
Bruttel, Lisa V.; Güth, Werner; Kamecke, Ulrich; Popova, Vera

Working Paper

Voluntary cooperation based on equilibrium
retribution: an experiment testing finite-horizon folk
theorems

Jena Economic Research Papers, No. 2009,030

Provided in Cooperation with:
Max Planck Institute of Economics

Suggested Citation: Bruttel, Lisa V.; Güth, Werner; Kamecke, Ulrich; Popova, Vera (2009) :
Voluntary cooperation based on equilibrium retribution: an experiment testing finite-horizon folk
theorems, Jena Economic Research Papers, No. 2009,030, Friedrich Schiller University Jena
and Max Planck Institute of Economics, Jena

This Version is available at:
https://hdl.handle.net/10419/31715

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/31715
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 

JENA ECONOMIC 
RESEARCH PAPERS 

 

 
 
 
 

# 2009 – 030 
 
 
 

Voluntary Cooperation Based on Equilibrium Retribution – 
An Experiment Testing Finite-Horizon Folk Theorems  

 
 

by 
 
 

Lisa V. Bruttel 
Werner Güth 

Ulrich Kamecke 
Vera Popova  

 
 
 

www.jenecon.de 
 

ISSN 1864-7057 
 

The JENA ECONOMIC RESEARCH PAPERS is a joint publication of the Friedrich 
Schiller University and the Max Planck Institute of Economics, Jena, Germany. 
For editorial correspondence please contact markus.pasche@uni-jena.de. 
 
Impressum: 
 
Friedrich Schiller University Jena Max Planck Institute of Economics 
Carl-Zeiss-Str. 3 Kahlaische Str. 10 
D-07743 Jena D-07745 Jena 
www.uni-jena.de  www.econ.mpg.de
 
© by the author. 

http://www.uni-jena.de/
http://www.econ.mpg.de/


Voluntary Cooperation Based on Equilibrium Retribution -
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April 2009

Abstract

Unlike previous attempts to implement cooperation in a prisoners’ dilemma game

with an infinite horizon in the laboratory, we focus on extended prisoners’ dilemma

games in which a second (pure strategy) equilibrium allows for voluntary cooperation

in all but the last round. Our four main experimental treatments distinguish long

versus short horizon and strict versus non-strict additional equilibrium compared to

the control treatment, a standard prisoners’ dilemma. Quite surprisingly, according to

our results, only a strict additional equilibrium increases cooperation rate for a given

time horizon. As expected a longer time horizon promotes cooperation.
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1 Introduction

One of the most influential insights of non-cooperative game theory is the potential con-

flict between social and individual rationality as exemplified in the two-person prisoners’

dilemma game with two strategies, “defect” and “cooperate”. It is well-known that this

conflict can be solved if the game is repeated indefinitely, e.g. by threatening eternal play

of “defect” in case of a defection from mutually profitable cooperation. However, if such

games are played with a commonly known upper bound for the number of repetitions, their

subgame perfect equilibria predict no cooperation at all. Nevertheless, there exists robust

experimental evidence showing a high degree of fruitful voluntary cooperation (see, e.g.,

Andreoni and Miller, 1993) until approaching the known end of interaction (endgame).

Although one cannot implement an infinite-horizon supergame in the lab (see Selten et al.,

1997), ways to capture its illusion can enhance voluntary cooperation by limiting endgame

non-cooperation (Dal Bó, 2005; Bruttel et al., 2007). Quite generally, this demonstrates

how strong retributive emotions and inclinations1 can maintain welfare enhancing volun-

tary cooperation even when such cooperation is not in line with equilibrium predictions

based on common(ly known) opportunism (meaning that all know that all know... that

all care only for their own material payoff).

The fact that retributive inclinations are strong enough to overcome (opportunistic) equi-

librium incentives does not imply that welfare enhancing voluntary cooperation can be

stabilized by equilibrium threats.2 To allow for such equilibrium retribution, we extend

the two-person prisoners’ dilemma game with the original strategies “defect” and “coop-

erate” by a third strategy “avoid” whose mutual choice is a (non-)strict equilibrium of the

one-shot extended prisoners’ dilemma game. In the spirit of Benoit and Krishna (1985) we

prove a finite horizon Folk Theorem-like result for finite repetitions of such games where

we focus on parameter constellations allowing for equilibrium cooperation in all rounds

except the last one.

1Such findings are in line with punishment in ultimatum and finitely repeated public goods experiments

as well as in one-shot interactions with an additional costly and arbitrary punishment option (see Camerer,

2003, for some survey).

2I.e., by retributive inclinations which can be justified by a subgame perfect equilibrium.

1
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Our main experimental treatments rely on a two-by-two factorial design. One feature is the

nature of the additional equilibrium of the one-shot (base) game - strict versus non-strict.

The other feature is the commonly known finite number of repetitions where we distinguish

between a short and a long horizon. Additionally, we explore a standard prisoners’ dilemma

game as a control treatment. We always rely on the same payoff parameters allowing

equilibrium cooperation in all but the last round for all main treatments. Participants

play such games repeatedly, similar to Selten and Stoecker (1986).

In section 2, we introduce a strong and a weak version of an extended prisoners’ dilemma

game and argue that the additional punishment option allows cooperative play in all but

the last round although this is more convincing in the strong version of the game. The

experimental protocol is described in section 3 together with some speculative hypotheses

how retributive inclinations affect repeated play of base games with multiple equilibria,

i.e. when and why voluntary cooperation can be expected. Section 4 presents the main

findings and section 5 concludes.

2 Model analysis

2.1 The finite supergames

Let i = 1, 2 denote the players in the one-shot game. Each of them has three actions, C

(“cooperate”), D (“defect”), and A (“avoid”). A pair of actions is denoted by a = (a1, a2)

where the action of player 1 is listed first and of player 2 second. We distinguish two

symmetric payoff matrices of the one-shot interaction,

H
HHH

HHHH
i = 1

i = 2
C D A

C 18, 18 0, 21 0, 0

D 21, 0 9, 9 0, 0

A 0, 0 0, 0 3, 3

EDPs

and

H
HHH

HHHH
i = 1

i = 2
C D A

C 18, 18 0, 21 3, 3

D 21, 0 9, 9 3, 3

A 3, 3 3, 3 3, 3

EDPw

Clearly, the only pure strategy3 equilibria of both (base) games are (D,D) and (A,A).

However, (A,A) is an equilibrium in weakly dominated actions in EPDw whereas it is

3In EPDs there exists a mixed strategy equilibrium according to which both players use “defect” with

probability 1/4 and “avoid” with probability 3/4.

2
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strict and therefore in undominated actions in EPDs. Correspondingly, we experimentally

distinguish W-Treatments where participants play EPDw and S-Treatments where they

play EPDs repeatedly with the same partner. S-Treatments feature situations where the

alternative payoff of 3 can only be obtained by both players coordinating on “avoid”. W-

Treatments capture situations where 3 is the conflict payoff resulting when at least one

party uses “avoid”, i.e., where the avoid outcome does not require coordination.

In order to discuss these finite supergames we need some more notation. Let T ≥ 2 denote

the number of rounds of playing either EPDw or EPDs repeatedly with the same partner.

In each game we observe histories ht ∈ Ht up to round t (a vector of length 2× T which,

assuming appropriate information feedback between rounds, specifies all previous actions

of the two players). A behavioral strategy profile a : H → {C,D,A} × {C,D,A} specifies

actions a (ht) = (a1, a2) (ht) for all histories ht of all rounds t.

2.2 Subgame perfect equilibrium outcomes

Folk theorems are often used to justify why one observes cooperation so frequently al-

though cooperative outcomes are just one possible equilibrium outcome. We follow this

usual idea by first presenting how cooperation can be stabilized before exploring the whole

spectrum of subgame perfect equilibrium outcomes.

Obviously constant play of actions (A,A) or (D,D) is a subgame perfect equilibrium out-

come of both repeated games, EDPs and EDPw. It is also easy to see that the threat to

continue with the payoff (3, 3) instead of (9, 9) can discourage myopically profitable devi-

ations. In particular, one can prove that the (grim) strategy constellation
(
agrim, agrim

)
for T-Supergames with

agrim
t (ht) =


Ct if t = 1, ..., T − 1

Dt if t = T

 and (aτ , aτ ) = (Cτ , Cτ ) for all τ < t

At otherwise

(1)

is a subgame perfect equilibrium:

Clearly, after playing (C,C) in all rounds τ < T , it does not pay to defect unilaterally

from
(
agrim, agrim

)
in the last round t = T since (D,D) is a strict equilibrium of the

3
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one-shot interaction. Similarly, defecting alone from
(
agrim, agrim

)
in round t < T after

some violation of “(C,C) for all τ < T” does not pay since constant play of (A,A) is a

subgame perfect equilibrium of the supergame. Thus, it only remains to establish that

deviating unilaterally from
(
agrim, agrim

)
in round t after “(C,C) for all τ < t” does not

pay. Now what a player can gain by such a deviation is an additional payoff of 3 since

the best deviation is to “defect” when the other “cooperates”. But since t < T , this will

lead to periodic payoff of 3 rather than 18 or 9 in all later rounds. Thus, even in case of

t = T − 1, the additional gain of 3 in round t = T − 1 would cost 6 in round T .4 Thus,(
agrim, agrim

)
is a subgame perfect equilibrium of the T ≥ 2 supergame with base game

EPDw and EPDs respectively.

Of course, there exist other subgame perfect equilibria. In the first section of Appendix

I we show that the same argument justifies a large number of equilibrium outcomes. In

rounds preceeding some outcome (D,D) the equilibrium payoffs are only restricted by

feasibility and the condition that the number of rounds still to be played r (r = T − t)

must guarantee the maximin-payoffs of r · (3, 3). This condition imposes a restriction

only on the use of the outcomes (0, 0), (21, 0), and (0, 21), and it leads to the following

conclusion:

“Folk Theorem-like Result”: For T → ∞ the set of average payoffs in a subgame

perfect equilibrium of the finite supergames with T (< ∞) commonly known rounds of

play and base game EPDw or EPDs converges to a dense set on the individually rational

attainable average payoffs in

Ω = {(π1, π2) | (π1, π2) ≥ (3, 3) and (π1, π2) ∈ conv ((3, 3) ; (21, 0) ; (18, 18) ; (0, 21))} (2)

In particular, the subgame perfect equilibrium strategies
(
agrim, agrim

)
predict that both

players will “cooperate” in all rounds except in the last round when they both “defect” so

that the average periodic payoffs converge to (18, 18) as T →∞.

4In our experiment and the corresponding theoretical analysis we concentrate on supergames in which

the cumulative payoffs of all T rounds are paid after the last round. However, our arguments would also

hold if the players discount their payoffs with some sufficiently large δ < 1. The cooperative outcome, for

instance, is obtained, whenever δ > 1/2.

4
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2.3 Refining rationality

We will now confront this Folk Theorem-like Result with stronger concepts of strategic

rationality. In the base game such a refinement is straightforward. For EPDw, the

constellation (D,D) is the only strict equilibrium of the base game, while the equilibrium

(D,D) uses dominated strategies. For EPDs, one can justify (D,D) as the solution of the

base game by payoff dominance - (D,D) yields higher payoffs for both players than (A,A)

- or by risk dominance. (D,D) has a larger stability set than (A,A) in the reduced game

with strategies “defect” and “avoid” neglecting “cooperate” since it is weakly dominated.5

Thus, backwards induction plus equilibrium selection by payoff or risk dominance among

strict equilibria predict constant play of (D,D) for the supergames of both base games.

Such selection requires considerably more “rationality” in EPDs and can be considered

to be much weaker and therefore less relevant when explaining the observed behavior.

Neither of the approaches predicts (C,C) outcomes.

Rather than relying on backwards induction for the solutions of the base game, one can

use the axiom of subgame consistency (Selten and Güth, 1982) to challenge the Folk

Theorem-like result. Subgame consistency prescribes the same equilibrium for isomorphic

games. The only state variable of our finitely often repeated games is r, the number

of rounds still to be played, i.e., subgames with the same number r are isomorphically

related6 implying that all subgames of infinitely repeated games have no state variable

at all. This refinement would lead to those subgame perfect equilibria with both players

distinguishing two sets of rounds rD and rA and playing the strategies

at (ht) =

 D for r ∈ rD

A for r ∈ rA .
(3)

This rules out the folk theorem but can neither distinguish7 between EPDs and EPDw

nor justify (C,C) outcomes.

To equilibrate cooperation the players have to condition their equilibrium continuation

on the history of the game, that is they must threaten to continue the game with (A,A)

instead of (D,D) after some “unwarranted” experience. Such reactions, used to prove

5See Harsanyi and Selten (1988)

6Meaning that their rules can be transformed isomorphically, e.g. by affine utility transformations or

renaming of strategies and/or players.

7One can, of course, require strictness in addition to subgame consistency.
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the folk theorem, are eliminated by a simple dominance argument in the last round of

EPDw but not of EPDs. Using this dominance argument iteratively eliminates all but

the defective strategies in EPDw because all strategies employing C or A after some history

ht are dominated by a strategy using ai (ht) = D when all strategies satisfy ai (hτ ) = D

for all τ > t.

Unfortunately, the result of iterated elimination of dominated strategies may depend on

the order in which the strategies are eliminated.8 We can, however, use a backwards

elimination argument to prove two alternative results in EPDw which do not hold in

EPDs. In the second section of Appendix I we show that “always defect” is the unique

proper equilibrium and the unique strictly perfect equilibrium of EPDw. These game

theoretic arguments suggest less cooperation in EPDw than in EPDs.

“Strong Rationality Refinement”: The set of strictly perfect (proper) equilibrium

outcomes satisfies a Folk Theorem-like Result in a repeated EPDs, while it contains only

defective play ai (ht) = D for all ht ∈ H in a repeated EPDw.

Such results are informative but also conceptually debatable. In particular it is not clear

to what extent they capture the behavioral aspect of retribution, that is, whether retri-

bution is just an equilibrium selection device favoring payoff dominant strategically stable

outcomes or whether it is an independent motive guiding individual decision making.

Rather than discussing this abstractly we want to answer such questions empirically, more

specifically experimentally, to learn which outcomes can actually be observed and how this

supports or questions the different rationality postulates.

8Even though our backwards elimination employs only “nice” weak dominance in the sense of Marx and

Swinkels (1997) we cannot apply their result, because their condition of “Transference of Decision Maker

Indifference” does not hold for our repeated game.

6
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3 Experiment

3.1 Design and procedures

We explored in a between-subjects design the four treatments 4W, 16W, 4S, and 16S which

differed in

• whether the base game is EPDw or EPDs and

• whether the number T of rounds is T = 4 or T = 16.

All participants played 32 rounds of either EPDw or EPDs. In 16W and 16S they

played two supergames of 16 rounds each, with two different partners. In 4W and 4S

they played 8 successive but rather short supergames with 4 rounds each. We relied on a

random strangers design involving rematching groups of 4 participants with the additional

guarantee that in the next round one would not confront the same participant again.

To provide comparisons with usual prisoners’ dilemma experiments and since at least

in the later supergame(s) only matching groups qualify as independent observations, we

performed

• two control sessions of 4PD and 16PD each with participants playing the prisoners’

dilemma without the “avoid” option either for 4 or for 16 rounds with changing

partners when repeating this,

• two sessions of 16W and 16S each and

• two sessions of 4W and 4S each

where each session involved 32 participants. Althogether we ran 12 sessions, yielding 16

independent observations for each of the six treatments. 384 undergraduate students of

the University of Jena took part in the experiment. On average, they earned 8.80 Eu-

ros and spent one hour in the laboratory of the Max Planck Institute of Economics in

7
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Jena, Germany. Upon arrival in the lab, subjects were randomly assigned to a cubi-

cle, where they individually read the instructions.9 After the instructions were also read

aloud, participants were able to familiarize themselves with the experiment during two

or three (depending on the treatment) test rounds. Hereafter they answered a question-

naire checking their understanding of the game rules. After that they participated in the

computerized10 experiment.

3.2 Behavioral predictions

It is not obvious what behavior to expect in this experiment. Subgame perfection allows

cooperative play in all but the last round for both repeated games, EPDw and EPDs.

Stronger concepts of rationality show that this outcome is less credible in EPDw, so that

cooperation should be higher in EPDs. It is, however, not clear whether such rationality

concepts have descriptive content. Moreover, participants may perceive defecting and

punishing in EPDs as more risky since a possible punitive play of action A generates a

coordination problem and may therefore lead to outcomes different from (A,A) with zero

round payoffs for both players. Punishment in EPDw does not exhibit this problem and

is therefore less costly for the punisher in case of miscoordination on outcomes different

from (A,A). Thus, cooperation may even be higher in EPDw.

Concerning the time horizon, the theoretic analysis in appendix I.1 demonstrates how

the set of potential equilibrium outcomes increases for earlier rounds. For T = 4 (i.e.

treatments 4W and 4S) considerable play of (D,D) throughout would therefore not be

surprising. In the longer treatments, on the other hand, individual play is not restricted

by strategic rationality so that participants’ reaction to an early (t much smaller than T )

deviation from (Cτ , Cτ ) for all τ < t may not be “grim” in the sense of always playing

A afterwards. Instead, players may punish by choosing strategy D since outcome (D,D)

payoff-dominates (A,A) in the base games. Finally, in case of very early deviations from

mutual cooperation (C,C) participants may even try to return to cooperation hoping for

a forgiving opponent as illustrated by tit-for-tat rather than grim strategies.

All these behavioral speculations demonstrate that our design allows for a lot of variation

in retributive behavior, not necessarily questioning the equilibrium character of retributive

inclinations.

9For a translation of the instructions see Appendix II.

10We used Fischbacher’s (2007) z-Tree software.

8
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4 Results

4.1 Cooperation rates across treatments

Average11 cooperation rates by treatment are depicted in Figure 1 and Table 1. Coop-

eration rates are higher when the horizon of the supergame is longer and the additional

equilibrium is strict rather than weak. More specifically, cooperation rates monotonically

increase from 4PD, over 4W, 4S, 16PD, and 16W toward 16S.

4PD
4W

4S

16PD 16W

16S

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Means

Figure 1: Mean cooperation rates by treatment

Treatment 4PD 4W 4S 16PD 16W 16S

Mean cooperation rate 0.296 0.327 0.470 0.578 0.599 0.765

Table 1: Mean cooperation rates by treatment

Within the same horizon, only the strict game triggers significantly more cooperation. The

effect between the weak treatment and the pure PD is not statistically significant for both

horizons, i.e., multiplicity of equilibria alone does not inspire more cooperation. Across

horizons, cooperation is significantly higher for the longer horizon for all game types (PD,

W, S). The results of pairwise comparisons between treatments with respect to means

using a Wilcoxon rank-sum test are summerized in Table 2.

11Results the following analysis do not substantially change when considering medians instead of means.

Therefore, we do not discuss them separately.

9
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Treatment 16S vs. 16W 16S vs. 16PD 16W vs. 16PD

p values 0.036 0.030 0.706

Treatment 4S vs. 4W 4S vs. 4PD 4W vs. 4PD

p values 0.065 0.048 0.650

Treatment 16PD vs. 4PD 16S vs. 4S 16W vs. 4W

p values 0.004 0.001 0.002

Table 2: Wilcoxon rank-sum p values for means; null hypothesis: two independent samples

are from populations with the same distribution

Figure 2 captures the evolution of cooperation over time, on the left hand side for the

short horizon and on the right hand side for the long horizon. Vertical lines indicate the

last period of an interaction with the same partner. The figure shows that the results

above hold not only at the aggregate level but also for most rounds. When performing

Wilcoxon rank-sum tests, based on pairwise comparisons between treatments for each

round in almost all rounds cooperation rates for the strict game lie above those for the

other games. For the short horizon, cooperation in the strict treatment is significantly

higher than cooperation in the weak and in the PD treatment in 75% of the rounds (see

Table 7, Appendix). Interestingly, even in the last round, there is a pronounced difference

between the strict treatment and the other two. For the long horizon cooperation in the

strict game is higher than that in the weak game in 75% of the rounds. Cooperation in the

strict game is above cooperation in the PD in 81% of all rounds (see Table 8, Appendix).

In case of the long horizon we do not observe a significant game effect in the last round.

0
.2

.4
.6

.8
1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Round

4PD 4S
4W

Short horizon
Average cooperation rate over time

0
.2

.4
.6

.8
1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Round

16S 16W
16PD

Long horizon
Average cooperation rate over time

Figure 2: Average cooperation rates over time

From Table 2 and Figure 3 we conclude that regardless of the game there is always more

cooperation when participants face the longer horizon.

10
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0
.2

.4
.6

.8
1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Round

4S 16S

Strict: short vs. long horizon
Average cooperation rate over time

0
.2

.4
.6

.8
1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Round

16W 4W

Weak: short vs. long horizon
Average cooperation rate over time

Figure 3: Long vs. short horizon over time

Neglecting the first 12 rounds in case of the long horizon we can compare the remaining

four rounds with the four rounds of the short-horizon games. The findings do not change.

Cooperation rates for the long horizon remain significantly higher (see Table 3) suggesting

the following results.

Last 4 rounds of treatments 4S vs. 16S 4W vs. 16W 4PD vs. 16PD

p values 0.0898 0.026 0.038

Table 3: Wilcoxon rank-sum p values; null hypothesis: two independent samples are from
populations with the same distribution.

Result 1 For all three base game types PD, W, and S cooperation is significantly higher

in the supergames with the longer time horizon.

Result 2 For the same time horizon only an additional strict equilibrium significantly

increases cooperation rates compared to the prisoner’s dilemma game.

Result 3 An additional weak equilibrium does not increase cooperation rates for both

time horizons compared to the prisoner’s dilemma game.

Results 2 and 3 are very much in line with the theoretical prediction of the “Strong

Rationality Refinement” that only the strict additional equilibrium should allow for higher

cooperation rates. From a behavioral point of view, however, it is rather surprising that

an additional weak equilibrium of the stage game does not at all increase cooperation.

11

Jena Economic Research Papers 2009 - 030



4.2 Actual use of the additional action A

Decision 16S 16W 4S 4W

C 76.46% 59.86% 47.17% 32.62%

D 22.41% 37.45% 51.07% 65.92%

A 1.12% 2.69% 1.76% 1.46%

Table 4: Relative frequency of decisions by treatment; C: “cooperate”, D: “defect”, A:
“avoid”

When justifying cooperation the main purpose of action A is to discourage deviations from

cooperation, i.e., the additional action is mainly chosen off the equilibrium path. Hence,

its actual use should be rare or at least become rare with experience. Table 4 lists the

relative frequency of the three actions C, D, and A by treatment. A’s relative frequency

is less than 3% supporting the idea that action A is not supposed to be used.

Absolute frequency of A-choices after ... 4S 4W 16S 16W

own C and other’s C 0 0 0 0

own C and other’s D 14 9 9 9

own C and other’s A 0 0 0 0

own D and other’s C 1 2 3 6

own D and other’s D 11 15 5 23

own D and other’s A 1 0 1 1

own A and other’s C 1 0 0 0

own A and other’s D 8 4 5 16

own A and other’s A 0 0 0 0

Table 5: Absolute frequency of decision A after a given outcome in the previous period
by treatment; C: “cooperate”, D: “defect”, A: “avoid”

Table 5 illustrates when players use action A. Most of the time subjects select A after

the partner has played D in the previous period, i.e., after outcomes (C,D), (D,D), or

(A,D). Option A seems to be just a punishing device.

Table 6 provides evidence on how players react when their partner uses A in the previous

round. Do “punished” subjects become more cooperative in the next round? In fact,

only a few start cooperating. Most subjects continue playing D. Punishment seems to be

ineffective.

12
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Reaction after the other has played A 4S 4W 16S 16W

C after own C and other’s A 2 0 4 4

C after own D and other’s A 8 3 2 5

C after own A and other’s A 0 0 1 3

D after own C and other’s A 2 1 1 1

D after own D and other’s A 21 22 9 38

D after own A and other’s A 0 0 1 1

A after own C and other’s A 0 0 0 0

A after own D and other’s A 1 0 1 1

A after own A and other’s A 0 6 0 0

Table 6: Absolute frequency of decisions C, D, or A after outcomes (C,A), (D,A), or
(A,A) by treatment; C: “cooperate”, D: “defect”, A: “avoid”

Result 4 The additional action A is mainly used as a punishment device. In the rare

cases when subjects play A, they do so when the partner has not chosen C before. This

“punishment”, however, is ineffective since only a few partners subsequently switch to C.

5 Conclusion

With multiple equilibria in the base game Folk Theorem-like results do not require an

infinite horizon as established by the theoretical results in section 2. According to the

Folk Theorem, the existence of multiple equilibria in the base game suffices for subgame

perfect equilibrium cooperation in all rounds except the commonly known last round of

interaction. By refining subgame perfection one can, however, distinguish whether the

additional equilibrium of our extended prisoners’ dilemma games is strict or not. Our

experimental results reveal that behaviorally this is the dividing line between base games

yielding cooperative or non-cooperative outcomes except for the last round(s).

As expected a longer horizon promotes cooperation even when also the short horizon is

sufficient for subgame perfect equilibrium cooperation. Such a horizon effect could be

predicted by reputation equilibria (Kreps et al., 1982) where, however, for base games

with multiple equilibria the necessary type of incomplete information is far from obvious.

There exist intermediate games with bimatrix representation
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HH
HHH

HHH
i = 1

i = 2
C D A

C 18, 18 0, 21 0, 0

D 21, 0 9, 9 0, 0

A 3, 3 3, 3 3, 3

or

HH
HHH

HHH
i = 1

i = 2
C D A

C 18, 18 0, 21 3, 3

D 21, 0 9, 9 3, 3

A 0, 0 0, 0 3, 3

which could sharpen our understanding of how retributive motivation affects behavior in

social dilemma games with additional punishment options. In the left-hand diagram, A

is undominated for player 1 but not for player 2 and vice versa in case of the right-hand

table above. When comparing EPDs with EPDw, one could argue that the retributive

threat A in EDPw is either strengthened by higher payoffs for unilateral play of strategy

A or weakened by rendering it weak. The two intermediate games could reveal whether

the first argument depends on who is the only one using strategy A. However, in order

not to overburden our experimental design, we left them for future research.

Appendix I: equilibrium predictions

I.1 The Folk Theorem

Let us give up symmetry and explore the payoff space which can be justified by any

pure strategy subgame perfect equilibrium as it is usually done when establishing Folk

Theorems.

Suppose EPDw is repeated T times so that the number of rounds left to be played is

r = T . . . 1. In each round r both players i select a stage game action ai ∈ {C,D,A}.

In the last round (r = 1) we have two pure subgame equilibrium strategies, (D,D) and

(A,A) with additional subgame payoffs (9, 9) and (3, 3) respectively.

In the second last round (r = 2) the continuations are sufficient to discourage deviation

from cooperation so that (C,C) is supported as equilibrium outcome with continuation

(D,D) and the threat to select (A,A) instead after a deviation. For the same reason the

(less interesting) actions (D,A) and (A,D) can occur in equilibrium. Thus, the additional

subgame payoffs Π2 = {(27, 27) , (18, 18) , (12, 12) , (6, 6)} are realized by the corresponding
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subgame equilibrium strategies. In this round coordination failure (C,D) and (D,C) and

the actions (C,A) and (A,C) are never chosen in equilibrium, because the correspond-

ing potential gains of 9 and 15 after a deviation cannot be compensated by equilibrium

retribution in the last round.

A round earlier (r = 3) this is no longer true, because the threat to continue with (18, 18),

(12, 12) or (6, 6) instead of (27, 27) or with (6, 6) instead of (18, 18) discourages deviations.

Similarly, the remaining asymmetric actions (C,A) and (A,C) can be stabilized in this

round if the players continue with an equilibrium payoff (6, 6) instead of (27, 27). Thus, all

nine action combinations may occur in an equilibrium in rounds r ≥ 3 when the feasible

continuations are restricted as described above. The resulting asymmetric and symmetric

additional subgame payoffs are then

Π3 = {(48, 27) , (27, 48) , (39, 18) , (18, 39) , (45, 45) , (36, 36) , (30, 30)} (4)

∪{(27, 27) , (21, 21) , (15, 15) , (9, 9)} . (5)

The resulting restrictions on the action combinations can be summarized as follows12:

Theorem 1 A combination of actions (a1, a2) in round r of the repeated weak extended

prisoners’ dilemma game is compatible with a subgame perfect equilibrium if and only if

r ≥ 3, or r = 2 and (a1, a2) ∈ {(C,C) , (D,D) , (D,A) , (A,D) , (A,A)}, or r = 1 and

(a1, a2) ∈ {(D,D) , (A,A)}.

In earlier rounds (r = 4, 5 . . .) the equilibrium strategies also allow all nine action combi-

nations. The corresponding set equilibrium payoffs is generated by adding the potential

stage payoffs {(18, 18) , (21, 0) , (0, 21) , (9, 9) , (3, 3)} to the set of equilibrium payoffs in the

following round whenever the difference to the strongest potential punishment is sufficient

to deter deviations. To construct the next stage equilibrium payoffs we therefore have

to split the subgame equilibrium payoffs starting in the following round r − 1 into the

following three (non-disjoint) sets

Π1
r−1 = Πr−1 ∩ {(π1, π2) | π1 ≥ 3r and π2 ≥ 3r} (6)

Π2
r−1 = Πr−1 ∩ {(π1, π2) | π1 ≥ 3r + 6} (7)

Π3
r−1 = Πr−1 ∩ {(π1, π2) | π2 ≥ 3r + 6} (8)

12Of course, not all actions can be combined to an equilibrium history so that there are further restrictions

on the set of equilibrium strategies.
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and then add the continuation payoffs as follows:

Πr = (Πr−1 + {(9, 9) , (3, 3)})∪
(
Π1

r−1 + {(18, 18)}
)
∪

(
Π2

r−1 + {(21, 0)}
)
∪

(
Π3

r−1 + {(0, 21)}
)

(9)

This construction algorithm garantees that the unstable stage game payoffs (18, 18), (21, 0)

and (0, 21) are only added if they can be stabilized by subsequent deviations to the worst

equilibrium continuation which always gives (3 (r − 1) , 3 (r − 1)). For r = 4 (after elimi-

nating double elements) this yields the set of possible additional subgame payoffs

Π4 = {(57, 36) , (51, 30) , (36, 57) , (30, 51) , (48, 27) , (27, 48) , (36, 36)} (10)

∪{(30, 30) , (24, 24) , (18, 18) , (12, 12)} (11)

∪{(63, 63) , (54, 54) , (48, 48) , (45, 45) , (39, 39) , (33, 33)} (12)

∪{(69, 27) , (60, 18) , (66, 45) , (57, 36) , (51, 30) , (48, 27) , (42, 21)} (13)

∪{(27, 69) , (18, 60) , (45, 66) , (36, 57) , (30, 51) , (27, 48) , (21, 42)} (14)

It is straightforward that a folk theorem holds for the resulting average equilibrium out-

comes:

Theorem 2 The set of average equilibrium payoffs Πr/r converges to a dense set on the

individually rational attainable average payoffs in

Ω = {(π1, π2) | (π1, π2) ≥ (3, 3) and (π1, π2) ∈ conv ((3, 3) ; (21, 0) ; (18, 18) ; (0, 21))} .

(15)

To show this limit result we approximate every interior point of Ω as a rational convex

combination α · (3, 3) + β · (21, 0) + γ · (18, 18) or α · (3, 3) + β · (0, 21) + γ · (18, 18). Let

us choose T such that αT ∈ N, αT ≥ 4, βT ∈ N and γT ∈ N, and let the players use

(αT − 1) times (3, 3), βT times (21, 0) or (0, 21) respectively, γT times (18, 18) and (9, 9)

once. This payoff scheme can be realized as an equilibrium outcome because it ends with

equilibrium payoffs and because individual rationality (π1, π2) ≥ (3, 3) restricts the use of

(21, 0) sufficiently to allow the necessary threat for equilibrating such behavior.

In the strict extended prisoners’ dilemma game EPDs the situation is more complicated

as the additional payoff (0, 0) is more difficult to reach in an equilibrium. However,
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since this payoff is below the maxmin stage game payoff13 this additional cell is only

of limited relevance. In the last round there is no difference since the set of equilibrium

payoffs coincides with those in the weak game. In the second last round (r = 2) the

stage payoffs (0, 0) can be added to (9, 9) and (18, 18), because the threat to move on

with (3, 3) instead is sufficient to stabilize the corresponding actions. Thus, Π2,strict =

{(27, 27) , (18, 18) , (12, 12) , (9, 9) , (6, 6)} contains one element more than Π2,weak. This

trick allows to fill the gaps between the average payoffs faster, but it does not change the

limit result in theorem 2, since it never affects the smallest average payoff (3, 3). The

equilibrium actions are a bit more restricted than above:

Theorem 3 A combination of actions (a1, a2) in round r of the repeated strict extended

prisoners’ dilemma game is compatible with a subgame perfect equilibrium if and only if r ≥

4, or r = 3 and (a1, a2) /∈ {(A,C) , (C,A)}, or r = 2 and (a1, a2) ∈ {(C,C) , (D,D) , (A,A)},

or r = 1 and (a1, a2) ∈ {(C,C) , (D,D)}.

I.2 Properness as a refinement

In this subsection we need additional notation. We denote by αi mixed behavioral strate-

gies with probabilities αia (h) for the three possible actions a ∈ {C,D,A} after history

h ∈ H. The normal form pure (mixed) strategies are denoted by s (σ), σε is a sequence

of completely mixed strategies with ε → 0 and with σε
i (si) ≥ ε for every pure strategy si,

(σ | si) is the strategy vector in which the (mixed) strategy σi is replaced by the (pure)

strategy si, π (σ) = (π1 (σ) , π2 (σ)) is the expected payoff realized if the strategies σ are

played, and the payoff πh
i (σ) is the expected payoff of a mixed strategy conditional on the

fact that history h has been reached (which is always well-defined for completely mixed

strategies).

It is easy to see that the folk theorem above holds in EDPs also if we restrict the attention

to strictly perfect equilibria, that is to equilibria which are stable with respect to every

perceivable uniform tremble. In EDPw the situation is drastically different. There the

simple argument holds only for the defective equilibrium in which the players select the

strategies ai (ht) = D for all t = 1 . . . T . All other equilibria can be excluded by backwards

induction in the form of repeated elimination of dominated strategies sketched above: let

13If one chooses, for instance, D with probability 1/4 and A with probability 3/4, one is sure to receive

at least an expected payoff of 3/4 regardless of what the other does.
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players tremble such that future mistakes matter much less than present ones; from the

requirement that (agent normal form) perfect equilibria must not use dominated behavioral

strategies follows that players will not use dominated actions in the last round; so assume

that the players select only behavioral strategies ai (ht) = D for all t > t̂, then ai (ht̂) =

D is the unique best reply after any ht̂ ∈ Ht̂ to a completely mixed strategy, because

potential gains from future trembles are negligible compared to the present gains. Thus,

we can conclude that this tremble structure justifies only the defective action as equilibrium

behavior:

Theorem 4 Defective play ai (ht) = D for all ht ∈ H is the unique strictly perfect equi-

librium in the agent normal form of EDPw.

The concept of strict perfection is not accepted in the literature for both technical and

conceptual reasons. We therefore use the concept of proper equilibrium (Myerson, 1978) to

defend the uniqueness of defective play in EDPw. To impose rationality also in unreached

decision nodes we restrict our attention to normal form proper equilibria in behavioral

strategies which are approximated by ε-proper equilibria as proposed by van Damme

(1987, p.119) to prove

Theorem 5 Defective play ai (ht) = D for all ht ∈ H is the unique strategy which can be

approximated by the normal form strategies of an ε-proper equilibrium of EDPw.

We show that the behavioral strategies concentrate on an ‘always defect’ continuation, that

is αε
iD (h) ≥ εαε

ia (h) for both actions a ∈ {C,A} and for all histories h ∈ H so that ‘always

defect’ is the unique proper equilibrium which can be approximated by corresponding

induced ε-proper behavioral equilibrium strategies.

We proceed by backwards induction. Suppose the claim is true for all histories of length

ρ < r. Take an arbitrary history hr ∈ Hr of length T − r and assume that the outcomes

in period r are not concentrated on (D,D) , that is the limit distribution induced by

αε (hr) on the nine states puts a positive limit probability on some state (a1, a2) 6= (D,D)

as ε → 0. Let Di (hr) be the set of player i’s defective continuations of hr, that is

the pure strategies which follow hr and select defect (D) in all following decision nodes.

Our induction assumption implies that both players concentrate on defective continuations
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di ∈ Di (hr, (a1, a2)), no matter which state (a′1, a
′
2) is realized after hr. So if (a1, a2) (hr) 6=

(A,A) (at least) one of the players can improve his payoff by a deviation to a di ∈ Di (hr):

if aj 6= A player i 6= j gets a larger payoff after hr while the outcomes in the rest of the

game are (9, 9) with probability (1− ε)T−r → 0. Thus, the expected outcome difference

in the remaining periods becomes negligible as compared to the gain after hr.

So let (a1, a2) = (A,A) and compare player 1’s payoff πh
1 (σε | d1) after a defective con-

tinuation d1 ∈ D1 (hr) and player 1’s payoff πh
1 (σε | ŝ1) after any pure strategy ŝ1 which

continues with at least one later deviation from D after some history (hr, (A,A) . . .) Both

payoffs contain the same constant value which is realized up to hr. In round r player 1

gets more than 3 if player 2 trembles to C or D while (σε | ŝ1) leads to a payoff of 3. In

later rounds player 1 may gain or lose from further trembles if he continues with (σε | d1),

while (σε | ŝ1) generates a loss of at least 6 against 2’s regular strategy at least once. Thus,

we get that πh (σε | d1) − πh (σε | ŝ1) ≥ ε (21 (T − r)) + 6 · (1− ε) > 0 for ε sufficiently

small so that the requirement of ε-proper trembles implies that player 1’s trembles satisfy

σε
1 (d1) ≥ ε · σε

1 (ŝ1).

Finally, we use this condition to compare player 2’s defective continuations d2 ∈ D2 (hr)

with the pure strategy ŝ2 ∈ D2 (hr, (A,A)) on which he is supposed to concentrate. The

defective continuation d2 gives a higher payoff than ŝ2 (πh
2 (σε | d2) > πh

2 (σε | ŝ2)) if player

1 trembles after hr and it may give less (or more) if player 1 trembles in later rounds. The

condition σε
1 (d1) ≥ ε · σε

1 (ŝ1) implies that later trembles are much less likely so that the

resulting expected present gains dominate potential future losses for small ε. This implies

that strategies which put a positive weight on the action ai (hr) = A cannot be best replies

to σ and are therefore by van Damme’s (1987, p.30) Lemma 2.3.2 incompatible with an

ε-proper equilibrium.
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Appendix II: instructions

Welcome and thank you for participating in this experiment. Please read the instructions

carefully. From now on we ask you to remain seated and to stop communicating with

other participants. If you have any questions, please raise your hand. We will come to

your place and answer your questions in private. It is very important that you follow these

rules. Any violation will lead to your exclusion from the experiment and any payment.

The instructions are identical for all participants.

You will participate in the following sub-experiment two [eight]14 times. Every sub-

experiment consists of 16 [four] rounds. Within the same sub-experiment you will be

interacting with the same participant. Whenever a sub-experiment is finished, the other

participant will be replaced. [It is possible that you interact with a participant you have

already interacted with. However it is impossible that you interact with the same other

participant for two consecutive sub-experiments.]

In each round, you and the other participant will be simultaneously asked to choose one

of three {two} alternatives A, B, or C {A, or B}.15 Depending on your own decision and

the decision of the other participant, your earnings are given by the following table.16 17

14In brackets: short horizon.

15In curly brackets: PD treatments.

16In parentheses: weak game. The table for the PD game consists only of the cells that include choices

A and B.

17ECU = Experimental Currency Units
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My decision The decision of the My earnings The earnings of the other

other participant in ECU participant in ECU

A A 18 18

A B 0 21

A C 0(3) 0(3)

B A 21 0

B B 9 9

B C 0(3) 0(3)

C A 0(3) 0(3)

C B 0(3) 0(3)

C C 3 3

If you, for example, choose A, while the other participant chooses B, you will earn 0 ECU

and the other will earn 21 ECU. If you choose B and the other chooses A, you will receive

21 ECU and the other 0 ECU. At the end of each round you will be informed about

• your own decision

• the decision of the other participant

• your earnings from the current round

• your total earnings from the current sub-experiment

Your earnings from the two [eight] sub-experiments will be added up and paid to you in

cash at the end of the experiment. The exchange rate is 66 ECU per 1 Euro. Additionally,

you will receive a show-up fee of 2.50 Euros.

After reading these instructions, you can familiarize yourself with the experiment during

three {two} test rounds. The test rounds are not relevant for your earnings. Then you

will be asked to answer some control questions. Hereafter the experiment will start. In

the end we will ask you to fill in a brief questionnaire.
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Appendix III: tables

Round 4S vs. 4W 4S vs. 4PD 4W vs. 4PD

1 0.09 0.05 0.56

2 0.08 0.02 0.40

3 0.13 0.17 0.64

4 0.01 0.05 0.77

reject equality in % of rounds 75% 75% 0%

Table 7: Wilcoxon rank-sum tests by period for the short horizon; null hypothesis: two
independent samples are from populations with the same distribution

Round 16S vs. 16W 16S vs. 16PD 16W vs. 16PD

1 0.09 0.01 0.41

2 0.14 0.01 0.39

3 0.04 0.02 0.69

4 0.02 0.01 0.77

5 0.06 0.44 0.27

6 0.16 0.07 0.57

7 0.05 0.04 0.77

8 0.03 0.01 0.69

9 0.04 0.00 0.30

10 0.02 0.06 0.82

11 0.02 0.01 0.80

12 0.04 0.02 0.59

13 0.03 0.03 0.84

14 0.03 0.03 0.89

15 0.19 0.19 0.92

16 0.36 0.86 0.43

reject equality in % of rounds 75% 81% 0%

Table 8: Wilcoxon rank-sum tests by period for the long horizon; null hypothesis: two
independent samples are from populations with the same distribution
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