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Abstract

We propose a new approach to the normative analysis of public-good provision in a large
economy. Our analysis is based on a mechanism design approach that involves a requirement
of coalition-proofness, as well as a requirement of robustness, so that the mechanism must not
depend on specific assumptions about individual beliefs. Our main result shows that such a
mechanism can condition only on the population shares of people with valuations above and be-
low the per capita provision costs. This suggests an intriguing link between mechanism design
for large economies and voting.
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1 Introduction

In this paper, we propose a new approach to the normative analysis of public-good provision in
large economies. By a large economy, we understand an economy with many people in which
each individual is too insignificant to have a noticeable effect on variables such as the prices of
private goods or the provision levels of public goods. We consider the large-economy paradigm
to be appropriate for studying how a society with millions of people can best determine the
appropriate levels of resources that are to be devoted to matters such as national defense or
the court system, which concern the entire population. We also believe that, when applied to
a large economy, the standard mechanism design approach to public-good provision provides
unsatisfactory results.

The standard mechanism design approach to public-good provision focusses on issues of in-
dividual incentive compatibility. Under asymmetric information about individual preferences,
the question is whether individuals have proper incentives to provide the system as a whole with
the information about preferences that it needs for efficient public-good provision. In a “small”
economy, in which each individual has a distinct chance of being “pivotal”, i.e., of having a
noticeable effect on the provision of a public good, this requires that people’s financial contribu-
tions must be precisely calibrated to their expressions of preferences. The calibration must be
such that people have neither an incentive to overstate their preferences on the assumption that
the increase in public-good provision is paid for by somebody else nor an incentive to under-
state their preferences on the assumption that the money which they can thereby save is worth
more than the reduction in public-good provision. The implications of this requirement have
been thoroughly explored in the literature. It is well known that an efficient provision rule can
be implemented if the calibration of payments to expressed preferences is such that people are
induced to take account of the external effects that they impose on others whenever they are
”pivotal” for the provision or non-provision of the public good.1

In a large economy, these concerns are moot. In such an economy, any notion that a person’s
payments should be calibrated to the effects that this person’s communication about her prefer-
ences have on the provision of the public good leads to the simple conclusion that her payment
should be independent of what she communicates. If what a person says affects neither the col-
lective decision on public-good provision nor the payments she has to make, individual incentive
compatibility is trivial. If what she says is deemed to have no effect whatsoever, she may as well
tell the truth. The information that is thus communicated is sufficient to implement an efficient
provision rule for the public good. Participation in the system may not be voluntary, but there
is no problem of incentive compatibility.2

We want to take issue with this view. The following example illustrates our concerns. Sup-
1For implementation in dominant strategies, see Clarke (1971), Groves (1973), Green and Laffont (1979), for

(interim) Bayes-Nash implementation, see d’Aspremont and Gérard-Varet (1979). More recently, Bergemann

and Morris (2005) have studied interim implementation with a requirement of robustness with respect to the

specification of agents’ beliefs about the other participants.
2We do not insist on voluntary participation. Participation constraints are irrelevant if the state has powers

of coercion and these powers can be used to make people contribute to financing a public good even when it does

not benefit them.
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pose that the public good in question comes as a single indivisible unit. The provision cost per
capita of the population is 4. A fraction 3

10 of the population assigns a value of 10 to the public
good, a fraction s a value of 3, and a fraction 7

10 − s a value of 0. An efficient provision rule
stipulates that the public good should be provided if the average per capita valuation exceeds
4, and that it should not be provided if the average per capita valuation is less than 4. In other
words, the public good should be provided if s > 1

3 and should not be provided if s < 1
3 . The

requisite resources can be obtained by imposing a payment rule under which everybody pays 4
if the public good is provided and 0 if it is not provided. If people believe that, individually,
they are too insignificant to affect the provision of the public good, a mechanism involving this
provision and payment rule is incentive-compatible.

If s is common knowledge, this reasoning is unproblematic. This is the case, for instance,
if we think of the large-economy model as a limit of finite-economy models with independent
private values in which the number of participants becomes large. However, if s is common
knowledge, the implementation of an efficient provision rule does not require any information
from participants because, even before any such information is provided, it is commonly known
whether the public good should be provided or not.3

By contrast, if s is the realization of a nondegenerate random variable s̃, the problem of
whether the public good should be provided or not involves a genuine information problem. In
this case, the information whether the public good should be provided or not must be inferred
from the participants’ reports about their preferences. If the fraction of people reporting a
valuation of 3 exceeds 1

3 , one may infer that s > 1
3 and that the public good should be provided.

At this point, we are bothered by the notion that efficient provision can be implemented
with a payment rule under which everybody pays 4 if the public good is provided and 0 if
it is not provided. Why should people with a valuation of 3 report this valuation honestly?
Reporting a valuation of 3 contributes to making provision of the public good more likely, if
only infinitesimally. If the public good is provided, these people enjoy a benefit of 3 and have
to pay 4, for a net payoff equal to −1. Each one of them would be better off if the public good
was not provided. Moreover, the public good would indeed not be provided if each one of these
people reported a valuation of 0. Why, then, should they report honestly, rather than claiming
that the public good is worth nothing to them?

If individual incentive compatibility is the only requirement for the public-good provision
mechanism, the answer to this question is that nobody minds reporting his or her valuation
honestly because nobody feels that his or her report will make a difference to anything anyway.
We consider this answer to be unconvincing. Therefore, we propose a new approach to the
analysis of public-good provision in a large economy.

This new approach involves requirements of coalition-proofness and of robustness in the sense
of Ledyard (1978) and Bergemann and Morris (2005) that are imposed in addition to individual
incentive compatibility. Coalition-proofness requires that individuals must not have an incentive
to coordinate their behavior so as to manipulate jointly the outcomes of the allocation mecha-

3Thus, in models with independent private values, the problem of whether to provide the public good or not

becomes moot if one takes limits as the number of participants becomes large and the law of large numbers sets

in.
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nism. Robustness ensures that the working of a mechanism does not depend on the availability
of detailed information about individual beliefs.

To see the relevance of coalition-proofness, note that in the given example, the people who
value the public good at either 0 or 3 have an incentive to sabotage the efficient provision
rule with equal cost sharing by forming a coalition to coordinate reports in such a way that
the fraction of people reporting 3 is always below 1

3 . By contrast to cartel formation in indus-
trial economics, the distorted reports that this sabotage action requires would all be individu-
ally incentive-compatible. Therefore, the efficient provision rule with equal cost sharing is not
coalition-proof.

Indeed, in the given example, it is impossible to have a coalition-proof rule with equal sharing
of public-good provision costs that conditions public-good provision on s. More generally, we will
show that, under our requirements of coalition-proofness and robustness, public-good provision
can be conditioned on the sizes of the set of people who are net beneficiaries of public-good
provision and of its complement, the set of people who are harmed by public-good provision,
but not on any additional information, e.g., information about the intensities of people’s likes
and dislikes. In the example, the two relevant sets have sizes 7

10 and 3
10 , regardless of s, and the

mechanism designer is reduced to a rule that stipulates public-good provision or not, depending
on whether the ex ante expectation of people’s valuation of the public good is greater or less
than the per capita cost 4, or, equivalently, whether he considers the ex ante expectation of s̃
to be greater or less than 1

3 .

A requirement of coalition-proofness has previously been introduced by Laffont and Marti-
mort (1997, 2000). Our approach differs from theirs in that we focus on coalitions consisting of
subsets of the entire population, with coalition membership depending on people’s types. Thus,
in the above example, we considered a coalition of all people who value the public good at 0 or
3. By contrast, Laffont and Martimort focussed on coalitions of all people, regardless of their
types. This focus was appropriate for their purpose, which was to eliminate the possibility,
established by Crémer and McLean (1985, 1988), that the mechanism designer might exploit
the slightest correlations in individual preferences in order to appropriate the entire surplus that
is generated.

In our analysis, coalition-proofness is used as a device to articulate the inherent conflict
between people who benefit from public-good provision and people who are harmed by it, rather
than a device to prevent the mechanism designer from appropriating rents from everybody.
Therefore, we focus on coalitions of subsets of people with common interests. For such subsets,
it is natural to have coalition membership depend on people’s types. Thus, in the given example,
the common interests of people who are harmed by public-good provision are put into focus by
a concept of coalition-proofness that allows for collective manipulations of individual reports by
the coalition of people who value the public good at 0 or at 3.

We do follow Laffont and Martimort, however, in requiring that coalition formation and
the behavior of coalition members satisfy the same information and incentive constraints as
the underlying incentive mechanism itself. In particular, we require that the decision to join
a coalition and the behavior as a coalition member must be individually incentive-compatible.
The information problems of coalition formation and behavior are actually more complex in our

3



setting than in Laffont and Martimort (1997, 2000) because, apart from problems of individual
incentive compatibility of stipulated behaviors of coalition members, a coalition that consists of
a subset of the population also must deal with the problem that its information about people
outside the coalition is incomplete.

In addition to coalition-proofness, we also impose a requirement of robustness of incentive
compatibility in the sense of Ledyard (1978) and Bergemann and Morris (2005). Outcomes are
allowed to depend only on those aspects of the participants’ types that are relevant for their
payoffs, i.e., their public-goods preferences. They are not allowed to depend on other aspects of
the participants’ types such as the beliefs that they have about other people’s payoffs or other
people’s beliefs. Moreover, the outcome function must be individually incentive-compatible
regardless of how the non-payoff-relevant aspects of people’s types are specified.

As we explain elsewhere (Bierbrauer and Hellwig 2009), robustness of incentive compati-
bility is a desirable property because it eliminates the dichotomy between specifications with
independent values and specifications with correlated values. Without robustness, for models
with participation constraints, the Bayesian approach yields impossibility theorems for first-best
implementation with independent values and possibility theorems for first-best implementation
with correlated values. If robustness of incentive compatibility is imposed, this dichotomy dis-
appears. Regardless of whether values are independent or correlated, for large economies, one
finds that, with participation constraints, first-best implementation is possible for private goods
and impossible for public goods.

In the context of a large economy, robustness implies that people’s payments cannot be made
to depend on their types. This is in line with the notion that payments should be calibrated
to the effects that this person’s communication about her preferences have on the provision
of the public good, which in a large economy are zero. Deviations from this principle could
be incentive-compatible, if, conditional on their types, people have different beliefs about the
state of the economy and the prospects for public-good provision and a type dependence of
payments allows them to bet on the differences in beliefs. However, the incentive-compatibility
compatibility of such deviations is not robust to changes in the specification of beliefs.

To explain the issue, we return to the above example and consider a type-dependent payment
rule that requires people who value the public good at 3 to pay 0 if the public good is provided
and to pay 8 if the public good is not provided. People who value the public good at 0 or 10
pay 10 if the public good is provided and receive 2 if the public good is not provided. Under
this rule, people who value the public good at 3 are no longer averse to having revealed that s
is greater and not less than 1

3 . When the public good is provided, their net payoff is equal to 3,
when the public good is not provided, their net payoff is equal to −8.

If the random variable s̃ can only take the values 2
10 and 6

10 , the combination of this type-
dependent payment rule with an efficient provision rule, providing for non-provision if s̃ = 2

10

and for provision if s̃ = 6
10 , is also compatible with budget balance.

The resulting mechanism is incentive-compatible if type-dependent beliefs are derived from
a common prior that assigns probability one half to each of the two possible realizations of s̃ and
that assigns values 7

10−s, s, and 3
10 to any one person’s conditional probabilities, given the event

s̃ = s, of having valuations 0, 3 and 10. Given this common prior, the probability of public-good
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provision, i.e., of the event s̃ = 6
10 , is assessed at 1

6 by a person with valuation 0, at 3
4 by a person

with valuation 3, and at 1
2by a person with valuation 10. These differences in beliefs allow for

an incentive-compatible dependence of payments on types. The resulting payments scheme can
be interpreted as a combination of sharing of the cost of efficient public-good provision and a
system of bets on the state of the economy.4

However, if the common prior were to assign probabilities one third to the event s̃ = 2
10

and two thirds to the event s̃ = 6
10 , the given scheme would no longer be incentive-compatible.

With beliefs determined by the prior (1
3 ,

2
3), the people who value the public good at 10 would

consider the payment scheme that is meant for people with valuation 3 to be more attractive
than the payment scheme that is meant for themselves. The incentive compatibility of the given
type-dependent payment scheme is thus not robust to changes in the specification of beliefs.

More generally, robustness implies that payments must be type-independent. Robustness
also enables us to establish a revelation principle for coalition-proof mechanisms. Type indepen-
dence of payments provides a natural basis for assessing coalition-proofness. Under coalition-
proofness, the type-independent payments can only depend on whether the public good is pro-
vided or not. Thus, payments might be equal to zero if the public good is not provided and to
the per-capita cost if it is provided. There is then a sharp distinction between people whose net
payoffs are increased and people whose net payoffs are decreased by the provision of the public
goods. These two groups define the key coalitions to consider in assessing whether a provision
rule for the public good is coalition-proof.

The main result of our analysis shows that, if one imposes coalition-proofness, as well as
robust individual incentive compatibility and anonymity, then the sizes of the two groups, the
group of people who are harmed by public-good provision and the group of people who benefit
from public-good provision, represent the only information that can be used in determining
whether the public good is to be provided or not. By contrast, information concerning the
intensity of likes and dislikes cannot be used. Apart from exceptional circumstances, therefore,
it is impossible to implement a first-best provision rule by a coalition-proof, robustly incentive-
compatible anonymous mechanism. By contrast to previous impossibility results, this finding
does not involve any participation constraints or a multi-dimensional information problem. In-
stead, it follows from the observation that coalition-proofness and robust incentive compatibility
together destroy the possibility of conditioning on intensities of preferences.

Mechanisms that condition the provision of the public good on the numbers of its adherents
and its opponents are reminiscent of voting mechanisms. In our analysis, optimal coalition-proof,
robustly incentive-compatible, anonymous mechanisms differ from traditional voting mechanisms
in that the decision to provide the public good or not is based on an assessment of expected ben-
efits and costs conditional on numbers of adherents and opponents, rather than any (qualified)
majority rule. Even so, we find it intriguing that, once coalition-proofness is imposed in addition

4The introduction of the system of bets also has the effect of shifting the expected payoff that a person with

valuation 0 receives from public-good provision from 1
6
(−4) = − 2

3
to 1

6
(−10)+ 5

6
2 = 0. For a person with valuation

3, the expected payoff is shifted from − 3
4

to 1
4
, for a person with valuation 10, from 3 to 1. By the type-contingent

system of bets, the people who value the public good are made to “share” the benefits with the result that the

other people’s expected payoffs from the system become nonnegative.
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to robust incentive compatibility and anonymity, the mechanisms that we are concerned with
involve numbers of votes, for and against, rather than any attempt to measure willingness to pay.
Implementation can be done by a show of hands, rather than any more complicated procedure.

The remainder is organized as follows. Section 2 contains the description of the environment
and the characterization of robust public good mechanisms in a large economy. In Section 3,
we define the notion of a collective manipulation mechanism and of a coalition-proof rule for
public-good provision. Section 4 characterizes the provision rules that are both robust and
coalition-proof. Finally, in Section 6, we solve for the optimal provision rule for public goods.
All proofs are in the Appendix.

2 Robust Implementation in a Large Economy

2.1 Payoffs and Social Choice Functions

We consider an economy with a continuum of agents of measure 1. There is one private good
and one public good. The public good comes as a single indivisible unit. Its installation requires
aggregate resources (per capita) equal to k units of the private good.

Given a public-good provision level Q ∈ {0, 1} the utility of any agent i is given as viQ− pi,
where vi is the agent’s valuation of the public good and pi is his contribution to the cost of
public-good provision. The valuation vi belongs to a set V of possible valuations, which is
independent of i.

A social choice function determines under what conditions the public good is to be provided
and what contributions are to be made by the different individuals. Following Guesnerie (1995),
we impose an anonymity requirement by which the level of public-good provision, as well as
the payments of individuals with a given valuation v are unchanged under any permutation
of individual characteristics that leaves the cross-section distribution of preferences unaffected.
Thus, an anonymous social function determines how public-good provision levels and payment
rules depend on the cross-section distribution of preferences. We refer to the latter as the
state of the economy. Formally, the state of the economy is an element s of the set M(V ) of
probability measures on V . An anonymous social choice function is a pair F = (QF , pF ) of
functions QF : s 7→ QF (s) and pF : (s, v) 7→ pF (s, v) such that, for any state of the economy
s, QF (s) ∈ {0, 1} is the level of public-good provision in the state s, and pF (s, ·) is a function
indicating how, in the state s, and agent’s payment depends on the agent’s valuation.

For any s ∈M(V ), the payment rule pF (s, ·) is taken to be integrable with respect to s. The
integral

∫
pF (s, v)ds(v) corresponds to the aggregate revenue that is collected in the state s.

We say that the anonymous social choice function F = (QF , pF ) yields feasible outcomes if and
only if, in any state of the economy, the aggregate revenue is sufficient to cover the public-good
provision cost kQF (s), i.e., if and only if the inequality∫

pF (s, v)ds(v) ≥ kQF (s) (1)

is satisfied for all s ∈M(V ).
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2.2 Types and Beliefs

As usual, we model information by means of an abstract type space. Let (T, T ) be a measurable
space, τ a measurable map from T into V , and β a measurable map from T into the space
M(M(T )) of probability distributions over measures on T . We interpret ti ∈ T as the abstract
“type” of agent i, vi = τ(ti) as the payoff type, i.e., the public-good valuation of agent i and
β(ti) as the “belief type” of agent i.

The belief type β(ti) indicates the agent’s beliefs about the other agents. We specify these
beliefs in terms of cross-section distribution of types in the economy. Thus, β(ti) is a probability
measure on the space M(T ) of these cross-section distributions. For any event X ⊂ M(T ),
β(X | ti) is the probability that agent i assigns to the event X. A typical element ofM(T ) will
be denoted by δ.

We refer to the map β : T → M(M(T )) as the belief system of the economy. The belief
system β is called a common-prior belief system if there is an underlying probability space so
that, given the probability distribution on this space, the belief of any one agent can be identified
with a regular conditional probability distribution given his information. We think of the cross-
section distribution of types δ as the realization of a random variable δ̃ and of the type ti of any
agent i as the realization of a random variable t̃i, both defined on some underlying probability
space. We also think of the belief β(ti) ∈M(M(T )) as a conditional distribution for δ̃, given the
event t̃i = ti. For consistency with the notion that δ is the cross-section distribution of types, we
also think of δ as being a conditional distribution for t̃i given the event δ̃ = δ. Formally, the belief
system β is a common-prior belief system if and only if it is compatible with such a construction,
i.e., if and only if there is a measure P ∈ M(T ×M(T )), with marginal distributions denoted
by P1 and P2, respectively, such that

P (Bt ×Bδ) =
∫
BT

β(Bδ | t)dP1(t)

and

P (Bt ×Bδ) =
∫
Bδ

δ(BT )dP2(δ)

for all measurable Bt ⊂ T and Bδ ⊂ M(T ).5 Throughout the paper, we assume that β is a
common-prior belief system.

We also assume that the measures β(t), t ∈ T, are mutually absolutely continuous, i.e., that
they all have the same null sets and that these null sets are the same as the null sets of the
marginal distribution P2 of the common prior P on the spaceM(T ).6 We refer to this property
by saying that the belief system is moderately uninformative. If the belief system is moderately

5We are not saying anything about the underlying stochastic structure. The simplest specification would

treat the cross-section distribution of types as a random variable δ̃ on some underlying probability space and

then postulate that, given δ̃ = δ the different agents’ types all have the conditional probability distribution

δ, a conditional law of large numbers holding across agents. Spelling out the underlying stochastic structure

would require us to extend the formulation of Sun (2006) so as to allow for conditional, as opposed to overall

independence. See also fn. 10 below.
6If the beliefs β(t), t ∈ T, are mutually absolutely continuous, one can actually show that there is at most one

common prior with which the belief system is consistent.
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uninformative, there is no realization t of the random variable t̃i such that the observation of
the event t̃i = t would permit agent i to rule out any event that has positive probability under
the prior P.

2.3 Robust Implementability

Information about types is assumed to be private. A social choice function is interim imple-
mentable on a given type space if, for this type space, there exists a mechanism, specifying a
message set for each agent and a function from message profiles to allocations, and there ex-
ists an equilibrium of the strategic game induced by the mechanism such that the equilibrium
outcome is equal to F (δ ◦ τ−1), as stipulated by F for the payoff type distribution δ ◦ τ−1. An
anonymous social choice function F is said to be robustly implementable if, for every (T, T ), and
τ : T → V, there exists an anonymous mechanism fR and an equilibrium of the game induced
by fR that implement F on the type space [(T, T ), τ, β], for every moderately uninformative
common-prior belief system β.

Our notion of robustness is slightly stronger than that of Bergemann and Morris (2005). Like
Bergemann and Morris, we require implementability on every type space, but, following Ledyard
(1978), we go further than they do and require that the mechanism that is used for implemen-
tation should be the same regardless of what the belief system is. In contrast, Bergemann and
Morris allow the mechanism to depend on β. The difference between their notion of robustness
and ours (or Ledyard’s) is irrelevant if one is only concerned with individual incentive compati-
bility. It will, however, make a difference when we add the requirement of coalition-proofness.7

For individual incentive compatibility, we obtain:

Proposition 1 An anonymous social choice function F = (QF , pF ) is robustly implementable
if and only if it satisfies the following ex post incentive compatibility constraints: For all v and
and v′ in V and all s ∈M(V ),

vQF (s)− pF (v, s) ≥ vQF (s)− pF (v′, s) . (2)

Implementation can be achieved by direct mechanisms with truthtelling strategies.

Proposition 1 adapts a result due to Bergemann and Morris (2005) to the given setup:
Robust implementability is equivalent to ex post incentive compatibility, i.e., once s has become
known, no individual regrets having revealed his type to the mechanism. By inspection of (2), in
our setting, ex post implementability is equivalent to the requirement that pF (v, s) = pF (v′, s)
for all v, v′ and s. If the payment of some agent was, for some s, smaller than the payment
of some other agent, the latter would like to imitate the agent with the small payment. This
would contradict ex post implementability. This observation yields the following corollary to
Proposition 1.

7See the discussion following Proposition 4 below.

8



Corollary 1 An anonymous social choice function F = (QF , pF ) is robustly implementable
if and only if payments are independent of individual payoff types, i.e., there is a function
p̄F :M(V )→ R such that pF takes the form pF (v, s) = p̄F (s) for all v ∈ Θ and all s ∈M(V ).

Given Corollary 1, we will represent a robustly implementable social choice function in the
following as a pair of functions (QF , p̄F ), where p̄F (s) is the lump-sum contribution to the cost
of public-good provision if the cross-section distribution of payoff types equals s ∈M(V ).

2.4 Robust Implementation of First-Best Allocations

An anonymous social choice function F = (QF , pF ) is said to yield first-best outcomes if, for all
s ∈M(V ) the pair (QF (s), pF (s, ·)) maximizes the aggregate surplus∫

V
(vQF (s)− pF (s, v))ds(v)

subject to the feasibility condition (1). By standard arguments, this requires that the public
good should be provided if the aggregate valuation

∫
V vds(v) exceeds the cost k and should

not be provided if
∫
V vds(v) is less than k. Moreover, there should be no slack in the feasibility

constraint, i.e., aggregate payments should exactly cover the cost of public-good provision. Upon
combining these observations with Corollary 1, we obtain:

Proposition 2 An anonymous social choice function F = (QF , pF ) yields first-best outcomes
and is robustly implementable if and only if

QF (s)

{
0, if v̄(s) < k,

1, if v̄(s) > k,

for all s ∈M(V ), where v̄(s) :=
∫
V v ds, and

pF (v, s) = kQF (s)

for all s ∈M(V ) and all v ∈ V .

Proposition 2 provides a general possibility result for robust first-best implementation in a
large economy. People are asked for their valuations. The public good is provided if and only
if the reported average per-capita valuation exceeds k. Required contributions are set so that
the cost of public-good provision are equally shared; this ensures feasibility (budget balance),
as well as robust implementability. Because people never see themselves as having any influence
on public-good provision and because people’s payments do not depend on their types, each
individual is indifferent as to what message he or she sends. Given this indifference, one may as
well tell the truth.

Because people are indifferent about the messages they send, the game induced by the direct
mechanism on any type space has many equilibria. One may therefore feel uneasy about our
relying on implementation by truthtelling strategies. Would people not prefer to report an
element of argmint∈T v(t) if v̄(s) < k and an element of argmaxt∈T v(t) if v̄(s) > k, exaggerating
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their dislike if they do not want the public good to be provided and exaggerating their enthusiasm
if they do want the public good to be provided? Truthtelling actually is weakly dominated by
this exaggeration strategy: In the probability zero event that the agent might be pivotal after
all, exaggeration might shift the public outcome in the preferred direction when truthtelling
would not. In all other events, the choice between the two strategies does not matter.

We are not bothered by this objection. The fact that people are indifferent about the
messages they send is an artefact of the continuum model of a large economy. So is the fact
that truthtelling is weakly dominated by an exaggeration strategy. The continuum economy is
an idealization of large finite economies. For large finite economies, we know that Clarke-Groves
mechanisms can be used for first-best implementation in dominant strategies; the social choice
functions that are implemented by these mechanisms approximate the social choice function in
Proposition 2. However, in the transition to the continuum model, the dominance property is
lost. This should be seen as an example of nonrobustness of weak dominance, rather than an
argument against the reliance on truthtelling equilibria in the continuum model.

Robust implementation of first-best allocations is not compatible with the imposition of
interim participation constraints. Under equal cost sharing, anybody with a payoff type below
k would wish to veto the the social choice function if he could: If the public good is provided,
his payoff is negative because he has to pay more than the public good is worth to him; if the
public good is not provided, his payoff is zero. On average, therefore, he loses from this regime.8

However, in this paper, we are not concerned with participation constraints. Participation
constraints matter only if one adheres to the contractarian view of government and the state that
underlay Lindahl’s (1919) original treatment of public goods. If one has no qualms about the
state’s using its power of coercion, Proposition 2 suggests that the implementation of first-best
allocations in large economies faces no fundamental difficulties.

We do not share this sanguine view. In our view, Proposition 2 does not provide a satisfactory
basis for the normative theory of public-good provision in a large economy. The requirements of
robust implementation are too weak to do full justice to the information and incentive problems
of public-good provision in such an economy. Therefore we now turn to a discussion and anal-
ysis of coalition-proofness as an additional restriction on social choice functions and incentive
mechanisms.

3 Coalition-Proofness

To implement a first-best outcome, one must be able to ascertain the aggregate public-good
valuation v̄(s). The example in the introduction shows that some of the people who are providing
this information may be effectively hurt by the use to which the information is put. In such
a case, incentive compatibility holds only because any one person alone is unable to affect the
social outcome and is therefore indifferent about the message that he or she transmits to the

8This observation corresponds to the findings of the literature on Bayesian mechanisms with independent

private values, see, e.g., Güth and Hellwig (1986), Rob (1989), Mailath and Postlewaite (1990). The relation

between Bayesian implementation with independent private values and robust implementation with possibly

correlated values is studied in Bierbrauer and Hellwig (2009).
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mechanism implementing the social choice function.
However, people with similar valuations have similar interests. Collectively, they might upset

the functioning of the mechanism. Therefore, they would seem to have an incentive to form a
coalition in order to collectively manipulate the social outcome. We do not want to leave room
for such manipulations. In addition to individual incentive compatibility, we therefore impose a
requirement of coalition-proofness.

Like Laffont and Martimort (1997, 2000), we treat coalition formation as a mechanism design
problem of its own that is subject to incentive compatibility and participation constraints.
However, whereas Laffont and Martimort only pay attention to the grand coalition of all agents,
we will focus on coalitions of subsets of agents; moreover, we allow for coalition membership to
depend on agents’ types.

Let [(T, T ), τ, β] be a given type space, and let fR = (QfR , pfR) be an anonymous mechanism.
We consider the possibility that this mechanism is manipulated by a coalition of people with
specified types, who collectively deviate from truth-telling. We think of this coalition as being
operated by a coalition manager who announces a collective manipulation mechanism and asks
people to join in order to manipulate messages to the overall mechanism. Conditional on a
profile of messages that he receives from coalition members, the coalition manager will choose a
profile of lies that coalition members should transmit to the overall mechanism.

We consider the following structure of events, timing and information:

• First, an overall mechanism fR is announced.

• Then, a coalition organizer may propose a manipulation mechanism. This proposal is
made public.

• If a manipulation mechanism has been proposed, individuals choose whether to subscribe
to the manipulation mechanism or not. Any subscriber sends a report to the coalition
organizer.

• On the basis of the reports that he has received from his subscribers, the coalition organizer
provides each subscriber with a recommendation for a report that is to be submitted to
the overall mechanism.

• All individuals choose their reports to the overall mechanism.

• The overall mechanism receives a profile of reports, one for each individual, and implements
the corresponding allocation.

The overall mechanism will be said to be coalition-proof, if it is not possible to propose a
manipulation mechanism that will benefit all individuals that join in.9

9In Section 5 below, we also consider a weaker notion of coalition-proofness. In this concept, collective ma-

nipulations are constrainted by the restriction the requirement that they must not provide room for additional

collective deviations by subcoalitions. This corresponds to the notion of Bernheim et al. (1986) that collective

manipulations themselves must be coalition-proof.
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Before we spell out the details of the formalism, we illustrate our approach by the example
in the introduction. The set of possible types in this example is T = {t1, t2, t3}. The associated
payoff types are τ(t1) = 0, τ(t2) = 3, and τ(t3) = 10. There is a common prior, which
assigns probability one half to each of the two type distributions δ0 = (0.6, 0.1, 0.3) and δ1 =
(0.2, 0.5, 0.3). With a per-capita provision cost k = 4, first-best efficiency requires that the public
good should be provided if the cross-section distribution of types is δ1 and that it should not
be provided if the cross-section distribution of types is δ0; moreover, the cost of public-good
provision should be evenly shared.

In this example, consider a manipulation mechanism that tries to attract people with types
t1 and t2. If these people report their types honestly, the coalition organizer observes whether
the type distribution is δ0 or whether it is δ1. If it is δ0, he does not try to manipulate anything,
but has each coalition member report his type honestly. If the type distribution is δ1, he
manipulates messages to the overall mechanism to ensure that the overall mechanism perceives
the type distribution as being δ0 rather than δ1. For this purpose, 4

5 of the coalition members
with type t2 must report falsely that they have type t1; all other coalition members report
honestly. To avoid running afoul of our anonymity requirement, the coalition organizer can
provide people with lotteries so that, if the actual cross-section distribution of types is δ1, then,
each coalition member with type t2 will report the type t1 (falsely) with probability 4

5 and the
type t2 (honestly) with probability 1

5 . Through this manipulation, the coalition organizer ensures
that the cross-section distribution of reports received by the overall mechanism is δ0 so that the
public good is not provided. Because, with equal cost sharing, the cost k = 4 of public-good
provision to people with types t1 and t2 is more than the public good is worth to them, they
all benefit from the manipulation. The first-best mechanism with equal cost sharing thus is not
coalition-proof.

3.1 Strategies and Outcomes

Proceeding from heuristics to formal analysis, we allow a coalition organizer to specify any set
X and to ask people to send him messages from the set Xe = X ∪ {∅}. If agent i sends the
message xi = ∅, this means that he does not participate in the manipulation mechanism and
that he reports directly to the overall mechanism. If agent i sends a message xi ∈ X to the
coalition organizer, this means that he does participate in the manipulation mechanism. In
response, the coalition organizer tells the agent what message to send to the overall mechanism.
We think of this message as being generated by a lottery `i over the set R of reports that are
admissible under the overall mechanism; formally, `i ∈M(R). Imposing yet another anonymity
requirement, we allow `i to depend on the message xi ∈ X that agent i has sent and on the
distribution χ ∈ M(Xe) of messages that the coalition organizer has altogether received, and
we write

`i = `(xi, χ).

For instance, if we set X = T in the above example and if 1
5 of the population report t1 to the

manipulation mechanism, 1
2 of the population report t2, and 3

10 of the population do not join,
i.e., report ∅, then, for an agent who has reported t2, the manipulation mechanism stipulates the
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lottery `(t2, χ) so that the agent’s report to the overall mechanism will be t1 with probability 4
5

and t2 with probability 1
5 .

Manipulating reports to the overall mechanism is the only thing manipulation mechanisms
do. We neglect the possibility that the manipulation mechanism might involve side payments to
facilitate coalition formation. In our model of a large economy, this involves no loss of generality.
The reason is that any agent will join the coalition only if this involves no cost relative to not
joining and free-riding on others forming the coalition. The expected value of the side payment
that any agent who joins makes to the coalition organizer must therefore be nonpositive. Because
the coalition organizer himself does not want to lose money, expected values of side payments
would have to be zero anyway.

As for overall mechanisms, we do not restrict the analysis to direct mechanisms, i.e., we do
not assume that the report set X coincides with the type set T. A version of the Revelation
Principle showing that there is no loss of generality in restricting the analysis to incentive-
compatible direct mechanisms will be established in Subsection 3.4 below. The principle holds
for both, overall mechanisms and manipulation mechanisms.

Given an overall mechanism fR and a manipulation mechanism (X, `), a strategy for the game
induced by fR, and (X, `) consists of (i) a function µ : T → Xe that specifies an individual’s
report to the manipulation mechanism, (ii) a function λ : µ−1(X)×M(R) → R specifying the
lottery λ(t, `) that an agent of type t who has joined the coalition and sent the message µ(t) ∈ X
will actually use to determine his report to the overall mechanism when ` is the recommendation
received from the manipulation mechanism, and (iii) a function ν : µ−1(∅) → R specifying the
messages that those individuals who do not join the coalition send to the overall mechanism.

In describing the effects of the manipulation mechanism on the cross-section distribution
of reports received by the overall mechanism, we assume a law of large numbers.10 Given the
manipulation mechanism (X, `), the strategy (µ, λ, ν) for the game induced by fR, and (X, `), the
cross-section distribution of reports received by the manipulation mechanism is χ(δ, µ) = δ ◦µ−1

if the cross-section distribution of types equals δ. The probability that an agent’s report to
the overall mechanism belongs to a measurable set B ⊂ R is given as λ(B|t, `(µ(t), χ(δ, µ)) if
the agent has type t ∈ µ−1(X); if the agent has type t ∈ µ−1(∅), this probability is or zero
or one, depending on whether ν(t)belongs to B or not. We assume that these expressions for
probabilities of agents submitting reports in B also indicate the fractions of the population
submitting such reports. The distribution of messages received by the overall mechanism is then
given as g(δ,X, `, µ, λ, ν), where for any measurable set B ⊂ R,

g(B|δ,X, `, µ, λ, ν) = δ({t ∈ µ−1(∅)|ν(t) ∈ B})

+
∫
µ−1(X)

λ(B|t, `(µ(t), χ(δ, µ))dδ(t).

To simplify the notation, we use π = (X, `, µ, λ, ν) as a shorthand notation for the manipulation
mechanism (X, `) and the strategy (µ, λ, ν), and we shall refer to π simply as a manipulation.

10 Beginning with Judd (1985) and Feldman and Gilles (1985), there is an extensive literature on the law of

large numbers for large economies. Sun (2006) provides a formulation in which an assumption of essential pairwise

independence yields a law of large numbers on any nonnegligible subset of agents; see also Sun and Zhang (2009)

and Podczeck (forthcoming).
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3.2 Interim Equilibrium

Given an overall mechanism fR, and a manipulation π = (X, `, µ, λ, ν), an agent of type t who
sends the message r to the overall mechanism can expect to receive the payoff

u(π, t, r, δ) := τ(t)QfR(g(δ, π))− pfR(r, g(δ, π))

if the cross-section of types is δ. However, the agent does not know δ. If he does not join the
manipulation mechanism, his expectations about δ are given by his belief type β(t) ∈M(M(T )),
his expected payoff from sending the report r to the overall mechanism is

UN (π, t, r) :=
∫
M(T )

u(π, t, r, δ)dβ(δ|t).

If, instead, he joins the manipulation mechanism, sends a message x ∈ X and receives
a recommendation l ∈ M(R), he will update his beliefs about δ, using the information that
`(x, χ(δ, µ)) = l. His expected payoff from sending the reports x to the manipulation mechanism
and using the lottery λ(t, l) to determine his report r to the overall mechanism is then equal to∫

R

∫
M(T )

u(π, t, r, δ)db(δ|t, x, l)dλ(r|t, l) =
∫
M(T )

∫
R
u(π, t, r, δ)dλ(r|t, l)db(δ|t, x, l) ,

where b(t, x, l) ∈M(M(T )) is the agent’s updated belief given his belief β(t) and the information
that `(x, χ(δ, µ)) = l. From an ex ante perspective, at the time of his deciding on whether to
join the manipulation mechanism or not, his expected utility from sending the message x to the
manipulation mechanism and subsequently following the response strategy λ is equal to

UJ(π, t, x, λ(t, ·)) :=
∫
M(T )

∫
R
u(π, t, r, δ)dλ(r|t, `(x, χ(δ, µ)))dβ(δ|t).

The triple (µ, λ, ν) is an interim equilibrium for the game induced by the overall mechanism
fR and the manipulation mechanism (X, `) if the following conditions are satisfied:

i) For any t ∈ µ−1(X), the pair (µ(t), λ(t, ·)) is a best response to the strategy (µ, λ, ν) , i.e.,

UJ(π, t, µ(t), λ(t, ·)) ≥ UJ(π, t, x, λ′(·))

for all x ∈ X and all responses λ′ : M(R) → M(R) to the manipulation organizer’s
suggestions, and

UJ(π, t, µ(t), λ(t, ·)) ≥ UN (π, t, r)

for all r ∈ R.

ii) For any t ∈ µ−1(∅), the report ν(t) is a best response to the strategy (µ, λ, ν) , i.e.,

UN (π, t, ν(t)) ≥ UJ(π, t, x, λ′(·))

for all x ∈ X and all responses λ′ : M(R) → M(R) to the manipulation organizer’s
suggestions, and

UN (π, t, ν(t)) ≥ UN (π, t, r),

for all r ∈ R.
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If the payoff u(π, t, r, δ) = τ(t)QfR(g(δ, π)) − pfR(r, g(δ, π)) is independent of the report r,
these equilibrium conditions are vacuous. This is always the case if the payments pfR under the
mechanism fR are type-independent.11

Remark 1 Let fR = (QfR , pfR) be such that the payment rule takes the form pfR(r, ρ) =
p̄fR(ρ) for all r ∈ R and all ρ ∈ M(R). Then, for any manipulation π = (X, `, µ, λ, ν), the
strategy (µ, λ, ν) is an interim equilibrium for the game induced by the overall mechanism fR

and the manipulation mechanism (X, `).

3.3 Coalition-Proofness

At last we turn to the definition of coalition-proofness. For a given common prior type space
[(T, T ), τ, β] and mechanism fR = (QfR , pfR), let σ∗ be an interim equilibrium for the game
induced by fR. A manipulation π = (X, `, µ, λ, ν) consisting of a manipulation mechanism (X, `)
and an interim equilibrium (µ, λ, ν) is said to block σ∗ if the people who join the manipulation
mechanism, i.e., the people choosing µ(t) ∈ X, are strictly better off than they would be in the
equilibrium σ∗, in the absence of the manipulation mechanism. Formally, π blocks σ∗ if

UJ(π, t, x, λ(t, ·)) > U(σ∗, σ∗(t), t) (3)

for all t ∈ µ−1(X), where

U(σ∗, σ∗(t), t) :=
∫
M(T )

{τ(t)QfR(δ ◦ σ∗−1)− pfR(σ∗(t), δ ◦ σ∗−1)}dβ(δ | t)

How should we think about the reporting strategy ν of the people who do not join the
mechanism? By definition, ν is part of an equilibrium for the reporting game that is induced by
the overall mechanism fR and the manipulation mechanism l. However, as indicated by Remark
1, this requirement may not impose much of a constraint on the choice of ν. We need an account
of how the reporting strategy ν is selected from the set of strategies that form part of an interim
equilibrium. Dealing with this issue involves a certain element of arbitrariness. For specificity,
we assume that people who do not join a manipulation mechanism submit the same reports to
the overall mechanism as they would if the manipulation mechanism wasn’t there.12

Thus, let σ∗µ−1(∅) be the restriction of σ∗ to the non-participating types. An interim equi-
librium σ∗ for the mechanism fR is said to be coalition-proof if there is no manipulation
π := (X, `, µ, λ, σ∗µ−1(∅)), with (µ, λ, σ∗µ−1(∅)) an interim equilibrium for the game induced by
fR and (X, `), such that π blocks σ∗.

11If we had allowed for manipulation mechanisms with side payments, the equilibrium conditions would, how-

ever, impose the restriction that, unless the coalition organizer puts in some money of his own, expected equilib-

rium side payments must be zero.
12An alternative, stronger concept of coalition-proofness would give the organizer of the manipulation mech-

anism the power actually to choose the reporting strategy of the non-joiners. Yet another, weaker concept of

coalition-proofness would give the non-joiners the ability to coordinate on a strategy ν that represents a collective

best response to µ or on a strategy ν that minimizes the coalition members’ benefits from the presence of the

manipulation mechanism (always subject to individual incentive compatibility). As a by-product of our analysis

in Section 4, however, we will find that the choice of a selection principle for ν does not make much of a difference.

See fn. 15 below.
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3.4 Obedience and the Revelation Principle

In the remainder of this section, we consider the place of the Revelation Principle in the present
setting. We first observe that there is no loss of generality in assuming that manipulation
mechanisms are direct mechanisms that induce truth-telling as well as obedience by coalition
joiners. Given a manipulation π = (X, `, µ, λ, ν), let

Tπ := µ−1(X) = T\µ−1(∅)

be the set of coalition joiners, and let hTπ : T → T e = T ∪ {∅} be the strategy that stipulates
truthtelling, hTπ(t) = t, for t ∈ Tπ and nonparticipation, hTπ(t) = ∅, for t /∈ Tπ, i.e., for
t ∈ µ−1(∅).

Proposition 3 Given a type space [(T, T ), τ, β], an overall mechanism fR = (QfR , pfR), and an
interim equilibrium σ∗, suppose that there is a manipulation π = (X, `, µ, λ, σ∗µ−1(∅)) that blocks
σ∗. Define `∗ : Tµ−1(X) ×M(T eµ−1(X))→M(R) and λ∗ : T ×M(R)→M(R) so that, for any
t ∈ µ−1(X), χ∗ ∈M(T eµ−1(X)), and l ∈M(R),

`∗(t, χ∗) = λ(t, `(µ(t), χ∗ ◦ µ−1)) (4)

and

λ∗(t, l) = l. (5)

Then σ∗ is also blocked by the manipulation π∗ = (Tπ, `∗, hTπ , λ∗, σ∗µ−1(∅)′).

To verify coalition-proofness of an interim equilibrium σ∗ for the mechanism fR, it is thus
sufficient to show that there is no incentive-compatible direct manipulation mechanism that is
coalition-proof and blocks σ∗ when coalition joiners follow the manipulation mechanism’s recom-
mendations. Given this characterization, we can use a more concise notation for manipulations.
We will simply write π = (Tπ, `), with the understanding that the manipulation mechanism is
(T, `) and the strategy is (hTπ , λ∗, σ∗T\Tπ).

Turning from mechanisms to social choice functions, we say that a social choice function F

is robustly implementable andcoalition-proof, if and only if, for every (T, T ), and τ , there is an
anonymous mechanism fR that implements F as a coalition-proof interim equilibrium on the
type space [(T, T ), t, τ, β], for every common-prior belief system β.

Proposition 4 A social choice function F = (QF , pF ) is robustly implementable and coalition-
proof if and only if there is an anonymous direct mechanism f so that truth-telling implements
F and, moreover, truthtelling is a coalition-proof interim equilibrium on every type space.

According to Proposition 4 we may without loss of generality focus on truth-telling equilibria
of direct mechanisms. The requirement of robustness is necessary for this result, i.e., for a fixed
type space, the revelation principle does not hold. The reason is akin to the well-known result
that the implementation of a social choice function as the unique equilibrium of some mechanism

16



may require the use of non-direct mechanisms. To see the analogy, note that, for a given type
space, our notion of coalition-proofness requires that the possibility of implementing a certain
outcome by an interim equilibrium must not be endangered by the existence of a second interim
equilibrium which would be preferred by a subset of types. Ordinarily, non-direct mechanism
can be used to get rid of additional equilibria with undesirable outcomes that a direct mechanism
might have.13 Robustness eliminates this possibility.

On the basis of these results, we obtain the following very simple characterization of robustly
implementable and coalition-proof social choice functions.

Corollary 2 A social choice function F = (QF , p̄F ) with type independent payments is robustly
implementable and coalition-proof if and only if there is no common prior type space [(T, T ), τ, β]
and no manipulation π = (Tπ, `) such that∫

[τ(t)QF (ŝ(δ, π))− p̄F (ŝ(δ, π))| t] dβ(δ|t) >
∫

[τ(t)QF (s(δ))− p̄F (s(δ))| t] dβ(δ|t) (6)

for all t ∈ Tπ, where, for any δ ∈ M(T ), s(δ) = δ ◦ τ−1 is the true cross-section distribution of
valuations and ŝ(δ, π) := g(δ, π) ◦ τ−1 is the cross-section distribution of valuations that is com-
municated to the overall mechanism if all people with t ∈ Tπ join the manipulation mechanism
and follow its recommendations.

4 Implications of Coalition-Proofness and Robustness

In this section we consider the implications of coalition-proofness and robustness. In essence, we
show that coalition-proofness reduces to the requirement that the decision on public goods pro-
vision can condition only on the size of the set of people who benefit from public-good provision
and the size of the set of people who oppose public-good provision. Intensities of preferences
cannot play a role. Moreover, the decision on public-good provision must be monotonic in the
sense that it is not possible to have it provided when the set of net beneficiaries is smaller than
in some other instance where the public good is not provided. The welfare implications of our
analysis will be discussed further below. As indicated by the example in the introduction, the
requirements of coalition-proofness and robustness may preclude the achievement of first-best
outcomes.

Theorem 1 If a social choice function F = (QF , pF ) is robustly implementable and coalition-
proof, then it satisfies the following two properties:

13See Bassetto and Phelan (2008), Jackson (2001), or Moore (1992). The reason that non-direct mechanisms

can be superior is that they may include off-the equilibrium actions and payoffs which are calibrated so as to

make deviations from some hypothetical equilibrium unattractive. However, robustness requires that an individual

has the same best responses under all circumstances. Hence, it becomes impossible to design actions that are

attractive only in some-off-the-equilibrium-circumstances but not in some other equilibrium-circumstances; see

Bierbrauer (2009) for further details.
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1. There exist numbers p0
F and p1

F so that, for all v ∈ V and all s ∈M(V ),

pF (v, s) =

{
p0
F , if QF (s) = 0 ,
p1
F , if QF (s) = 1 .

(7)

2. If

V1(p1
F − p0

F ) := {v ∈ V | v > p1
F − p0

F } and V0(p1
F − p0

F ) := {v ∈ V | v < p1
F − p0

F }

are the sets of payoff types of net gainers and net losers from public-good provision, then,
for all s and s′ in M(V ),

s(V1(p1
F − p0

F )) ≥ s′(V1(p1
F − p0

F )) and s(V0(p1
F − p0

F )) ≤ s′(V0(p1
F − p0

F ))
imply QF (s) ≥ QF (s′).

In particular,

s(V1(p1
F − p0

F )) = s′(V1(p1
F − p0

F )) and s(V0(p1
F − p0

F )) = s′(V01(p1
F − p0

F ))
imply QF (s) = QF (s′).

Theorem 1 suggests a remarkable link between mechanism design and voting. Economists
have long been critical of the prominent role of voting in political systems, arguing that the
neglect of preference intensities in voting was a major source of distortions. According to
Theorem 1, neglect of preference intensities is a necessary implication of robust implementability
and coalition-proofness. Any social welfare function that has these properties can therefore be
implemented by a voting mechanism. Formally, we define a voting mechanism as a mechanism
with the following properties:

• The message set RV is a binary set, RV = {no, yes}; people can only vote for or against a
given proposal.

• People vote on whether the public good is to be provided, in which case each individual has
to make a payment p1

V ≥ k. Otherwise, if the public good is not provided, each individual
has to make a payment p0

V ≥ 0.

• There is a threshold mV ∈ [0, 1] so that the public good is provided and people pay p1
V

if share of the population voting yes is at least mV ; the public good is not provided, and
people pay p0

V if the share of the population voting yes is is less than mV .

With this definition of a voting mechanism, we obtain:

Corollary 3 If a social choice function F = (QF , pF ) is robustly implementable and coalition-
proof, then it can be implemented by a voting mechanism.
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In the remainder of this section, we explain the logic behind Theorem 1. We focus on the
implications of coalition-proofness with respect to three special coalitions, the coalition of all
participants, the coalition of people with valuations in the set V1(p1

F −p0
F ), who want the public

good to be provided, and the coalition of people with valuations in the set

V0(p1
F − p0

F ) := {v ∈ V | v < p1
F − p0

F },

who do not want the public good to be provided.
We proceed through a sequence of lemmas. The first lemma eliminates the possibility that

payments might differ across states that involve the same public-good provision level. If pay-
ments were high in some states and low in others when both involve the same level of public-good
provision, then the grand coalition coalition of all participants together could implement a ma-
nipulation that induces the “cheap” outcome even when the actual state would call for the
“expensive” outcome. Formally, we obtain:

Lemma 1 If a social choice function F = (QF , pF ) is robustly implementable and coalition-
proof, then there exist numbers p0

F and p1
F such that the payment rule satisfies (7) for all v ∈ V

and all s ∈M(V ).

Given this lemma, we restrict our attention to social choice functions with type independent
payments that are the same in all states in which the public good is provided and the same in
all states in which the public good is not provided. We find it convenient to denote such a social
choice function as F = (QF , p0

F , p
1
F ) rather than F = (QF , pF ). The social choice function is

completely characterized by the public-good provision rule and the values p0
F , p

1
F of the payment

rule.
If the social choice function F = (QF , p0

F , p
1
F ) is implemented, an individual with valuation

v obtains the payoff v − p1
F in any state s in which the public good is provided and the payoff

−p0
F in any state in which it is not provided. The individual benefits from public-good provision

if v > p1
F − p0

F . The individual is harmed by public-good provision if v < p1
F − p0

F . Our analysis
of coalition-proofness of mechanisms on a given type space [(T, T ), τ, β] will focus on the set

C0 := {t | τ(t) < p1
F − p0

F } (8)

of all types that are harmed by public-good provision and the set

C1 := {t | τ(t) > p1
F − p0

F } (9)

of all types that benefit from public-good provision. These are two canonical sets of types with
common interests. We denote by Π0 the set of all manipulations of the form π = (TC0 , `) and
by Π1 the set of all manipulations of the form π = (TC0 , `).

The analysis of coalition-proofness with respect to these coalitions is encumbered by the fact
that, although they have the same interests, yet, different types in C0 or different types in C1

may have different beliefs. If the belief system is moderately uninformative, however, there is a
limit to the differences in beliefs that may arise. This is the key to the following lemmas.
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Lemma 2 For any social choice function F = (QF , pF ) with a payment rule satisfying (7) and
for any common prior type space [(T, T ), τ, β] with a moderately uninformative belief system,
the following statements are equivalent:

(a0) There is no manipulation π ∈ Π0 that blocks the truthtelling equilibrium of the revelation
mechanism implementing (QF , p0

F , p
1
F ).

(b0) For every manipulation π ∈ Π0,∫
QF (s(δ))dP2(δ) ≤

∫
QF (ŝ(δ, π))dP2(δ) . (10)

Lemma 3 For any social choice function F = (QF , pF ) with a payment rule satisfying (7) and
for any common prior type space [(T, T ), τ, β] with a moderately uninformative belief system,
the following statements are equivalent:

(a1) There is no manipulation π ∈ Π1 that blocks the truthtelling equilibrium of the revelation
mechanism implementing (QF , p0

F , p
1
F ).

(b1) For every manipulation π ∈ Π1,∫
QF (s(δ))dP2(δ) ≥

∫
QF (ŝ(δ, π))dP2(δ) . (11)

Lemmas 2 and 3 translate the requirements of coalition-proofness into conditions on the
provision rule QF . Condition (10) implies that a coalition organizer who observes the message
distribution χ(δ, hC0) = δ ◦h−1

C0
and shapes his recommendations to coalition joiners accordingly

finds that the probability of public-good provision is minimized if all members of his coalition re-
port their types truthfully to the overall mechanism. The “probability of public-good provision”
here is a conditional probability given the information that is available to the coalition organizer.
The coalition organizer observes the size of his coalition, as well as the cross-section distribution
of types in his coalition. Because his information is finer than that of his coalition members, his
probability assessments are likely to differ from theirs. Given the assumption, however, that all
agents have the same prior, they all would have the same conditional probability assessments
if they had the coalition organizer’s information. Therefore they all agree that, if, conditional
on his information, the coalition organizer finds a way to lower the probability of public-good
provision, this would not be a bad thing. Indeed, if such an event has positive probability, they
consider it to be a good thing; moreover, with a common prior and moderately uninformative
beliefs, they are agreed as to which events have positive probability.

Thus, if (10) was violated, there would exist a set of cross-section distributions of types,
D ⊂ M(T ), which has positive prior probability (according to the marginal distribution P2 of
the common prior P ), so that, whenever δ ∈ D, a coalition organizer who observes χ(δ, hC0)
is able to manipulate the announcements of individuals with types in C0 in such a way, that,
conditional on the information available to him, the probability of public-good provision would
be reduced. Because, with a moderately uninformative belief system, all individuals with types
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in C0 assign positive probability to the set D, they all find it strictly advantageous to participate,
i.e., this manipulation blocks the truthful equilibrium.

Similarly, condition (11) implies that a coalition organizer who observes the message distri-
bution χ(δ, hC1) and shapes his recommendations to coalition joiners accordingly finds that the
probability of public-good provision is maximized if all members of his coalition report their
types truthfully to the overall mechanism. If this condition was violated, there would be a
manipulation (C1, `) that would raise the probability of public-good provision and would be
welcomed by all participants with types in C1.

Upon combining these two lemmas and considering what manipulations π0 ∈ Π0 or π1 ∈
Π1 are available to the two relevant coalitions, C0 and C1, we obtain the following further
characterization.

Lemma 4 For any social choice function F = (QF , pF ) with a payment rule satisfying (7), the
following statements are equivalent:

(a*) If [(T, T ), τ, β] is any common prior type space with a moderately uninformative belief
system, there are no manipulations π0 ∈ Π0 or π1 ∈ Π1 that block the truthful equilibrium
of the revelation mechanism implementing (QF , p0

F , p
1
F ) on [(T, T ), τ, β].

(b*) For all s and s′ in M(V ), s(V0(p1
F − p0

F )) ≥ s′(V0(p1
F − p0

F )) and s(V1(p1
F − p0

F )) ≤
s′(V1(p1

F − p0
F )) imply QF (s) ≤ QF (s′). In particular, s(V0(p1

F − p0
F )) = s′(V0(p1

F − p0
F ))

and s(V1(p1
F − p0

F )) = s′(V1(p1
F − p0

F )) imply QF (s) = QF (s′).

This lemma is best understood by observing that conditions (10) and (11) can be interpreted
as saying that truthtelling is a Nash equilibrium of a strictly competitive game. In this game,
there are two players, 0 and 1. At stage 0, both players simultaneously and independently
choose manipulations π0 ∈ Π0 and π1 ∈ Π1. At stage 1, nature draws δ ∈ M(T ) according
to the distribution P2. Player i observes the distribution χ(δ, hCi) = δ ◦ h−1

Ci
; he thereby learns

the population share of the set Ci and the cross-section distribution of types in Ci. Given
this information, he transmits reports `i(t, χ(δ, hCi)), t ∈ Ci, to the overall mechanism. Given
the distribution g(g(δ, π0), π1) of reports that it has actually received, the overall mechanism
implements the public-good provision level QF (g(g(δ, π0), π1) ◦ τ−1) = QF (ŝ(ŝ(δ, π0), π1)). This
results in payoffs −QF (ŝ(ŝ(δ, π0), π1)) for player 0 and +QF (ŝ(ŝ(δ, π0), π1)) for player 1. This is
a zero-sum game. Player 0 seeks to minimize the level of public goods provision; player 1 seeks
to maximize it.

In terms of this game, condition (11) asserts that, if player 0 pursues a truthtelling strategy,
i.e., if π0 is such that g(δ, π0) = δ for all δ, then truthtelling is a best response for player 1,
i.e., player 1 is willing to choose π1 so that g(δ, π1) = δ for all δ, and, conversely, if player 1 is
choosing π1 so that g(δ, π1) = δ for all δ, then condition (10) asserts that player 0 is willing to
choose π1 so that g(δ, π1) = δ for all δ.

Given that truthtelling is a Nash equilibrium of this strictly competitive game, the saddle-
point theorem for such games (see, e.g., Osborne and Rubinstein (1994)) can be used to obtain
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additional insights about the function QF . For an arbitrary common prior P, the application
of the saddle-point theorem is somewhat encumbered by the fact that neither player knows the
other player’s information. However, if the belief system is such that β({δ}|t) = 1 for some δ and
all t, we must have P2({δ}) = 1, i.e., the common prior assigns all probability mass to the event
that the cross-section distribution of types is δ. In this case, conditions (10) and (11) imply that
truthtelling is a Nash equilibrium of a strictly competitive game of complete information. The
saddle-point theorem implies that, for each player, truthtelling is in fact a maxminimizer, not
merely a best response. From this property, one immediately derives the second statement in
(b*), namely that QF (·) must be constant over any set of states that differ only with respect to
the cross-section distributions of types in C0 and in C1, but not in the population shares of C0

or C1: All these states give rise to the same set of feasible lies for the two coalition organizers.
Thus, if QF (s′) = 1 for some s′, then the outcome Q = 1 must also result for all s for which the
coalition C1 can mimic its own truth-telling behavior in situation s′. Otherwise, the organizer
of C1 would deviate from truth-telling so as to make sure that the outcome is Q = 1.

Given the second statement in (b*), the first statement follows by observing that, if we had
s(V0(p1

F − p0
F )) ≥ s′(V0(p1

F − p0
F )), s(V1(p1

F − p0
F )) ≤ s′(V1(p1

F − p0
F )) and QF (s) > QF (s′) for

some s and s′, then either player 0 could benefit by deviating from truthtelling in state state s
or player 1 could benefit by deviating from truthtelling in state s′.14

To conclude this section, we note that, in terms of the social choice function F = (QF , pF ),
statement (b*) in Lemma 4 is the same as the second statement in Theorem 1. The theorem
thus follows from Lemmas 4 and 1.

5 Weak Coalition-Proofness and an Equivalence Theorem

Theorem 1 only gives necessary conditions for coalition-proofness. To be sure, Lemma 4 gives
necessary and sufficient conditions for immunity against all manipulations by coalitions of types
in C0 or C1. One easily sees that these conditions are in fact necessary and sufficient for immunity
against all manipulations by coalitions of types in a set T ′ ⊂ C0 or in a set T ′ ⊂ C1.

However, there remains the possibility that, even with the social choice function characterized
in Theorem 1, in some common prior type space, the truthful equilibrium of the revelation
mechanism implementing (QF , p0

F , p
1
F ) might be blocked by a manipulation by a coalition of

types in C0 and of types in C1. At first sight, this may seem quite unlikely because these types
have conflicting interests. However, the blocking manipulation might involve a “trade” of the
following sort: in some instances where truthtelling would induce the outcome Q = 0, the
manipulation would induce the outcome Q = 1, and in some other instances where truthtelling
would induce the outcome Q = 1, the manipulation would induce the outcome Q = 0. Such
a manipulation is attractive to types in C1 if they consider the first set of instance more likely
than the second and to types in C0 if they consider the second set of instances more likely than

14Which of the two it is, depends on the population share of the set {p1
F − p0

F } of payoff types who are

indifferent whether the public good is provided or not. If s({p1
F − p0

F }) ≤ s′({p1
F − p0

F }), the deviation that

dominates truthtelling is available to player 0, who can give reports in τ−1({p1
F − p0

F }) and in τ−1(V1(p1
F − p0

F ))

so that reported population shares of the sets of types are the same as in the state s′.
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the first.15 Thus, it seems that, for a particular belief system, such a manipulation can block
the truthful equilibrium of the revelation mechanism implementing (QF , p0

F , p
1
F ).

Does this make sense? If the truthful equilibrium of the revelation mechanism implementing
(QF , p0

F , p
1
F ) is blocked by a coalition of types in C0 and of types in C1, the types in C0 are happy

about the instances in which the manipulation induces the outcome Q = 0, rather than Q = 1,
but they are unhappy about the instances in which the manipulation induces the outcome Q = 1,
rather than Q = 0. Taking the behavior of all other individuals as given, they would therefore
seem to have an incentive to form a subcoalition that sabotages the blocking manipulation
whenever the manipulation would replace the outcome Q = 0 by the outcome Q = 1. In
such instances, the members of the subcoalition might simply report truthfully to the overall
mechanism, rather than follow the recommendations of the blocking manipulation. In instances
where the blocking manipulation replaces the outcome Q = 1 by the outcome Q = 0, the
sabotaging subcoalition would be inactive so that, in these instances, the types in C0 would still
benefit from the blocking manipulation. Such a subcoalition would be attractive to types in C0,

i.e., the blocking manipulation itself would fail to be coalition-proof.
In the following, we formalize this idea by introducing a concept of weak coalition-proofness.

An interim equilibrium for a given mechanism will be said to be weakly coalition-proof if there
is no manipulation that blocks it and is itself subcoalition-proof, i.e., does not provoke a further
manipulation by a subcoalition.16

Weakly Coalition-Proof Equilibrium

To simplify the exposition, we focus on direct mechanisms and on truth-telling equilibria, at
the level manipulation mechanisms and submanipulations, as well as the overall mechanism.17

Given a social choice function F = (QF , pF ), let f be an incentive-compatible direct mechanism
that implements F on a type space [(T, T ), τ, β], and let π = (Tπ, `) be a manipulation that
blocks the truthtelling equilibrium for the game induced by f.

15If we limited attention to common prior type spaces satisfying a monotone likelihood ratio property, so

that individuals with a higher payoff type do not assign less probability to states having more individuals who

benefit from public goods provision, all the result established so far would remain valid, and, in addition, joint

manipulations by types in C0 and C1 could never occur. However, we seek to avoid any assumption that restricts

the class of admissible common priors.
16Our notion of weak coalition-proofness is inspired by the “coalition-proof Nash equilibrium” as defined by

Bernheim et al. (1986). However, we do not model a possibly infinite sequence of a successive formation of

subcoalitions.
17A more general formulation, allowing for indirect as well as direct mechanism, can be given along the lines

of Section 3. In this more general formulation, standard arguments, as in the proof of Proposition 3, can be

used to show that there is no loss of generality in restricting attention to submanipulations that rely on direct

mechanisms. There is also no loss of generality in restricting the analysis of subcoalition-proof manipulations to

direct mechanisms. The requirement of subcoalition-proofness just adds one further “equilibrium condition” to

the game induced by an overall mechanism and a manipulation mechanism on a given type space. Given that

manipulation mechanisms are mechanisms with type independent payments that are equal to zero, the arguments

in the proofs of Proposition 3 and 4 are easily adapted to show that if all equilibrium conditions hold with some

non-direct manipulation mechanism, then there is an “equivalent” direct manipulation mechanism with the same

property. Finally, the arguments in the proof of Proposition 4 can also be adapted to show that there is no loss

of generality in restricting the analysis of weakly coalition-proof mechanisms to direct mechanisms.
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Given f and π, we consider a submanipulation πs that works as follows. When people
with types in Tπ receive their recommendations from the manipulation mechanism, a subset
of these people with types in a set Tπs ⊂ Tπ inform a submanipulation mechanism designer
about their types, the messages that they sent to the first manipulation mechanism, and the
recommendations that they received in return. The submanipulation mechanism then provides
these people with a new recommendation for the message that they should send to the overall
mechanism. The submanipulation mechanism is characterized by the message space Ce :=
C∪{∅} and the recommendation function `s : C×M(Ce)→M(T ). Here C := T ×T ×M(R) is
the set of triples consisting of people’s types, their messages to the first manipulation mechanism,
and the recommendations that they received in return, and, as before, ∅ is the message of a person
who is not joining. The function `s : C×M(Ce)→M(T ) shows how the recommendation that
a person receives from the submanipulation mechanism depend on his message and on the
distribution of messages that the submanipulation mechanism has received.

We say that the manipulation π is subcoalition-proof if and only if there is no submanipula-
tion πs such that (i) the behavior specified by πs is, an interim equilibrium for the game induced
by f , the manipulation mechanism (T e, `), and the submanipulation mechanism (Ce, `s), and (ii)
in this equilibrium, all types in Tπs are strictly better off than they are under the manipulation
π. As before, we work on the presumption that types outside Tπs stick to the behavior specified
by π. We use the shorthand notation πs = (Tπs , `s) for this manipulation.

The truthtelling equilibrium for the overall mechanism f is said to be weakly coalition-proof
if and only if there is no subcoalition-proof manipulation π = (Tπ, `) that blocks this equilibrium.
The social choice function F is robustly implementable and weakly coalition-proof if and only
if, for every (T, T ), and τ , there is an anonymous mechanism fR that implements F as a weakly
coalition-proof interim equilibrium on the type space [(T, T ), τ, β], for every common prior belief
system β.

An Equivalence Theorem

For technical reasons, we restrict ourselves to regular social choice functions. A social choice
function F = (QF , pF ) is said to be regular if, for any outcome Q ∈ {0, 1}, any type distribution
δ ∈ M(T ), and any set T ′ ⊂ T , the following is true: if a coalition of types in T ′ has a
manipulation π = (T ′, `) that induces the outcome QF (ŝ(δ, π)) = Q when the type distribution
is δ, then it also has a manipulation π′ = (T ′, `′) that achieves this outcome at minimal cost,
i.e., the problem

min`′ pF (ŝ(δ, T ′, `′)) subject to QF (ŝ(δ, T ′, `′)) = Q

has a solution. The coalition of types in T ′ does not have an open set problem of the sort that,
on the set of lies `′ that induce the outcome QF (ŝ(δ, T ′, `′)) = Q, the payment pF (ŝ(δ, T ′, `′))
has an infimum which is not also a minimum. This condition ensures that, for every δ and T ′,

there is a well-defined most attractive manipulation for types in T ′. Without regularity, it might
be the case that, for each manipulation π = (T ′, `), there is another manipulation π′ = (T ′, `′)
that achieves the same outcome with lower payment requirements; in this case, no manipulation
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π = (T ′, `) would be subcoalition-proof and the concept of weak coalition-proofness would not
have any bite.

Also, for ease of exposition, we limit attention to moderately uninformative common prior
type spaces. This implies that we do not have to worry about manipulations and submanipula-
tions that affect the outcome with probability zero.

Theorem 2 A regular social choice function F = (QF , pF ) is robustly implementable and weakly
coalition-proof if and only if it satisfies:

1. There exist numbers p0
F and p1

F so that, for all v ∈ V and all s ∈ M(V ), pF (v, s) = p0
F if

QF (s) = 0 and pF (v, s) = p1
F if QF (s) = 1.

2. For all s and s′ in M(V ),

s(V1(p1
F − p0

F )) ≥ s′(V1(p1
F − p0

F )) and s(V0(p1
F − p0

F )) ≤ s′(V0(p1
F − p0

F ))
implies QF (s) ≥ QF (s′),

where V1(p1
F − p0

F ) and V0(p1
F − p0

F ) are again the sets of net gainers and net losers from
public-good provision when the difference in payments is p1

F − p0
F .

6 Welfare Implications

Limits to First-Best Implementation

We now turn to the welfare implications of imposing coalition-proofness, as well as robust
implementability. We begin with an example that illustrates some of the issues that arise.

Example 1 In this example, there are three possible payoff types V = {0, 5, 10}. The per-capita
cost of public-good provision is k = 4.5. There are two possible cross-section distributions sj ,
j = 1, 2 of payoff types. The population shares sjv of the different payoff types under these two
cross-section distributions are given in the following table.

j sj0 sj5 sj10 v̄(sj)

1 0.3 0.7 0 3.5
2 0.4 0.1 0.5 5.5

(12)

The last column in the table indicates the cross-section average valuation v̄(sj) of the public good
for each distribution.

In this example, first-best implementation requires that the public good should not be pro-
vided in state 1 and that the public good should be provided in state 2. With equal cost sharing,
the associated payment outcomes would be p0

F = 0 and p1
F = 4.5. Given these payments, the
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set C0 of opponents of public-good provision consists of all types with valuations 0 and the set
C1 of net beneficiaries of public-good provision consists of all types with valuations 5 and 10.
From Table 1, one immediately sees that the set of net beneficiaries has population share 0.8 in
state 1 and 0.7 in state 2. Because the population share of the set of net beneficiaries is larger
in state 1 than in state 2, first-best implementation runs afoul of the monotonicity requirement
in Theorems 1 and 2. In more concrete terms, any mechanism that would implement a social
choice function with first-best outcomes would be vulnerable to a manipulation by a coalition
organizer who targets participants with valuations 5 and 10, promising that, in state 1, he will
ensure that the public good is provided after all, on the basis of manipulation requiring 3/4 of
his clientele to report the valuation 10, 1/8 to report the valuation 0, and only 1/8 to report the
true valuation 5, thereby giving the impression that the true state is 2, rather than 1.

The possibility that robust first-best implementation may run afoul of coalition-proofness is
also illustrated by the example in the introduction, with possible valuations 0, 3, and 10, and
a per capita provision cost equal to 4. In that example, all cross-section distributions of types
involved population shares 0.3 of net beneficiaries and 0.7 of opponents of public-good provision.
A robustly implementable and coalition-proof social choice function would have to be insensitive
to whatever people report, which is incompatible with the efficiency requirement that the public
good be provided if and only if the population share of individuals with valuation 3 is sufficiently
large. By contrast to this earlier example, the example here shows that coalition-proofness has
bite even if the population share of net beneficiaries differs from state to state.

More generally, we obtain:

Corollary 4 If there is a pair of states s and s′, such that s(V1(k)) ≥ s′(V1(k)) and v̄(s) <
k < v̄(s′), then there is no social choice function that yields first best outcomes and is robustly
implementable and coalition-proof.

Second-Best Considerations

If condition (b) in Corollary 4 is violated, the overall mechanism designer is faced with a
second-best problem. Given the impossibility of achieving efficient outcomes in every state
s, he must choose between different deviations from efficiency that are compatible with robust
implementability and coalition-proofness. For instance, in Example 1, he can decide whether
it is better to forego the net benefits from public-good provision in state 2 or to incur the net
losses from public-good provision in state 1. He might also want to change the boundary between
yes-sayers and no-sayers by imposing a payment scheme that raises more funds than he needs,
e.g., by asking for a payment p1

F = 5.1 if the public good is provided, rather than p1
F = k = 4.5,

in order to turn people with valuations 5 from net beneficiaries into opponents of public-good
provision. This would allow him to implement a first-best public-good provision rule, but there
would be a waste of resources in state 2, when the public good is provided.

Any assessment of tradeoffs between the different kinds of inefficiency must rely on a system
of weights that the mechanism designer assigns to the different states. For specificity, we assume
that the mechanism designer has his own prior beliefs and chooses a social choice function in order
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to maximize expected aggregate surplus according to these beliefs, subject to the requirements
of feasibility, robust implementability and coalition-proofness. Given our characterization robust
implementability and coalition-proofness, this is equivalent to the problem of choosing p0

F , p1
F

and QF :M(V )→ {0, 1} so as to maximize the expected aggregate surplus

EM [(v̄(s)− p1
F )QF (s)− p0

F (1−QF (s))] (13)

subject to the feasibility constraints that p0
F ≥ 0, p1

F ≥ k, and the coalition-proofness condition
that for every pair s and s′, s(V1(p1

F − p0
F )) ≥ s′(V1(p1

F − p0
F )) implies QF (s) ≥ QF (s′). The

expectations operator EM in (13) indicates that expectations over s are taken with respect to
the mechanism designer’s subjective beliefs.

In Example 1, the solution to this second-best problem depend on the probabilities PM1 and
PM2 that the mechanism designer assigns to the different states. If the benefits of public-good
provision are foregone in state 2, then, relative to first-best, there is a net per capita welfare loss
of 5.5− 4.5 = 1.0 in this state. If the public-good is provided in state 1, when it should not be,
the per capita welfare loss is 4.5− 3.5 = 1.0. If the mechanism designer deems the two states to
be equiprobable, he will be indifferent between excessive provision in state 1 and non-provision
in state 2. If he deems state 2 to be more likely than state 1, he will prefer excessive provision
in state 1 to non-provision in state 2; the reverse is true if he deems state 1 to be more likely.

In any case, though, non-provision in state 2 is dominated by a scheme involving non-
provision in state 1 and provision with a payment p1

F = 5.1 > k in state 2. This scheme involves
a per capita welfare loss, relative to first-best, that is equal to 5.1 − 4.5 = 0.6 in state 2 If the
mechanism designer deems the two states to be equiprobable, he will prefer this scheme even to
an arrangement involving excessive provision of the public good in state 1. Excessive provision
of the public good in state 1, i.e., provision of the public good in both states, with non-wasteful
payments p0

F = 0 and p1
F = k = 4.5 is only preferred if the probability assigned to state 1 is

less than 3/8. If the probability assigned to state 1 exceeds 3/8, the second-best social welfare
function stipulates (the efficient) non-provision of the public good in state 1 and provision with
a wasteful payment requirement in state 2. A wilful waste of resources may thus be part of a
second-best solution when first-best solutions are ruled out by robust incentive compatibility
and coalition-proofness.

7 Concluding Remarks

Our subject in this paper has been the problem of mechanism design for public-good provision
in a large economy with prior uncertainty as to whether it is efficient for the public good
to be provided or not. In this economy, conditions for individual incentive compatibility are
simple because no one individual can affect the aggregate outcome. If there are no participation
constraints, therefore, a social choice function that yields first-best outcomes can be implemented
simply by asking people about their preferences and having them share the costs evenly if the
public good is provided. In some instances, however, such schemes are implausible because they
rely on information that (collectively) hurts the people who provide it; and people’s willingness
to provide this information is based solely on the consideration that, as individuals, they are
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unable to affect the outcome anyway. We impose a requirement of (weak) coalition-proofness to
eliminate this possibility.

When coalition-proofness is imposed along with robustness, the implementability of a social
choice function that yields first-best outcomes can no longer be taken for granted. Social choice
functions are robustly implementable and (weakly) coalition-proof if and only if the provision
can be characterized by a threshold such that the public good is provided if the population
share of the net beneficiaries exceeds the threshold and is not provided if the population share
of the net beneficiaries falls short of the threshold. Preference intensities cannot play a role.
Net beneficiaries are the people for whom the benefits of the public good exceed the costs of the
contribution they have to make; contributions are the same for all people and depend only on
whether the public good is provided or not. Generally, such threshold rules cannot be used to
implement first-best outcomes, because they are not responsive to the preference intensities of
those who benefit and those who are harmed by public-good provision.

Instead of coalition-proofness, we might also have used a weak dominance criterion. In those
instances where people are (collectively) hurt by the information that they provide, truthtelling
is weakly dominated because in the zero-probability event that one might be pivotal after all,
lying would provide for a better outcome and in all other events, it would not make a differ-
ence. An analysis that is based on a weak dominance criterion would, however, be limited to
the large-economy model, with no scope for extending it to large finite economies. In large
finite economies, in the absence of participation constraints, Clarke-Groves mechanisms would
provide for dominant-strategy implementation of first-best outcomes through truthtelling. The
dominant-strategy property of truthtelling only disappears when one goes to the continuum-
economy limit. If one regards the large economy with a continuum of agents as an idealization
of finite economies with many participants, this discontinuity in the implications of the weak-
dominance criterion must be considered problematic.

By contrast, there does not seem to be any such discontinuity in the application of robust-
ness and coalition-proofness to large finite economies and to the continuum-economy limit. In
large finite economies, the criterion of individual incentive compatibility is less simple to apply
because, for each agent, there is a small probability that he might be pivotal for public-good
provision. Incentive schemes must take account of this possibility. The fact that individual in-
centive compatibility has bite, however, does not preclude the possibility that coalition-proofness
and robustness might have bite as well. Preliminary research on the issue makes us confident
that, in contrast to weak dominance, the imposition of coalition-proofness and robustness has
similar effects in large finite economies as in the continuum-economy idealization.
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Crémer, J. and McLean, R. (1985). Optimal selling strategies under uncertainty for a discrimi-
nating monopolist when demands are interdependent. Econometrica, 53:345–361.
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A Proofs

Proof of Proposition 1

“=⇒”: Suppose first that F = (QF , pF ) is robustly implementable. Fix some arbitrary ŝ ∈
M(V ), and let (T, T ) and τ : T → V be such that τ(T ) = V and, for some δ̂ ∈ M(T ),
ŝ = δ̂ ◦ τ−1. Because F is robustly implementable, there exists a mechanism f that implements
F on [(T, T ), τ, β] for every common-prior belief system β. By the revelation principle, there is
no loss of generality in assuming that f is an incentive-compatible direct mechanism
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Consider a prior P̂ such that P̂ (Bt×Bδ) = δ̂(Bt) ·χBδ(δ̂) for any measurable sets Bt ⊂ T and
Bδ ⊂M(T ), where χBδ is the indicator function of Bδ. This prior is obviously compatible with
a belief system β̂ such that β̂(Bδ|t) = χBδ(δ̂) for all t ∈ T and all measurable sets Bδ ⊂M(T ).
Heuristically, the prior P̂ and the posteriors β̂(·|t) are such that everybody “knows” that the
cross-section distribution of types is δ̂. If f is an incentive-compatible direct mechanism that
implements F on [(T, T ), τ, β̂], we must have∫

M(T )
[τ(t)Qf (δ)− pf (t, δ)]dβ̂(δ | t) ≥

∫
M(T )

[τ(t)Qf (δ)− pf (t′, δ)]dβ̂(δ | t) (14)

and, hence,

τ(t)Qf (δ̂)− pf (t, δ̂) ≥ τ(t)Qf (δ̂)− pf (t′, δ̂)

for all t and all t′ in T. Because f achieves F, it follows that

τ(t)QF (ŝ)− pF (τ(t), ŝ) ≥ τ(t)QF (ŝ)− pF (τ(t′), ŝ)

for all t and all t′. Because τ(T ) = V , this is equivalent to the requirement that

vQF (ŝ)− pF (v, ŝ) ≥ vQF (ŝ)− pF (v′, ŝ),

for all v and all v′ ∈ V . Because ŝ was chosen arbitrarily, it follows that F = (QF , pF ) is ex
post incentive-compatible.

“⇐=”: Conversely, suppose that the social choice function F = (QF , pF ) is ex post incentive-
compatible. For any (T, T ) and τ : T → V , consider the direct mechanism f = (Qf , pf ) such
that for any t ∈ T and any δ ∈M(T ), Qf (δ) = QF (δ ◦ τ−1) and pf (t, δ) = pF (τ(t), δ ◦ τ−1). We
show that truthtelling is an equilibrium for the game induced by f on the type space [(T, T ), τ, β],
regardless of the belief system β. By the definition of f, we have∫

M(T )
[τ(t)Qf (δ)− pf (t, δ)]dβ(δ | t) =

∫
M(T )

[τ(t)QF (δ ◦ τ−1)− pF (τ(t), δ ◦ τ−1)]dβ(δ | t)

for all t. Because F is ex post incentive-compatible, it follows that∫
M(T )

[τ(t)Qf (δ)− pf (t, δ)]dβ(δ | t) ≥
∫
M(T )

[τ(t)QF (δ ◦ τ−1)− pF (τ(t′), δ ◦ τ−1)]dβ(δ | t)

=
∫
M(T )

[τ(t)Qf (δ)− pf (t′, δ)]dβ(δ | t)

for all t and t′, which proves that truthtelling is an equilibrium for the game induced by f on
[(T, T ), τ, β]. By construction also, the truthtelling equilibrium for f achieves F.

Proof of Proposition 3

The proof of Proposition 3 is split into two parts. In the first part, we establish a version of
the revelation principle. In the second part, we will show that there is no loss of generality in
assuming that coalition joiners use the obedient response strategy λ∗. Let [(T, T ), τ, β], fR, σ∗,

31



and π = (X, `, µ, λ, σ∗µ−1(∅)) be as specified in the proposition. Define ˆ̀ : Tµ−1(X)×M(T eµ−1(X))→
M(R) so that, for any t ∈ µ−1(X) and χ∗ ∈M(T eµ−1(X)),

ˆ̀(t, χ∗) = `(µ(t), χ∗ ◦ µ−1), (15)

and consider the manipulation π̂ = (µ−1(X), ˆ̀, hµ−1(X), λ, σ
∗
µ−1(∅)), where λ is the same response

strategy as in the manipulation π. We will show that, if the interim equilibrium σ∗ for the
mechanism fR on the type space [(T, T ), τ, β] is blocked by the manipulation π, then it is also
blocked by the manipulation π̂. The argument is, by and large, routine. We proceed in a sequence
of steps.

• For both manipulations, π̂ and π, the set of nonjoiners is the same, i.e., h−1
µ−1(X)

(∅) =
µ−1(∅), by the definition of hµ−1(X).

• For any δ ∈M(T ), if χ∗(δ, hµ−1(X)) = δ◦h−1
µ−1(X)

is the cross-section distribution of reports
received by the organizer of the manipulation π̂, then χ∗(δ, hµ−1(X))◦µ−1 coincides with the
cross-section distribution χ(δ, µ) = δ ◦µ−1 of reports received by the organizer of the origi-
nal manipulation π. By the preceding argument, the population shares, χ∗(δ, hµ−1(X))({∅})
and χ(δ, µ)({∅}), of the sets of nonjoiners are the same for both manipulations. As for the
joiners, we compute

(χ∗(δ, hµ−1(X)) ◦ µ−1)(B) =
(
δ ◦ h−1

µ−1(X)

)
({t|µ(t) ∈ B ∩X})

= δ({t|µ(t) ∈ B ∩X})

= (δ ◦ µ−1)(B) = χ(δ, µ)(B)

for any measurable set B ⊂ X.

• For any δ ∈ M(T ) and any t̂ ∈ µ−1(X), the recommendation ˆ̀(t̂, χ∗(δ, hµ−1(X))) that
the organizer of the manipulation π∗ provides to a person reporting t̂ when the cross-
section distribution of reports he receives is χ∗(δ, hµ−1(X)) is equal to the recommendation
`(µ(t̂), χ(δ, µ)) that the organizer of the original manipulation π provides to a person
reporting µ(t̂) when the cross-section of reports he receives is χ(δ, µ) = δ ◦ µ−1. This
follows from (15) and the fact that χ∗(δ, hµ−1(X)) ◦ µ−1 = χ(δ, µ).

• For any δ ∈ M(T ) and any t ∈ T, when the cross-section distribution of types is δ,
the lottery of reports that a of a person of type t submits to the overall mechanism is
the same under the manipulation π̂ as under the manipulation π. For t ∈ µ−1(X), this
follows because ˆ̀(t, χ∗(δ, hµ−1(X))) = `(µ(t), χ(δ, µ)) and because the response strategy λ is
unchanged. For t ∈ T\µ−1(X), its follows from the assumption that the agent’s reporting
behaviour is given by σ∗(t) under both manipulations.

• For any δ ∈ M(T ), when the cross-section distribution of types is δ, the cross-section
distribution of reports received by the overall mechanism under the manipulation π̂ is the
same as the cross-section distribution of reports received under the manipulation π, i.e.,

g(δ, π) = g(δ, π̂). (16)
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This follows directly from the preceding observation.

• Given these observations, we also have

u(π̂, t, r, δ) = u(π, t, r, δ) (17)

for all types t, reports r to the overall mechanism, and all type distributions δ, where, as
in the text,

u(π′, t, r, δ) = τ(t)QfR(g(δ, π′))− pfR(r, g(δ, π′))

for π′ = π̂ and for π′ = π.

• From (17), we obtain

UN (π̂, t, r) = UN (π, t, r) (18)

for all t ∈ T and all r ∈ R, and

UJ(π̂, t, t̂, λ′(·)) = UJ(π, t, µ(t̂), λ′(·)) (19)

for all t ∈ T, all t̂ ∈ µ−1(X), and all response strategies λ′ :M(R)→M(R).

• Because the triple (µ, λ, σ∗µ−1(∅)) is an interim equilibrium for the game induced by the
overall mechanism fR and the manipulation mechanism (X, `), we have

UJ(π, t, µ(t), λ(t, ·)) ≥ UJ(π, t, µ(t̂), λ′(·))

and

UJ(π, t, µ(t), λ(t, ·)) ≥ UN (π, t, r)

for all t and t̂ in µ−1(X), all response strategies λ′ : M(R) → M(R), and all r ∈ R. By
(19) and (18), it follows that

UJ(π̂, t, t, λ(t, ·)) ≥ UJ(π̂, t, t̂, λ′(·))

and

UJ(π̂, t, t, λ(t, ·)) ≥ UN (π̂, t, r)

for all t and t̂ in µ−1(X), all response strategies λ′ : M(R) → M(R), and all r ∈ R.

The triple (hµ−1(X), λ, σ
∗
µ−1(∅)) thus satisfies condition (i) for an interim equilibrium of the

game induced by fR and the manipulation mechanism (µ−1(X), ˆ̀).
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• Because the triple (µ, λ, σ∗µ−1(∅)) is an interim equilibrium for the game induced by the
overall mechanism fR and the manipulation mechanism (X, `), we also have

UN (π, t, σ∗(t)) ≥ UJ(π, t, µ(t̂), λ′(·))

and

UN (π, t, σ∗(t)) ≥ UN (π, t, r)

for all t ∈ µ−1(∅), t̂ ∈ µ−1(X), all response strategies λ′ :M(R)→M(R), and all r ∈ R.
By (19) and (18), it follows that

UN (π̂, t, σ∗(t)) ≥ UJ(π̂, t, t̂, λ′(·))

and

UN (π̂, t, σ∗(t)) ≥ UN (π̂, t, r)

for all t ∈ µ−1(∅), t̂ ∈ µ−1(X), all response strategies λ′ : M(R) → M(R), and all
r ∈ R. Thus, the triple (hµ−1(X), λ, σ

∗
µ−1(∅)) also satisfies condition (ii) for an interim

equilibrium of the game induced by fR and the manipulation mechanism (µ−1(X), ˆ̀). In
combination with the preceding step, this shows that (hµ−1(X), λ, σ

∗
µ−1(∅)) is indeed an

interim equilibrium for this game.

• From (19), we also infer that UJ(π̂, t, t, λ(t, ·)) = UJ(π, t, µ(t), λ(t, ·)). If UJ(π, t, µ(t), λ(t, ·)) >
U(σ∗, σ∗(t), t) for all t ∈ µ−1(X), it follows that UJ(π̂, t, t, λ(t, ·)) > U(σ∗, σ∗(t), t) for all
t ∈ µ−1(X), i.e., if the interim equilibrium σ∗ for the mechanism fR on the type space
[(T, T ), τ, β] is blocked by the manipulation π, then it is also blocked by the manipulation
π̂. This completes the first part of the proof of Proposition 3.

For the second part of the proof, we now consider the mechanism π∗ that is specified in the
proposition. This is the same as π̂ except that the recommendation function ˆ̀ is replaced by the
function `∗ that is specified in the proposition and the response strategy λ is replaced by the
obedient strategy λ∗. Given that everything else is unchanged, the set of nonjoiners is obviously
the same for π∗ as for π̂. Moreover, for any δ ∈ M(T ), when the cross-section distribution of
types is δ, the cross-section distribution of messages, χ∗(δ, hµ−1(X)), that is observed by the
manipulation organizer is the same for π∗ as for π̂. By the definitions of ˆ̀, `∗, and λ∗, we also
have

λ∗(t, `∗(t, χ∗)) = `∗(t, χ∗) = λ(t, ˆ̀(t, χ∗)) (20)

for all t ∈ µ−1(X) and all χ∗ ∈ M(T eµ−1(X)). Therefore, for any δ ∈ M(T ), when the cross-
section distribution of types is δ, the cross-section distribution of messages received by the
overall mechanism is the same for π∗ as for π̂, i.e.,

g(δ, π∗) = g(δ, π̂). (21)
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By the same arguments as before, we can infer that

UN (π∗, t, r) = UN (π̂, t, r) (22)

for all t ∈ T and all r ∈ R, and

UJ(π∗, t, t̂, λ′(·)) = UJ(π̂, t, t̂, λ′ ◦ λ(t, ·)) (23)

for all t ∈ T, all t̂ ∈ µ−1(X), and all response strategies λ′ : M(R) → M(R). By the same
arguments as before, one also finds that, if the triple (hµ−1(X), λ, σ

∗
µ−1(∅)) is an interim equilib-

rium of the game induced by fR and the manipulation mechanism (µ−1(X), ˆ̀), then the triple
(hµ−1(X), λ

∗, σ∗µ−1(∅)) is an interim equilibrium of the game induced by fR and the manipulation
mechanism (µ−1(X), `∗).

From (23), we also have UJ(π∗, t, t, λ∗(t, ·)) = UJ(π̂, t, t, λ(t, ·)) for all t. If UJ(π̂, t, t, λ(t, ·)) >
U(σ∗, σ∗(t), t) for all t ∈ µ−1(X), it follows that UJ(π∗, t, t, λ(t, ·)) > U(σ∗, σ∗(t), t) for all t ∈
µ−1(X), i.e., if the interim equilibrium σ∗ for the mechanism fR on the type space [(T, T ), τ, β]
is blocked by the manipulation π̂, then it is also blocked by the manipulation π∗.

Proof of Proposition 4

Let F = (QF , pF ) be an anonymous, robustly implementable and coalition-proof social choice
function. By Corollary 1, the payment rule pF takes the form pF (v, s) = p̄F (s), so that an
agent’s payment is independent of his own valuation v. For any type set (T, T ), and τ : T → V,

let f = (Qf , pf ) be a direct mechanism such that

Qf (δ) = QF (δ ◦ τ−1) and pf (t, δ) = p̄F (δ ◦ τ−1) , (24)

for all δ ∈ M(T ) and all t ∈ T. Then, trivially, for any belief system β : T → M(M(T )),
truthtelling is an interim equilibrium for the game induced by f on the type space [(T, T ), τ, β];
moreover, for any type distribution δ, the equilibrium outcome is (QF (δ ◦ τ−1), p̄F (δ ◦ τ−1)), as
stipulated by the social choice function F. Thus, f implements F on [(T, T ), τ, β] for every belief
system β : T →M(M(T )).

We claim that, for any common-prior belief system β, the truthtelling equilibrium of the
game induced by the mechanism f on [(T, T ), τ, β] is also coalition-proof. To establish this
claim, we will show that, if the truthtelling equilibrium of the game induced by the mechanism
f on [(T, T ), τ, β] is not coalition-proof, then the social choice function F itself is not coalition-
proof.

If the truthtelling equilibrium of the game induced by the mechanism f on [(T, T ), τ, β] is
not coalition-proof, there exist a common-prior belief system β̂ and a manipulation π such that
π blocks the truthtelling equilibrium of the game induced by the mechanism f on [(T, T ), τ, β̂].
By Proposition 3, we may assume that π takes the form π = (Tπ, `, hTπ , λ∗, hT\Tπ), where Tπ
is the set of types joining the manipulating coalition, hTπ is truthtelling of joiners towards
the manipulation mechanism, λ∗ is the obedient response to the manipulation mechanism’s
recommendations, and hT\Tπ is truthtelling of nonjoiners towards the overall mechanism.
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Consider any other mechanism fR = (QfR , pfR) and interim equilibrium σ∗that implement
F on [(T, T ), τ, β] for all β. Then

QfR(δ ◦ σ∗−1) = QF (δ ◦ τ−1) and pfR(σ∗(t), δ ◦ σ∗−1) = p̄F (δ ◦ τ−1), (25)

for all δ ∈M(T ) and all t ∈ T.
To show that σ∗ is not coalition-proof, we consider a manipulation πR = (Tπ, `R, hTπ , λ∗, σ∗T\Tπ),

where `R : Tπ ×M(T eπ)→M(R) is specified so that, for any t ∈ Tπ and any χ ∈M(T eπ),

`R(t, χ) = `(t, χ) ◦ σ∗−1 (26)

The set of nonjoiners is the same for πR as for π, as is the strategy hTπ that determines people’s
reports to the manipulation mechanism. For any δ ∈ M(T ), therefore, when the cross-section
distribution of types is δ, the cross-section distribution of messages, χ(δ, hTπ) = δ ◦ h−1

Tπ
, that is

observed by the manipulation organizer is the same for πR as for π. By (26) and the obedience
of coalition joiners to the recommendations that they receive, it follows that, for any δ ∈M(T ),
when the cross-section distribution of types is δ, the distributions of messages received by the
mechanism fR under the manipulation πR and by the mechanism f under the manipulation π

are related by the equation

gR(δ, πR) = g(δ, π) ◦ σ∗−1.

Using (25) and (24), we now compute

QfR(gR(δ, πR)) = QfR(g(δ, π) ◦ σ∗−1) = QF (g(δ, π) ◦ τ−1) = Qf (g(δ, π)) ,

and

pfR(σ∗(t̂), gR(δ, πR)) = pfR(σ∗(t̂), g(δ, π) ◦ σ∗−1) = p̄F (g(δ, π) ◦ τ−1) = pf (t̂, g(δ, π)) ,

for any δ ∈M(T ) and t̂ ∈ T. For any t ∈ T, we therefore have∫
[τ(t)QfR(gR(δ, πR))− pfR(σ∗(t̂), gR(δ, πR))]dβ(δ|t)

=
∫

[τ(t)QF (g(δ, π) ◦ τ−1)− p̄F (g(δ, π) ◦ τ−1)]dβ(δ|t) (27)

=
∫

[τ(t)Qf (g(δ, π))− pf (t̂, g(δ, π))]dβ(δ|t) ,

for any t̂ ∈ T and any belief system β. Because the manipulation π blocks the truthtelling
equilibrium of the game induced by the direct mechanism f on [(T, T ), τ, β̂], it follows that∫

[τ(t)QfR(gR(δ, πR))− pfR(σ∗(t̂), gR(δ, πR))]dβ̂(δ|t)

>

∫
[τ(t)Qf (δ)− pf (t̂, δ)]dβ̂(δ|t)

=
∫

[τ(t)QF (δ ◦ τ−1δ)− p̄F (δ ◦ τ−1)]dβ̂(δ|t)

=
∫

[τ(t)QfR(δ ◦ σ∗−1)− pfR(σ∗(t̂), δ ◦ σ∗−1)]dβ̂(δ|t) ,
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for all t ∈ Tπ, i.e., all coalition joiners expect the manipulation πR to raise their payoffs relative
to their payoffs under the direct mechanism fR.

To complete the proof that the manipulation πR blocks the interim equilibrium σ∗ of the
game induced by the mechanism fR on [(T, T ), τ, β̂], it remains to be shown that the triple
(hTπ , λ∗, σ∗T\Tπ) is an interim equilibrium of the game induced by the manipulation mechanism
(Tπ, `R) and the overall mechanism fR. As shown by equation (27), the expected payoff of an
agent of type t is independent of his report to the manipulation mechanism. It is also independent
of his report to the overall mechanism, at least as long as this report belongs to the range of
the interim equilibrium σ∗. For any other report, i.e., for any r ∈ R\σ∗(T ), we claim that his
expected payoff cannot be higher. For suppose that it was, i.e., that, for some t ∈ T and some
r ∈ R\σ∗(T ), we have∫

[τ(t)QfR(gR(δ, πR))− pfR(r, gR(δ, πR))]dβ̂(δ|t)

>

∫
[τ(t)QF (g(δ, π) ◦ τ−1)− p̄F (g(δ, π) ◦ τ−1)]dβ̂(δ|t). (28)

Then we must have

τ(t)QfR(gR(δ, πR))− pfR(r, gR(δ, πR))

> τ(t)QF (g(δ, π) ◦ τ−1)− p̄F (g(δ, π) ◦ τ−1)

= τ(t)QfR(gR(δ, πR))− pfR(σ∗(t), gR(δ, πR)) ,

for some δ ∈M(T ). But then, σ∗ cannot be an interim equilibrium for the game induced by the
mechanism fR on the type space [(T, T ), τ, β∗] where β∗ is such that, for all t ∈ T, β∗(t) assigns
all probability mass to the cross-section distribution g(δ, π). The assumption that (28) holds for
some t ∈ T and some r ∈ R\σ∗(T ) thus leads to a contradiction and must be false. It follows
that (hTπ , λ∗, σ∗T\Tπ) is indeed an interim equilibrium of the game induced by the manipulation
mechanism (Tπ, `R) and the overall mechanism fR, and that the manipulation πR blocks the
interim equilibrium σ∗ of the game induced by the mechanism fR on [(T, T ), τ, β̂].

Proof of Lemma 1

Suppose that the Lemma is false. Then there exist s, s̄ such that QF (s) = QF (s̄) and p̄F (s) >
p̄F (s̄). Let [(T, T ), τ, β] be such that, for all t ∈ T, β(t) assigns probability one to a singleton δ

so that s = δ ◦ τ−1. Then the truthtelling equilibrium for the direct mechanism that implements
F on [(T, T ), τ, β] is blocked by a manipulation π = (T, `) of the grand coalition of all agents,
where ` is specified so that `(t, δ) = s̄ ◦ τ for all t, and the cross-section distribution of payoff
types communicated to the mechanism is ŝ(δ, π) = s̄.

Proof of Lemma 2

We first prove that (a0) implies (b0). Suppose that, contrary to (b0), there is a manipulation
π0 ∈ Π0 so that∫

QF (s(δ))dP2(δ) >
∫
QF (ŝ(δ, π0))dP2(δ).
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There exists a set X ⊂M(Ce0) such that P2({δ|χ(δ, hC0) ∈ X}) > 0 and, for all x ∈ X,∫
QF (s(δ))dP2(δ|χ(δ̃, hC0) = x) >

∫
QF (ŝ(δ, π0))dP2(δ|χ(δ̃, hC0) = x).

If necessary, we may replace π0 = (C0, `0, hC0 , λ
∗, hT\C0

) by π̂0 = (C0, ˆ̀
0, hC0 , λ

∗, hT\C0
), where,

for any t ∈ C0 and χ ∈M(Ce0),

ˆ̀
0(t, χ) = `0(t, χ) if χ ∈ X and ˆ̀

0(t, χ) = t if χ /∈ X.

Then,∫
QF (s(δ))dP2(δ|χ(δ̃, hC0) = x) ≥

∫
QF (ŝ(δ, π̂0))dP2(δ|χ(δ̃, hC0) = x), (29)

for all x ∈M(Ce0), with∫
QF (s(δ))dP2(δ|χ(δ̃, hC0) = x) >

∫
QF (ŝ(δ, π̂0))dP2(δ|χ(δ̃, hC0) = x), (30)

for all x ∈ X. By the law of iterated expectations, we also have∫
QF (s(δ))dβ(δ|t) =

∫ ∫
QF (s(δ))dP2(δ|χ(δ′, hC0))dβ(δ′|t), (31)

and ∫
QF (ŝ(δ, π̂0))dβ(δ|t) =

∫ ∫
QF (ŝ(δ, π̂0))dP2(δ|χ(δ′, hC0))dβ(δ′|t), (32)

for all t ∈ C0. By (29) and (30), it follows that

∫
QF (s(δ))dβ(δ|t)−

∫
QF (ŝ(δ, π̂0))dβ(δ|t)

≥
∫
{δ′|hC0

(δ′)∈X}

[∫
QF (s(δ))dP2(δ|χ(δ′, hC0))

−
∫
QF (ŝ(δ, π̂0))dP2(δ|χ(δ′, hC0))

]
dβ(δ|t) ,

for all t ∈ C0. Now (30) implies that the integrand on the right-hand side of (33) is strictly
positive. Because the belief system is moderately uninformative and P2({δ|χ(δ, hC0) ∈ X}) > 0,
we also have β({δ|χ(δ, hC0) ∈ X}|t) > 0 for all t. For any t ∈ C0, therefore, the right-hand side of
(33) is strictly positive. This shows that the manipulation π̂0 blocks the truthtelling equilibrium
of the direct mechanism implementing F. Thus, if (b0) fails to hold, (a0) fails to hold as well,
i.e., (a0) implies (b0).

Conversely, if (a0) fails to hold, there exists a manipulation π̂0 ∈ Π0 such that∫
QF (s(δ))dβ(δ|t)−

∫
QF (ŝ(δ, π̂0))dβ(δ|t) > 0

for all t ∈ C0. Again using (31) and (32), we may infer that there is a set X with P2({δ|χ(δ, hC0) ∈
X}) > 0 such that (30) holds for all x ∈ X. If necessary, we may replace the manipulation π̂0 =
(C0, ˆ̀

0, hC0 , λ
∗, hT\C0

) by the manipulation π∗0 = (C0, `
∗
0, hC0 , λ

∗, hT\C0
) where `∗0(t, χ) = ˆ̀

0(t, χ)
if χ ∈ X and `∗0(t, χ) = t if χ /∈ X. Then, obviously,∫

QF (s(δ))dP2(δ) >
∫
QF (ŝ(δ, π∗0))dP2(δ),

i.e., (b0) fails to hold as well as (a0).
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Proof of Lemma 3

The proof is analogous to the proof of Lemma 2 and is therefore omitted.

Proof of Lemma 4

We first prove that (a*) implies (b*). The argument proceeds in two steps. We first show that
(a*) implies the second statement in (b*), i.e., if (a*) holds, then, for any s and s′ in M(V ),
s(V0(p1

F − p0
F )) = s′(V0(p1

F − p0
F )) and s(V1(p1

F − p0
F )) = s′(V1(p1

F − p0
F )) imply QF (s) = QF (s′).

For suppose that s(V0(∆)) = s′(V0(∆)) and s(V1(∆)) = s′(V1(∆)), where ∆ := p1
F − p0

F . Let
s̄ be a further type distribution so that, for any measurable set B ⊂ V, and

s̄(B) = s′(B ∩ V0(∆)) + s(B ∩ (V \V0(∆))). (33)

Let (T, T ), τ, δ, δ′, δ̄ be such that s = δ ◦ τ−1, s′ = δ′ ◦ τ−1, and s̄ = δ̄ ◦ τ−1. Let P, P ′, P̄ be
common priors on T ×M(T ) such that the marginal distributions onM(T ) are all degenerate,
with

P2({δ}) = P ′2({δ′}) = P̄2({δ̄}) = 1.

The associated belief systems β, β′, β̄ are also all degenerate so that all types assign all probability
mass to δ, δ′, δ̄, respectively. Because beliefs are type-independent, the belief systems β, β′, β̄ are
also all moderately uninformative.

If (a*) holds, there is no manipulation π0 ∈ Π0 that blocks the truthtelling equlibrium of the
revelation mechanism implementing (QF , p0

F , p
1
F ) on [(T, T ), τ, β] or [(T, T ), τ, β̄]. By Lemma 2,

it follows that∫
QF (s(δ))dP2(δ) ≤

∫
QF (ŝ(δ, π0))dP2(δ),

or, equivalently,

QF (s) ≤ QF (ŝ(δ, π0)), (34)

for any manipulation π0 = (C0, `0), and, similarly,

QF (s̄) ≤ QF (ŝ(δ̄, π̄0)), (35)

for any manipulation π̄0 = (C0, ¯̀
0). By (33), we have s(V0(∆)) = s̄(V0(∆)) and s(B) = s̄(B) for

any B ⊂ (V \V0(∆)). Therefore, there exist `0, ¯̀
0 such that the associated manipulations satisfy

g(δ, π0) = δ̄ and g(δ̄, π̄0) = δ,

hence,

ŝ(δ, π0) = s̄ and ŝ(δ̄, π̄0) = s. (36)

Upon combining (36) with (34) and (35), we obtain

QF (s) = QF (s̄). (37)
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To prove that QF (s) = QF (s′), it thus suffices to show that QF (s̄) = QF (s′). For this
purpose, we use the fact that, if (a*) holds, there is also no manipulation π1 ∈ Π1 that
blocks the truthtelling equlibrium of the revelation mechanism implementing (QF , p0

F , p
1
F ) on

[(T, T ), τ, β′] or [(T, T ), τ, β̄]. By Lemma 3, it follows that

QF (s̄) ≥ QF (ŝ(δ̄, π̄1)), (38)

and

QF (s′) ≥ QF (ŝ(δ′, π′1)), (39)

for any manipulations π̄1 = (C1, ¯̀
1), π′1 = (C1, `

′
1). To assess what lies ¯̀

1, `
′
1 are available to the

coalition C1, we rewrite (33) as

s̄(B) = s′(B ∩ V0(∆)) + s(B ∩ {∆}) + s(B ∩ V1(∆))). (40)

Because s(V0(∆)) = s′(V0(∆)) and s(V1(∆)) = s′(V1(∆)), we have

s({∆}) = 1− s(V0(∆))− s(V1(∆)) = 1− s(V0(∆))− s(V1(∆)) = s′({∆}).

Therefore, (40) can be rewritten as

s̄(B) = s′(B ∩ (V \V1(∆)) + s(B ∩ V1(∆))),

which yields s′(V1(∆)) = s̄(V1(∆)) and s′(B) = s̄(B) for any B ⊂ (V \V1(∆)). Therefore, there
exist ¯̀

1, `
′
1 such that the associated manipulations satisfy

g(δ̄, π̄1) = δ′ and g(δ′, π
′
1) = δ̄,

hence,

ŝ(δ̄, π̄1) = s′ and ŝ(δ′, π′1) = s̄. (41)

Upon combining (41) with (38) and (39), we obtain QF (s̄) = QF (s′). Thus (a*) implies the
validity of the second statement in (b*).

To prove that (a*) also implies the first statement in (b*), suppose that s and s′ in M(V )
are such that s(V0(∆)) ≥ s′(V0(∆)) and s(V1(∆)) ≤ s′(V1(∆)) where, as before, ∆ := p1

F − p0
F .

Let (T, T ), τ, δ, δ′ be such that s = δ ◦ τ−1 and s′ = δ′ ◦ τ−1. If (a*) holds, the same argument
as before implies that

QF (s) ≤ QF (ŝ(δ, π0)), (42)

for any manipulation π0 = (C0, `0) ∈ Π0 and

QF (s′) ≥ QF (ŝ(δ′, π′1)), (43)

for any manipulation π′1 = (C1, `
′
1) ∈ Π1. If s({∆}) ≤ s′({∆}), there exists a manipulation π0 =

(C0, `0) ∈ Π0 such that ŝ(δ, π0) assigns the same mass as s′ to each of the three sets V0(∆), V1(∆),
and {∆}. By the first part of the argument, this manipulation satisfies QF (ŝ(δ, π0)) = QF (s′),
so (42) yields QF (s) ≤ QF (s′). If instead, s({∆}) ≥ s′({∆}), there exists a manipulation π′1 =
(C1, `

′
1) ∈ Π1 such that ŝ(δ, π1) assigns the same mass as s to each of the three sets V0(∆), V1(∆),
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and {∆}. By the first part of the argument, this manipulation satisfies QF (ŝ(δ, π1)) = QF (s), so
(43) yields QF (s) ≤ QF (s′). In either case, if s({∆}) ≤ s′({∆}) and if s({∆}) ≥ s′({∆}), we find
that s(V0(∆)) ≥ s′(V0(∆)) and s(V1(∆)) ≤ s′(V1(∆)) imply QF (s) ≤ QF (s′). This completes
the proof that (a*) implies (b*).

To prove the converse, suppose that (a*) is not true. Then there exists a common-prior type
space [(T, T ), τ, β] with moderately informative beliefs such that the truthtelling equilibrium
of the revelation mechanism implementing F on [(T, T ), τ, β] is blocked by some manipulation
π0 ∈ Π0 or some manipulation π1 ∈ Π1. Suppose that the blocking manipulation is π0 ∈ Π0. By
Lemma 2, we must have∫

QF (s(δ))dP2(δ) >
∫
QF (ŝ(δ, π0))dP2(δ),

where P2 is the marginal distribution onM(T ) that is induced by the common prior P. It follows
that

QF (s(δ)) > QF (ŝ(δ, π0)), (44)

for some δ. For any manipulation π0 ∈ Π0 and any δ, we must have

g(C0|δ, π0) ≤ δ(C0)

and

g(C1|δ, π0) ≥ δ(C1),

hence

s(V0(∆)|δ) = s(τ(C0)|δ) = δ(C0) ≥ g(C0|δ, π0) = ŝ(τ(C0)|δ, π0) = ŝ(V0(∆)|δ, π0), (45)

and

s(V1(∆)|δ) = s(τ(C1)|δ) = δ(C1) ≤ g(C1|δ, π0) = ŝ(τ(C1)|δ, π0) = ŝ(V1(∆)|δ, π0). (46)

Now (44), (45), and (46) imply that (b*) is not true. If the blocking manipulation is π1 ∈ Π1,

Lemma 3 yields

QF (s(δ)) < QF (ŝ(δ, π1)),

for some δ; moreover, π1 ∈ Π1 implies s(V1(∆)|δ) ≥ ŝ(V1(∆)|δ, π1) and s(V0(∆)|δ) ≤ ŝ(V0(∆)|δ, π1),
from which one again derives a contradiction to (b*). Thus (b*) fails to hold whenever (a*) fails
to hold.

B Proof of Theorem 2

In this second Appendix, we prove Theorem 2. The line of argument is roughly the same as for
Theorem 1. We begin by stating an analogue of Corollary 2.
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Corollary 5 A social choice function F = (QF , p̄F ) with type independent payments is robustly
implementable and weakly coalition-proof if and only if there is no common prior type space
[(T, T ), τ, β] and no subset T ′ of T with a manipulation π = (T ′, `) such that∫

[τ(t)QF (ŝ(δ, π))− p̄F (ŝ(δ, π))] dβ(δ|t) >
∫

[τ(t)QF (s(δ))− p̄F (s(δ))] dβ(δ|t), (47)

and,moreover, there is no subset T ′′ of T ′ with a submanipulation πs so that, for all t ∈ T ′′,∫
[τ(t)QF (ŝ(δ, π(πs)))− p̄F (ŝ(δ, π(πs)))] dβ(δ|t)

>
∫

[τ(t)QF (ŝ(δ, π))− p̄F (ŝ(δ, π))] dβ(δ|t),
(48)

where π(πs) denotes the combined effect of the manipulation π and the submanipulation πs and,
as before, ŝ(δ, π(πs)) = g(δ, π(πs)) ◦ τ−1 denotes the resulting payoff type distribution.

Corollary 5 follows from the same considerations as Corollary 2. Robustness implies that
individual payments do not depend on individual type announcements, but only on the cross-
section distribution of announcements. By Remark 1 this implies that any behavior, mediated
or not by manipulation and submanipulation mechanisms, constitutes an interim equilibrium.
The analysis of coalition-proofness can therefore ignore interim equilibrium conditions and focus
exclusively on the conditions for blocking by manipulations and submanipulations. A manipu-
lation π = (T ′, `) will block the implementation of F on [(T, T ), τ, β] if it satisfies (47) for all
t ∈ T ′, but will itself be blocked if there is a subset T ′′ ⊂ T ′ with a submanipulation πs satisfying
(48) for all t ∈ T ′′.

Given the weakening of coalition-proofness by the requirement that blocking coalitions must
themselves be subcoalition-proof, the following analogue of Lemma 1 is rather harder to prove
than Lemma 1 itself.

Lemma 5 If a social choice function F = (QF , p̄F ) is regular, as well as robustly implementable
and weakly coalition-proof, then there exist numbers p0

F and p1
F such that QF (s) = 0 implies

p̄F (s) = p0
F , and, QF (s) = 1, implies p̄F (s) = p1

F .

Proof Suppose that the Lemma is false. Then there exists a regular, robustly implementable
and weakly coalition-proof social choice function F = (QF , p̄F ) and there exist s, s′ ∈ M(V )
such that QF (s) = QF (s′) and p̄F (s) 6= p̄F (s′). Because F is regular, we may assume that

p̄F (s′) = min
s′′

p̄F (s′′) subject to QF (s′′) = QF (s). (49)

Let (T, T ), τ, δ, δ′ be such that s = δ ◦ τ−1, s′ = δ′ ◦ τ−1, and let β be such that β({δ}|t) = 1
for all t ∈ T. Let π = (T, `) be a manipulation by the grand coalition of all agents so that
g(δ, π) = δ′, hence, ŝ(δ, π) = g(δ, π) ◦ τ−1 = δ′ ◦ τ−1 = s′ and, therefore,

(QF (ŝ(δ, π)), p̄F (ŝ(δ, π)) = (QF (s′), p̄F (s′)).

Because QF (s) = QF (s′) and p̄F (s) > p̄F (s′), this manipulation blocks the truthful equilibrium
of the revelation mechanism implementing F on [(T, T ), τ, β].
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Because F is weakly coalition-proof, it follows that the manipulation π by the grand coalition
is not subcoalition-proof. Therefore, there exists a submanipulation πs = (T s, `s) so that

τ(t)QF (ŝ(δ, π(πs)))− p̄F (ŝ(δ, π(πs))) > τ(t)QF (ŝ(δ, π))− p̄F (ŝ(δ, π)), (50)

for all t ∈ T s. Because g(δ, π) = δ′, we have ŝ(δ, π(πs)) = ŝ(δ′, πs), and (50) implies that

τ(t)QF (ŝ(δ′, πs))− p̄F (ŝ(δ′, πs)) > τ(t)QF (s′)− p̄F (s′), (51)

for all t ∈ T s. Given that, by (49), the payment p̄F (s′) is minimal over the set of s′′ yielding
the same public-good provision level, the subcoalition πs must induce a different public-good
provision level, i.e., we must have QF (ŝ(δ′, πs)) 6= QF (s′). Because F is regular, we may also
assume that

p̄F (ŝ(δ′, πs)) = min
`

p̄F (ŝ(δ′, (T s, `)) subject to QF (ŝ(δ′, (T s, `))) = QF (ŝ(δ′, πs)), (52)

i.e., that there is no other manipulation that a coalition of types in T s could use to get the same
outcome at a lower payment.

Condition (51) implies that the submanipulation πs = (T s, `s) can also be interpreted as a
manipulation that blocks the truthful equilibrium of the revelation mechanism implementing F
on [(T, T ), τ, β′] where β′ is such that β′({δ′}|t) = 1 for all t ∈ T. Because F is weakly coalition-
proof, it follows that the manipulation πs itself is not subcoalition-proof. Therefore, there exists
a further submanipulation π̄s = (T̄ s, ¯̀s), with T̄ s ⊂ T s, so that

τ(t)QF (ŝ(δ′, πs(π̄s)))− p̄F (ŝ(δ′, πs(π̄s))) > τ(t)QF (ŝ(δ′, πs))− p̄F (ŝ(δ′, πs)), (53)

for all t ∈ T̄ s. Because T̄ s ⊂ T s, we can combine (53) and (51), to obtain

τ(t)QF (ŝ(δ′, πs(π̄s)))− p̄F (ŝ(δ′, πs(π̄s))) > τ(t)QF (s′)− p̄F (s′),

for all t ∈ T̄ s. By (49) again, we infer that QF (ŝ(δ′, πs(π̄s))) 6= QF (s′), hence QF (ŝ(δ′, πs(π̄s))) =
QF (ŝ(δ′, πs)), i.e., the submanipulation π̄s has no effect on the public-good provision level. By
(52) and the fact that T̄ s ⊂ T s, it follows that p̄F (ŝ(δ′, πs(π̄s))) ≥ p̄F (ŝ(δ′, πs)). However,
QF (ŝ(δ′, πs(π̄s))) = QF (ŝ(δ′, πs)) and p̄F (ŝ(δ′, πs(π̄s))) ≥ p̄F (ŝ(δ′, πs)) imply that

τ(t)QF (ŝ(δ′, πs(π̄s)))− p̄F (ŝ(δ′, πs(π̄s))) ≤ τ(t)QF (ŝ(δ′, πs))− p̄F (ŝ(δ′, πs)),

for all t, contrary to statement (53). The assumption that the lemma is false has thus led to a
contradiction.

As in the proof of Lemma 1, the argument rests on the observation that, if a social choice
function stipulates the same public-good provision level with different payments in different
states, then there is scope for the grand coalition of all agents to block the implementation of
this social choice function in states involving the higher payment by manipulating reports so as
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to induce the lower payment. With weak coalition-proofness instead of coalition-proofness, one
must however deal with the possibility that this manipulation itself may not be subcoalition-
proof. The idea then is to show that the subcoalition that blocks this manipulation by the grand
coalition can itself be treated as a coalition that blocks the implementation of the social choice
function in some other state. Moreover, this (sub)coalition itself is subcoalition-proof.

Given Lemma 5, the following adaptations of Lemmas 2 and 3 follow from the fact that all
types in C0 have the same interests and so do all types in C1. Because of this homogeneity of
interests, any blocking coalition of types in C0 is automatically subcoalition-proof, and so is any
blocking coalition of types in C1.

Lemma 6 For any social choice function F = (QF , pF ) with a payment rule satisfying (7) and
for any common prior type space [(T, T ), τ, β] with a moderately uninformative belief system,
the following statements are equivalent:

(a0) There is no subcoalition-proof manipulation π ∈ Π0 that blocks the truthtelling equilibrium
of the revelation mechanism implementing (QF , p0

F , p
1
F ).

(b0) For every manipulation π ∈ Π0,∫
QF (s(δ))dP2(δ) ≤

∫
QF (ŝ(δ, π))dP2(δ), (54)

Lemma 7 For any social choice function F = (QF , pF ) with a payment rule satisfying (7) and
for any common prior type space [(T, T ), τ, β] with a moderately uninformative belief system,
the following statements are equivalent:

(a1) There is no subcoalition-proof manipulation π ∈ Π1 that blocks the truthtelling equilibrium
of the revelation mechanism implementing (QF , p0

F , p
1
F ).

(b1) For every manipulation π ∈ Π1,∫
QF (s(δ))dP2(δ) ≥

∫
QF (ŝ(δ, π))dP2(δ), (55)

Given these lemmas, the proof of Lemma 4 goes through without change, to yield

Lemma 8 For any social choice function F = (QF , pF ) with a payment rule satisfying (7), the
following statements are equivalent:

(a*) If [(T, T ), τ, β] is any common prior type space with a moderately uninformative belief sys-
tem, there is no subcoalition-proof manipulation π = (Tπ, `) with Tπ = C0 or Tπ = C1 that
blocks the truthtelling equilibrium of the revelation mechanism implementing (QF , p0

F , p
1
F )

on [(T, T ), τ, β].
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(b*) For all s and s′ in M(V ), s(V0(p1
F − p0

F )) ≥ s′(V0(p1
F − p0

F )) and s(V1(p1
F − p0

F )) ≤
s′(V1(p1

F − p0
F )) imply QF (s) ≤ QF (s′). In particular, s(V0(p1

F − p0
F )) = s′(V0(p1

F − p0
F ))

and s(V1(p1
F − p0

F )) = s′(V1(p1
F − p0

F )) imply QF (s) = QF (s′).

From Lemmas 5 and 8, we find that any regular social choice function F = (QF , pF ) that is
robustly implementable and weakly coalition-proof must satisfy statements 1 and 2 in Theorem
2.

It remains to be shown that, if a social choice function satisfies statements 1 and 2 in Theorem
2, then it is robustly implementable and weakly coalition-proof. Proposition 1 shows that, if
a social choice function satisfies statement 1 in Theorem 2, then it is robustly implementable.
Lemma 8 shows that, if a social choice function also satisfies statement 2 in Theorem 2, then
there is no common prior type space [(T, T ), τ, β] with a moderately uninformative belief system
such that the truthtelling equilibrium of the revelation mechanism implementing (QF , p0

F , p
1
F )

on [(T, T ), τ, β] is blocked by a subcoalition-proof manipulation π = (Tπ, `) with Tπ = C0 or
Tπ = C1 To complete the argument, we need to extend this finding to all subcoalition-proof
manipulations π = (Tπ, `).

We first consider manipulations π = (Tπ, `) with Tπ ⊂ C0 or Tπ ⊂ C1. The following lemma
shows that the equivalence stated in Lemma 8 remains valid if statement (a*) is extended to
allow for coalitions of subsets of C0 or C1. The lemma again exploits the homogeneity of interests
of types in C0 and of types in C1. It also exploits the fact that any manipulation by a subset
Tπ ⊂ C0 or Tπ ⊂ C1 can be mimicked by C0 or C1 simply by recommending that types in C0\Tπ
or C1\Tπ report the truth to the overall mechanism. Implicitly, therefore, any such manipulation
by a subset of C0 or C1 is already covered by the preceding lemmas.

Lemma 9 For any social choice function F = (QF , pF ) with a payment rule satisfying (7), the
following statements are equivalent:

(a**) If [(T, T ), τ, β] is any common prior type space with a moderately uninformative belief sys-
tem, there is no subcoalition-proof manipulation π̂ = (Tπ̂, ˆ̀) with Tπ̂ ⊂ C0 or Tπ̂ ⊂ C1 that
blocks the truthtelling equilibrium of the revelation mechanism implementing (QF , p0

F , p
1
F )

on [(T, T ), τ, β].

(b*) For all s and s′ in M(V ), s(V0(p1
F − p0

F )) ≥ s′(V0(p1
F − p0

F )) and s(V1(p1
F − p0

F )) ≤
s′(V1(p1

F − p0
F )) imply QF (s) ≤ QF (s′). In particular, s(V0(p1

F − p0
F )) = s′(V0(p1

F − p0
F ))

and s(V1(p1
F − p0

F )) = s′(V1(p1
F − p0

F )) imply QF (s) = QF (s′).

Proof To see that (a**) implies (b*), it suffices to note that (a**) is stronger than statement
(a*) in Lemma 8. To prove that (b*) implies (a**), we observe that, by Lemmas 4 and 2,
(b*) implies that, for any common prior type space [(T, T ), τ, β] with moderately uninformative
beliefs, (54) holds for all π ∈ Π0. In particular, (b*) implies that (54) holds for all π = (C0, `)
taking the form

`(t, χ) = ˆ̀(t, χ) for t ∈ Tπ̂ and `(t, χ) = t for t ∈ C0\Tπ̂. (56)
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Because any manipulation π̂ = (Tπ̂, ˆ̀) with Tπ̂ ⊂ C0 is equivalent to a manipulation π ∈ Π0

taking the form (56), it follows that (54) holds for all π̂ = (Tπ̂, ˆ̀) with Tπ̂ ⊂ C0. By the
same argument as in the proof of Lemma 2, no such manipulation can block the truthtelling
equilibrium of the revelation mechanism implementing (QF , p0

F , p
1
F ) on [(T, T ), τ, β]. With a

moderately uninformative type space, if all types in a proper subset Tπ of C0 are made strictly
better off by a manipulation, the same will be true for all types in C0\Tπ, contrary to the
assumption that types in C0 do not possess a blocking manipulation. Similarly, by Lemmas
4 and 3, (b*) implies that, for any common prior type space [(T, T ), τ, β] with moderately
uninformative beliefs, (55) holds for all π ∈ Π1. In particular, (b*) implies that (55) holds for
all π = (C1, `) taking the form (56) with C0 replaced by C1. By the same argument as before,
it follows that no manipulation π̂ = (Tπ̂, ˆ̀) with Tπ̂ ⊂ C1 can block the truthtelling equilibrium
of the revelation mechanism implementing (QF , p0

F , p
1
F ) on [(T, T ), τ, β].

It remains to be shown that there is also no scope for manipulations that are supported by
types in C0 and in C1. This is established by the following Lemma, which shows that, for any
type space with a moderately uninformative common prior belief system, a joint manipulation by
these types generates incentives to free-ride on the contribution of the others for the functioning
of the manipulation and therefore, fails to be subcoalition-proof.

Lemma 10 For any social choice function F = (QF , pF ) with a payment rule satisfying (7),
the following statements are equivalent:

(a***) If [(T, T ), τ, β] is any common prior type space with a moderately uninformative be-
lief system, there is no subcoalition-proof manipulation π = (Tπ, `) at all that blocks
the truthtelling equilibrium of the revelation mechanism implementing (QF , p0

F , p
1
F ) on

[(T, T ), τ, β].

(b*) For all s and s′ in M(V ), s(V0(p1
F − p0

F )) ≥ s′(V0(p1
F − p0

F )) and s(V1(p1
F − p0

F )) ≤
s′(V1(p1

F − p0
F )) imply QF (s) ≤ QF (s′). In particular, s(V0(p1

F − p0
F )) = s′(V0(p1

F − p0
F ))

and s(V1(p1
F − p0

F )) = s′(V1(p1
F − p0

F )) imply QF (s) = QF (s′).

Proof To see that (a***) implies (b*), it suffices to note that (a**) is stronger than statement
(a*) in Lemma 8. Suppose therefore, that (b*) holds, but there exists a common prior type
space [(T, T ), τ, β] with moderately uninformative beliefs such that the truthtelling equilibrium
of the revelation mechanism implementing (QF , p0

F , p
1
F ) on [(T, T ), τ, β] is blocked by some

subcoalition-proof manipulation π = (Tπ, `). By Lemma 9, Tπ is not a subset of C0 or C1. By
(47), we also have Tπ ∩{τ−1(p1

F − p0
F )} = ∅. Since T = C0 ∪C1 ∪{τ−1(p1

F − p0
F )}, it follows that

T 0
π := Tπ ∩ C0 6= ∅ and T 1

π := Tπ ∩ C1 6= ∅. The validity of (47) for t ∈ T 0
π implies that there

exists a set D0 ∈M(T ) such that β(D0|t) > 0 and, moreover,

δ ∈ D0 implies QF (s(δ)) = 1 and QF (ŝ(δ, π)) = 0. (57)

Similarly, the validity of 47) for t ∈ T 1
π implies that there exists a set D1 ∈ M(T ) such that
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β(D1|t) > 0 and, moreover,

δ ∈ D1 implies QF (s(δ)) = 0 and QF (ŝ(δ, π)) = 1. (58)

Because the belief system is moderately uninformative, we actually have β(D0|t) > 0 and
β(D1|t) > 0 for all t ∈ T.

Consider submanipulation πs = (T 0
π , hT 0

π
) which recommends that types in T 0

π sabotage
the manipulation π by reporting truthfully to the overall mechanism. Let π(πs) denote the
combined effect of the manipulation π and the submanipulation πs and and let ŝ(δ, π(πs)) =
g(δ, π(πs)) ◦ τ−1 denote the resulting payoff type distribution. Because the submanipulation πs

induces types in T 0
π to replace messages in τ−1(p1

F − p0
F ) or in C1 by messages in C0, we must

have

ŝ(V0(p1
F − p0

F )|δ, π(πs)) ≥ ŝ(V0(p1
F − p0

F )|δ, π),

and

ŝ(V1(p1
F − p0

F )|δ, π(πs)) ≤ ŝ(V1(p1
F − p0

F )|δ, π),

for all δ. By (b*), it follows that

QF (ŝ(δ, π(πs)) ≤ QF (ŝ(δ, π)), (59)

for all δ. Because the submanipulation πs induces types in T 0
π to submit messages in C0, as they

do in the absence of any manipulation, and because types in {τ−1(p1
F − p0

F )} are not involved
in π or πs, we also have

ŝ(V0(p1
F − p0

F )|δ, π(πs)) ≥ s(V0(p1
F − p0

F )|δ),

and

ŝ(V1(p1
F − p0

F )|δ, π(πs)) ≤ s(V1(p1
F − p0

F )|δ),

for all δ. By (b*), it follows that

QF (ŝ(δ, π(πs)) ≤ QF (s(δ)), (60)

for all δ. From (60) and (58), we infer that

QF (ŝ(δ, π(πs)) < QF (ŝ(δ, π)), (61)

for all δ ∈ D1. Because β(D1|t) > 0 for all t ∈ T, (59) and (61) together imply that∫
[τ(t)QF (ŝ(δ, π(πs)))− p̄F (ŝ(δ, π(πs)))] dβ(δ|t)

>
∫

[τ(t)QF (ŝ(δ, π))− p̄F (ŝ(δ, π))] dβ(δ|t),
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for all t ∈ T 0
π . Thus, the submanipulation πs = (T 0

π , hT 0
π
) blocks the manipulation π. This

contradicts the assumption that π is subcoalition-proof. The assumption that (b*) holds, but
there exists a common prior type space [(T, T ), τ, β] with moderately uninformative beliefs
such that the truthtelling equilibrium of the revelation mechanism implementing (QF , p0

F , p
1
F )

on [(T, T ), τ, β] is blocked by a subcoalition-proof manipulation π = (Tπ, `) has thus led to a
contradiction and must be false. This proves that (b*) implies (a***).

Lemma 10 shows that, if a social choice function satisfies statements 1 and 2 in Theorem 2,
then it is weakly coalition-proof. This completes the proof of Theorem 2.
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