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Abstract

I use a Mixed Logit model and the most detailed agricultural data publicly available
to show how farmers employ land allocation as an adaptation mechanism in the face
of a changing environment. The driving forces behind the farmer�s land-use choice
are di¤erences between the crops available for cultivation as well as the soil, climate,
and observable and unobservable (to the econometrician) characteristics of the farm. I
present a measure of the e¤ects of climate change on agricultural land value based on
a structural model of farmer behavior and a mix of data at the plot, county, state and
national levels. Results from most previous research are based on county-level data.
The improved resolution of the data used in this paper allows us to test the validity
of assumptions made in earlier work. Moreover, results show that substitution across
crops depends directly on di¤erences in climate for each plot.
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1 Introduction

After more than a decade of debate, the scienti�c community now agrees that climate change

is one of the most critical environmental problems to face the planet this century1. The issue

has shifted from a scienti�c to a political and economic question for which common wisdom

indicates severe economic consequences. However, recent economic studies show a small but

positive e¤ect.

In general, studies of the e¤ects of climate change on the economy have focused on agri-

culture as it is the economic activity most likely to quickly re�ect the e¤ects of changes in

climate. In particular, estimates of economic impacts rely either on the link between cli-

mate and agricultural production (agricultural process models2), between climate and land

values (Ricardian approach3), or between climate and agricultural pro�ts (pro�t function

approach4). These three schools of thought have provided insight on a number of phenom-

ena, the most important of which is that pro�t-maximizing farmers will change crop and

farming practices to adapt to any changes in climate, implying that farmers�decisions are,

in fact, relevant for estimating the economic impact of climate change. Prior to this present

study, economists based their research on assumptions about how the farmer would make her

decisions but they were unable to directly account for them5. This paper focuses precisely on

the issue of farmer adaptation by relying directly on the link between climate and farmers�

adaptive behavior.

There are two main assumptions used in the literature. At one extreme, the �agricultural

process models�assume that the farmer is constrained to continue farming the same crop

no matter how climate changes. This hypothesis is quite simple in that it suggests that

crop yields will change with climate and that farmers will assume whatever pro�ts or losses

1For example, see Oreskes [23], or National Academy of Science [20].
2Examples of this literature are Adams et al. [4], [2], and [3], Mjelde et al. [19], Reilly et al. [24],

Schneider et al. [27], Solow et al. [28], among many.
3See Mendelsohn, Nordhaus and Shaw [16], [17], [18], and Schlenker, Hanneman and Fisher [26].
4See Deschenes and Greenstone [7], and Kelly, Kolstad, and Mitchell [11].
5One notable exception to this stament is the paper by Kelly, Kolstand and Mitchell [11]. However, their

focus is not on adaptation but on adjustment costs.
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associated with that yield. Consequently, the researcher only needs to focus on the link

between climate and crop yields to obtain quantitative economic predictions. Early studies

relied upon this approach and this produced unrealistically high estimates of the possible

costs of climate change. More recent research considers these estimates to be upper bounds

of the actual costs as it does not consider all the actions farmers can take to ameliorate the

e¤ects of climate change on their pro�ts.

At the other extreme, the �Ricardian approach� is based on David Ricardo�s premise

that any changes in future pro�tability of land will be immediately capitalized into the land

value. For this school of thought, the main assumption is that farmers can adapt to any

changes in climate immediately and e¤ortlessly. The belief is that farmers are keenly aware

of the changes in climate and they immediately select those crops as well as practices that

are most appropriate to the new climate. This assumption e¤ectively lifts all constraints

on the way farmers make their land-use decisions. Estimates produced under this model

should be considered a lower bound to the actual cost from climate change as, at least in

the short-run, there may be constraints that prevent the farmer from responding to climate

changes with the promptness assumed by these researchers.

Between these two extremes we have the �pro�t function approach�. Here, the belief

is that farmers will make decisions that incorporate their views about climate which will,

in turn, impact their pro�ts. Short-run considerations can be easily incorporated into the

analysis. This model allows researchers to eliminate previous assumptions about farmer

behavior and, instead, estimate this behavior directly. However, doing so requires detailed

data sets and, thus far, no published study has focused on the e¤ect of climate on farmer

decisions.

This paper o¤ers a fourth, or alternative, methodology based directly on the link be-

tween climate and farmers�cropping decisions. I develop a model of choice in which pro�t-

maximizing farmers with heterogeneous plots of land choose the best crop for the given

conditions in their location. Estimates from this model are used to infer farmer adaptive
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behavior, in the form of changes in land-use patterns, as a response to a change in climate.

Taking into account recent econometric advances in Industrial Organization, Public Eco-

nomics and Environmental Economics, a logical way to improve our understanding of farmer

behavior is to use the lowest level of behavioral data available. In this model, consideration

is given to decision making for parcels as small as one-acre plots, the smallest decision unit

for the farmer, where data are characterized by the discrete choice of the most adequate crop

for cultivation. Previous approaches have only considered data at the county level, possibly

failing to characterize the farmers�choice at the plot level. This could mislead us in our

understanding of farmer�s adaptive behavior. To avoid this problem, the model in this paper

incorporates recent advances in discrete choice theory that allow us to take advantage of

information on a sample of more than 60,000 one-acre plots of land in the United States.

In the model presented in this paper, the farmer makes land-use decisions based on

crop prices, average expenses on variable inputs for di¤erent crops, as well as soil, climate,

and other observable and unobservable (to the econometrician) characteristics of the plot.

Given this information, the farmer chooses the cultivar that yields the highest pro�ts for

the plot and repeats this process for every plot on her farm. Using a detailed sample of

plot characteristics I estimate the share of land dedicated to each crop in each county as

a function of plot and crop characteristics. At any aggregation level, be it a farm, county,

or state, the distribution of the farmers�decisions and, therefore, the distribution of pro�ts

and supply of the di¤erent crops can be characterized. By exploiting the panel nature of my

data, I am able to identify the parameters that primarily in�uence farmers�decisions.

I follow the estimation strategy proposed by Berry [5] and Berry, Levinsohn, and Pakes

[6] (hereafter BLP) for a type of discrete choice problem in which the distribution of hetero-

geneity, in this case in the form of plots of di¤erent characteristics, determines substitution

across crops. Ideas developed in Nevo [21] to introduce actual observations of this hetero-

geneity in the estimation are also incorporated. As in previous work, the modeling and

estimation strategies presented here allow us to estimate the damages (or bene�ts) due to
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climate change on agriculture. Moreover, using this approach it is possible to forecast farm-

ers�decisions at a level of disaggregation not possible with previous approaches. This gives

us the opportunity to derive welfare measures at the intra-county level as well as predict the

distribution of land uses within counties.

In the next section, I discuss di¤erent methods used in the literature to estimate the

e¤ects of climate change. Section 3 presents a description of the economic model in this

paper as well as a discussion of di¤erent empirical speci�cations for this model. Section

4 includes a description of the estimation procedure and a discussion of the results from

preliminary regressions and the full model. Conclusions and closing comments follow in

section 5.

2 Measuring the e¤ects of Climate Change

Many of the challenges that scientists encounter when attempting to quantify the magnitude

of the impacts of climate change stem from the nature of climate itself. In economic terms,

climate is a very complex commodity. As a consumption good, it makes locations like Santa

Barbara, California, a prime location for residential communities. As a production input,

climate will dictate that the most likely location for producing crops is the Corn Belt and,

conversely, it makes Death Valley the last place where one would expect to see large-scale

agricultural production. Of course, climate cannot be changed or modi�ed at will, nor can

it be moved from one location to another. Moreover, climate is not a commodity that can

be traded directly. It is bundled up into goods such as housing, land, or into agricultural

products. Thus, to measure the e¤ects of climate on the economy one has to turn to factors

that are measurable in markets. The literature then makes use of the fact that climate

is a direct input for agricultural production to construct estimates of the economic e¤ects

of climate change. This suggests that any changes in climate will a¤ect the market for

agricultural goods from the production side. It also gives us several theoretical and empirical
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ways in which to approach the problem, which I summarize in the following paragraphs.

Agricultural process models6 center on the link between climate and production. Because

of their focus on production, in general, they can bene�t from precise estimates obtained from

physiological or technical models of crop production. Moreover, many of these models include

data on crop and input prices that are used to construct measures of welfare changes due to

changes in crop yields. Earlier studies severely constrained farmer adaptation mechanisms

which produced upward-biased estimates of the e¤ect of climate on agriculture. More recent

studies, such as Adams et al. [3] and Reilly et al. [24], have included a wide range of possible

adaptation mechanisms for the farmer. Nevertheless, as pointed out in Mendelsohn et al.

[16] (hereafter MNS) and Schneider et al. [27], even the most detailed models will miss some

of the adaptation opportunities available to farmers.

The Ricardian approach7 uses land characteristics, including climate, to explain land

values. Here, the main assumption is that land values incorporate all the information about

any adaptation that a farmer can undertake. Thus, in the context of this approach, adap-

tation is assumed to be complete, both in the choice of inputs and outputs. Furthermore,

the movement to the new equilibrium after climate has changed is made e¤ortlessly by the

farmer. This implies that estimates from Ricardian models should be considered a lower

bound of the e¤ects of climate change. Note, however, that it is well known that these

types of models are not apt to measure the e¤ects of non-localized, non-marginal changes in

the explanatory variables (Freeman [8]). These are exactly the type of changes that would

cause farmers to change to a more pro�table crop. Additionally, this approach may su¤er

from severe missing variable bias if some of the determinants of land value are not observed

(Freeman [8] and Deschenes and Greenstone [7]).

While the agricultural process models and the Ricardian approach can be considered two

extremes in terms of the types of assumptions made on adaptive behavior, the pro�t function

6For a sample of references, see footnote 1.
7See Mendelsohn, Nordhaus and Shaw [16], [17], [18], and Schlenker, Hanneman and Fisher [26]. The

�rst application of this approach to the climate change literature apears in MNS. Johnson and Haigh [10]
use similar methodology to estimate the e¤ects of potentially modi�able aspects of climate.

6



approach can relax these assumptions and allows for farmer adaptation to be estimated

directly. However, to date, the focus of this literature has not attempted to directly construct

measures of farmer adaptation.

For example, Kelly, Kolstad and Mitchell [11] (hereforth KKM) de�ne adaptation as

the change in pro�ts that occurs from an equilibrium point before climate change to an

equilibrium point after climate change. They recognize that the movement from one equi-

librium point to the next may not be immediate and e¤ortless as assumed in the Ricardian

approach, and that there may be adjustment costs associated with the transition between

equilibria. However, the focus of their analysis is on adjustment cost rather than the process

of adaptation.

Also within the context of the pro�t function approach, Deschenes and Greenstone [7] use

presumable random variation in weather across counties to estimate the e¤ects of weather on

farm pro�ts. However, they do not include prices in their estimation, so we cannot readily

infer farmer behavior from their approach.

The analysis presented in this paper di¤ers from the previous literature in both its focus

and its methodology. Much of the previous research has centered its attention on either

county-level estimates of either land values or pro�ts and, even though these studies have

land use at their core, crop choice does not appear explicitly in these models. In this paper,

the land-use decision is explicit both in the modeling of the problem and in its estimation.

The main assumption in this paper is that farmers rely on their land-use choices to maximize

pro�ts and that climate, as well as more traditional economic measures, can directly a¤ect

these decisions. Tables (1) through (4) show evidence of this fact8.

Moreover, county-level data may not be appropriate to represent the farmers�crop choice.

For example, by examining slope length, a measure of distance to water sources9, we are able

8Tables (1) and (2) show how the choice of crop varies with average temperature. Results are similar
for precipitation. Tables (3) and (4) show the gross value of production, crop price and production costs
which will also a¤ect the choice of crop. For example, wheat is very adaptable to di¤erent types of climates.
However, a farmer will readily substitute to a di¤erent crop if higher pro�ts are to be made.

9See the data appendix for a more precise de�nition of slope length.
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to see the shortcoming of using such data. Supposefor example, that we have two counties

with two distinctive plots of land each. These two counties are, in fact, the same in every

aspect except that in county A, one plot has a slope length of 50 feet and the other has a

slope length of 100 feet while for county B both plots have a slope length of 75 feet. When we

don�t observe the internal heterogeneity of counties, we may think that these two counties

are actually the same as they both have an average slope length of 75. If both of these

counties have a wet climate, slope length is not important for cropping decisions and we do

not need to worry about aggregation issues. However, if climate is or becomes dry enough,

slope length becomes important as the availability of water will greatly impact the farmers�

land-use decisions. In this case, aggregate data will bias our results.

In short, this paper adds to the literature by presenting a model which quantitatively

describes the link between climate and farmer decisions, and which accounts for the richness

of insight gained by analysis at a geographic level ten to hundred fold more re�ned than

previous work.

3 Framework

There are two factors that determine the farmer�s choice, the characteristics of the crops

under consideration, which are measured in the form of prices and costs, and the character-

istics of the land where the crop will be grown, given in terms of climate, weather, and soil

characteristics such as salinity, slope, et cetera. Crop and plot characteristics enter the farm-

ers�decision process by a¤ecting the pro�ts a farmer can get from cultivating a given crop.

Given a small change the farmer might �nd it optimal to continue to grow the same crop

and su¤er small gains or losses in pro�ts, a large change, on the other hand, may induce the

farmer to substitute crops as relative pro�ts will most probably be a¤ected by the change.

Therefore, we can determine the potential costs/bene�ts of climate change for agriculture

and derive concrete measures of farmer adaptive behavior in the form of changes in land use

8



by analyzing the e¤ect of climate on pro�ts.

Let producers participate in perfectly competitive markets for agricultural goods, agricul-

tural inputs and land. Further assume that agricultural output is produced in plots of land

of size 1, indexed by j = 1; :::; J . At the plot level, production for output (crop) i 2 f1; :::; Ig

is undertaken according to a well-behaved production function:

(1) qij = fi (xij; zj) .

This production function depends on expenditures in variable inputs xij and the availability

of exogenously given inputs10 zj at plot j, one of which is climate. Note that xij can vary

by output, even within a given site, while zj is outside the control of the farmer no matter

what the farmer decides to plant in the plot.

For output price, pi, the farmer chooses how much to spend on inputs so to be able to

grow crop i in plot j in the most pro�table manner. Formally,

�ij (pi; zj) = max
xij

fpifi (xij; zj)� xijg

= qi (pi; zj) pi � ci (pi; zj) �ci.(2)

Assuming an interior solution to the maximization problem above, the optimal amount of

output is given by q�ij = qi (pi; zj) while the pro�t-maximizing choice of input expenditures is

given by x�ij = ci (pi; zj) �ci, where �ci are the mean cost expenditures for crop i, and ci (pi; zj) is

a function that captures how farmers may �nd it optimal to deviate from that mean because

of di¤erences in the plot characteristics. However, because of the constraints imposed by

the exogenous availability of zj, even at the optimal level of variable input expenditures,

di¤erent crops will have varying degrees of success in a plot. The farmer will choose the crop

10The vector zj can include plot atributes as well as characteristics of the decision maker.
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that yields the highest pro�t for the plot,

(3) ��j (p; �c; zj) = max f�1j (p1; �c1; zj) ; :::;�Ij (pI ; �cI ; zj)g ,

where p = (p1; :::; pI), �c = (�c1; :::; �cI), and subscript � represents the optimal choice of crop

and � 2 f1; :::; Ig.

Changes in the current conditions in plot j, measured through changes in zj, a¤ect crop

pro�ts by way of equation (2), as conditions may become more or less favorable for the

current choice of crop. Moreover, a large enough change in zj could a¤ect relative pro�ts

perhaps making the current crop less pro�table than other alternatives. A pro�t-maximizing

farmer will the substitute to the most pro�table crop as shown in equation (3).

It is important to emphasize that, even though the farmer has no control over plot

characteristics, these characteristics do determinate the farmer�s production expenditure

decisions as well as the optimal choice of crop. In in the next section, I propose an empirical

speci�cation that allows us to measure changes in farmers�pro�ts as well as any changes in

land-use patterns caused by adaptive behavior undertaken by farmers in response to changes

in zj.

3.1 Empirical Speci�cation

Equations (2) and (3) characterize a discrete choice model in which farmers chose the best

crop for their plot of land depending on crop and plot characteristics. Thus, we need to

specify a pro�t function for each crop as well as a representation of the farmer choice of crop

in equation (3). Data on the farmers�decisions are available at the county level in the form

of shares of land dedicated to each crop. County heterogeneity is observed in the form of

data on plot characteristics.

Let farmers, in counties indexed by f = 1; :::; F , choose one of i = 1; :::; I crops to

grow in each plot j = 1; :::; J during year t = 1; :::; T . Crops are characterized by their
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prices, pit, and average costs of production, �cit. Crop attributes that are unobservable to

the econometrician, but known to the farmer are represented by �ift = �i+��ift, where �i

captures those attributes that do not vary with county or time and ��ift is a county and

time speci�c deviation from �i.

For the full model speci�cation, let pro�ts for each crop assume the following functional

form:

(4) �ijft (�) = �i + �p
�
zjft; 'jf

�
pit + �

c
�
zjft; 'jf

�
�cit +��ift + "ijft,

where "ijt is a mean-zero stochastic term and �p (�) and �c (�) are productivity parameters

for plot j that depend on observed and unobserved plot characteristics, which are denoted

by zjft and 'jf respectively. The parameters �
p (�) and �c (�) relate directly to qi (pi; zj) and

ci (pi; zj) in equation (2). More speci�cally, for �
�
zjft; 'jf

�
=
�
�p
�
zjft; 'jf

�
; �c

�
zjft; 'jf

��
,

these random coe¢ cients are modeled as

(5) �
�
zjft; 'jft

�
= B + �zjft + �'jf , 'jf � N (0; I) ,

where zjft is a k� 1 vector of observed plot characteristics (land characteristics, climate and

demographic variables), 'jf captures additional unobserved characteristics of the plot, � is a

2�k matrix of coe¢ cients that measure how productivity vary with plot characteristics, and

� is a 2� 2 diagonal scaling matrix. The elements of � and � are denoted by � and � with

the corresponding subscripts. Thus, conditional on zjft, the distribution of the productivity

parameters is a multivariate normal with mean B = (Bp; Bc) and a variance to be estimated.

To complete the speci�cation of the supply system, we introduce an outside option that

allows the farmer the choice of not growing any of the crops included in the analysis and,

thus, allocating land to any other use. Without this allowance, a homogenous price increase
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for all crops, relative to other sectors, will not change the quantities supplied.

(6) �0jft = �0 + �0zjft + �0'jf + "0jft.

The mean pro�ts of the outside option, �0, are not identi�ed without either making

more assumptions or normalizing one of the inside land uses. Also, the coe¢ cients �0 and

�0, elements of � and �, are not identi�ed separately from coe¢ cients on an individual-

speci�c constant term in equation (4). The standard practice is to set �0, �0 and �0 to zero

which is equivalent to normalizing pro�ts to zero for the outside option.

Combining equations (4) and (5) we have

�ijft
�
pit; �cit; zjt; 'j;��iftj�

�
= �ift + �ijft + "ijft,(7)

�ift = �i +B
ppit +B

c�cit +��ift

�ijft = [pit; �cit]
0 �
�
�zjt + �'j

�
,

Thus, equation (7) is our empirical representation of pro�ts, as given in equation (2). Note

that this speci�cation of pro�ts is not unlike the restricted generalized McFadden pro�t

function KKM estimate. Here �ift is the mean pro�ts from planting crop i (common to

all farmers in county f), and �ijft + "ijft is a mean-zero heteroscedastic deviation from the

mean pro�ts that captures the e¤ects of observed and unobserved land characteristics on the

random coe¢ cients. As before, the farmer will produce crop i if:

�ijft � �kjft 8k

A plot is de�ned as a vector of observed characteristics, unobserved characteristics and

product-speci�c shocks
�
zjft; 'jf ; "0jft; :::; "Ijft

�
. We can use this vector, then, to implicitly

de�ne the set of plot attributes that lead to the choice of crop i. Formally, let Ajft be the
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set of plot characteristics that results in the choice of crop i:

Ajft =
��
zjft; 'jf ; "0jft; :::; "Ijft

�
j�ijft � �kjft 8k = 0; 1; :::; I

	
.

Assuming ties occur with zero probability, the market share for the ith crop is just an

integral over the mass of plots in region Ajft. Under our functional form assumptions on �ift

and distributional assumptions on the error term �ijft + "ijft, the probability that a plot is

planted with crop i is:

sift (z�ft; p�t; �c�t; ��ft; �2) =

Z
Aif

dP (z; '; ")

=

Z
Aif

dP" (") dP' (') dPz (z) ,(8)

where the second equality is a consequence of independence assumptions, and where P" (�),

P' (�) and Pz (�) denote distributions functions for ", ' and z. The distribution of unobserved

characteristics plot, P' (�), is assumed to be a multivariate normal with mean zero and

variance matrix to be estimated while Pz (�) is an empirical distribution derived from a large

sample of plot data. Thus, equation (8) gives us a measure of the land shares dedicated to

each crop as a function of crop, plot characteristics and parameters to be estimated.

To obtain a simpler expression for the land shares, I follow the discrete choice literature

and assume that " is distributed i:i:d: extreme value. Under this assumption, our expression

for (8) reduces to mixed logit choice probabilities,

(9) sift (z�ft; p�t; �c�t; ��ft; �2) =

Z
e�ift

1 +
PI

k=0 e
�kft

dP' (') dPz (z) ,

which, combined with our observed crop shares Sift, provide us with a way to estimate the

model.
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3.2 Alternative Distributional Assumptions

Di¤erent assumptions on the distributions of z, ' and " produce di¤erent models with dis-

tinctive characteristics. If we assume that consumer heterogeneity enters land rents only

through ", which is assumed to be distributed Type I extreme value, then the full model re-

duces to a multinomial logit. The multinomial logit model has an advantage in its well-known

properties and in the fact that the integral in equation (8) can be computed analytically (Mc-

Fadden [13]). However, through its independence of irrelevant alternatives property (I.I.A.),

the multinomial logit model imposes restrictions on the cross-price elasticities that prove to

be unrealistic in the farmers�choice of crop. I.I.A. implies that if two crops have similar

shares, substitution with a third crop will be the same for the two original crops. However,

di¤erences in land characteristics across plots may make this assumption unrealistic. Dif-

ferent crops may require di¤erent types of soil or climate to grow successfully. Thus, it is

reasonable to think that a farmer is more likely to substitute her current crop for another

crop that also does well on her land. Moreover, the fact that the outside share is large

relative to all crops implies that, under multinomial logit, substitution to the outside option

will be downward biased. Note though that I.I.A. can be relaxed by segmenting the choice

into di¤erent classes. This approach results in a generalized extreme value model (McFad-

den [14]). However, even though substitution patterns are less restrictive in these types of

models, they still depend on the researcher�s a priori segmentation of the choice set.

The full model does not impose these restrictions and, in fact, can provide us with

an arbitrarily closed approximation to any discrete choice model, including those models

discussed above (McFadden and Train [15]). It allows for �exible own-price elasticities that

are dependent on the farmers�price/cost sensitivities rather than the choice of functional

form. More importantly, in the full model, �ijf+"ijf depends on crop and plot characteristics

in such a way that these characteristics are what drive the farmers�substitution patterns.

The �exibility of the full model comes at a cost, however. The integral in equation (8)

cannot be computed analytically without the simplifying assumptions that result in more
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restrictive models of farmer behavior. However, the estimation strategy proposed by Berry

[5], BLP and Nevo [21], deals with this problem by doing the integration numerically. In

addition, their estimation algorithm can account for possible correlation between prices and

unobserved product characteristics due to measurement error or endogeneity of prices and

costs.

4 Estimation and Data

4.1 Estimation

Market shares as well as price and costs are assumed to be endogenous to the model. How-

ever, as shown by BLP, the parameters of the model as de�ned in equation (7) can be

estimated by the Generalized Method of Moments (GMM) to account for the endogeneity

problem. Berry [5] and BLP show that the structural error term can be computed as a

function of observable variables and the parameters of the model. This observation makes

the application of GMM possible in this context. I also follow Nevo [21] in its extension of

the BLP procedure to introduce actual observations of plot heterogeneity in the estimation

rather than relying solely on parametric assumptions about this heterogeneity. The estima-

tion procedure presented here diverges from these two sources in the choice of instrumental

variables and the identifying assumptions that support them. It is also di¤erent in that the

characteristics and completeness of the data allow us to model unobserved crop character-

istics using brand-dummy variables without having to resort to a second estimation step as

necessary in Nevo to recover all the parameters of the model [21].

For the estimation of pro�t functions in general, prices present two particular problems.

First, to be consistent with economic theory, we need to take into account the fact that

cross-price elasticities have a role in farmers�land-use decisions. This is especially true in

the pro�t function approach11, creating a problem of dimensionality. Even in the most simple

11The Ricardian approach assumes that prices and costs are the same across the entire United States and,
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pro�t function speci�cations, the number of parameters increases with the squared number

of agricultural products under consideration. This problem is even more signi�cant if we use

a �exible functional form. In previous studies, this problem was solved by making use of

di¤erent assumptions about the role of prices in estimation. Deschenes and Greenstone [7]

justify leaving prices and cost entirely out of their empirical speci�cation by using a complete

set of �xed e¤ects that they assume capture the e¤ects of prices on pro�ts. KKM adopt a

�exible functional form and restrict higher order coe¢ cients to zero to make estimation

manageable12.

In the speci�cation above, the dimensionality problem is completely avoided by project-

ing land uses onto price/cost space. This allows for a parsimonious speci�cation in which

price/cost is the relevant space and not the number of crops (agricultural products) we in-

corporate into the analysis. The second problem with prices is that both pit and �cit are

generally assumed to be endogenous to the model13. We follow the Industrial Organization

literature and deal with the endogeneity of prices and costs by using a GMM approach14.

Heterogeneity in the error term presents a second challenge in estimation. Note that the

source of this heterogeneity is in the di¤erent characteristics of plots both within counties

as well as across counties. Previous research, however, uses data at the county level. Thus,

it can only e¤ectively deal with di¤erences across counties rather than with county hetero-

geneity15. Our assumptions on the error term, together with the use of disaggregated data

therefore, excludes prices and costs from the estimation. (Schlenker et al. [25]).
12Their restriction is not rejected at a 95 percent signi�cance level. However, as a consequence of the

restrictions they impose, they may loose the �exibility provided by their functional form.
13Even if we assume that variable input prices are exogenous, it is likely that costs are not. It is reasonable,

then, to assume that production shocks a¤ect the quantity of variable inputs used by farmers and therefore
they also a¤ect costs of production. (There is also the problem of not observing government payments, pest
problems and other factors that may be correlated with prices and costs). Kelly et al. [11] assume that
prices are determined ex ante. Under this assumption, endogeneity is not a problem in their analysis.
14See, for example, Berry [5], Berry et al. [6] and Nevo [21].
15To deal with this heterogeneity, Mendelsohn et al. [16] and [17] use cropland weights and crop revenue

weights. Cropland weights are motivated by the assumption that counties with more cropland will yield a
better measure of agricultural land value because non-agricultural in�uences are minimized. Crop weights
give emphasis to those counties that are, in general, more important to total agricultural production. Desch-
enes et at. use the square root of the share of farmland in each county as a weight under a similar motivation
to that of cropland weights. KKM weigh their data by taking into account spatial correlation across counties
as well as temporal correlation to improve the e¢ ciency of their estimation. Schlenker et al. [25] incorporate
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to characterize di¤erent plots of land in a county, account for heterogeneity in the charac-

teristics of plots of land within counties, across counties, and over time. Because of the way

heterogeneity is introduced into the model, the integral in our land shares equation no longer

has a closed form solution as in the case of the logit model. This integral is approximated

numerically. Let w = (pit; �cit),

sift (�; �2) =
1

ns

nsX
j=1
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where n indexes the elements in w, and where znkjft and '

m
jft are draws form Pz (�) and P' (�)

respectively. Note that we use the assumption that P" (�) is the extreme-value so that "ijft�s

are integrated out analytically.

The only unobservable that is not accounted for in the integration of market shares

sift (�; �2) is the county and crop speci�c productivity shock ��ift, which is the structural

error term of the model and can be solved for as a function of the parameters of the model.

To proceed with the estimation, I follow BLP and restrict my predicted crop shares sift (�)

to match the actual observed crop shares Sift

(10) Sift � sift (z�ft; p�t; �c�t; ��ft; �2) = 0.

Equation (10) implicitly de�nes �ift, the mean pro�ts from planting crop i, which is observed

by all farmers. For the full model, equation (10) can be inverted numerically by using a

contraction mapping suggested by BLP where the solution to the problem is the �xed point

of the function

both spatial correlation and heteroscedasticity into their weights.
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(11) �h+1 = �h + ln (Sift)� ln
�
sift

�
z�ft; p�t; �c�t; �

h; �2
��
,

where h = 0; :::; H are the successive iterations needed for the contraction mapping to

converge to an arbitrary tolerance and �h is an approximation to �. In turn, � can now

be used to solve for our structural error term as a function of data and parameters of the

model

(12) !ift (�) = �ift (�; �2)� (�i +Bppit +Bc�cit) � ��ift.

Berry [5] de�nes the structural error term, !ift (�), as a function of the parameters of the

model and, therefore, we can use generalized method of moments estimation to deal with

the correlation between prices and costs and the error term. This de�nition of !ift (�) leads

us to the following moment condition

(13) E [Z! (��)] = 0,

where �� denote the true parameters of the model.

With a suitable choice of instruments given by the matrix Z, the GMM estimate is

(14) �̂ = argmin
�

! (�)
0
ZA�1Z

0
! (�)

where A is a consistent estimate of E
�
Z
0
!!

0
Z
�
. I follow Nevo to estimate the weight matrix

A in a two-step procedure. First, A is set equal to Z
0
Z to compute initial estimates of the

parameters. Using these parameters we can obtain a consistent estimate of A that we can

use to calculate the �nal estimates of the model�s parameters.
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4.2 Identi�cation

The assumption that allows us to identify the model is given in equation (13) and requires

a set of exogenous instrumental variables. Following the ideas of Olley and Pakes [22],

Levinsohn and Petrin [12] and Ackerberg et al. [1] I use the timing of production to determine

the appropriate choice of instruments.

Within the context of KKM, the pro�t function speci�cation presented above is an ex�

post function that measures pro�ts after weather and all other shocks to production have been

realized. However, the crop decision and some variable input decisions are made ex� ante,

at the beginning of the period before the farmer has observed these shocks. Just as all of the

information about the shocks from the previous period is observed, the farmer makes crop and

initial variable input allocation decisions for the current period. It is, then, logical to assume

that the farmer uses this information to make current decisions. Thus, a natural choice of

instruments are lagged weather variables, which, de�ned as mean-zero random deviations

from climate, are correlated with current farmer decisions but should be orthogonal to current

county and time speci�c shocks, ��ift.

Using the same timing assumption and following Hausman [9], lagged prices are another

potential set of instruments. The identifying assumption is that controlling for crop spe-

ci�c intercepts, �i, our error term, ��ift, is independent across counties but allowed to

be correlated over time. Since we observe prices by state, prices in other states are then

valid instruments. That is, prices in other states will be correlated due to the common cost

component. However, due to the independent assumption on the error term, they will be

uncorrelated with county speci�c productivity shocks. A problem will arise, however, if there

is a nation wide shock to the market. Then current prices from other states will not be valid

instruments as they will all re�ect the same shock. To avoid this possibility, we only use

average lagged prices in other states as instruments. The timing assumption on the farmer

decisions, assures us the farmers use price information from the previous period to help guide

their decisions for the current period.
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4.3 Data

The analysis below takes advantage of the most detailed publicly available data on crop

prices and costs, land use, weather and land characteristics. Each variable that appears in

equation (7) is directly known by the farmers. However, the researcher only has information

on the distribution of plot characteristics, through the observation of a sample of plots in

each county, and can only observe prices and costs, pit and �cit, at the state and national

levels respectively. Land-use shares for each crop, Sift, are available for every county.

The data covers 2027 non-irrigated rural counties16 for 1982, 1987, 1992 and 1997 and

8 crops that cover over 60 percent of the harvested area and represent 53 percent of the

value of crop production in the U.S.17. Figure (3) highlights those counties that are included

in the analysis. Data on crop shares and plot characteristics come from the 1997 National

Resources Inventory (NRI). The NRI is a statistically designed sample of non-federal lands

in the United States. It contains data on land use, soils, natural resources and trends for

approximately 800,000 points for 1982, 1987, 1992 and 1997. These data include K Factor

(erodibility factor), Flood Prone, Sand, Clay, Slope Length and Wetland (see de�nitions for

these terms in the data appendix). For each of these variables, I sample 30 observations that

correspond to 30 one-acre plots of land for each county.

The source for weather and climate data is the Spatial Climate Analysis Service at

Oregon State University. These are the �nest resolution public data for the entire U.S. and

are generated using observations from more than 20,000 weather stations in the National

Climatic Data Center�s Summary of the Month Cooperative Files. Climate is de�ned as a

30 year average of temperature and precipitation information, up to the year prior to the

year in question. Weather is de�ned as a deviation from this average for each year under

16Schlenker et al. [26] argue that changes in climate will have di¤erent e¤ects on irrigated and non-irrigated
counties. As they do, I restrict the sample to non-irrigated (less than 5% of land in farms is irrigated) rural
counties. This also avoids the problem of forecasting the availability of water in irrigated counties or having
to rely on assumptions about the availability of water for irrigation.
17These statistics are calculated from the 1997 National Agricultural Statistics Service Crop rankings.

Each of these crops, except for oats, is ranked among the top 25 crops in term of value, with corn, soybean,
wheat, and cotton among the top 10.
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consideration. Data for the months of January, April, July and October are included in the

data set, thus, giving us measures of climate and weather for every season of the year.

Price data comes from the National Agricultural Statistics Service (NASS) Agricultural

Statistics Data Base. Cost data were extracted from the Commodity Costs and Returns data

set from the Economic Research Service. With the exception of price and cost variables, I

follow the literature in our choice of right-hand variables for the estimation.

4.4 Results

Estimates for the full model are based on equation (7) and were computed to match the

full model�s predictions to the observed shares of land allocated to each crop in each county.

Heterogeneity enters the model in the form of assumptions on the unobservables, as well as,

and more importantly, in the form of observations on plot characteristics. The instrumental

variables that help us identify the model are lagged yearly averages for prices in di¤erent

states and lagged weather variables.

In this section, I present results for three types of speci�cations: the logit speci�cation for

which plot characteristics are introduced as county averages, another logit speci�cation in

which I instrument for price and cost and the full model speci�cation as described above. I

use the logit estimates to highlight the importance of instrumenting for prices and cost, and

to show the importance of heterogeneity in the determination of elasticities of substitution.

The full model includes coe¢ cients on the same variables as the logit models. However, for

the full model these variables are at the plot level rather than county averages. Two extra

coe¢ cients that account for the variance of the unobservable characteristics of the plot are

also introduced. The left-hand variable, in all cases, is ln (Sift)� ln (S0ft), where Sift are the

observed shares of crop i for the respective county and year, and where S0ft is the share for

the outside option.

In table (13), I display the results from regressing the left-hand variable on prices, costs

and interaction terms corresponding to plot characteristics aggregated at the county level.
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The coe¢ cients reported in the price and cost columns correspond to the interaction of price

and cost with the variables in each of the rows. Table (14) presents analogous results for

the case in which we instrument for cost and price. Note the di¤erence in sign for the price

coe¢ cient between these two tables. It highlights the need for instrumenting as, without

instruments, the price coe¢ cients takes an unintuitive sign.

Tables (16) and (17) clearly illustrate the need to introduce heterogeneity in the model.

Although the signs for the elaticities in both cases are intuitively correct, the substitution

patterns they represent are very restrictive. For example, in table (13), an increase in the

price of barley would cause both wheat farmers and cotton farmers to substitute to barley

in the same proportion implying that both wheat and cotton as both as likely substitutes

for barley than any other crop. This can clearly not be the case as most cotton farms will

be located in climates adequate to grow barley.

The full model includes instruments for price and cost and it accounts for plot hetero-

geneity. The coe¢ cient estimates for this model, displayed in table (15), are in general

intuitive in sign and show more realistic own and cross-price elasticities then the logit speci-

�cations. A surprising result is that soil characteristics do not appear to be signi�cant to the

farmer�s choice. I presume that e¤ects of soil characteristics on the farmers�crop decision

are captured by the mean cost of producing each crop.

The coe¢ cients on price and cost are decomposed into a mean, a standard deviation and

parameters that determine the variation that is due to di¤erences in plot characteristics.

Note that the mean price and cost coe¢ cient estimates have the correct sign. However,

after we account for plot heterogeneity, the price coe¢ cient estimate is not signi�cantly

di¤erent from zero. This gives some support to Deschenes and Greenstone�s [7] decision not

to include prices in their estimation. However, the mean cost coe¢ cient is highly signi�cant

implying that we cannot ignore the common component of cost for the individual crops.

Moreover, even though the price and cost coe¢ cients for the full model have the same

sign and similar magnitudes than the same coe¢ cients for the IV logit model, we can now
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represent the distribution of these coe¢ cients over di¤erent plots (see �gures (2) and (3)).

It is also important to mention that the standard deviations estimate for the price and cost

coe¢ cients, which are included because of the normality assumption on plot unobservables,

are not signi�cantly di¤erent from zero. This shows that our results are not driven by

distributional assumptions on unobserved heterogeneity, but that they are based on our

observations of plot characteristics.

As a last point, the elasticity estimates that results from the full model present much

more realistic patters of substitution that are consistent with the pattern shown in table (1).

Crops that do well in temperate climates are more likely to be substituted for another crop

that does well in a temperate climate. See, for example, that our elasticities indicate that

corn and sorghum, both crops that do well in similar types of climate, respond to cross price

changes. On the other hand, the table shows, as we would expect, that cotton and barley

are not crops farmers are likely to substitute for each other.

5 Conclusions

The work presented in this paper is motivated by our need to better understand the role

of climate on farmer adaptive behavior. In general, the main hypothesis in this paper is

that climate is has an important in�uence in the farmer�s land-use decisions. In particular,

I developed a discrete choice model of farmers�land-use decision where farmers optimally

choose the crop that yields the highest possible pro�ts, given the characteristics the farmers�

land. This model extends on previous literature by giving us a clear depiction of farmers�

adaptive behavior on the face of climate change and by allowing us to test our hypothesis. I

use a random coe¢ cients Mixed Logit model to estimate an agricultural production system

of U.S. crops that includes information of heteregenous plots of land for 2027 non-irrigated,

rural counties. Results show that climatedoes play a signi�cant part in the farmers�cropping

decisions and, thus, it is an important determinant of the distribution of land uses within
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counties.

We observe a sample of over 60,000 one-acre plots across the U.S. that allows us to

empirically determine the distribution of plot characteristics for every county in the sample.

We do not observe the individual choice of crop for each plot of land, however, we do observe

crop shares at the county level. This mixture of aggregate and highly disaggregated data

gives us a very rich representation of within county heterogeneity which, in turn, allows us

to obtain very �exible estimates of crop substitution by farmers. To identify the parameters

of this model, we exploit the timing of farmers�decisions, the independence assumption on

the productivity shock across di¤erent counties, as well as the panel structure of the data.

Preliminary estimates corroborate the need to instrument for prices and costs. Moreover,

estimates of own and cross-price elesticities emphasize the need to account for heterogenity

to be able to reasonably portray the behavior of farmers. The full model accounts for this

heterogeneity resulting in very realistic patterns of substitution across crops.
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A Data

A.1 De�nitions

� Soil de�nitions adopted from: 1997 National Resources Inventory Data CD, Revised
December 2000

K factor: An erodibility factor which quanti�es the susceptibility of soil particles to de-
tachment and movement by water. This factor is used in the Universal soil loss
equation (USLE) to calculate soil loss by water.

Flood Prone: Indicator variable that indexes whether a plot is prone to �ooding.

Sand: Indicator variable that indexes whether a plot or a portion of a plot falls on salt
�ats.

Clay: Indicator variable that indexes plots with soil with high clay content.

Slope length: The distance from the point of origin of overland �ow to the point where either the
slope gradient decreases enough that deposition begins, or the runo¤water enters
a well-de�ned channel that may be part of a drainage network or a constructed
channel. For the NRI, length of slope is taken through the sample point.

Wetland: Lands transitional between terrestrial and aquatic systems where the water table
is usually at or near the surface or the land is covered by shallow water. For
purposes of this classi�cation wetlands must have one or more of the following
three attributes: (1) at least periodically, the land supports predominantly hy-
drophytes; (2) the substrate is predominantly undrained hydric soil; and (3) the
substrate is nonsoil and is saturated with water or covered by shallow water at
some time during the growing season of each year. (Cowardin, L. M., V. Carter,
F. C. Golet, E. T. LaRoe. 1979. Classi�cation of wetlands and deepwater habitats
of the United States. FWS/OBS-79/31. U.S. Department of the Interior, Fish
and Wildlife Service.)
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Climate: Climate is de�ned as a 30 year averages of observed mean temperatures and
precipitation for the months of January, April, July, and October up to the year
prior to the year in question. For example, for plot j, let zcjT be our our climate
measure for July temperature for year T and WjT be our observation of July
temperature for year T . Then

zcjT =
1

30

T�1X
t=T�31

Wjt.

Weather: Weather is de�ne as a standardized deviation from climate. Continuing with our
example above, let zwjT be our our climate measure for July temperature for plot
j in year T . Then,

zwjT =
WjT � zcjTq

1
30�1

PT�1
t=T�31

�
Wjt � zcjT

�2
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B Tables and Figures 

  
TABLE 1: AVERAGE ANNUAL TEMPERATURE VS LAND SHARES (1982) 

T Barley Corn Cotton Oats Peanuts Sorghum Soybeans Wheat Outshare 
0 2.05 1.03 0.00 0.94 0.00 0.01 0.22 11.57 84.17 
5 0.53 14.78 0.00 1.75 0.00 0.26 7.02 4.48 71.17 

10 0.06 9.32 0.02 0.16 0.02 1.25 8.20 5.36 75.61 
15 0.02 1.80 1.71 0.29 0.39 0.78 4.80 3.28 86.92 

 
TABLE 2: AVERAGE ANNUAL TEMPERATURE VS AGRICULTURAL LAND VALUES AND REVENUE 

(1982) 
T Land Value Revenue/Acre Count 
0 580 36 125 
5 995 63 577 

10 995 70 731 
15 820 53 594 

 
TABLE 3: CROP MEANS (1982)i 

 
Gross Value of 

Production Crop Price Production Costsii 
Barley 113.7101 2.136108 34.53 
Corn 251.6061 2.672432 47.77 
Cotton 338.1091 0.581288 75.43 
Oats 90.1687 1.756379 35.45 
Peanut 651.7157 0.25149 77.66 
Sorghum 232.079 8.056527 37.52 
Soybean 162.1327 4.077879 34.56 
Wheat 114.1433 5.607918 29.15 

                                                 
i Gross Value of Production and Production Costs are measured in dollars per acre 
ii Includes estimated hired and non hired labor expenses as well as capital expenses 
 

TABLE 4: CROP MEANS (ALL YEARS)i 

 
Gross Value of 

Production Crop Price Production Costsii 
Barley 114.0585 2.0503 38.6025 
Corn 248.0933 2.3809 66.5250 
Cotton 379.4199 0.5982 113.9850 
Oats 92.5216 1.6502 40.7175 
Peanut 690.1418 0.2781 143.1500 
Sorghum 233.5588 7.7913 51.7500 
Soybean 184.3621 3.6587 48.5675 
Wheat 125.3334 5.8351 31.0250 

                                                 
i Gross Value of Production and Production Costs are measured in dollars per acre 
ii Includes estimated hired and non hired labor expenses as well as capital expenses 
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TABLE 5: SUMMARY STATISTICS FOR CROP DATA 

 Mean 
Standard 
Deviation  Median Max Min 

Price 3.0304 2.5152 2.1800 10.9000 0.2340 
Production Costs 66.7900 45.5420 46.9900 238.3400 26.4500 

 
 

TABLE 6: AVERAGE PERCENT LAND IN EACH CROP BY COUNTY BY YEAR 
 1982 1987 1992 1997 

Barley 0.304 0.330 0.286 0.243 
Corn 8.162 7.339 7.616 7.328 
Cotton 0.507 0.515 0.568 0.692 
Oats 0.699 0.559 0.379 0.272 
Peanuts 0.122 0.119 0.141 0.127 
Sorghum 0.755 0.635 0.570 0.481 
Soybeans 6.377 6.244 5.790 6.407 
Wheat 4.884 4.027 3.928 3.673 
outshare 78.188 80.233 80.722 80.777 

 
 

TABLE 7: CLIMATE MEANS BY YEAR 
 1982 1987 1992 1997 
Climate - January  Temp -0.8313 -1.2355 -0.9775 -0.7942 
Climate - January Precip 68.8455 67.1068 68.5847 70.4353 
Climate - April  Temp 12.3550 12.2215 12.2840 12.1487 
Climate - April Precip 88.2673 88.6364 86.0388 85.8967 
Climate - July  Temp 23.9999 23.9175 23.9942 23.9447 
Climate - July Precip 97.3834 97.8729 96.1980 98.7156 
Climate - October  Temp 13.4032 13.4060 13.2888 13.1630 
Climate - October Precip 66.8854 74.0315 72.3692 76.6938 

 
 

TABLE 8: SUMMARY STATISTICS FOR CLIMATE DATA 

 Mean 
Standard 
Deviation Median Max Min 

Climate - January  Temp -1.1838 6.7777 -0.9565 21.0790 -18.5440 
Climate - January Precip 66.5820 52.7030 58.1100 1105.0000 4.2927 
Climate - April  Temp 12.0790 4.8483 12.3430 25.1410 -8.6318 
Climate - April Precip 85.1570 32.2980 86.4540 516.8600 2.1720 
Climate - July  Temp 23.8810 3.2531 24.3010 34.9280 6.7957 
Climate - July Precip 95.1170 35.5370 99.4420 258.5000 0.0023 
Climate - October  Temp 13.1760 4.1415 13.2290 26.8050 -2.0682 
Climate - October Precip 71.3850 26.5870 73.1450 586.7100 1.9983 
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TABLE 9: SOIL MEANS BY YEAR 
 1982 1987 1992 1997 
K Factor 0.2691 0.2691 0.2691 0.2691 
Flood Prone 0.0894 0.0894 0.0894 0.0894 
Sand 0.0979 0.0979 0.0979 0.0979 
Clay 0.1744 0.1744 0.1744 0.1744 
Salt 0.0021 0.0021 0.0021 0.0021 
Slope Length 75.1069 74.1968 73.4031 72.0652 
Wetland 0.0585 0.0585 0.0585 0.0585 

 
 

TABLE 10: SOIL DATA 

 Mean 
Standard 
Deviation  Median Max Min 

K Factor 0.2691 0.1133 0.2800 0.6400 0.0000 
Flood Prone 0.0894 0.2854 0 1 0 
Sand 0.0979 0.2971 0 1 0 
Clay 0.1744 0.3795 0 1 0 
Salt 0.0021 0.0462 0 1 0 
Slope Length 73.6930 132.7100 0.0000 3000.0000 0.0000 
Wetland 0.0585 0.2347 0 1 0 
Irrigated 0.2691 0.1133 0.2800 0.6400 0.0000 

 
 

TABLE 11: WEATHER MEANS BY YEAR 
 1982 1987 1992 1997 
Weather - January  Temp -0.8720 0.4601 0.7832 -0.0638 
Weather - January Precip 0.8527 0.0047 -0.0012 0.2808 
Weather - April  Temp -1.1936 0.1005 -0.3342 -1.5121 
Weather - April Precip -0.2194 -0.6637 -0.3193 0.1002 
Weather - July  Temp 0.0327 0.5005 -0.9520 -0.0165 
Weather - July Precip 0.1542 0.0086 0.8791 -0.1924 
Weather - October  Temp -0.0527 -1.2637 -0.2524 0.0870 
Weather - October Precip 0.2000 -0.8625 -0.4638 -0.0336 

 
 

TABLE 12: CLIMATE MEANS BY YEAR 
 1982 1987 1992 1997 
Climate - January  Temp -0.8313 -1.2355 -0.9775 -0.7942 
Climate - January Precip 68.8455 67.1068 68.5847 70.4353 
Climate - April  Temp 12.3550 12.2215 12.2840 12.1487 
Climate - April Precip 88.2673 88.6364 86.0388 85.8967 
Climate - July  Temp 23.9999 23.9175 23.9942 23.9447 
Climate - July Precip 97.3834 97.8729 96.1980 98.7156 
Climate - October  Temp 13.4032 13.4060 13.2888 13.1630 
Climate - October Precip 66.8854 74.0315 72.3692 76.6938 

 



 32

TABLE 13: OLS COEFFICIENT ESTIMATES  
Interaction Price Cost 

 -1.2688 -0.1087 
  -(14.1910) -(14.7150) 
Soil - K Factor 0.5886 0.0158 
 (7.7384) (2.9494) 
Soil - Flood Prone -0.0725 -0.0018 
 -(1.8495) -(0.6554) 
Soil - Sand 0.0878 0.0030 
 (3.8172) (2.1470) 
Soil - Clay 0.0943 0.0074 
 (5.9815) (5.9355) 
Soil - Slope Length 0.0006 0.0001 
 (11.2640) (20.1530) 
Soil - Wetland 0.0672 -0.0039 
 (1.5697) -(1.5426) 
Climate - January Temp 0.0013 -0.0059 
  (0.4833) -(27.1750) 
Climate - January Precip 0.0007 0.0000 
  (3.4960) (2.0625) 
Climate - April Temp -0.0191 -0.0020 
  -(2.6785) -(3.5481) 
Climate - April Precip -0.0008 0.0000 
  -(3.0315) (1.4230) 
Climate - July Temp 0.0595 -0.0027 
  (11.0200) -(6.1954) 
Climate - July Precip -0.0011 0.0002 
  -(6.9462) (15.6610) 
Climate - October Temp -0.0093 0.0119 
  -(1.0318) (17.6710) 
Climate - October Precip -0.0009 -0.0001 
  -(3.9531) -(6.2063) 
Weather - January Temp -0.0075 0.0019 
  -(1.1953) (3.5646) 
Weather - January Precip 0.0082 -0.0012 
  (2.3165) -(4.5551) 
Weather - April Temp -0.0002 -0.0049 
  -(0.0435) -(11.5110) 
Weather - April Precip 0.0049 -0.0004 
  (1.3820) -(1.6183) 
Weather - July Temp -0.0033 0.0032 
  -(0.6911) (9.6797) 
Weather - July Precip 0.0069 0.0015 
  (1.8970) (5.6999) 
Weather - October Temp -0.0105 0.0023 
  -(2.0926) (6.2304) 
Weather - October Precip 0.0062 -0.0022 
 (1.6389) -(7.2616) 
Results in this table are based on 20,214 observations. The data set 
includes four years of data for 2027 counties and 9 crops.  Observations 
with zero land allocated for a crop where dropped. Aggregate measures of 
plot characteristics are used in the estimation. t-scores in parenthesis.  
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TABLE 14: COEFFICIENT ESTIMATES FOR IV 
 Price Cost 
 0.2132 -0.0094 
 (4.1604) -(5.7609) 
Soil - K Factor 0.9166 0.0274 
 (7.7003) (3.2841) 
Soil - Flood Prone -0.0594 -0.0013 
 -(0.9175) -(0.2932) 
Soil - Sand 0.1287 0.0049 
 (3.4201) (2.0939) 
Soil - Clay 0.1593 0.0104 
 (6.3323) (5.5302) 
Soil - Slope Length 1.7393 -0.1820 
 (6.2842) -(6.3425) 
Soil - Wetland 0.0864 -0.0094 
 (1.2815) -(2.3389) 
Climate - January Temp -0.0245 -0.0059 
  -(6.1796) -(19.0450) 
Climate - January Precip 0.0008 0.0001 
  (2.5344) (2.0275) 
Climate - April Temp -0.0243 -0.0012 
  -(2.1680) -(1.3985) 
Climate - April Precip -0.0008 0.0000 
  -(1.9653) (0.2191) 
Climate - July Temp 0.0351 -0.0022 
  (3.8690) -(3.2813) 
Climate - July Precip -0.0010 0.0001 
  -(3.9535) (6.7092) 
Climate - October Temp 0.0317 0.0113 
  (2.2804) (11.3100) 
Climate - October Precip -0.0019 -0.0001 
  -(5.0521) -(2.3715) 
Weather - January Temp 0.0021 0.0025 
  (0.2149) (3.2406) 
Weather - January Precip 0.0116 -0.0012 
  (2.0263) -(2.8489) 
Weather - April Temp -0.0090 -0.0036 
  -(0.9729) -(5.2169) 
Weather - April Precip 0.0277 -0.0021 
  (4.2144) -(4.9454) 
Weather - July Temp -0.0300 0.0041 
  -(3.9430) (7.9932) 
Weather - July Precip 0.0276 0.0003 
  (5.1913) (0.8586) 
Weather - October Temp 0.0260 0.0007 
  (3.0049) (1.1937) 
Weather - October Precip -0.0062 -0.0020 
 -(1.0886) -(4.6244) 
Results in this table are based on 20,214 observations. The data set 
includes four years of data for 2027 counties and 9 crops.  Observations 
with zero land allocated for a crop where dropped. Aggregate measures of 
plot characteristics are used in the estimation. t-scores in parenthesis. 
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TABLE 15: COEFFICIENT ESTIMATES FOR THE FULL MODEL 
 Price Cost 
Mean  0.1236 -0.0204 
  (0.6704) -(4.0040) 
Standard Deviation  -0.0041 -0.0004 
  -(0.0209) -(0.0330) 
Soil - K Factor -0.5221 0.0683 
 -(0.5834) (1.2124) 
Soil - Flood Prone -0.3632 0.0059 
 -(0.7680) (0.2906) 
Soil - Sand -0.5606 0.0249 
 -(1.7396) (1.5123) 
Soil - Clay 0.0249 0.0081 
 (0.1160) (0.4739) 
Soil - Slope Length 0.0010 0.0000 
 (1.9122) -(0.1021) 
Soil - Wetland -0.9339 0.0397 
 -(1.2274) (2.3428) 
Climate - January Temp -0.1091 -0.0004 
  -(2.8944) -(0.1261) 
Climate - January Precip 0.0121 -0.0010 
  (4.6369) -(4.7220) 
Climate - April Temp 0.1397 -0.0135 
  (2.1470) -(2.7752) 
Climate - April Precip -0.0099 0.0007 
  -(3.2532) (3.1040) 
Climate - July Temp -0.0628 0.0018 
  -(1.0069) (0.3810) 
Climate - July Precip -0.0002 0.0003 
  -(0.1152) (2.8237) 
Climate - October Temp 0.0387 0.0144 
  (0.3713) (1.8510) 
Climate - October Precip 0.0014 -0.0002 
  (0.5480) -(1.0774) 
Weather - January Temp -0.3289 0.0300 
  -(5.0857) (6.8897) 
Weather - January Precip -0.0584 0.0056 
  -(1.8016) (2.4316) 
Weather - April Temp 0.1290 -0.0145 
  (2.3044) -(3.5053) 
Weather - April Precip 0.0016 -0.0037 
  (0.0310) -(1.1317) 
Weather - July Temp -0.0833 0.0088 
  -(1.6073) (2.4993) 
Weather - July Precip 0.0017 0.0028 
  (0.0375) (0.9059) 
Weather - October Temp -0.0380 0.0058 
  -(0.7842) (1.6657) 
Weather - October Precip -0.0790 0.0067 
 -(2.3457) (2.5819) 
Results in this table are based on 20,214 observations for four years of 
data for 2027 counties and 9 crops.  Observations with zero land allocated 
for a crop where dropped. 30 draws from each plot characteristics are 
used per county. t-scores in parenthesis. 
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TABLE 16: LOGIT OLS: MEDIAN OWN AND CROSS-PRICE ELASTICITIES 
 Barley Corn Cotton Oats Peanuts Sorghum Soybeans Wheat 
Barley  8.681300 -2.384600 -1.196000 -0.255970 -0.353610 -1.982300 -5.081600 -4.720100 
Corn  -0.424790 13.658000 -1.196000 -0.255970 -0.353610 -1.982300 -5.081600 -4.720100 
Cotton  -0.424790 -2.384600 4.364400 -0.255970 -0.353610 -1.982300 -5.081600 -4.720100 
Oats  -0.424790 -2.384600 -1.196000 6.879800 -0.353610 -1.982300 -5.081600 -4.720100 
Peanuts  -0.424790 -2.384600 -1.196000 -0.255970 2.577600 -1.982300 -5.081600 -4.720100 
Sorghum -0.424790 -2.384600 -1.196000 -0.255970 -0.353610 76.858000 -5.081600 -4.720100 
Soybeans -0.424790 -2.384600 -1.196000 -0.255970 -0.353610 -1.982300 19.479000 -4.720100 
Wheat  -0.424790 -2.384600 -1.196000 -0.255970 -0.353610 -1.982300 -5.081600 37.721000 
Percent change in market share of row i given a percent change in price of column j 
 

TABLE 17: LOGIT IV: MEDIAN OWN AND CROSS-PRICE ELASTICITIES 
 Barley Corn Cotton Oats Peanuts Sorghum Soybeans Wheat 
Barley  0.272910 -0.002409 -0.000041 -0.000231 -0.052662 -0.000130 -0.002610 -0.002166 
Corn  -0.000027 0.258650 -0.000041 -0.000231 -0.052662 -0.000130 -0.002610 -0.002166 
Cotton  -0.000027 -0.002409 0.107550 -0.000231 -0.052662 -0.000130 -0.002610 -0.002166 
Oats  -0.000027 -0.002409 -0.000041 0.239260 -0.052662 -0.000130 -0.002610 -0.002166 
Peanuts  -0.000027 -0.002409 -0.000041 -0.000231 0.001202 -0.000130 -0.002610 -0.002166 
Sorghum -0.000027 -0.002409 -0.000041 -0.000231 -0.052662 0.447120 -0.002610 -0.002166 
Soybeans -0.000027 -0.002409 -0.000041 -0.000231 -0.052662 -0.000130 0.321800 -0.002166 
Wheat  -0.000027 -0.002409 -0.000041 -0.000231 -0.052662 -0.000130 -0.002610 0.659790 
Percent change in market share of row i given a percent change in price of column j 
 

TABLE 18: FULL MODEL: MEDIAN OWN AND CROSS-PRICE ELASTICITIES 
 Barley Corn Cotton Oats Peanuts Sorghum Soybeans Wheat 
Barley  6.76900 -0.52699 -0.03176 -0.03219 -0.00417 -0.04243 -0.42962 -0.27551 
Corn  -0.02577 7.21760 -0.04825 -0.03913 -0.00723 -0.05162 -0.46463 -0.30896 
Cotton  -0.00731 -0.20551 1.97180 -0.01103 -0.00879 -0.00827 -0.07791 -0.04163 
Oats  -0.01579 -0.42258 -0.03039 5.48240 -0.00446 -0.03528 -0.32877 -0.21288 
Peanuts  -0.00333 -0.09727 -0.01731 -0.00515 0.92778 -0.00385 -0.03323 -0.01806 
Sorghum -0.07321 -1.94480 -0.07703 -0.12712 -0.00519 25.63900 -2.08750 -2.05180 
Soybeans -0.03811 -0.95634 -0.04889 -0.05945 -0.00469 -0.09460 11.32000 -0.61270 
Wheat  -0.05487 -1.47900 -0.05704 -0.09446 -0.00406 -0.19708 -1.50890 18.27400 
Percent change in market share of row i given a percent change in price of column j 
 



 36

 

 
FIGURE 1: SELECTED COUNTIES (2027 NON-IRRIGATED RURAL COUNTIES FOR 1982, 1987, 1992, AND 1997). 
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FIGURE 2: FREQUENCY DISTRIBUTION OF THE PRICE COEFFICIENT (BASED ON TABLE XV). 
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FIGURE 3: FREQUENCY DISTRIBUTION OF THE COST COEFFICIENT (BASED ON TABLE XV). 

 


