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control for selection bias or to make an exclusion restriction in instrumental variables 
regression valid, additional control variables are often added to a regression. If any of these 
control variables is endogenous, OLS or 2SLS would be inconsistent and would require 
further instrumental variables. Nonparametric approaches are still consistent, though. A few 
examples are examined and it is found that the asymptotic bias of OLS can indeed be very 
large. 
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1 Introduction

The recent literature on treatment evaluation pointed out two practical advantages of

nonparametric matching methods over parametric regression such as OLS or 2SLS:

Nonparametric methods relax the linearity assumption, and they assist in highlighting

di¤erences in the supports of the observable variables.1 Nonparametric methods, however,

have another advantage that is less often acknowledged but is of high practical relevance:

nonparametric regression permits endogenous control variables.

In many empirical applications, additional �control� variables are added in a regression

that are not of interest in themselves but are included to control for selection bias or omitted

variable bias.2 However, if any of these control variables is correlated with the error term,3

generally all OLS estimates are inconsistent, and instrumental variables need to be found for

the endogenous control variables. Similarly, with instrumental variable regression where it is

also often necessary to include control variables to make the exclusion restriction valid. Again,

if any of these control variables themselves are correlated with the error term in the main

equation, the 2SLS estimates are inconsistent. Additional instrumental variables would be

necessary.

Nonparametric regression approaches, however, would still be consistent and would thereby

avoid the need for (additional) instrumental variables, which in many applications are di¢ cult

to �nd. The reason for this is that nonparametric regression compares only across individuals

who have the same values for the control variables and di¤er only in the treatment variable,

whereas parametric regression combines all observations in a single global regression. This

situation is discussed in more detail in the following section and in section 3 a few examples

are given to show that the asymptotic bias of parametric regression can indeed be very large.

1See in particular the discussion on propensity score matching in Black and Smith (2004).
2 It is now common practice in many applied journals to report only the estimated coe¢ cients on the variables

of interest and to list only the names of all the additional control regressors in a footnote.
3Lechner (2006) analyzes endogenous control variables when the control variable is causally a¤ected by the

treatment variable. Here, the focus is on endogeneity in the conventional sense: a variable that is correlated

with the error term.
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2 Endogenous control variables

Consider an educational production function with true data generating process:

Yi;end = �+ � � Teacheri + Yi;begin + �Xi + Ui

where Yi;end is the educational achievement (e.g. exam results) of student i at the end of the

school year, Yi;begin is achievement at the beginning of the school year,4 Xi are some other

student characteristics and Teacheri are some characteristics of the teacher of student i, e.g.

salary, quali�cation, union status, participation in some teacher motivation scheme or material

support.5 This speci�cation is often also called the value-added approach since achievement at

the beginning of the school year is included, see e.g. Hanushek (1986).

In the following, we are interested only in the e¤ect of the teacher characteristics on student

achievement and treat the other regressors as control variables. In other words, we are interested

in the treatment e¤ect � of Teacheri on Yi;end, but are not interested in �;  or �.6 Under

which conditions can we estimate � consistently by OLS?

Let Teacheri be abbreviated by Ti in the following. A simple regression of Yi;end on Ti and

a constant would yield biased and inconsistent estimates of � due to omitted variable bias.7

Therefore, we need to include also Yi;begin and Xi in the regression, i.e. to regress Yi;end on Ti,

Yi;begin and Xi and a constant. The estimate of � would be unbiased if E[U jYbegin; X; T ] is zero

a.s. But, if any of these control variables is endogenous, generally the estimate of � would be

biased.

In this particular example, it is likely that Yi;begin is endogenous in that the unobservable

Ui may contain or re�ect innate ability. (The other X may also be endogenous, but we focus

here on Yi;begin for simplicity.) Innate ability probably a¤ects exam results at the beginning of

the school year Yi;begin and also at the end of the school year Yi;end. With cov(U; Ybegin) 6= 0,

the estimate of � will be biased and inconsistent.8 The usual approach to counter this situation

4Or at the end of last year.
5See e.g. Angrist and Lavy (2002), Dearden, Ferri, and Meghir (2002), Glewwe, Kremer, Moulin, and

Zitzewitz (2004), Hoxby (1996), Lavy (2002).
6To focus on the main issues, we consider the simplest linear model where there is no treatment e¤ect

heterogeneity, i.e. the average treatment e¤ect is the same as the average treatment e¤ect on the treated.
7Unless Ti is uncorrelated with Yi;begin + �Xi + Ui.
8Placing Yi;begin on the left hand side, i.e. regressing Yi;end � Yi;begin on Teacheri, Xi and a constant also

does not yield consistent estimates either, unless  is known (e.g. to be one).
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is to search for a valid instrument for Yi;begin, which is often di¢ cult to �nd.

Nonparametric regression, on the other hand, will still produce consistent estimates of the

impact of teacher characteristics on achievement if innate ability does not directly a¤ect teacher

characteristics. More precisely, cov(U; Ybegin) 6= 0 is permitted as long as

E[U jYbegin; X; T ] = E[U jYbegin; X]. (1)

It su¢ ces if U has an equal mean for all values of T conditional on the control variables, but

this mean can vary with the control variables.

This condition is satis�ed, for example, if teachers are allocated within a school on the basis

of past exam results but not on the basis of innate ability. To be speci�c, consider a school

with two types of teachers: Teachers with only a standard pedagogical degree and teachers with

additional training in advanced Math and Science teaching. Suppose that the best performing

children on last year�s exam are assigned to the teachers with the additional training, whereas

all other students are assigned to the other teachers. Clearly, innate ability is correlated with

last year�s exam results and thus with teacher characteristics, but conditional on exam results,

innate ability and teacher characteristics are uncorrelated. OLS would be inconsistent, but

nonparametric regression is consistent.

This situation can more intuitively be explained by the following directed acyclic graph

(DAG) that visualizes the encoded causal assumptions (Pearl 2000):

X

V Yend
T

                           U
        Ybegin

We are interested in the causal e¤ect of T on Yend, where we need to control for confound-

ing variables. Yend is assumed to be a (linear) function of teacher characteristics T , student

characteristics X, achievement at the beginning of the school Ybegin and some unobserved char-

acteristics U . The characteristics of student i�s teacher Ti are a function of X, Ybegin and some

unobservables V . The crucial assumption here is that U a¤ects Ybegin but does not a¤ect T di-
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rectly.9 In this situation, nonparametric regression is consistent but OLS is not. If U were not

a¤ecting Ybegin, OLS would also be consistent. On the other hand, if U also a¤ects T directly,

neither OLS nor nonparametric regression would be consistent.

In the above situation, the impact of teacher characteristics on student learning could be

estimated nonparametrically by a matching estimator, which also permits nonlinear education

production functions. Consider Ti binary, i.e. Ti 2 f0; 1g. Under the conditional independence

assumption (1), the treatment e¤ect � can be estimated as

1

n

nX
i=1

fm̂1 (Xi; Yi;begin)� m̂0 (Xi; Yi;begin) g

where m̂t(x; y) is a nonparametric regression estimator of mt(x; y) = E[YendjT = t;X =

x; Ybegin = y]. This estimator of � is consistent provided that m̂t is consistent (i.e. bandwidth

values converging to zero with increasing sample size) and that the supports of X and Ybegin

are identical in the T = 0 and T = 1 population.10 For further details on matching estimators

see e.g. Heckman, Ichimura, and Todd (1998), Heckman, Ichimura, Smith, and Todd (1998),

Lechner (2002), Frölich (2004), Imbens (2004), Smith and Todd (2005).

A similar example can also be found in the evaluation of active labour market programmes

where one is interested in the e¤ect of participating in a programme, e.g. receiving job search

training (Ti = 1) or not (Ti = 0), on subsequent individual labour market outcomes Y . Past

values of Y are important control variables as they are often strong predictors of programme

participation (Heckman and Smith 1999), but they are also likely to be endogenous in that

unobserved character traits have in�uenced past earnings and employment status.

A similar situation also arises with parametric and nonparametric instrumental variables

estimation, where again nonparametric estimation permits endogenous control variables. This

has the important practical implication that often one instrumental variable su¢ ces, whereas

for 2SLS estimation additional instrumental variables are required to instrument for the en-

dogenous control variables.

9 In other words, U and V are independent. Another assumption is also that T does not a¤ect Ybegin. If there

was a causal link from T to Ybegin, we would be measuring only a partial e¤ect of T on Yend, i.e. only that part

of the e¤ect that is not channeled via Ybegin.
10With treatment e¤ect homogeneity this latter assumption is not necessary since an overlapping subset would

su¢ ce for identi�cation.
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Consider as an example the distance to college as an instrument for college attendance

as in Card (1995). We are interested in the e¤ect of attending or not attending college, i.e.

Ti 2 f0; 1g, on earnings Yi and intend to use distance to college Zi as an instrument. Let the

true earnings relationship be

Yi = �+ �Ti + Xi + Ui,

where Xi are some individual characteristics, and where Ui and Ti may be correlated. A simple

linear IV regression of Y on T with Z as instrument but without any additional �control�

variables X is unlikely to give consistent estimates since family background characteristics such

as parental education, profession and earnings are probably a¤ecting Z as well as U . In other

words, the choice of residence made by the parents is unlikely to have been completely random,

and those families, who decided to live close to a college, may have di¤erent characteristics

than those, who decided to live far away, and these characteristics may have a direct impact on

their children�s wages and returns to college. In addition, cities with a university may also have

other facilities that might improve their earnings capacity (e.g. size of the city might matter).

The exclusion restriction may thus only be valid after including several background variables

X.

Linear IV estimation requires then that cov(U;Z) = 0 and that cov(U;X) = 0.11 The

latter assumption thus again requires the control variables X to be uncorrelated with U , an

assumption which is not needed for nonparametric IV estimation where it su¢ ces that

E [U jZ;X] = E [U jX] ,

which does not need to be zero. Hence, endogenous control variables are permitted with

nonparametric IV estimation.

This di¤erence is sketched in the following two graphs: Z; T and Y are functions of some

family background characteristicsX and some unobservables U and V . (U and V are correlated,

thereby generating the endogeneity of T .) In the left graph, X is exogenous in that it is not

correlated with the unobservables U and V , whereas it is endogenous in the right graph since X

and U are related. As an example, let X be parental education, profession, job characteristics

etc. Let U be innate ability of the child, and consider an additional variable: The innate ability

of the parents. Innate ability of the parents will usually have a¤ected X and will also be related

11Additionally, a rank restriction is needed, but the focus here is on the exclusion restriction.
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(genetically) to the ability of their children, thus generating a correlation between X and U .

This will bias 2SLS estimation. But, it still permits consistent estimation by nonparametric

IV estimation as long as the innate ability of the parents has not directly in�uenced residence

choice Z, but only indirectly via their observed characteristics X such as education, profession,

job characteristics etc. For binary T , such a nonparametric
p
n-consistent IV estimator is

developed in Frölich (2006). For continuous T , the estimator in Imbens and Newey (2003)

can be adapted to endogenous control variables. Alternative nonparametric IV estimators are

examined in Chesher (2003, 2005) and Chernozhukov and Hansen (2005).12

X

Y
T

Z

  V U

X

Y
T

Z

 V U

This di¤erence between parametric and nonparametric approaches is of substantial practical

relevance since plausibility of the exclusion restriction often requires conditioning on additional

control variables. With 2SLS estimation, if any of these control variables is endogenous, we must

�nd additional instruments for the control variables. This is not the case with nonparametric

IV estimation.

3 Bias due to endogenous control variables

In this section, a few examples are given to show that bias due to endogenous control variables

can be substantial, even in the situation where the treatment variable T is binary. (This is

particularly interesting since a large number of alternative nonparametric matching estimators

for binary T have been developed in the recent years and are readily available). Consider a

data generating process:

Yi = �+ �Ti + Xi + Ui,

where (�; �; ) are 0:1 and E[U ] = 0.

The OLS estimator of � is the second element of (X0X)�1X0Y and the corresponding bias

12 If treatment e¤ects are heterogeneous, only average e¤ects for certain subpopulations may be identi�ed.

6



is thus

e2(X
0X)�1X0U ,

where e2 is a row vector of zeros with second element one and X is the N � 3 data matrix

consisting of a constant, Ti and Xi, stacked for all N observations. The asymptotic bias of �̂

can be shown to be

plim
N!1

�̂ � � = e2

26664
1 E [T ] E [X]

E [T ] E
�
T 2
�
E [TX]

E [X] E [TX] E
�
X2
�
37775
�1 26664

E [U ]

E [TU ]

E [XU ]

37775 = �2x�ut � �xt�ux
�2x�

2
t � �2xt

,

where �2x = V ar(X) and �ux = Cov(U;X) and �
2
t , �ut and �xt de�ned analogously.

If the variable of interest Ti is a linear function of Xi:

Ti = �Xi + Vi

where Vi is an error term independent of all other covariates, it follows that �xt = ��2x and

that �ut = ��ux such that

plim
N!1

�̂ � � = 0.

Hence, for T being linear in X the OLS estimate �̂ is consistent.

However, for T not being linear inX, the estimate �̂ will generally be inconsistent. Consider

four examples. First, let V and W be two independent discrete random variables that take the

values f0; 1; 2; 3; 4g with equal probability. The variable T is generated as

T = X2 + V (2)

and the variables U and X as

U = W 2

X = W .

Clearly, the error term U is correlated with X as well as with T . However, U and T are not

correlated after conditioning on X. For this example, the relative asymptotic bias is obtained

after some tedious calculations as:

plim
N!1

�̂ � �
�

=
2 � 1745 � 8 � 8

2 �
�
2 + 174

5

�
� 82

=� = 583:�3 %.
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Hence, the asymptotic bias is almost six times larger than the true value.

Now let V and W be independent standard normal variables. In this situation, X and U

are dependent but they are no longer correlated. Nevertheless, �̂ is still asymptotically biased

since the relationship between X and T introduces a correlation between T and U , which leads

to the relative asymptotic bias:

plim
N!1

�̂ � �
�

=
1 � 2� 0

1 � (1 + 2)� 0=� = 666:
�6 %.

In the third example, let T be a binary variable

T = 1 (X + V > 2) . (3)

The relative asymptotic bias is calculated to be

plim
N!1

�̂ � �
�

= �609:756 %

when V and W are discrete random variables drawn from f0; 1; 2; 3; 4g with equal probability.

In the fourth example, for V and W being independent standard normal variables the

asymptotic bias is:13

plim
N!1

�̂ � �
�

=

1p
2
�
�p
2
�

�
�p
2
�
�(�

p
2)� 1

2�
2
�p
2
� = 1682:117.

These examples show that the asymptotic bias of OLS can be very large, whereas nonparametric

methods would yield consistent estimates.

4 Conclusions

In this note it has been argued that nonparametric regression has not only the advantage of

relaxing functional form assumptions but that it also permits endogenous control variables.

Endogenous control variables may very often be of concern in applied empirical work, in a

regression context as well as in instrumental variable estimation. A few examples have been

discussed and it has been shown that the bias due endogenous control variables can be sizeable

in linear regression. Although the bias can be smaller in other examples, it is worth emphasizing

that, at least for binary treatment variables, alternative nonparametric �matching�estimators

are readily available, which permit endogenous control variables.
13All calculations are available from the author.
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