function
The distribution function of the duration variable T is denoted F and is
defined as

F (t) = Pr(T < t), t ≥ 0.

¥

The main properties of the distribution function F are: F (t) ∈ [0, 1] , F is
monotone non-decreasing, right continuous and limt→∞ F (t) = 1.

Definition 1.2 : Survivor function
The survivor function of the duration variable T , denoted S, is defined as

S(t) = Pr(T ≥ t) = 1− F (t) + Pr(T = t) .

¥
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Its main properties are: S(t) ∈ [0, 1] , S is monotone non-increasing, left-
continuous and limt→∞ S(t) = 0.

Definition 1.3 : Density function If there exists a function f : R+ →
R+ such that

F (t) =
∫ t

0
f(u)du or f(t) =

dF

dt
= −dS

dt
,

f is called the density of T . ¥

Thus, the density function may be interpreted as the “instantaneous prob-
ability” of a failure, a death or an exit (from unemployment, for instance).
Remember that in the continuous case, there exists a value of t such that
F (t) = S(t) = 0.5; that value is the median of the distribution.

Definition 1.4 : Discrete duration

∃(fj , aj), j ∈ J ⊆ N, fj > 0,
∑

j∈J
fj = 1, 0 ≤ aj < aj+1

such that
F (t) =

∑
j∈J fj 1 {t ≥ aj} =

∑
{j|aj≤t} fj

S(t) =
∑

j∈J fj 1 {t ≤ aj} =
∑
{j|aj≥t} fj

or equivalently

fj = F (aj)− F
(
aj−

)
= F (aj)− F (aj−1)

= S (aj)− S
(
aj+

)
= S (aj)− S (aj+1)

¥
In the framework of a death process, the event {T = aj} means “alive up to
age aj− and dead at age aj” and that event has probability fj .

1.2 Truncated distributions and hazard functions

The use of statistical duration models may be justified by several arguments:

(i) Problem of time dependence. Consider the following question. What
is the “instantaneous” probability of dying at time t given you are still
living at time t−? More generally, this is the problem of the probability
law of duration T , conditional on T ≥ t (remember that the event {T ≥ t}
means “still alive at time t”). This problem is exactly that of analyzing
the dynamic behavior of the process. Such conditional distributions are
“truncated” distributions.

4



(ii) The preceding question is often so natural that modelling those trun-
cated distributions may be economically more meaningful than modelling
the untruncated distributions. For instance, in job search models, the reser-
vation wage, at a given instant, is a function of the duration of unemploy-
ment up to that instant.

(iii) Right-censoring (see Section 3.4) makes truncated distributions partic-
ularly useful.

Definition 1.5 Integrated Hazard Function

The integrated hazard function of the duration variable T is denoted Λ and
is defined as

Λ : R+ → R+

t 7→ Λ(t) =
∫
[0,t[

1
S (u)

dF (u)

¥
The function Λ is monotone non-decreasing, left-continuous and verifies
Λ (0) = 0 and Λ (∞) = ∞. As we will see later, the integrated hazard
function is a useful tool for characterizing some duration distributions. Let
us consider now the hazard function (or age–specific failure rate).

(i) Continuous case
In the continuous case, there is a density function f(t) and

Λ(t) =
∫ t

0

f(u)
S(u)

du = −
∫ t

0

1
S(u)

dS(u) = −ln S(t) .

Definition 1.6 Hazard function

The hazard function of the duration variable T is denoted λ and is defined
as

λ(t) = dΛ(t)/dt = f(t)/S(t) = −dln S(t)/dt .

¥
The function λ(t) may be viewed as the “instantaneous probability” of leav-
ing the current state, indeed

λ(t) = lim
∆→0

Pr[t ≤ T < t + ∆ | T ≥ t]
∆

.

Thus, λ(t) is also called the “age–specific failure rate” or the “age–specific
death rate”. The function λ is non negative and

∫ t
0 λ (u) du < ∞, ∀t ∈ R+,

but
∫∞
0 λ (u) du = ∞ for non-defective distributions. Note that λ is not

necessarily monotone.
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Straightforward relationships between the distribution, survivor and hazard
functions should be noticed:

Λ(t) =
∫ t
0 λ (u) du, f(t) = λ(t) exp

(
− ∫ t

0 λ (u) du
)

S(t) = exp
(
− ∫ t

0 λ (u) du
)

, F (t) = 1− exp
(
− ∫ t

0 λ (u) du
)

showing that each of these functions completely characterizes the distribu-
tion of a duration.

Definition 1.7 Temporal independence

The hazard function of the duration T has the property of temporal indepen-
dence if and only if it is constant over time, i.e. λ(t) = λ, ∀t ∈ R (λ > 0)¥

(ii) Discrete case
Remember that, in the discrete case, for any (integrable) function g(u) we
have ∫

[0,t[
g(u)dF (u) =

∑

{j|aj<t}
g(aj)fj =

∑

j

g(aj)fj1{aj < t}.

Therefore

Λ(t) =
∑

{j|aj<t}

fj

S(aj)
=

∑

{j|aj<t}

fj

fj + fj+1 + . . .
.

So, we obtain the discrete version of the (instantaneous) hazard function as

λj = Λ(aj+)− Λ(aj) =
fj

fj + fj+1 + fj+2 + . . .
=

fj

S(aj)
.

In particular, λ1 = f1. The last formula may also be interpreted as

λj = Pr(T = aj | T ≥ aj) .

To deduce relationships between survivor and hazard functions in the dis-
crete case, let us write the survivor function as:

S(t) =
∏

{j|aj<t}(1− λj)

based on the familiar identity

a0 + a1 = a0

(
1 +

a1

a0

)

a0 + a1 + a2 = a0

(
1 +

a1

a0

)(
1 +

a2

a0 + a1

)

· · ·
∑

0≤j<k aj = a0
∏

1≤j<k

(
1 +

aj∑
0≤m<j−1 am

)
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applied to:
S(t) = 1−

∑
{j|aj<t} λj .

Thus we obtain the relationship

ln S(t) =
∑
{j|aj<t}(1− λj) ≈ −∑

{j|aj<t} λj = −Λ (t)

if λj is “small”, i.e. −ln (1− λj) ≈ λj . Thus, in the discrete case, Λ(t) is
approximately equal to −ln S(t) if all λj are small, while in the continuous
case, Λ(t) is exactly equal to −ln S(t). Moreover, in the discrete case:

fj = λj

∏
1≤i≤j−1

(1− λi) .

Figure 1 presents the main distributions used for the statistical analysis of
duration data.

2 Conditional models

2.1 General considerations

a) The two levels of analysis to be considered

(i) For a descriptive (or exploratory) data analysis, covariates may be used
to control for observable factors of heterogeneity by performing separate
analyses.
(ii) When the objective is to estimate a structural model, the parameter of
interest may be such that the (marginal) process generating some covariates
may be uninformative about the parameter of interest which, at the same
time, is a function of a parameter sufficient to parametrize the process con-
ditional on those covariates. Those covariates are then called “exogenous
variables” and are generally denoted by Z whereas the other variables, de-
noted by Y (or T , in case of a duration variable), are called “endogenous”,
because the model describes the way they are generated conditionally on
the exogenous variables.
In such a case, it is admissible to specify only the process conditional on
those exogenous variables, leaving the marginal process generating those
exogenous variables virtually unspecified. In other words, for the parameter
of interest, p(t | z, θ) is as informative as p(t, z | θ). According to a general
principle of parsimony, the conditional model is therefore preferred.

b) How to specify conditional models

(i) In general, a natural way of specifying conditional models is to make
the parameters of a distribution dependent on the conditioning variable.
Thus, in FT (t | θ), one would transform θ into g(z, θ) where g would be
a known function. For example, Y ∼ N(µ, σ2) could be transformed into
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Figure 1: Examples of distributions for durations
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(Y | Z) ∼ N(α + βZ, σ2). Similarly, T ∼ Exp(θ) could be transformed into
(T | Z) ∼ Exp[g(Z, θ)] where, e.g. g(Z, θ) = exp(−Z ′θ).

(ii) When modelling individual data (and, in particular, duration data), a
frequently used strategy consists of starting with a so–called “baseline” dis-
tribution for a reference individual, i.e. either an individual not belonging
to the treatment group (e.g. an individual for which Z = 0) or a “represen-
tative” individual (e.g. an individual for which Z = E(Z)) and thereafter
modelling, what makes the other individuals different from that individual
of reference. Typical examples are the following:

• in the proportional hazard model, the global effect of all regressors Z
is to multiply the baseline hazard function by a scale factor,

• in the accelerated life model, the global effect of all regressors Z is
to rescale the duration variable. From now on, we shall only use the
notation θ for the complete parameter characterizing the conditional
distribution generating (T | Z). This vector is decomposed into θ =
(α, β) where α parametrizes the baseline distribution and β represents
the effect of the exogenous variables.

c) Time–varying and time–constant covariates must be distin-
guished

The covariates may represent:

• individual characteristics, such as gender, level of education, and so
on, which are fixed over time,

• other individual characteristics, such as marital status, number of chil-
dren, eligibility to social benefits or programs, which are typically
varying through time,

• but also characteristics of the macroeconomic environment, such as the
unemployment rate, the job vacancy rate, the employment structure,
and so on, which are also time–varying but possibly common to several
individuals.

Some variables may also represent interactions between several covariates.
The dynamic properties of the model and the estimation procedures crucially
depends on whether the covariates are time-dependent or not.

d) Interpretation of the parameters

Most models are typically nonlinear in the sense that partial derivatives (of
interest) are not constant, but are functions of the values of the covariates
and/or of the duration. This feature clearly makes the interpretation of the
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coefficients more difficult. Furthermore, those partial derivatives are often
not those of conditional expectations (as in regression analysis) but those of
hazard functions (i.e. of “instantaneous probabilities”).

2.2 The proportional hazard or Cox model

a) Definition

In the proportional hazard model, the effect of the exogenous variable is
specified as multiplying a baseline hazard function by a function that de-
pends on the exogenous variable. When Z is not time-dependent, this model
is defined as

λT (t | z, θ) = λ0(t | α)g(z, β), θ = (α, β),

where λ0(t | α) is the so-called baseline hazard function and g is a known
function. The proportional hazard model is equivalently characterized as

ΛT (t | z, θ) = g(z, β)
∫ t

0
λ0(u | α)du = g(z, β) Λ0(t | α) ,

ST (t | z, θ) = exp
{
−g(z, β)

∫ t
0 λ0(u | α)du

}

= exp {−g(z, β) Λ0(t | α)}

= [S0(t | α)]g(z,β)

where Λ0 and S0 are implicitly defined. Thus

fT (t | z, θ) = λT (t | z, θ) ST (t | z, θ)

= g(z, β) λ0(t | α) [S0(t | α)]g(z,β)

b) Identification

The problem of identifying separately the functions g and λ0 comes from
the fact that for any k > 0 : g · λ0 = gk · k−1λ0. A rather natural solution
consists of defining a reference individual, i.e. a particular value z0 of Z for
which g(z0, β) = 1,∀β. Consequently, λT (t | z0, θ) = λ0(t | α). When Z = 0
is meaningful, a typical normalization is g(0, β) = 1.
In the proportional hazard model with time-constant covariates, the first-
order derivative

∂

∂z
ln λT (t | z, θ) =

∂

∂z
ln g(z, β),

depends on z and β only and is therefore independent of t.

c) Semi–parametric modelling
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When interest is focused on the role of the exogenous variables, α is treated
as a nuisance parameter and β is the sole parameter of interest. In such a
case, modelling often relies on one of the following two extreme possibilities:

(i) λ0(t | α) is specified in the most simplest way such as λ0(t | α) = λ0(t),
i.e.. is completely known, or λ0(t | α) = α, i.e. the baseline distribution is
exponential and therefore depends on only one unknown parameter;

(ii) λ0(t | α) is specified in the most general way: λ0(t | α) = α(t), i.e.
a functional parameter (α is a non–negative function such that its integral
on the positive real line diverges). This is a semiparametric model with
parameter θ = (α, β), where α takes its value in a functional space, whereas
β takes its value in a (finite dimensional) Euclidean space. This approach is
particularly attractive in situations where economic theory would not give
much information on the structure of λ0(t | α).

d) A particular case

The function g(z, β) should clearly be non–negative. An easy way to obtain
that property without restriction on β is the log–linear specification, viz.:

g(z, β) = exp(z′β), β ∈ Rk.

In such a case Λ0(t|α) = ΛT (t|0, θ). That specification has a number of
interesting properties. First, let us remark that:

∂

∂z
ln λT (t | z, θ) =

∂

∂z
ln g(z, β) = β,

i.e. z has a constant proportional effect on the instantaneous conditional
probability of leaving state E0. As z is not time–dependent, one may also
write

ST (t | z, θ) = exp {−Λ0(t | α) exp(z′β)} = [S0(t | α)]exp(z′β)

fT (t | z, θ) = λ0(t | α) exp(z′β) [S0(t | α)]exp(z′β)

Let us define
εt = −ln Λ0(t | α)− z′β .

where εt has a completely specified distribution, independent of α, z or β,
namely a unit double–exponential distribution. Then we may write

−ln Λ0(t | α) = z′β + εt .

This is a (non–normal) nonlinear regression but linear if α is known. This
feature of the proportional hazard model was used by Han and Hausman
[1990] for conducting a semiparametric estimation on grouped duration data.
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2.3 The accelerated time model

a) The basic idea

In the accelerated time model, the effect of the exogenous variable is specified
as modifying the time scale. For the ease of exposition, we assume that the
exogenous variables are not time-dependent. The accelerated time model is
accordingly defined as

T = [g(z, β)]−1T0 or T0 = g(z, β)T

or, equivalently,

λT (t | z, θ) = g(z, β)× λ0 [t g(z, β) | α]
ΛT (t | z, θ) = Λ0 [t g(z, β) | α]
ST (t | z, θ) = S0 [t g(z, β) | α]
fT (t | z, θ) = g(z, β) f0 [t g(z, β) | α]

with, as usual, θ = (α, β). This specification may be particularly attractive
when the baseline distribution admits a scale parameter.

b) Empirical test for the accelerated time model

Let us consider the quantile functions, i.e. the inverse of the survivor (rather
than, as more usually, the distribution) function

qT (p | z, θ) = S−1
T (p | z, θ) , 0 ≤ p ≤ 1,

q0(p | α) = S−1
0 (p | α) , 0 ≤ p ≤ 1.

Because of the strict monotonicity (in the continuous case) of the survivor
function, we have

q0(p | α) = g(z, β) · qT (p | z, θ) .

In the {q0(p | α), qT (p | z, θ)}–space, this gives, for a fixed value of z, an
homogenous straight line, the gradient of which is given by g(z, β). This
feature suggests that an easy empirical test for the accelerated time model
may be obtained through an examination of the so–called “Q–Q–plot” (i.e.
plot of the two quantiles) for a fixed value of Z and a fixed (typically,
estimated) value of θ = (α, β).

c) Regression representation of the accelerated time model

The accelerated time model may also be written, in logarithmic terms, as

ln T = ln T0 − ln g(z, β).

If we define µ0 = E [ln T0] and ε = ln T0 − E [ln T0] , we may also write

ln T = µ0 − ln g(z, β) + ε.

12



In particular,

(i) if ln T0 ∼ N(µ, σ2), i.e. T0 ∼ LN(µ, σ2), then ε ∼ N(0, σ2). Thus we
obtain a normal regression model (if there is no censoring);

(ii) if g(z, β) = exp (z′β), we obtain a linear regression model: ln T =
µ0 − z′β + ε.

d) Particular case: Weibull baseline

In the particular case of a Weibull baseline distribution, namely Λ0 (t|x) =
λtτ , where α = (λ, τ), along with a log-linear effect of the exogenous variable,
namely g (z, β) = exp (β′z), we obtain:

ΛPH (t|z, θ) = exp
(
β′PHz

)
λtτ

ΛAT (t|z, θ) = λ[t exp
(
β′AT z

)
]τ

The two models, proportional hazards and accelerated time, become there-
fore identical under the reparametrization βPH = τβAT .

2.4 Aggregation and heterogeneity

Heterogeneity is the problem created by the non-observability or the omis-
sion of relevant exogenous variables. Aggregating over heterogenous in-
dividuals may create complicated structures of the hazard function. The
analytical aspect is shown, for the general case, in the next lemma. An ex-
ample illustrates a simple application of this lemma. Then it is shown that
aggregation destroys the exponentiality of a duration.

a) A basic lemma

Let T | Z ∼ FZ
T and Z ∼ FZ , i.e.

Pr (T ≤ t | Z = z) = FT (t | z) and Pr (Z ≤ z) = FZ (z)

Then
fT (t) =

∫
fT (t | z) dFZ (z)

ST (t) =
∫

ST (t | z) dFZ (z)

λT (t) =
fT (t)
ST (t)

=
∫

fT (t | z) dFZ (z)∫
ST (t | z) dFZ (z)

=
∫

λT (t | z)
ST (t | z)∫

ST (t | z) dFZ (z)
dFZ (z)

=
∫

λT (t | z) dFZ (z | T ≥ t)

13



¥
This lemma may be interpreted as follows: aggregating over heterogenous
individuals, characterized by z, produces a duration distribution for which
the hazard function λT (t) is a weighted average of the individual hazard
functions λT (t | z). This possibly complicated weighting scheme may even-
tually account for complex hazard functions when analyzing aggregate data.
A simple example illustrates this point.

b) An example

Let Z = 0 for individuals with a low educational level, and Z = 1 for
individuals with a high educational level. The distribution of this variable
over the whole population is defined by Pr(Z = z) = θz(1−θ)1−z. Moreover,
we suppose that:

(T | Z = j) ∼ F j
T , j = 0, 1

Then we can deduce

fT (t) = θfT (t | z = 1) + (1− θ) fT (t | z = 0)

ST (t) = θST (t | z = 1) + (1− θ) ST (t | z = 0)

λT (t) =
fT (t)
ST (t)

= θ
f1

T (t)
θS1

T (t) + (1− θ) S0
T (t)

+ (1− θ)
f0

T (t)
θS1

T (t) + (1− θ) S0
T (t)

= λ1
T (t)

θS1
T (t)

θS1
T (t) + (1− θ)S0

T (t)
+ λ0

T (t)
(1− θ) S0

T (t)
θS1

T (t) + (1− θ) S0
T (t)

c) The “mover–stayer” lemma

Lemma. If (T | Z) ∼ Exp {λ0(Z)} and Z ∼ FZ arbitrary, then λT (t) is
monotone decreasing. ¥

Proof. Indeed, we successively obtain:

ST (t) =
∫∞
0 ST (t | z) dFZ (z) =

∫∞
0 exp [−t λ0 (z)] dFZ (z)

fT (t) = − d

dt
ST (t) =

∫∞
0 λ0 (z) exp [−t λ0 (z)] dFZ (z)

λT (t) =
fT (t)
ST (t)

=

∫∞
0 λ0 (z) exp [−t λ0 (z)] dFZ (z)∫∞

0 exp [−t λ0 (z)] dFZ (z)

It is then easy to check that

d

dt
λT (t) < 0 ∀t, ∀FZ(Z), ∀λ0(Z)
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(see, for example, Fourgeaud, Gourieroux and Pradel [1990]).
This lemma may be interpreted as follows. Individuals are characterized by
their value of z. Large values of λ0(z) represent so-called “movers”: they will
leave first, while individuals represented by small value of λ0(z), the so-called
“stayers”, will leave (in probability) later. This explains why λT (t) will be
decreasing because being determined at each t by the remaining individuals
with smaller values of λ0(z). This lemma also shows that although each
individual duration has exponential duration, the appropriate distribution
not only is not exponential but has necessarily a decreasing hazard rate,
whatever is the distribution of Z.

2.5 Endogeneity

In the previous section, we have considered models where the covariates are
exogenous. In many cases, this assumption is not realistic. Consider, for
example, a model constructed in the following way: T is a duration generated
conditionally on Z = (Z1, Z2), where Z2 is an individual characteristic and
Z1 is the level of a treatment. The variable Z2 is known by persons who
assign the treatment but unknown by the statistician. If the parameters of
interest are the parameters of the conditional distribution of T given (Z1, Z2)
these parameters are in general not identified by the conditional distribution
of T given Z1 (after integration of Z2). Using econometric terminology, Z1

becomes an endogenous variable. Endogeneity of treatments in duration
models has been studied by Abbring and Van den Berg [2003].

3 Competing risks and multivariate duration
models

3.1 Multivariate durations

a) Introduction

Multivariate durations distributions are used in different situations. The
first context is the analysis of multivariate elementary point processes, which
occurs when we observe life lengths of several individuals belonging to the
same family, or unemployment spells of couples. This is also the case when,
for a given individual, we define a multivariate point process corresponding,
for instance, to her labour market trajectories and to her marriage/divorce
history. Another use is in point processes with more than one transition,
as in the analysis of biographical data on unemployment. Yet another use
is in situations where the vector of durations is latent and some sampling
scheme allows one to observe only a part of this vector; this is the case in
competing risks models to be presented later on.
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In this section we focus our attention on general issues, namely basic defini-
tions and properties, and methods of construction. For expository purposes
we limit the presentation to bivariate distributions; extensions to more than
two dimensions are fairly obvious, although notations may become cumber-
some.

b) Basic concepts

We start with the multivariate survivor function defined and denoted as

ST1,T2(t1, t2) = Pr(T1 ≥ t1, T2 ≥ t2) .

In what follows we assume that ST1,T2 is twice differentiable but in the last
section we show how to treat a continuous but not everywhere differentiable
survivor function as well. The multivariate density is defined as

fT1,T2(t1, t2) =
∂2

∂t1∂t2
ST1,T2(t1, t2) .

The marginal survivor and density functions are defined asas

ST1(t1) = ST1,T2(t1, 0)

fT1(t1) = − d

dt1
ST1(t1)

and similarly for T2. Often we shall write, for simplicity, S1,2, f1,2 or Sj(j =
1, 2) instead of ST1,T2 , etc.
Conditional distributions occur in different contexts and should be carefully
distinguished according to the relevant conditioning event. Thus we need
both S1|2(t1|T2 = t2), f1|2(t1|T2 = t2 ) and S1|2(t1|T2 ≥ t2), f1|2(t1|T2 ≥ t2).
They are defined and denoted as follows:

S≥1|2(t1|t2) = Pr(T1 ≥ t1 | T2 ≥ t2) =
S1,2(t1, t2)

S2(t2)

f≥1|2(t1|t2) = − ∂

∂t1
S1|2(t1 | T2 ≥ t2) =

− ∂

∂t1
S1,2(t1, t2)

S2(t2)
.

Furthermore, as shown more precisely in next subsection,

S=
1|2(t1|t2) = Pr(T1 ≥ t1|T2 = t2) = −

∂

∂t2
S1,2(t1, t2)

f2(t2)

f=
1|2(t1|t2) = − ∂

∂t1
S=

1|2(t1|t2) =
f1,2(t1, t2)

f2(t2)
.
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To each of these univariate conditional distributions, there corresponds a
unique hazard function. For instance, marginal hazard functions are defined
and denoted as:

λj(tj) = lim
∆↓0

1
∆

Pr [tj ≤ Tj < tj + ∆ | Tj ≥ tj ]

= −dln Sj(tj)
dtj

=
fj(tj)
Sj(tj)

Conditional hazard functions are respectively defined as

λ≥1|2(t1|t2) = lim
∆↓0

1
∆

Pr [t1 ≤ T1 < t1 + ∆ | T1 ≥ t1, T2 ≥ t2]

=
f≥1|2(t1|t2)
S≥1|2(t1|t2)

= − ∂

∂t1
ln S1,2(t1, t2)

λ=
1|2(t1|t2) = lim

∆↓0
1
∆

Pr [t1 ≤ T1 < t1 + ∆ | T1 ≥ t1, T2 = t2]

=
f=
1|2(t1|t2)

S=
1|2(t1|t2)

= − ∂

∂t1

[
ln

(
− ∂

∂t2
S1,2(t1, t2)

)]

c) Construction of multivariate distributions

Several techniques for constructing multivariate distributions are worth men-
tioning. The most trivial one is the case of independent components in which
case the joint survivor and density functions are the products of (arbitrary)
corresponding marginal functions, and in which the conditional survivor,
density and hazard functions coincide with the corresponding marginal func-
tions.
For the dependent case, two general procedures are: (i) take two univari-
ate distributions, choose one to be marginal and take the other one to be
conditional to the first by making its parameters to be a function of the
conditioning variable; (ii) take a joint distribution with survivor S(t1, t2, y)
where y is an auxiliary variable such that S(t1, t2 | y) is meaningful, and
marginalize it into S1,2(t1, t2).

3.2 Competing risks models: definitions

Competing risks duration models apply to situations where the state space
E has more than two elements : E = {E0, E1, . . . EJ} , J > 2. Such models
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involve specifying not only the date at which the process leaves the initial
state E0, but also which state in {E1, . . . EJ} is entered.
Consider, for instance, a medical trial where a patient is submitted to a
“treatment” for a supposedly known disease and where the survival time is
observed. Typically, the cause of death is multiple; in particular, it may be
different from the disease for which the treatment was originally designed,
and the cause is possibly associated with the treatment itself. One says that
several risks “compete” to cause the death of the patient. Similarly, in the
labour market, when the initial state E0 is unemployment, it may be relevant
to distinguish several exit states, for example full-time employment, part–
time employment or early retirement. The relevance of these distinctions
is based on the fact that economic, social and institutional factors may
be important to explain both durations and transitions of the individual
trajectories; in other words, they are particularly important when analyzing
biographical data.
Thus the data have the form (T, K) where T is the sojourn duration in the
initial state and K is the destination state. Therefore the law of such a
process is specified by the so-called sub-distribution

Pr (T ≥ t,K = k) = Pr(Tj ≥ Tk ≥ t, ∀j 6= k)

Competing risk models provide a specification of Pr(T ≥ t,K = k) based
on the following idea. T represents the duration of sojourn in the initial
state E0, whatever the destination state is. The latent random variable Tj

would represent the duration of sojourn in the initial state if Ej were the
only possible destination. In the competing risk models, if ties have zero
probability, i.e. Pr(Ti = Tj) = 0, ∀i 6= j, the Tj ’s are connected by the
relationships:

T = minj{Tj}, j = 1, · · · J,

K = argminj{Tj = T}.
Thus, the Tj ’s are latent duration variables because only their minimum is
observed. This structure permits to write easily the marginal laws of T and
K, which are given by:

ST (t) = Pr(T ≥ t) = Pr {∩j=1,...,K (Tj ≥ t)}
Pr[K = k] = Pr {∩j 6=k (Tk < Tj)}

Intuitively, k is the index of the lowest latent duration (given an ascending
order on the j′s). In order to evaluate the likelihood function, we start by
the joint survivor function, using ∗ as an upper index in the notation of
the joint distribution of the latent durations (T1, ..., TJ) to stress that those
durations are latent:
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S∗(t1, . . . tJ) = Pr(T1 ≥ t1, . . . , TJ ≥ tJ)

for any (t1, . . . tJ) ∈ RJ
+. The survivor function of the observed duration

T = minj(Tj) satisfies

ST (t) = S∗(t, . . . t), t ∈ R+

The marginal survivor function of the latent duration Tj , for j = 1, ..., J, is
denoted Sj and defined as:

Sj(tj) = S∗(0, . . . 0, tj , 0, . . . 0) .

In the case where the Tj ’s are independent, we have

S∗(t1, . . . tJ) = ΠJ
j=1Sj(tj).

Now, let us suppose that the functions S∗ and consequently ST and Sj are
continuously differentiable. The marginal and relevant conditional hazard
functions of the latent duration Tj , for j = 1, ..., J, are denoted and defined
as

λj(t) = lim
∆↓0

1
∆

Pr(t ≤ Tj < t + ∆ | Tj ≥ t) = −dln Sj(t)/dt, t ∈ R+,

λ≥j|T (t) = lim
∆↓0

1
∆

Pr(t ≤ Tj < t + ∆ | T ≥ t)

= − ∂

∂tj
ln S∗(t1, . . . tJ) |t1=t2=···=tJ=t

where λ≥j|T (t) is a short cut for λ≥Tj |T (t|t). When the T ′js are mutually inde-
pendent, it is obvious that:

λ≥j|T (t) = λj(t), for any t ∈ R+.

The hazard function of the observed duration T is denoted and defined as

λT (t) = lim
∆↓0

1
∆

Pr(t ≤ T < t + ∆ | T ≥ t)

= −dln ST (t)/dt , t ∈ R+.

=
J∑

j=1

λ≥j|T (t)
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because, in the definition of hT (t), the derivative of ST (t) is a directional
derivative (in the direction of the main diagonal (1, 1, · · · 1)) of S∗(t1 · · · tJ).
In the continuously differentiable case, the likelihood function may be eval-
uated by differentiating the sub-distribution, namely:

lT,K(t, k) = − d

dt
Pr(T ≥ t,K = k)

= − d

dt
Pr {∩j 6=k (Tj > Tk ≥ t)}

Remember that a basic result of differential calculus gives :

S∗(t1 · · · tk) = −
∫ ∞

tk

∂

∂tk
S∗(t1 · · · tk) dtk

and, similarly, a basic result of conditional probability gives :

S∗(t1 · · · tk) =
∫ ∞

tk

Sk̄|k(t1, · · · , tk−1, tk+1, · · · , tK | Tk = tk) fk(u) du

where k̄ = {1, 2, · · ·K} \ {K} and

S=
k̄|k(t1 · · · , tk−1, tk+1, · · · , tK | tk)

= Pr (T1 ≥ t1, · · · , Tk−1 ≥ tk−1, Tk+1 ≥ tk+1, · · · , TK ≥ tK | Tk = tk)

Thus the likelihood function may be written as :

S=
j̄|j(t1, · · · , tj−1, tj+1, · · · , tJ | tj) = −

∂
∂tj

S∗(t1, · · · , tJ)

fj(tj)
.

In the sequel we use the following simplified notation

S=
j̄|j(t) = S=

j̄|j(t, t, · · · , t | t)
Then, the sub-distribution may be written as :

∫ ∞

tk

Sk̄|k(u)fk(u)du

Therefore,

lT,K(t, k) = − d

dt

∫ ∞

t
S=

k̄|k(u)fk(u)du

= S=
k̄|k(t)× fk(t)

= − ∂

∂tk
S∗(t, · · · , t)

= −S∗(t, · · · t)× ∂

∂tk
ln S∗(t, · · · t)
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Using a disjunctive coding for the exit state, namely

A = (A1, · · · , AJ) , Aj = 1I{K = j}

we may also write

lT,A(t, a) =
J∏

j=1

[
fj(t)S=

j̄|j(t)
]aj

= ST (t)
J∏

j=1

[
λ≥j|T (t)

]aj

.

In case of independent latent durations, we have :

lT,K(t, k) = fk(t)
∏

j 6=k

Sj(t)

= λk(t)ST (t) .

3.3 Identifiability of competing risks models

The basic idea of competing risks models is to interpret the data (T, K), rep-
resenting the sojourn duration in the initial state and the label of the exit
state, as the observation of the minimum component of a random vector
along with the coordinate where the minimum is obtained. Intuition sug-
gests that these observations give no information on the question whether
the coordinate of the random vector, i.e. of the latent durations, are inde-
pendent or not. This intuition is confirmed by next theorem

Theorem 3.1

Let us denote S = {S∗(t1 · · · tJ)} the set of J-dimensional survivor func-
tions, SI = {S∗ ∈ S | S∗(t1 · · · tJ) =

∏
j Sj(tj)} the subset of J-dimensional

survivor functions with independent components, l∗(t, k) the likelihood func-
tion for a model in S, and lI(t, k) the likelihood function for a model in SI .
Then:

∀S∗ ∈ S , ∃! SI ∈ SI such that l∗(t, k) = lI(t, k)

In particular,
λ∗,≥j|T (t) = λj,I(t)

¥
In the continuous case, the proof of this theorem comes from the fact that,
in the general case, l∗(t, k) = λ∗,≥k|(t)ST (t) and that λT (t) =

∑
j λ∗,≥j|T (t), i.e.

the distribution of the observed duration depends only on the sum of the
conditional hazard functions. Therefore the equality λ∗,≥k|T (t) = λk,I(t) en-
sures the equality of likelihood functions. Mouchart and Rolin [2002] gives
a slightly more general statement and proof of this theorem.
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This theorem means that to any competing risks model with dependent
latent durations, one may associate an observationally equivalent model with
independent latent durations. The rule of association is simply to build the
joint latent distribution with marginal hazard functions of the independent
model that are equal to the conditional hazard functions of the dependent
model. To illustrate this point, we can consider the following bivariate
example. Suppose that the joint survivor function of the two latent durations
(T1, T2) is given by:

S∗(t1, t2) = exp{1− α1t1 − α2t2 − exp[α12(α1t1 + α2t2)]}
where α1, α2 > 0 and α12 > −1. Here the parameter α12 measures the
dependence between the two latent durations T1 and T2 in the sense that T1

and T2 are independent once α12 = 0. The conditional and marginal hazard
functions of this model are respectively:

λ∗,≥j|T (t) = αj{1 + α12 exp[α12(α1 + α2)t]}, j = 1, 2

and
λ∗j (t) = αj [1 + α12 exp(αjα12t)], j = 1, 2.

Marginal survivor functions are then

S∗j (tj) = exp[1− αjtj − exp(α12αjtj)], j = 1, 2,

from which it is obvious that

S∗(t1, t2) 6= S∗1(t1)S∗2(t2), (t1, t2) ∈ R2
+

except if α12 = 0. The likelihood element of an observation (t, k) may be
written as

l∗(t, k) = αk{1 + α12 exp[α12(α1 + α2)t]}

× exp{1− (α1 + α2)t− exp[α12(α1 + α2)t]}
The observationally equivalent model (i.e. having the same likelihood func-
tion) with independent latent durations has marginal hazard functions given
by λ∗,≥j|T (t) above and eventually marginal and joint survivor functions of la-
tent durations given by:

Sj,I(tj) = exp
{

αj

α1 + α2
− αjtj − αj

α1 + α2
expα12(α1 + α2)tj

}
, j = 1, 2

SI(t1, t2) = exp
{

1− α1t1 − α2t2 − 1
α1 + α2

[
α1 expα12(α1 + α2)t1

+α2 expα12(α1 + α2)t2
] }
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Note that the latent models are clearly different unless α12 = 0, i.e.

S∗(t1, t2) 6= SI(t1, t2)

but the statistical models are observationally equivalent, i.e. l∗(t, k) =
lI(t, k). Note also that both latent models have been identifiably para-
metrized, but the parameters have very different meaning in the two latent
models. In particular, α12 measures the association among the latent vari-
ables in the case of dependence whereas α12 is a common parameter of the
two marginal distributions in the case of independent latent variables. The
identifiability of the competing-risks duration model with unobserved het-
erogeneity has been studied by Heckman and Honoré [1989]. Their results
have been completed by those obtained by Honoré [1993] for duration models
with multiple spells and with unobserved heterogeneity.

3.4 Right–censoring

One usual feature of duration data is that the sampling scheme often pro-
duces right–censored observations, i.e. observations which have not yet left
the initial state E0 at the end of the sampling period. For example, in the
case of single-spell unemployment duration data, the sampling scheme is
often the following. Individual observations are sampled from the inflow of
individuals entering unemployment at time t0 and followed up until date C,
which is possibly determined by the researcher. Now let us assume that C
is greater than t0. Some observations correspond to individuals leaving the
unemployment status before C, in which case they generate complete unem-
ployment durations. Other sampled individuals have not left the unemploy-
ment state at date C and so they generate right–censored unemployment
durations. Rather than sampling from the inflow into unemployment at a
given date t0, the analyst may sample from inflows considered at several
staggered dates t10, t

2
0 . . . and follow up observations once again up to a cen-

soring time C. Right–censoring can be modelled using the framework of the
competing risks models with state space {E0, E1, . . . , EK},K > 1, where the
last state EK denotes the right-censored situation. To illustrate this kind
of formalization, let us consider a bivariate competing risks model (T1, T2)
with state space {E0, E1, E2}, E0 labelling unemployment, E1 employment
and E2 right–censoring. Thus T2 = C. In other words, censoring is often as-
sociated with a residual state in a model with multiple states. Suppose first
that all individual observations are sampled at the same date t0. Without
loss of generality, one may write t0 = 0 (after some relevant time transla-
tion). Within the framework presented in the previous section, this model
may be viewed as resulting from a latent survivor function S1,2(t1, t2 | θ)
with parameter θ, and a generic element of the likelihood function may be
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written as:

lT,D(t, d) =
[
f1(t | θ)S=

2|1(t | θ)
]d [

f2(t | θ)S=
1|2(t | θ)

]1−d

where D = 1I{T1≤T2}. In view of the identification problem, and because
in many cases censoring mechanisms are independent of the unemployment
process, it is often assumed that T1 and T2 are independent. Then,

lT,D(t, d) = [f1(t | θ)S2(t | θ)]d [f2(t | θ)S1(t | θ)]1−d

If moreover θ may be factorized into θ = (θ1, θ2), such that θ1 characterizes
the distribution of T1 and θ2 the distribution of T2, the likelihood reduces
to

lT,D(t, a) = L1(θ1)L2(θ2)

where

L1(θ1) = f1(t | θ1)dS1(t | θ1)1−d .

The parameters of interest are in general those of the distribution of duration
T1, and their estimation could be deduced from L1(θ1) only. Then the
generic element of the relevant factor of the likelihood function is f1(t | θ1)
(resp. S1(t | θ1)) for an uncensored (resp. a right-censored) observation.
Another model generating censored data may be the following one. Let T0

be the age of an individual entering unemployment. This age is randomly
generated by the individual previous labour market history. The duration of
the unemployment spell is T1 and the age at the end of the unemployment
spell is then T0 + T1. The econometric model specifies the joint distribution
of (T0, T1) and these two random variables are not, in general, assumed
to be independent. A natural specification could be a sequential one: the
(marginal) distribution of T0 is first specified and a conditional distribution
of T1 given T0 completes the model.
Let us now assume that all the individuals are observed at a given date
T∗. In general this date is also random but, for simplicity, we consider
T∗ as fixed (the model is conditional to T∗). Let us also assume that the
sample is constructed in such a way that T0 ≤ T∗ (all the individuals have
entered unemployment). Then T0 is always observed but T1 is not censored
if T0 + T1 ≤ T∗. Otherwise, the unemployment spell duration is censored.
Let us define T2 = T∗ − T0. From the distribution of (T0, T1) we obtain the
distribution of (T1, T2), and we may consider the observations as generated
by a censored duration model: T1 is observed only if T1 ≤ T2. But the
following specification of a likelihood based on the generic element:

lT,D(t, d) = f1(t)dS1(t)1−d
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where T = min(T1, T2) , D = 1I(T1 ≤ T2), f1 and S1 are the density and the
survivor functions of T1, is incorrect for two reasons:
i) First if T0 and T1 are dependent, T1 and T2 are also dependent and the
likelihood function must be based on their joint distribution.
ii) The censoring mechanism is different from the usual competing risks
model because T0 or T2 is always observed and the likelihood of the actual
data must be the density of (T2, T, D). The generic element of this likelihood
is then

lT2,T,D(t2, t, d) = f2(t2) f=
1|2(t | t2)a S=

1|2(t | t2)1−d

using our previous notations. Finally, note that the identification result of
subsection 3.3 does not apply to this case since the censoring mechanism is
different from the competing risks model.

4 Inference in duration models

4.1 Introduction

Models actually used in econometrics for dealing with duration data are
characterized by two noteworthy features: durations are non-negative ran-
dom variables and most data sets involve right-censored data. In this section,
we focus our attention on the implications of censoring, both for adapting
the inference procedure and for evaluating the consequences of misspeci-
fication. We first review the inference in parametric models, both in the
marginal and in the conditional case, with a particular attention on a rig-
orous specification of the likelihood function; next we consider non- and
semi-parametric models. In each case, we first specify the structure of the
model and next give some illustrations with significantly relevant particular
cases.

4.2 Parametric models

4.2.1 Inference in marginal models

a) The basic model

The basic model considers a random censoring process that is indepen-
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dent of the duration variable. Let us introduce the following notations:

η = (η1 . . . ηn)′ denote latent durations,
ζ = (ζ1 . . . ζn)′ denote latent censoring indicators,
T = (T1 . . . Tn)′, with Ti = ηi ∧ ζi, are observed durations

D = (D1 . . . Dn)′, with Di = 1I{ηi≤ζi} = 1I{Ti=ηi},
X = (X1 . . . Xn)′, with Xi = (Ti, Di)′, denote complete data
X = (T,D) with dim (X) = (n× 2, 1)
φ is a sufficient parametrisation for the process generating (η, ζ)

Assumptions

A.1 (independent sampling): ⊥⊥i(ηi, ζi) | φ
A.2 (independent censoring): ηi⊥⊥ζi | φ
A.3 (definition of θ as a sufficient parametrization for η): ηi⊥⊥φ | θ
A.4 (definition of ω as a sufficient parametrization for ζ): ζi⊥⊥φ | ω
A.5 (variation-free parameters) : (θ, ω) ∈ Θθ ×Θω

A.6: θ is the only parameter of interest

Latent likelihood

Under (A.1) to (A.5), the complete latent likelihood is therefore:

L∗∗(φ) =
∏

i

fη(ηi | θ)·
∏

i

fζ(ζi | ω) = L∗1(θ)·L∗2(ω)

Under (A.6), the relevant latent likelihood is

L∗1(θ) =
∏

i

fη(ηi | θ) = fη(η | θ)

Actual likelihood

Considering the actually available data, namely (T, D), the complete actual
likelihood is

L(φ) =
∏

i

fη(Ti | θ)DiSη(Ti | θ)1−Di
∏

i

fζ(Ti | ω)1−DiSζ(Ti | ω)Di

= L1(θ)L2(ω)

Under (A.6), the relevant actual likelihood is:

L1(θ) =
∏

i

fη(Ti | θ)DiSη(Ti | θ)1−Di =
∏

i

λη(Ti | θ)DiSη(Ti | θ)
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Thus the logarithm of the relevant actual likelihood is:

L(θ) = ln L1(θ) =
∑

i

Diln fη(Ti | θ) +
∑

i

(1−Di) ln Sη(Ti | θ)

=
∑

i

[Diln λη(Ti | θ) + ln Sη(Ti | θ)]

=
∑

i

[Diln λη(Ti | θ)− Λη(Ti | θ)]

b) The exponential case

The consequences of censoring are best understood by considering with some
detail the case where the duration of interest is exponentially distributed,
which means that fη(ηi | θ) = θe−θηi while fζ(ζi | ω) is left unspecified.
Thus, the latent process generating η is a member of the exponential family,∑

i ηi = η+ is a minimal sufficient complete statistic of the latent process
and, for a sample of size n, the Fisher information is nθ−2. With censoring,
the relevant actual likelihood is written as:

L(θ) =
∑

i

Diln θ −
∑

i

Ti θ = (ln θ)D+ − θT+

where D+ =
∑

i Di and T+ =
∑

i Ti. The score and the statistical informa-
tion are accordingly:

S(θ) =
d

dθ
L(θ) =

D+

θ
− T+

J(θ) = − d2

dθ2
L(θ) =

D+

θ2

taking into account that J(θ) and therefore I(θ) are block diagonal. There-
fore the maximum likelihood estimator of θ is:

θ̂ML =
D+

T+

Let us recall that:
√

n(θ̂ML,n − θ) L−→ N
{
0, [I(θ)]−1

}

where

I(θ) = V

{
d

dθ
L(θ) | θ

}
= IE[J(θ)|θ] =

E[D+ | θ]
θ2

Note that:

E[Di | φ] = Pr[ηi ≤ ζi | φ] = E[Fη(ζi | θ) | φ] = 1− E[e−θζi | φ]
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Therefore:

E[Di | θ] = 1−E[e−θζi |θ] = 1−
∫

e−θζidFζ(ζi)

In practice, I(θ) is estimated as:

I(θ̂MV,n) =
D+

θ̂2
ML,n

Let us turn now to the uncensored case. In the model with censoring, there is
only one parameter, θ ∈ IR+, and the bivariate statistic (D+, T+) is minimal
sufficient but not complete. This is an example of a curved exponential
family with canonical parameter (θ, ln θ). Also, let us notice the differences
in the maximum likelihood estimations:

D+ −→ n > D+

L(θ) = (ln θ)D+ − θT+ −→ nln θ − θT+

θ̂c
ML = D+

T+
−→ θ̂nc

ML = n
T+

> D+

T+

In other words, the cost of overlooking censoring may be appreciated by
considering the difference between the (true) Fisher information, and the
numerical value of the maximum likelihood estimator:

θ̂c
ML

θ̂nc
ML

=
D+

n
≤ 1 and = 1 ⇐⇒ D+ = n

4.2.2 Inference in conditional models

a) The general statistical model

Let us introduce the following definitions and assumptions:

• θ = (α, β) ∈ Θα ×Θβ ⊂ IRkα × IRkβ , kα and kβ finite.

• Data:

Yi = (Ti, Di), Y = (Y1 . . . Yn)

Xi = (Yi, Zi), X = (X1 . . . Xn)

• Definition of κ and θ : Z⊥⊥θ | κ and Y⊥⊥κ | Z, θ

• Assumptions
variation-free parameters: (κ, θ) ∈ Θκ ×Θθ

conditional independence: ⊥⊥iYi | Z, θ and Yi⊥⊥Z | Zi, θ
θ is the only parameter of interest
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Therefore, the relevant actual loglikelihood takes the form:

L(θ) =
∑

i

Diln fη(Ti | zi, θ) +
∑

i

(1−Di)ln Sη(Ti | zi, θ)

=
∑

i

Diln λη(Ti | zi, θ)−
∑

i

Λη(Ti | zi, θ)

The score and the statistical information are equal to:

S(θ) = d
dθL(θ) =

∑

i

Di

λη(Ti | zi, θ)
d

dθ
λη(Ti | zi, θ)−

∑

i

d

dθ
Λη(Ti | zi, θ)

J(θ) = −d2

dθdθ′
L(θ) =

∑
i Di[λη(Ti|zi, θ)]−2 d

dθλη(Ti|zi, θ) d
dθ′

λη(Ti|zi, θ)

−∑
i Diλη(Ti|zi, θ)−1 d2

dθdθ
′ λη(Ti|zi, θ) +

∑
i

d2

dθdθ
′Λη(Ti|zi, θ)

Notice once more that the expectation of I(θ) depends both on θ and w,
and thus, on the parameter of the censoring variable.

b) The proportional hazard model

When
λη(t | z, θ) = g(z, β)λ0(t | α),

the log-likelihood function may be written as:

L(θ) =
∑

Diln λη(Ti | z, θ)−
∑

i

Λη(Ti | z, β)

=
∑

i

Diln g(zi, β) +
∑

i

Diln λ0(Ti|α)−
∑

i

g(zi, β)Λ0(Ti|α)

and, under the log-linear specification g(z, β) = exp
(
z
′
β
)
:

L(θ) = β′
∑

i

Dizi +
∑

i

Di ln λ0(Ti|α)−
∑

i

ez′iβΛ0(Ti|α)

c) The mixed proportional hazard model and its identifiability

The mixed proportional hazard (MPH) model is characterized by the fol-
lowing hazard function:

λT (t | z) = λ0 (t) g (z) υ

where λ0 (t) is a baseline hazard function, g (z) is the function measuring the
proportional effect of observable covariates z on the hazard function, and
υ is an individual-specific random term representing unobserved individual
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heterogeneity. The cumulative density function of υ is denoted H. This
model is supposed to verify the following assumptions:

Assumption 1 : The covariate vector z is a finite-dimensional vector of
dimension k (1 ≤ k ≤ ∞). The function g (z) is positive for every z ∈ Z ⊂
Rk.

Assumption 2 : The function λ0 (t) is positive and continuous on [0,∞),
except that limt→0 λ0 (t) may be infinite. For every t ≥ 0,

∫ t

0
λ0(u)du < ∞ while lim

t→∞

∫ t

0
λ0(u)du = ∞

Assumption 3 : The distribution H of the random term
υ in the inflow (i.e. when t = 0) satisfies Pr {υ ∈ ]0,∞)} = 1.

Assumption 4 : The individual value of υ is time-invariant.

Assumption 5 : In the inflow (i.e. when t = 0), υ is independent of z.

This model is nonparametrically identified if there is a unique set of functions
λ0, g and H that generates the observable distribution of the data, namely
F (t | z) . Conditions for identification are the following (see Van den Berg
[2001], for a very clear exposition):

Assumption 6 (variation in observed covariates): The set Z of possible
values of z contains at least two values, and g (z) is not constant on Z.

Assumption 7 (normalizations): For some a priori chosen t0 and z0, there
holds: ∫ t0

0
λ0 (u) du = 1 and g (z0) = 1

Assumption 8 (tail of the unobserved heterogeneity distribution): E (υ) <
∞.

Assumptions 6 and 8 can be alternatively stated:

Assumption 6b (variation in observed covariates): The vector z includes an
element za such that the set Za of its possible values contains a non-empty
open interval. For given values of the other elements of z, the value of za

varies over this interval. Moreover, g (z) as a function of za is differentiable
and not constant on this interval.

Assumption 8b (tail of the unobserved heterogeneity distribution): The ran-
dom variable υ is continuous, and the probability density function h (υ) of
υ verifies the following property:

lim
υ→∞

h (υ)
υ−1−εV (υ)

= 1
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where ε ∈ [0, 1] is fixed in advance, and where V (υ) is a function such that:

lim
s→∞

V (sυ)
V (s)

= 1.

Identification of the MPH model has been analyzed successively by Elbers
and Ridder [1982], Heckman and Singer [1984b], Ridder [1990], Melino and
Sueyoshi [1990], and Kortram, Lenstra, Ridder and Van Rooij [1995].

c) The accelerated life model
When λη(t | z, θ) = g(z, β) λ0(t g(z, β) | α), the log-likelihood function, for
an arbitrary family of baseline distributions, may be written as:

L(θ) =
∑

i

Di[ln g(zi, β) + ln λ0(Ti g(zi, β)|α)]−
∑

i

Λ(Ti g(zi, β)|α)

When the baseline distribution is exponential, namely when λ0(ti|α) = α,
we obtain:

L(θ) =
∑

i

Di[ln g(zi, β) + ln α]− α
∑

i

Tig(zi, β)

In the particular case where g(zi, β) = exp
(
z
′
iβ

)
, we obtain a proportional

hazard model. More generally, this is also the case for a Weibull baseline
distribution:

L(θ) = ln α
∑

i

Di + β′
∑

i

Dizi − α
∑

i

Tie
z′iβ

4.3 Nonparametric and semiparametric models

4.3.1 Marginal models : the Kaplan-Meier estimator of the sur-
vivor factor

If we want to estimate ST (t) in presence of right-censoring, a simple idea is
to adjust the hazard rates of the product form of the (discrete) empirical
survivor function. With the same data as for the parametric models :

Yi = (Ti, Di)

Ti = min(ηi, ζi)

Di = 1I{Ti=ηi}
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we now evaluate:

Ti → T(1) < T(2) . . . T(n) (order statistics)

Di → D
′
1, D

′
2, . . . , D

′
n: (censoring indicators corresponding to the T(i))

R(t) =
∑

i

1I{T(i)≥t}

B(T(i)) =
∑

j

D
′
j1I{Tj=T(i)}

Thus R(t) represents the number of individuals at risk at time t, i.e. those
who are neither “dead” nor censored at time t−, and B(T(i)) represents the
number of deaths (i.e. exiting without being censored) at the observed time
T(i). A natural way of taking censoring into account is to consider that at
the time T(i), B(T(i)) is the realization of a binomial variable with parameter(
R

(
T(i)

)
, λ(T(i))

)
. Then the hazard function at (observed) time T(i) and the

survivor functions are estimated as:

λ̂(T(i)) =
B(T(i))
R(T(i))

ŜKM (t) =
∏

{T(i)<t}
[1− λ̂(T(i))]

Remarks

1. If at T(i) there are only censored data, we have B(T(i)) = 0 and therefore
ŜKM (T(i)) is continuous at T(i).

2. If the largest observation is a censored one, ŜKM (t) is strictly positive
and continuous, at T(n) :

ŜKM (t) = ŜKM (T(n)) > 0, ∀t > T(n)

If furthermore T(n−1) is not censored, lim
t→∞ F̂KM (t) > 0, which means that

F could be defective. A natural interpretation of this occurrence, in the
case of a life duration, is the following: if the largest observation does not
correspond to an exit (or a death), there is no empirical reason not to believe
that such a life could possibly be infinite. If one is willing to avoid defective
distributions, one may modify the Kaplan-Meier estimator as follows:

Ŝm
KM (t) =

∏

{T(i)≤t}
[1− ĥ(T(i))]1I{t≤max{Di Ti}} = F̂KM (t)1I{t≤max{Di Ti}}

where max{Di Ti} represents the largest uncensored duration.
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3. If there are no ties at T(i), then:

B(T(i)) = D
′
i, R(t(i)) = n− i + 1,

ŜKM (t) =
∏

{T(i)≤t}
(1− Di

n− i + 1
)

In many data sets, ties are observed, as a matter of fact. They call for two
remarks: (i) even if Fη and Fζ are continuous, Pr(η = ζ) > 0 is possible
when η is not independent of ζ (see, for instance, Marshall and Olkin[1967]);
(ii) the rounding problem : although theoretical models assume the time
is continuous, actual measurements are discrete in nature. We have just
seen that the Kaplan-Meier estimator accommodates for ties. When the
rounding problem is too severe because spells are actually observed through
intervals, truncated survivor functions may be used for an explicit modelling.

4. If, at the largest observation, some censored and uncensored data are tied,
the estimated distribution, ŜKM (T(i)), is again defective and discontinuous
at T(n), with:

ŜKM (T(n)) > ŜKM (T(∞−)) > 0

4.3.2 Conditional models : the semiparametric proportional haz-
ard model (the Cox model)

Remember that in θ = (α, β), α is a sufficient parameter for the baseline
distribution, whereas β is introduced for describing the action of the ex-
ogenous variables. The semiparametric version of the proportional hazard
model takes the form:

λT (t | z, θ) = α(t) exp
(
z′β

)

where α(t) = λ0(t|z, θ), which is the baseline hazard function, is now a
functional parameter. Thus the parameter space takes the following form:

θ = (α, β) ∈ Θα ×Θβ

Θα = {α : IR+ → IR+ | α is continuous and
∫ ∞

0
α(t)dt = ∞}

Θβ ⊂ IRk

The functional parameter α is often a nuisance parameter, whereas the
Euclidean parameter β is the parameter of interest. It is therefore important
to try to separate inferences on α and β. A natural idea is to construct a

33



statistic W = f(Y ) such that the likelihood function LY |Z(α, β) factorizes
as follows:

LY |Z(α, β) = LW |Z(β)× LY |W,Z(α, β)

In such a case, the inference on β would be made simpler by consider-
ing only the partial likelihood LW |Z(β) instead of LY |Z(α, β). A heuristic
argument in favour of this simplification is that the information on β con-
tained in LY |W,Z(α, β) is likely to be “eaten up” by the functional parameter
α. This simplified estimator may now be build as follows. Similarly to the
Kaplan-Meier estimator, let us reorder the sample according to the observed
durations:

Ti −→ T(1) < T(2) < . . . < T(n)

Di −→ D
′
1, D

′
2, ..., D

′
n

and let us also define:

R(t) =
∑

1≤i≤n

1I{T(i)≥t}

R(t) = {k|T (k) ≥ t} = {i|Ti ≥ t}

Thus R(t) represents the number of individuals at risk at time t and R(t)
represents the set of such individuals. Notation will be usefully simplified
as follows:

R(i) = R(T(i)), R(i) = R(T(i))

Let us now represent the sample (T1 . . . Tn) by its order statistics (T(1) . . . T(n))
and its rank statistics (R1 . . . Rn) where Ri is the rank of the i-th observation
in the vector of order statistics. Giving the rank statistics, which plays the
role of W in the previous expression, we may write the likelihood function
of the rank statistics as follows:

L(β) =
∏

1≤i≤n


 ez′iβ

∑
k∈R(i) ez

′
kβ




Di

=
∏

1≤i≤D+


 ez′iβ

∑
k∈R(i) ez

′
kβ




Di

where D+ =
∑

i Di. The (partial) likelihood estimator of β is then defined
as

β̂ = arg max
β

L(β)

This estimator is consistent and its asymptotic properties have been studied
e.g. by Tsiatis [1981] and by Andersen et alii [1993].
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Figure 2: A realization of a univariate counting process

5 Counting processes and point processes

Point processes provide the framework for modelling trajectories with more
than one transition and more than two states (such trajectories are some-
times called duration models with multiple spells and multiple states). For-
mally a point process is a continuous time process with a finite state space
and right continuous with left limit (cadlag) trajectories. A point process is
conveniently represented by means of a multivariate counting process that
counts, as time increases, the number of possible transitions. Consequently,
we will first present counting processes.

5.1 Definitions

Let us consider a (finite or infinite) sequence (Tp)p≥1 of increasing random
durations (0 < T1 < T2 < ...). This sequence characterizes a univariate
counting process:

Nt =
∑

p≥1

1I(Tp ≤ t)

The trajectories of Nt are right continuous, and such that N0 = 0 and Nt

only increases by jumps of size 1. A typical realization is shown in Figure 2.

A duration model defines a process with a single jump (Nt = 1I(T ≥ t)).
From the definition of Nt, we can deduce easily the definition of the date Tp

of the j-th jump of the process:

Tp = inf{t|Nt = p}, p ≥ 1

The distribution of Nt may be characterized by the distribution of the se-
quence (Tp)p≥1. Equivalently, that sequence may be replaced by the se-
quence of positive numbers:
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Up = Tp − Tp−1 (T0 = 0)

The random variable is now the duration between the (p − 1)-th and the
p-th jumps. If the random variables (Up)p≥1 are i.i.d., the process is called
a renewal process. The information denoted by FN

t and carried by Nt,
observed from 0 to t (included), is equivalent to the knowledge of T1, ..., Tp

(Tp ≤ t < Tp+1) and the event Tp+1 > t. Equivalently this information may
be described by the random variables U1, ..., Up and by the event Up+1 >
t−∑p

q=1 Uq.
A multivariate counting process is a vector Nt = (N1

t , ..., NJ
t ) of counting

processes. This vectorial process is characterized by J sequences (T j
p )p≥1

(j = 1, ..., J) of increasing durations and by:

N j
t =

∑

p≥1

1I(T j
p ≤ t)

The information content of the observation of this multivariate counting
process up to time t is described by the family of random variables T j

p such
that T j

pj ≤ t, and by the J events T j
pj+1 > t.

A multivariate counting process may also be represented by a unique se-
quence (Tr)r≥1 of the jump times of any element of the vector Nt, and by er

(r ≥ 1) which is a discrete-time process valued in (1, ..., J). In this sequence
(Tr, er)r≥1, er indicates the component j that jumps at date Tr. Note that
the sequence (Tr) has the property:

N̄t =
J∑

j=1

N j
t =

∑

r≥1

1I (Tr ≤ t)

The distribution of Nt may then be described by the sequence of conditional
distributions:

(Tr, er) | (Ts, es)s=1,...,r−1

Consider for example a bivariate duration (T 1, T 2), where Pr(T 1 = T 2) = 0.
This pair defines two single jump counting processes:

N1
t = 1I(T 1 ≤ t) and N2

t = 1I(T 2 ≤ t)

Then the (Tr)r sequence becomes:

T1 = min(T 1, T 2), T2 = max(T 1, T 2)

and

e1 = 1I(T 1 < T 2) + 21I(T 2 ≤ T 1)
e2 = 3− e1
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A point process is a continuous-time process valued in a finite (or more gen-
erally discrete) state space {1, ...,K}. Such a process Xt may represent, for
example, the labour market situation of an individual at time t. In such a
case, the set {1, ..., K} describes the different possible labour market states
(full-time employed, part-time employed, unemployed, retired,...) and Xt is
characterized by the dates of the transitions between two different states. In-
deed, a point process defines a multivariate counting process. Consequently,
we denote by j = (k, k′) the pair of states such that a transition from k to k′

is possible and {1, ..., J} is the set of all these ordered pairs. Then (T j
p )p≥1

is the sequence of jump times from k to k′ if j = (k, k′) and

N j
t =

∑

p≥1

1I(T j
p ≤ t)

This multivariate counting process satisfies the following constraint by con-
struction: after a jump of the component N j

t , j = (k, k′), the next process
which may jump is necessarily an element of the subfamily (N `

t )` where
` = (k′, k”) and k” 6= k′.

5.2 Stochastic intensity, compensator and likelihood of a count-
ing process

The stochastic intensity of a univariate counting process is defined as follows:

hN (t) = lim
∆t↓0

1
∆t

Pr(Nt+∆t −Nt = 1 | FN
t−)

If for instance Nt = 1I(T ≤ t), this definition implies, where T is a continuous
variable, that h(t) = λ(t), which is the hazard function of T if T > t and
h(t) = 0 after the jump T . Equivalently:

hN (t) = λT (t)(1−Nt−),

where Nt− = 1I (T < t).
If Nt is a general univariate counting process Nt =

∑
p≥1 1I(Tp ≥ t), the

stochastic intensity is obtained by the following rule:

• If t > maxp(Tp) then h(t) = 0

• If t verifies Tp−1 < t ≤ Tp (where p = Nt + 1) then

hN (t) = λp(t | T1, ..., Tp−1)

where λp is the hazard function of the duration Tp conditional on
T1, ..., Tp−1.
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If the model is specified in terms of Up = Tp − Tp−1, we have

hN (t) = λU (t− Tp−1 | U1, ..., Up−1)

where λU
p is the hazard function of Up given U1, ...Up−1. This definition is

easily extended to multivariate counting processes. The stochastic intensity
is then multivariate and for each j ∈ {1, ..., J} :

hj
N (t) = lim

∆t↓0
1

∆t
Pr(N j

t+∆t −N j
t = 1 | FN

t−)

where FN
t− represents the information carried by all the coordinates of the

process observed before t.
If N j

t =
∑

p≥1 1I(T j
p ≤ t), hj

N (t) is null if t > maxp(T
j
p ). For each coordinate

`, we can choose p` = N `
t + 1 such that

T `
p`−1 ≤ t < T `

p`

(where T `
p`

= +∞ if N `
t never jumps after T `

p`−1) and λi
T (t) is equal to the

hazard function of T j
pj at the point t, given all the T `

q , ` 6= j and q < p`,

and the family of events T `
p`
≥ t. Let us take as an example the bivariate

counting process N1
t = 1I(T 1 ≤ t), N2

t = 1I(T 2 ≤ t). The stochastic intensity
h1

N (t) is equal to the hazard function of T 1 conditional on T 2 = t2 if T 2 < t
or conditional on T 2 ≥ t if T 2 ≥ t. The compensator of univariate counting
process Nt with stochastic intensity hN (t) is defined by

HN (t) =
∫ t

0
h(s)ds

For a duration model Nt = 1I(T ≤ t), HN (t) is equal to the integrated hazard
Λ(t) if T > t and equal to Λ(T ) if T ≤ t.
For a multivariate counting process N j

t , we define a vector of compensators
by:

Hj
N (t) =

∫ t

0
hj

N (s)ds.

From now on, we simplify the notation Hj
N (t) into Hj

t similarly to Nt in-
stead of N(t). The compensators are positive and non-decreasing predictable
processes satisfying H0 = 0. The main property of the compensator is that
the difference:

Mt = Nt −Ht

is a zero mean FN
t - martingale (i.e. E(Mt | FN

s ) = Ms). The decomposition
Nt = Ht + Mt is called the Doob-Meyer decomposition of the process Nt.
The same decomposition may be constructed for a multivariate counting
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process. In that case, M j
t is a martingale with respect to the information

sets generated by the whole process (N1
t , ..., NJ

t ).
The stochastic intensity and the compensator both determine an elegant
expression of the likelihood of a counting process. Consider first a univariate
process Nt =

∑
p≥1 1I(Tp ≤ t). If the process is observed between 0 and t

such that Tp−1 < t < Tp, the likelihood of this observation is:

`(t) =





p−1∏

q=1

fq(Tq | T1, ..., Tq−1)



× Sp(t | T1, ..., Tp−1)

where fq and Sq are respectively the density and the survivor functions of
Tq given T1, ..., Tq−1. One can easily check that:

`(t) =
∏

Tq≤t

h(Tq)e−Ht

or

ln `(t) =
∫ t

0
ln h(s)dNs −Ht

In this expression, we use the stochastic integral notation:
∫ t

0
g(s)dNs =

∑

Tp≤t

g(Tp)

The stochastic intensity notation can be generalized to multivariate processes
for which the likelihood corresponding to the observation of all the coordi-
nates of the process up to time t is equal to:

ln l(t) =
J∑

j=1

{∫ t

0
ln hj(s)dN j

s −Hj
t

}

This way of writing the likelihood function is the basis for Cox’s estima-
tion and martingale estimations, to be presented in the last section of this
chapter.

6 Poisson, Markov and semi-Markov Processes

In this section, we give first the example of a well-known single counting
process, namely the Poisson process. Then we examine point processes
displaying Markovian or semi-Markovian properties.
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6.1 Poisson processes

We consider the familiar Poisson process as an example of a univariate count-
ing process. Let M be a positive measure on R+ with density m with respect
to the Lebesgue measure, i.e. , M([a, b]) =

∫ b
a m(x) d(x).

A stochastic process Nt is a Poisson process associated with the measure M
if its distribution satisfies the following requirements:

i) N0 = 0 ,

ii) Nt is a process with independent increments: ∀t1, · · · , tn, the random
variables (Nti −Nti−1)i=1,··· ,n are independent random variables,

iii) the distribution of (Nt − Ns) is a Poisson distribution for any s < t,
which means that:

Pr(Nt −Ns = k) =
M([s, t])k

k!
e−M([s,t])

These three properties imply that a Poisson process is a counting process
with unit jumps. If m(x) is equal to some positive constant λ, then the
process is said to be homogeneous and we may verify that sojourn times
Up = Tn−Tn−1 are i.i.d. random variables with an exponential distribution
with parameter λ > 0. The homogeneous Poisson process is then the renewal
process characterized by the exponential distribution.
The compensator and the intensity of a Poisson process, with respect to its
canonical filtration, are equal to H = M([0, t]) and to m(t), respectively.
This result follows from the equalities :

h(t) = lim
∆t↓0

1
∆t

Pr(Nt+∆t −Nt = 1 | FN
t−)

= lim
∆t↓0

1
∆t

Pr(Nt+∆t −Nt = 1 | Nt)

= lim
∆t↓0

1
∆t

[M(t, t + ∆t])e−M([t,t+∆t])]

= m(t)

In particular, if the process is homogeneous, h(t) is constant. The likelihood
`(t) relative to the observation of the process Nt between 0 and t is derived
from the intensity and the compensator, i.e.

ln `(t) =
∫ t

0
[ln m(s)] dNs −M([0, t])

=
∑

τn≤t

ln m(τn)−M([0, t]) .
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If Nt is an homogeneous Poisson process with parameter λ, its likelihood
satisfies:

ln `(t) = Nt ln λ− λt .

6.2 Markov processes

a) Definitions

We consider a point process X = (Xt)t∈R+ valued in the finite state space
E = {1, · · · ,K}. The distribution of Xt is totally defined by a projective
system:

Pr(Xt1 = j1, · · · , Xtp = jp)

for any finite subset (t1, · · · , tp) of R+ satisfying t1 < t2 < · · · < tp. From
these probabilities, one can compute:

Pr(Xtp = jp | Xt1 = j1, · · · , Xtp−1 = jp−1)

and the process Xt is a Markov process if:

Pr(Xtp = jp | Xt1 = j1, · · · , Xtp−1 = jp−1) = Pr(Xtp = jp | Xtp−1 = jp−1)

It follows that a Markov process is characterized by the distribution of the
initial condition, i.e. by the distribution of X0, and by the transition prob-
abilities:

pjk(s, s + t) = Pr(Xs+t = k | Xs = j)

defined for any s and t ∈ R+, and for any j and k ∈ E. The Markov process
is said to be time–homogeneous if:

pjk(s, s + t) = pjk(0, t), ∀(s, t) ∈ R+ × R+, ∀(j, k) ∈ E2,

i.e. if the transition probability does not depend on the origin of the time
set, but only on the difference between the two dates s and (s + t). For
a time–homogeneous Markov process, we denote the transition probability
pjk(0, t) by pjk(t) and the matrix with elements pjk(t) by P (t). So, P (t) is
a K ×K matrix of non–negative numbers such that the sum of each row is
equal to one, i.e.

K∑

k=1

pjk(t) = 1

Moreover, decomposing the trajectory on [0, t] into two sub-trajectories on
[0, s] and [s, t], we obtain the following properties of the matrices P (t):

pjk(t) =
∑K

`=1 pj`(s) p`k(t− s) , ∀ 0 ≤ s ≤ t, ∀ (j, k) ∈ E ×E

or equivalently:
P (t) = P (s) P (t− s) , 0 ≤ s ≤ t .

We will now restrict our attention to processes satisfying some regularity
conditions.
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Definition 6.1

A time–homogeneous Markov process Xt is said to be standard if:

i) ∀j ∈ E, limt↓0 pjj(t) = 1 , and then, ∀k 6= j, limt↓0 pjk(t) = 0,

ii) ∃qjk ∈ R+, ∀(j, k) ∈ (E ×E), with k 6= j,

qjk = limt↓0 1
t pjk(t) = d

dtpjk(t) |t=0,

qjj = − limt↓0 1
t (1− pjj(t)) = −∑

k 6=j qjk ¥

As a direct consequence, quantities qjk satisfy the following properties:

i)
∑K

k=1 qjk = 0, j ∈ E,

ii) qjk ≥ 0, k 6= j, and qjj ≤ 0, j ∈ E .

If j 6= k, qjk is called the intensity of transition from state j to state k.
The matrix Q is called the intensity matrix or the generator of the process
Xt. Writing Pjj in the form Pjj(t) = 1−

∑

k 6=j

Pkj(t), the previous definition

implies that Q =
d

dt
P (t)|t=0

Theorem 6.1

The transition matrix P (t) of the time–homogeneous standard Markov process
Xt satisfies the forward matrix equation

d

dt
P (t) = P (t) ·Q

and the backward matrix equation

d

dt
P (t) = Q · P (t) .

Proof: see Doob [1953], p. 240–241, or Bhattacharya and Waymire [1990],
p. 263–267.
These two equations are known as the Kolmogorov forward and backward
differential equations, respectively. In general, these equations do not have
a unique solution; however, if Xt is regular, the solution, subject to the
border condition P (0) = I, is unique and has the exponential form given in
the following theorem (where I is the identity matrix).

Theorem 6.2
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If the time–homogeneous Markov process Xt with generator Q is regular,
then the matrix

P (t) = exp(Qt) =
∞∑

n=0

tnQn/n! (1)

exists for any t, and is the unique solution to the Kolmogorov differential
equations subject to the border condition P (0) = I.

Proof: See Doob[1953], p. 240–241, or Bhattacharya and Waymire [1990],
p. 267–275.

b) Distributions related to a time–homogeneous standard Markov
process

Since the state space E is finite, the Markov process Xt moves by jumping
from one state to another. Let 0 = T0 < T1 < T2 < · · · , be the times of these
transitions. As the sample paths of the process Xt are right–continuous step
functions, we can define Yn = XTn as the state entered at Tn. Moreover, we
set:

Un = Tn − Tn−1 , n ∈ N , and U0 = 0

The random variable Un represents the sojourn duration of the process in
state Yn−1 = XTn−1 entered at time Tn−1. A Markov point process Xt

can be represented by a multivariate counting process characterized by the
sequence (Tn, en)n≥0. In this representation, en is the transition at time Tn,
i.e. :

en = (Yn−1, Yn) with Yn−1 6= Yn.

Thus en takes its value in a finite set with K(K − 1) elements. Yet, the
representation of Xt as a point process is easier to formalize. So, we are
interested in the distribution of the sequences (Tn, Yn)n≥0 or (Un, Yn)n≥0,
rather than of the sequence (Tn, En)n≥0.
For that purpose, we firstly set λj = −qjj for any j ∈ E, and we define
quantities ρjk as follows :

• If λj 6= 0, j ∈ E, ρjj = 0 and ρjk = qjk/λj , k 6= j

• If λj = 0 , j ∈ E ρjj = 1 and ρjk = 0 , k 6= j

Theorem 6.3

If Xt is a time–homogeneous standard Markov process, then

i) (Un, Yn)n≥0 is a Markov sequence and (Un, Yn) is independent of Un−1

given Yn−1. Moreover Un and Yn are conditionally independent given
Yn−1.
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ii) Un given Yn−1 = j has an exponential distribution with parameter
λj if λj 6= 0. If λj = 0, the state j is absorbing and Un = ∞ with
probability 1.

iii) Y = (Yn)n≥0 is a Markov chain with transition matrix:

Pr(Yn = k | Yn−1 = j) = ρjk, (j, k) ∈ E ×E

(see Bhattacharya and Waymire, [1990], p. 275-279).

Theorem 6.4

If Xt is irreducible (∀j, ∀k, ∃m such that pjk(m) > 0) and recurrent (Pr(inf{m |
Yn+m = j} < ∞ | Yn = j) = 1) then:

(i) the limits of transition probabilities pjk(t) exist and are independent
of the initial state, i.e. .

lim
t↑∞

pjk(t) = Πk

(ii) either Π = (Π1, · · · ,ΠK) = (0, · · · , 0), in which case all states are said
to be null recurrent, or

∑K
k=1 Πk = 1, in which case all states are said

to be non–null recurrent (or positive recurrent if Πk > 0,∀k ∈ E).

Proof: see Cox and Miller [1966], p. 106–117.

The limiting distribution Π is also invariant or stationary, because:

Π = Π · P (t) , ∀t ∈ R+

In the case of an irreducible, recurrent non–null Markov process with gen-
erator Q, calculation of the vector Π is made easier by noting that Π is the
unique invariant distribution probability satisfying the linear equation:

Π ·Q = 0

Moreover, if the embedded Markov chain Y is also irreducible and recurrent
non–null, Y has a limit distribution v satisfying:

v = v ·R

where R is the transition matrix of the embedded Markov chain. The rela-
tionship between the two limit distributions Π and v is:

Πj =
[

vj

λj

][
K∑

k=1

vk

λk

]
, j ∈ E
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or equivalently:

vj =
Πjλj[∑K

k=1 Πkλk

] , j ∈ E

Generally, v and Π are different. The last equation has a very interesting
interpretation: since vj is the long–run frequency of visits of the chain Y to
state j, and since (1/λj) is the mean duration of a sojourn of the process
Xt in state j, then Πj , which is the long–run proportion of occupation of
state j for the process xt, is calculated as the long–run global duration of
sojourn in state j for the process Xt (calculated as the product of vj and
1/λj), divided by the sum of the long–run global durations of sojourn in the
different states.

c) Statistical inference for time–homogeneous Markov models

Now we shall discuss the problem of estimating the generator Q of a time–
homogeneous Markov process Xt from the observation of N independent
sample paths over a fixed time interval [0, T ]. Firstly, we consider the non-
parametric case of N i.i.d. realizations of Xt over [0, T ]. Here the likelihood
function L

(N)
Q is given by

L
(N)
Q =

∏N
i=1

{
Pr(x(i)

0 = Y
(i)
0 )× e−(T−τni (i))λyni

(i)

×∏ni−1
j=0 q

Y
(i)
j ,Y

(i)
j+1

e
−u

(i)
j+1λ

Y
(i)
j

}

where ni is the number of transitions observed for the i–th sample path
over [0, T ], 0 < τ

(i)
1 < τ

(i)
2 < · · · < τ

(i)
ni being the ordered sequence of

transition times for this sample, and {(u(i)
0 , Y

(i)
0 ), (u(i)

1 , Y
(i)
1 ), · · · , (u(i)

ni , Y
(i)
ni )}

being the sequence of successive sojourn durations and visited states for the
i–th sample path, with the conventions: u

(i)
0 = 0 and u

(i)
ni+1 = T − τ

(i)
ni .

If we denote NT,N (j, k) the total number of transitions from state j to state
k observed over the N realizations and DT,N (j) the total length of time that
state j is occupied during these N sample paths, then it is easy to show that
the maximum likelihood estimator for qj,k is given by:

q̂j,k(T, N) =
NT,N (j, k)
DT,N (j)

if j 6= k and DT,N (j) 6= 0. If DT,N (j) = 0, the MLE of qj,k does not exist
and we adopt the convention that :

q̂j,k(T, N) = 0 if j 6= k and DT,N (j) = 0 .

Asymptotic properties of the MLE estimates q̂j,k(T, N) when T → ∞ and
N is fixed (typically, N = 1), or when N →∞ and T is fixed, are given by
the following theorems (see Basawa and Prakasa Rao [1980], p. 195–197).
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Theorem 6.5

If there is a positive probability that the j–th state will be occupied at some
date t ≥ 0, then

plim
T↑∞

q̂j,k(T,N) = qj,k a.s.

and if each state has a positive probability of being occupied, then the
random variables {

N1/2(q̂j,k(T,N)− qj,k)
}

k 6=j

are asymptotically normal and independent with zero mean and variance

qj,k∫ T
0 Pr[Xt = j] dt

Moreover, q̂j,k(T, N) is asymptotically efficient when N tends to infinity. ¥

Theorem 6.6

If the time–homogeneous standard Markov process Xt is regular and recur-
rent positive, then

plim
T↑∞

q̂j,k(T, 1) = qj,k a.s.

and the random variables

{T 1/2(q̂j,k(T, 1)− qj,k}j,k=1,··· ,K, j 6=k

are asymptotically normal and independent with zero mean and variance
qj,kρ / Q(j, j) where ρ is the product of the non–zero eigenvalues of Q and
Q(j, j) is the (j, j)–th cofactor of Q. ¥
In the last case (where N = 1, T ↑ ∞), it is shown that

∫ T

0
Pr[xt = j]dt = Q(j, j)Tρ−1 + o(T ) for T ↑ ∞

Since

1
T

E





∂LogL
(1)
Q

∂qj,k





2

=

∫ T
0 Pr[xt = j] dt

Tqj,k

it follows from the previous theorem that

T 1/2 {q̂j,k(T, 1)− qj,k} d→ N
[
0, qj,kρ/Q(j, j)

]

and so q̂j,k(T, 1) is asymptotically efficient for T ↑ ∞.
Now let us suppose that transition intensities are functions of a set θ =
(θ1, · · · , θp) of unknown parameters, i.e. they have the form qj,k(θ). The
problem is then to obtain a MLE of θ from N independent observations of
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the process xt(θ) over the period [0, T ]. In this case, the likelihood function
is:

LQ(N, θ) =
∏N

i=1

{
Pr

(
x0(i, θ) = Y

(i)
0

)
× e

−(T−τ
(i)
ni

) λ
(θ)

Y
(i)
ni

×∏ni−1
j=0 q

(θ)

Y
(i)
j ,Y

(i)
j+1

e
−u

(i)
j+1λ

(θ)

Y
(i)
j

}

=
{

N∏
i=1

Pr(x0(i, θ) = Y
(i)
0 )

}
×

{
K∏

j,k=1;j 6=k

(q(θ)
j,k )NT,N (j,k)

}

×
{

K∏
j=1

e−λ
(θ)
j DT,N (j)

}

where:

• DT,N (j) =
∑N

i=1

∑ni
`=0 u

(i)
`+11I (Y (i)

` = j) is the total sojourn duration
in state j, which is observed over the N sample paths (with the con-
vention u

(i)
ni+1 = T − τ

(i)
ni ),

• NT,N (j, k) =
∑N

i=1

∑ni−1
`=0 1I

(
Y

(i)
` = j, Y

(i)
`+1 = k

)
is the total number

of transitions from j to k, observed over the N sample paths.

With the assumption that the initial state Y
(i)
0 does not depend on θ, the

ML equations for estimating θ are :

∂LogLQ(N, θ)
∂θm

=
K∏

j,k=1
j 6=k


NT,N (j, k)−DT,N (j)q(θ)

jk

q
(θ)
jk


 dq

(θ)
jk

dθm
= 0, m = 1, · · · , p

In the case where N = 1, Billingsley [1961], p. 46, has shown that these
equations yield a consistent solution θ̂ = (θ̂1, · · · , θ̂p) such that

N 1/2
T (θ̂ − θ) d→ N(0, i(θ)−1) as T ↑ ∞

where NT is the total number of transitions during the interval [0, T ] and

i(θ) = − 1
NT

[
E

(
∂2LogLQ(θ)

∂θm ∂θ′m

)]

m=1,··· ,p

=




K∏

j,k=1
j 6=k

vj(θ)

λj(θ) q
(θ)
jk


dq

(θ)
jk

dθm





dq

(θ)
jk

dθm′







m, m′=1,··· ,p
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v(θ) = [vj(θ)]j=1,··· ,K being the limit distribution of the embedded Markov
chain associated to the process Xt.

6.3 Semi–Markov processes

Semi–Markov processes can be viewed as direct extensions of Markov processes.
Using notations and concepts introduced for the characterization of a Markov
process, we will say that a stochastic process {Xt}t≥0 taking its value in
the discrete state space E = {1, · · · ,K} is semi–markovian if the sequence
{Yn}n≥0 of states visited remains a Markov chain, but time un spent in the
state Yn−1 need not be exponentially distributed and may depend on the
next state entered, namely Yn.

Definition 6.2

If (Yn)n∈N and (un)n∈N denote respectively the sequences of visited states
and sojourn durations of a continuous–time process {Xt}t≥0 with a discrete
state space E = {1, · · · ,K}, then {Xt}t≥0 is a semi–Markov process if:

Pr
{

Y` = j, u` ≤ t | (Yn)`−1
0 , (un)`−1

0

}

= Pr {Y` = j, u` ≤ t | Y`−1} ` ∈ N, j ∈ E, t ∈ R+

with the convention u0 = 0. Moreover, a semi–Markov process {Xt}t≥0 is
said to be time–homogeneous if transition probabilities

Pr {Y` = j, u` ≤ t | Y`−1 = i} = P(i, j, t) , (i, j) ∈ E × E

do not depend on `. The function P is called the kernel of the semi–Markov
process {xt}t≥0. Then the sequence Y = (Yn)n∈N is a Markov chain with
transition matrix:

R(i, j) = P(i, j,∞) = lim
t↑∞

P(i, j, t) , (i, j) ∈ E × E

and u1, u2, · · · are conditionally independent given Y . ¥
If the kernel P is defined as

P(i, j, t) = ρij(1− e−λit) , (i, j) ∈ E × E

where λi ∈]0,∞[, ρii = 0 and
∑

j∈E ρij = 1 , ∀i ∈ E, then {Xt}t≥0 is a time–
homogeneous Markov process with generator Q(i, j) = qij = λiρij , j 6= i.
On the other hand, if E = {i} is a singleton, then (un)n∈N is a time–
homogeneous renewal process with an inter–arrival time distribution of the
form F (t) = P(i, i, t).
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The law of a semi–Markov process {Xt}t≥0 is jointly characterized by the
transition probability R(i, j) of the embedded Markov chain (Yn)n∈N and
the conditional sojourn distributions:

G(i, j, t) = Pr{u` ≤ t | Y`−1 = i, Y` = j}, ` ∈ N, (i, j) ∈ E × E

The kernel function of this semi–Markov process is then defined as:

P(i, j, t) = R(i, j) G(i, j, t)

from which are deduced unconditional sojourn distributions:

F (i, t) = Pr{u` ≤ t | Y`−1 = i} =
∑

j∈E

P(i, j, t)

Let us recall that if the Markov chain Y = (Yn)n∈N is irreducible and recur-
rent non–null, there exists a limiting probability distribution v on E of the
form:

vj =
∑

i∈E

vi R(i, j), j ∈ E

or in matrix notation:
v = vR

Moreover, if u1(i) = E[u1 | Y0 = i] < ∞, ∀i ∈ E, then the limit distribution
of the semi–Markov process {Xt}t≥0 is given by:

Πj = lim
t↑∞

Pr{xt = j} =
vju1(j)∑
i∈E viu1(i)

Notice that this relation between Π and v is more general than the one for
Markov processes, for which u1(i) = λ−1

i .
The main statistical problem is to estimate the semi–Markov kernel P. Here
we concentrate on a fully nonparametric estimation procedure for a semi–
Markov process{Xt}t≥0, where the distribution of a sojourn in state i does
not depend on the next state to be entered, i.e. :

G(i, j, t) = F (i, t), ∀(i, j) ∈ E × E, ∀t ∈ R+

Then R(i, j) and F (i, t) can be estimated from N i.i.d. realizations of
{Xt}t≥0 over a fixed time interval [0, T ]. In that case, let us denoteNT,N (i, j)
andN ∗

T,N (i) =
∑

j∈E NT,N (i, j) the number of transitions from i to j in [0, T ]
and the number of sojourns in state i completed before time T , respectively.
Then nonparametric maximum–likelihood estimators of the unconditional
sojourn distributions and of the transition matrix of the embedded Markov
chain are respectively given by:
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F̂ (i, t) = N ∗
T,N (i)−1

N ∗
T,N (i)∑

`=1

1I(Y`−1 = i, u` ≤ t)

and
R̂(i, j) = NT,N (i, j)/N ∗

T,N (i) .

Consequently, one obtains:

P̂(i, j, t) = R̂(i, j) · F̂ (i, t) .

Asymptotic properties (convergence, normality) of these nonparametric es-
timators are reviewed by Karr [1986], Theorem 8.33. Non–parametric es-
timation of the kernel P of partially observed renewal processes has been
considered by Gill [1980] and surveyed by Karr [1986], p. 347–351.

7 Statistical analysis of counting processes

In this section, we present both the statistical analysis of counting processes
based on martingale estimators and the extension to these processes of the
semiparametric inference initially proposed by Cox [1972], [1975], for dura-
tion models. For that purpose, we consider a multivariate counting process
with covariates, but our presentation is restricted to the case of a non–
censored independent sampling scheme for a counting process derived from
a point process.
Let us denote n the number of individuals and i an element of {1, · · · , n}.
For any individual i, we observe both the path Xi

t of a point process valued
in a discrete state space E with K elements and the path of a (multivari-
ate) covariate process Zi = (Zi

t)t. These two processes are observed over
an interval [0, T ] for any i. Given (Zi

t)t, the (Xi
t)t’s are assumed to be in-

dependent. The distribution of (Xi
t)t is also assumed to be independent of

the (Zj
t )t for any j 6= i, i.e. it is independent of the covariate processes of

other individuals.
Now we have to describe the distribution of (Xi

t)t given (Zi
t)t. This goal

is achieved by representing the point process (Xi
t)t through a multivariate

counting process (N i,j
t )t, where j = (k, `), k, ` ∈ E, k 6= `, j ∈ {1, · · · , J =

K(K − 1)}. This counting process increases by jumps of size one when the
individual i moves from state k to state `. The distribution of (N i,j

t )t, given
(Zi

t)t, is characterized by its stochastic intensity with respect to the filtration
generated by both the past of all the N i,j

t processes, for i ∈ {1, · · · , n} and
j ∈ {1, · · · , J}, and by the whole trajectories of all the (Zi

t) processes. These
stochastic intensities are assumed to take the following form:

hi,j
t = ψj

(
(Zi

t)t, θ
)
λj

t Y i,j
t , i = 1, · · · , n , j = 1, · · · , J
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where:
i) ψj

(
(Zi

t)t, θ
)

is a known positive function depending on an unknown pa-
rameter θ ∈ Θ ⊂ IRp ; in practice, each ψj may depend on a subvector of θ
only, and then one has to check if the vector θ is identified by the vector of
the ψj functions;
ii) λj

t is the baseline intensity function of N i,j
t ; it does not depend on in-

dividual i; the model is then a proportional hazard type model in which
covariates act multiplicatively through the ψj functions on the baseline in-
tensity; moreover, λj

t is assumed to be non–stochastic and hence a function
valued in IR+; in the semiparametric approach, the function λj

t is assumed
to be totally unknown and the distribution of the Xi

t processes are then
characterized by parameters θ and by functions (λj

t ), j = 1, · · · , J ;
iii) finally, Y i,j

t is a family of observable predictable stochastic processes val-
ued in {0, 1}; we restrict our attention to the case where Y i,j

t characterize
the fact that the individual i is “at risk” at time t for jumping from state k
to state `, if j = (k, `), or equivalently:

Y i,j
t = 1 if xi

t− = k

Y i,j
t = 0 elsewhere

As hi,j
t is the stochastic intensity with respect to all the trajectories of the

covariate processes, it would be dependent of all the (Zi
t)t, i = 1, · · · , n.

However, we have assumed that (Xi
t)t is independent of (Zi′

t )t for any i′ 6= i
given (Zi

t)t, and this assumption is expressed by the fact that ψj depends
only on (Zi

t)t. In fact, this requirement is not an assumption but is a condi-
tion on the definition of the (Zi

t) processes which may have some elements
in common. Moreover, ψj may be a function of the whole trajectory of (Zi

t)t

or of the current value Zi
t only. The first case requires the continuous–time

observation of covariates, which is unrealistic, or some approximation proce-
dures such as discretization of stochastic integrals. The more common case
is the one where the instantaneous probability of a jump from state k to state
` for the individual i depends only on the current value of the process Zi,
which implies that ψj

(
(Zi

t)t, θ
)

may be written as ψj(Zi
t , θ). For example,

if (Zi
t) is a q–dimensional process, a usual specification is the following:

ψj(Zi
t , θ) = exp(Zi′

t θj)

where θj ∈ IRq and θ = (θj)j=1,··· ,J . More generally, such a specification
may be constrained by imposing that some components of Zi

t in the ψj

function are eliminated.
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Up to an additive constant, the log–likelihood of the model is equal to

LT (θ, λ1, · · · , λJ)

=
n∑

i=1

J∑

j=1

∫ T

0
ln ψj(Zi

t , θ) dN i,j
t +

J∑

j=1

∫ T

0
ln λj

t dN
j
t

−
n∑

i=1

J∑

j=1

∫ T

0
ψj(Zi

t , θ)λ
j
tY

i,j
t dt

where N
j
t =

∑n
i=1 N i,j

t . The maximum likelihood estimator of θ can be
derived from this last equation if the λj

t are known functions of unknown
parameters. However, the log-likelihood is unbounded if the functions λj

t

are taken as arguments: λj
t may be chosen arbitrarily large at observed

jump times (and then the second element in the right hand side of the log-
likelihood equation may be as large as desired) and null at other times (and
then the third element in the r.h.s. of the log-likelihood equation becomes
equal to zero). Then it appears clearly that estimation must be based on
a different procedure: parameters θ can be estimated by maximizing Cox’s
partial likelihood, and integrals of the λj

t ’s are then estimated through mar-
tingale techniques.

7.1 The Cox likelihood

Following an argument given by Karr [1986], Chapter 5, the Cox’s likeli-
hood can be derived as the difference between the log–likelihood function of
the observations and the log–likelihood function of the N

j
t processes. This

difference is a function of θ only, and can be heuristically interpreted as the
logarithm of the density of the N i,j

t given N
j
t and the covariates. Given the

same filtration, intensities of the N
j
t processes are the sum over i of hi,j

t ,
i.e.

h
j
t = λj

t

(
n∑

i=1

ψj(Zi
t , θ) Y i,j

t

)

and the log–likelihood of the statistic N
j
t is equal to

L∗T (θ, λ1, · · · , λJ)

=
∑J

j=1

∫ T
0 ln

∑n
i=1

(
ψj(Zi

t , θ)Y
i,j
t

)
dN

j
t +

∑J
j=1

∫ T
0 ln λj

t dN
j
t

−∑J
j=1

∫ T
0 λj

t

( ∑n
i=1 ψj(Zi

t , θ)Y
i,j
t ) dt

52



The Cox likelihood is then defined as:

CT (θ) = LT (θ, λ1, · · · , λJ)− L∗T (θ, λ1, · · · , λJ)

=
J∑

j=1

Cj
T (θ)

where

Cj
T (θ) =

n∑

i=1

∫ T

0
ln ψj(Zi

t , θ) dN i,j
t −

∫ T

0
ln

( n∑

i=1

ψj(Zi
t , θ)Y

i,j
t

)
dN

j
t

or equivalently:

exp[Cj
T (θ)] =

∏n
i=1

∏
τ i,j
u ≤T

ψj(Zi
τ i,j
u

, θ)
∏

τj
u≤T

∑n
i=1 ψj(Zi

τ j
u
, θ)Y i,j

τj
u

In this last expression, the second product of the numerator is computed for
all the observed jump times τ i,j

u of the process N i,j
t and the product in the

denominator is computed for all the jump times τ j
u of the process N

j
t , i.e.

for all the transitions from state k to state ` (if j = (k, `)) observed over all
the individuals. Parameters θ are estimated via the maximization of CT (θ).
Moreover, if ψj(Zi

t , θ) depends on a subvector θj such that all the θj ’s are
variation free, the estimator of θj may be obtained through a maximization
of Cj

T (θ) = Cj
T (θj) only. In this case, observations of N i,j

t for any i and t
are sufficient for the estimation of θj .
Asymptotic properties of the maximand of CT (θ), denoted θ̂, have been
studied initially by Andersen and Gill [1982] and surveyed, for example, by
Karr [1986], Chapter 5. Under usual regularity conditions, it could be shown
that θ̂ is a consistent estimator of θ when n tends to ∞ and that

√
n(θ̂−θ) is

asymptotically normal with variance explicitly given, for example, by Karr
[1986], Chapter 5, formulas (5.90a) to (5.91)).

7.2 The martingale estimation of the integrated baseline in-
tensity

For simplicity, let us first present martingale estimators for i.i.d. counting
processes, i.e. without presence of covariates. The likelihood of such a model
is obtained by setting ψj(Zi

t , θ) equal to 1 in the log-likelihood function:

LT (θ, λ1, · · · , λJ)

=
n∑

i=1

J∑

j=1

∫ T

0
ln ψj(Zi

t , θ) dN i,j
t +

J∑

j=1

∫ T

0
ln λj

t dN
j
t

−
n∑

i=1

J∑

j=1

∫ T

0
ψj(Zi

t , θ)λ
j
tY

i,j
t dt
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In this case, one can easily verify that the log–likelihood is a function of N
j
t

only, up to an additive constant. This means that these processes constitute a
sufficient statistic. Indeed, in this case, the log–likelihood function becomes:

LT (λ1, · · · , λJ) =
J∑

j=1

[ ∫ T

0
ln λj

t dN
j
t −

∫ T

0
λj

tY
j
t dt

]

and the processes N
j
t have the following stochastic intensities:

h
j
t = λj

t · Y
j
t

where Y
j
t =

∑n
i=1 Y i,j

t is the number of individuals at risk for the transition
of type j (from state k to state `) at time t.
We want to estimate the integrals of λj

t for any j. However, in practice,
information is only available for the time interval in which there exists some
individuals from the sample who are at risk for the analyzed transition.
Functions of interest are then:

Λj
t =

∫ t

0
λj

s 1I(Y j
s > 0) ds

where 1I(Y j
s > 0) = 1 if Y

j
s > 0 and 0 elsewhere.

The martingale estimator of Λj
t is defined by:

Λ̂j
t =

∫ t

0
(Y j

s)
−11I(Y j

s > 0) dN
j
s

This estimator may be heuristically justified by the following argument. Let
us start with the differential representation of a counting process:

dN
j
s = hj

s ds + dM j
s

where M j
s is a martingale. In our model, this expression becomes

dN
j
s = λj

s · Y j
sds + dM j

s

which can be pre–multiplied by (Y j
s)
−1 1I (Y j

s > 0) to give:

(Y j
s)
−11I(Y j

s > 0) dN
j
s

= λj
s1I(Y

j
s > 0)ds + (Y j

s)
−11I(Y j

s > 0) dM j
s

Integrating the two sides of this relation yields:

Λ̂j
t = Λj

t +
∫ t

0
(Y j

s)
−1 1I(Y j

s > 0) dM j
s

54



The difference between Λ̂j
t and Λj

t is then a stochastic integral of a pre-
dictable process with respect to a martingale; so it is a martingale (see
Dellacherie and Meyer [1980], Chapter 7, Theorem 3). Moreover, it can be
verified that

E(Λ̂j
t − Λj

t ) = 0

and

< Λ̂j
t − Λj

t >=
∫ t

0
λj

s(Y
j
s)
−1 1I(Y j

s > 0) ds

Let us recall that the predictable variation Ej
t =< Λ̂j

t −Λj
t > plays the role

of an instantaneous variance. In particular:

V (Λ̂j
t − Λj

t ) = E(< Λ̂j
t − Λj

t >)

Using a martingale estimation approach, Ej
t may be estimated by

Êj
t =

∫ t

0
(Y j

s)
−2 1I (Y j

s > 0) ds

Under standard regularity conditions, estimators Λ̂j
t are asymptotically well–

behaved. They are consistent in a strong sense

E

[
sup

t
(Λ̂j

t − Λj
t )

2

]
→ 0 when n →∞

and n(Λ̂j
t − Λj

t ) is asymptotically distributed as a centered Gaussian mar-
tingale with continuous trajectories and whose predictable variation may be
estimated by nÊj

t .
Let us now return to the general model with covariates. The differential
representation of a process N i,j

t is then:

d N i,j
s = ψj(Zi

s, θ) · λj
s · Y i,j

s ds + dEi,j
s

where Ei,j
s is a zero–mean martingale. From the definition of dN

j
s, we obtain:

dN
j
s =

[
n∑

i=1

ψj(Zi
s, θ) · Y i,j

s

]
λj

sds + dE
j
s

in which E
j
s =

∑n
i=1 Ei,j

s is still a zero–mean martingale.
Now let us define:

wj
t (θ) =

n∑

i=1

ψj(Zi
s, θ) · Y i,j

s

Assuming that θ is known, the problem of inference on the integral of the λj
t ’s

is identical to the previous case without covariates. The function parameters
are now:

Λj
t (θ) =

∫ t

0
1I(wj

s(θ) > 0)λj
s ds

55



and their estimators are given by:

Λ̂j
t (θ) =

∫ t

0
[wj

s(θ)]
−11I(wj

s(θ) > 0) dN
j
s

If a Cox procedure is initially used and provides an estimator θ̂ of θ regardless
of the λj

t ’s, an estimator of Λj
t (θ) is obtained by substituting θ̂ for θ in this

last expression. It can be proved (see Andersen and Gill [1982]) that asymp-
totic properties of Λ̂j

t (θ̂) are identical to those of Λ̂j
t (θ) and that estimators

Λ̂j
t (θ̂) are independent of each other and independent of θ̂ asymptotically.

8 Conclusions

This chapter focused on definitions and statistical analysis of duration mod-
els and point processes. More extensive presentations are contained in text-
books by Kalbfleisch and Prentice [1980], Lawless [1982], Jacobsen [1982],
Cox and Oakes [1984], Karr [1986], Daley and Vere–Jones [1988], Lancaster
[1990], Andersen et alii [1993],or in detailed surveys by Heckman and Singer
[1984a], Kiefer [1988], Serfozo [1990], Van den Berg [2001]. Markov chains
have been completely studied by Chung [1967], Freedman [1971], Revuz
[1975] and by Ethier and Kurtz [1986].
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