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Abstract

It is natural to think of belief revision as the interaction of belief
and information over time. Thus branching-time temporal logic seems a
natural setting for a theory of belief revision. We propose a logic based
on three modal operators: a belief operator, an information operator and
a next-time operator. Four logics of increasing strength are proposed.
The �rst is a logic that captures the most basic notion of minimal belief
revision. The second characterizes the qualitative content of Bayes�rule.
The third provides an axiomatization of the AGM theory of belief revision
and the fourth provides a characterization of the notion of plausibility
ordering of the set of possible worlds.

1 Introduction

The concepts of belief and belief revision are of central importance in many
disciplines. A variety of approaches and formal tools have been employed in the
study of these topics.
In their seminal contribution Alchourrón et al [1] model beliefs as sets of

formulas in a given syntactic language and belief revision is construed as an
operation that associates with every belief setK (thought of as the initial beliefs)
and formula � (thought of as new information) a new belief set K�

� representing
the revised beliefs. Several requirements are imposed on this operation in order
to capture the notion of �rational�belief change. Their approach has become
known as the AGM theory of belief revision and has stimulated a large literature
The notion of static belief, on the other hand, starting with Hintikka�s [13]

seminal contribution, has been developed mainly within the context of modal

�This paper was presented at the Seventh Conference on Logic and the Foundations of
Game and Decision Theory (LOFT7; Liverpool, July 2006) and at the KNAW Academy
Colloquium on New perspectives on Games and Interaction (Amsterdam, February 2007).
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logic. On the syntactic side a belief operator B is introduced, with the intended
interpretation of B� as �the individual believes that ��. Various properties of
beliefs are then expressed by means of axioms, such as the positive introspection
axiom B�! BB�, which says that if the individual believes � then she believes
that she believes �. On the semantic side Kripke structures (Kripke [15]) are
used, consisting of a set of states (or possible worlds) 
 together with a binary
relation B on 
, with the interpretation of �B� as �at state � the individual
considers state � possible�. The connection between syntax and semantics is
then obtained by means of a valuation V which associates with every atomic
sentence p the set of states where p is true. The pair h
;Bi is called a frame
and the addition of a valuation V to a frame yields a model. Rules are given
for determining the truth of an arbitrary formula at every state of a model; in
particular, the formula B� is true at state � if and only if � is true at every �
such that �B�, that is, if � is true at every state that the individual considers
possible at �. A property of the accessibility relation B is said to correspond to
an axiom if every instance of the axiom is true at every state of every model based
on a frame that satis�es the property and vice versa. For example, the positive
introspection axiom B�! BB� corresponds to transitivity of the relation B.
This paper attempts to bridge the gap between these two strands of the

literature, by proposing a framework that can accommodate both static beliefs
and belief revision. It is natural to think of belief revision as the interaction
of belief and information over time. Thus temporal logic is a natural starting
point. On the syntactic side, besides the �next-time�operator, our language
contains a belief operator B and an information operator I. The information
operator is not a normal operator and is formally similar to the �only knowing�
operator introduced by Levesque [16]. On the semantic side we use branching-
time frames to represent di¤erent possible evolutions of beliefs. For every date
t, beliefs and information are represented by binary relations Bt and It on a
set of states 
. As in the static setting, the link between syntax and semantics
is provided by the notion of valuation and model. The truth of a formula in a
model is de�ned at a state-instant pair (!; t).
We propose a sequence of logics of increasing strength, beginning with a

minimal logic for belief revision that captures the requirement that the agent
not change his beliefs if he is informed of something which he already believes.
The next logic, which we call LQBR, provides an axiomatization of the qualita-
tive content of Bayes�rule, which is central to the modeling of belief revision in
economics and game theory. A strengthening of LQBR provides an axiomatiza-
tion of the AGM theory of belief revision. We call this logic LAGM . The AGM
theory has been shown to be related to the notion of plausibility ordering. De-
pending on the context, the plausibility ordering is de�ned either on the set of
formulas (see [10]) or on the set of possible worlds (see [3], [12], [19]). Although
we provide a semantic characterization of logic LAGM which does not invoke the
notion of plausibility ordering, it is natural to ask whether logic LAGM implies
the existence of a plausibility ordering on the set of states 
 that rationalizes
belief revision. We show that the answer is negative. A strengthening of LAGM ,
which we call LPLS , is shown to provide the desired correspondence between a
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set of axioms for belief revision and the notion of plausibility ordering on the
set of states.
The results that we provide are frame characterization results, that is, we

show the correspondence between a set of axioms and a property of belief revi-
sion frames. The issue of completeness is explored in Bonanno [6].

2 Temporal belief revision frames

On the semantic side we consider branching-time structures with the addition
of a belief relation and an information relation for every instant t.

De�nition 1 A next-time branching frame is a pair hT;�i where T is a count-
able set of instants or dates and � is a binary relation on T satisfying the
following properties: 8t1; t2; t3 2 T;

(1) backward uniqueness if t1 � t3 and t2 � t3 then t1 = t2
(2) acyclicity if ht1; :::; tni is a sequence with ti � ti+1

for every i = 1; :::; n� 1, then tn 6= t1:

The interpretation of t1 � t2 is that t2 is an immediate successor of t1
or t1 is the immediate predecessor of t2 : every instant has at most a unique
immediate predecessor but can have several immediate successors.

De�nition 2 A temporal belief revision frame is a tuple hT;�;
; fBt; Itgt2T i
where hT;�i is a next-time branching frame, 
 is a set of states (or possible
worlds) and, for every t 2 T , Bt and It are binary relations on 
.

The interpretation of !Bt!0 is that at state ! and time t the individual con-
siders state !0 possible (an alternative expression is �!0 is a doxastic alternative
to ! at time t�). On the other hand, the interpretation of !It!0 is that at state
! and time t, according to the information received, it is possible that the true
state is !0: We shall use the following notation:

Bt(!) = f!0 2 
 : !Bt!0g and, similarly, It(!) = f!0 2 
 : !It!0g:

Temporal belief frames can be used to describe either a situation where the
objective facts describing the world do not change � so that only the beliefs
of the agent change over time � or a situation where both the facts and the
doxastic state of the agent change. In the computer science literature the �rst
situation is called belief revision, while the latter is called belief update (see
[14]). We shall focus on belief revision.

On the syntactic side we consider a propositional language with �ve modal
operators: the next-time operator  and it inverse �1, the belief operator
B; the information operator I and the �all state� operator A. The intended
interpretation is as follows:
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� : �at every next instant it will be the case that ��
�1� : �at every previous instant it was the case that ��
B� : �the agent believes that ��
I� : �the agent is informed that ��
A� : �it is true at every state that ��.

The �all state�operator A is needed in order to capture the non-normality of
the information operator I (see below). For a thorough discussion of the �all
state�operator see Goranko and Passy [11].

Note that, while the other operators apply to arbitrary formulas, we restrict
the information operator to apply to Boolean formulas only, that is, to formulas
that do not contain any modal operators.

De�nition 3 Boolean formulas are de�ned recursively as follows: (1) every
atomic proposition is a Boolean formula, and (2) if � and  are Boolean formulas
then so are :� and (� _  ).

Boolean formulas represent facts and we restrict information to be about
facts.

Given a temporal belief revision frame hT;�;
; fBt; Itgt2T i one obtains a
model based on it by adding a function V : S ! 2
 (where S is the set of atomic
propositions and 2
 denotes the set of subsets of 
) that associates with every
atomic proposition q the set of states at which q is true. Note that de�ning a
valuation this way is what frames the problem as one of belief revision, since
the truth value of an atomic proposition q depends only on the state and not
on the time.1 Given a model, a state !, an instant t and a formula �, we write
(!; t) j= � to denote that � is true at state ! and time t. Let k�k denote the truth
set of �, that is, k�k = f(!; t) 2 
�T : (!; t) j= �g and let d�et � 
 denote the
set of states at which � is true at time t, that is, d�et = f! 2 
 : (!; t) j= �g.
Truth of an arbitrary formula at a pair (!; t) is de�ned recursively as follows:

if q 2 S, (!; t) j= q if and only if ! 2 V (q);
(!; t) j= :� if and only if (!; t) 2 �;
(!; t) j= � _  if and only if either (!; t) j= � or (!; t) j=  (or both);
(!; t) j=� if and only if (!; t0) j= � for every t0 such that t� t0;
(!; t) j=�1� if and only if (!; t

00
) j= � for every t

00
such that t

00 � t;
(!; t) j= B� if and only if Bt(!) � d�et, that is,

if (!0; t) j= � for all !0 2 Bt(!);
(!; t) j= I� if and only if It(!) = d�et, that is, if (1) (!0; t) j= �

for all !0 2 It(!), and (2) if (!0; t) j= � then !0 2 It(!);
(!; t) j= A� if and only if k�kt = 
, that is,

if (!0; t) j= � for all !0 2 
.

Note that, while the truth condition for the operator B is the standard
one, the truth condition for the operator I is non-standard: instead of simply

1Belief update would require a valuation to be de�ned as a function V : S ! 2
�T :
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requiring that It(!) � d�et we require equality: It(!) = d�et. Thus our infor-
mation operator is formally similar to the �only knowing�operator introduced
by Levesque (see [16]), although the interpretation is di¤erent.

The following proposition (proved in [5], p. 148) says that the truth value of
a Boolean formula does not change over time: it is only a function of the state.
We denote by �B the set of Boolean formulas.

Proposition 4 Let � 2 �B. Fix an arbitrary model and suppose that (!; t) j=
�. Then, for every t0 2 T , (!; t0) j= �.

A formula � is valid in a model if k�k = 
� T , that is, if � is true at every
state-instant pair (!; t). A formula � is valid in a frame if it is valid in every
model based on it.

3 The basic logic

The formal language is built in the usual way (see [2]) from a countable set of
atomic propositions, the connectives : and _ (from which the connectives ^,
! and $ are de�ned as usual) and the modal operators , �1, B, I and A,
with the restriction that I� is a well-formed formula if and only if � is a Boolean

formula. Let �� def
= ::�, and ��1� def

= :�1:�. Thus the interpretation of
�� is �at some next instant it will be the case that � �while the interpretation
of ��1� is �at some immediately preceding instant it was the case that ��.
We denote by L0 the basic logic de�ned by the following axioms and rules

of inference.

AXIOMS:

1. All propositional tautologies.

2. Axiom K for , �1, B and A: for � 2 f;�1; B;Ag

(�� ^�(�!  ))! � (K)

3. Temporal axioms relating  and �1:

�!��1� (O1)
�!�1�� (O2)

4. Backward Uniqueness axiom:

��1�!�1� (BU)

5. S5 axioms for A:

A�! � (TA)
:A�! A:A� (5A)
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6. Inclusion axiom for B (note the absence of an analogous axiom for I):

A�! B� (InclB)

7. Axioms to capture the non-standard semantics for I: for � and  Boolean,

(I� ^ I )! A(�$  ) (I1)
A(�$  )! (I�$ I ) (I2)

RULES OF INFERENCE:

1. Modus Ponens: �; �! 
 (MP )

2. Necessitation for A, and�1: for every � 2 fA;;�1g, �
�� (Nec).

Note that from MP , axiom InclB and Necessitation for A one can derive
necessitation for B. On the other hand, necessitation for I is not a rule of
inference of this logic (indeed it is not validity preserving).

Remark 5 By MP, axiom K and Necessitation, the following is a derived rule
of inference for the operators,�1, B and A: �! 

��!� for � 2 f;�1; B;Ag:
We call this rule RK. On the other hand, rule RK is not a valid rule of infer-
ence for the operator I (despite the fact that axiom K for I can be shown to be
a theorem of L0).

4 The weakest logic of belief revision

Our purpose is to model how the factual beliefs of an individual change over
time in response to factual information. Thus the axioms we introduce are
restricted to Boolean formulas, which are formulas that do not contain any
modal operators (cf. De�nition 3).
We shall consider axioms of increasing strength that capture the notion of

minimal change of beliefs.

The �rst axiom says that if � and  are facts (Boolean formulas) and -
currently - the agent believes that � and also believes that  and his belief that
� is non-trivial (in the sense that he considers � possible) then - at every next
instant - if he is informed that � it will still be the case that he believes that
 . That is, if at a next instant he is informed of some fact that he currently
believes, then he cannot drop any of his current factual beliefs (�W�stands for
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�Weak�and �ND�for �No Drop�):2 if � and  are Boolean,

(B� ^ :B:� ^B )!(I�! B ): (WND)

The second axiom says that if � and  are facts (Boolean formulas) and
- currently - the agent believes that � and does not believe that  , then - at
every next instant - if he is informed that � it will still be the case that he does
not believe that  . That is, at any next instant at which he is informed of some
fact that he currently believes he cannot add a factual belief that he does not
currently have (�W�stands for �Weak�and �NA�stands for �No Add�):3 if � and
 are Boolean,

2The following axiom, which says that if the individual is informed of some fact that he
believed non-trivially at a previous instant then he must continue to believe every fact that
he believed at that time, is equivalent to (WND): if � and  are Boolean,

��1(B� ^B ^ :B:�) ^ I�! B 

(this, in turn, is propositionally equivalent to ��1(B� ^B ^ :B:�)! (I�! B ):
We prove equivalence by deriving each from the other. Derivation of (WND) from the above
axiom (�PL�stands for �Propositional Logic�):

1. ��1(B� ^B ^ :B:�)! (I�! B ) above axiom
2. ��1(B� ^B ^ :B:�)!(I�! B ) 1, rule RK for 
3. (B� ^B ^ :B:�)!��1(B� ^B ^ :B:�) Temporal axiom O1
4. (B� ^B ^ :B:�)!(I�! B ) 2,3, PL.
Derivation of the above axiom from (WND):
1. (B� ^B ^ :B:�)!(I�! B ) Axiom WND
2. : (I�! B )! :(B� ^B ^ :B:�) 1, PL
3. �1: (I�! B )!�1:(B� ^B ^ :B:�) 2, rule RK for �1

4. ��1(B� ^B ^ :B:�)! ��1 (I�! B ) 3, PL, de�nition of ��1
5. :(I�! B )!�1�:(I�! B ) Temporal axiom O2
6. ��1 (I�! B )! (I�! B ) 5, PL, de�nition of ��1 and �
7. ��1(B� ^B ^ :B:�)! (I�! B ) 4, 6, PL.

3The following is an equivalent formulation of (WNA): if � and  are Boolean,

��1(B� ^ :B ) ^ I�! :B .

We prove equivalence by deriving each from the other. Derivation of (WNA) from the above
axiom:

1. ��1(B� ^ :B ) ^ I�! :B above axiom
2. ��1(B� ^ :B )! (I�! :B ) 1, PL
3. ��1(B� ^ :B )!(I�! :B ) 2, rule RK for 
4. (B� ^ :B )!��1(B� ^ :B ) Temporal axiom O1
5. (B� ^ :B )!(I�! :B ) 3, 4, PL.

Now derivation of the above axiom from (WNA):
1. (B� ^ :B )!(I�! :B ) Axiom WNA
2. : (I�! :B )! :(B� ^ :B ) 1, PL
3. �1: (I�! :B )!�1:(B� ^ :B ) 2, rule RK for �1

4. ��1(B� ^ :B )! ��1 (I�! :B ) 3, PL and de�nition of ��1
5. :(I�! :B )!�1�:(I�! :B ) Temporal axiom O2
6. ��1 (I�! :B )! (I�! :B ) 5, PL
7. ��1(B� ^ :B )! (I�! :B ) 4, 6, PL
8. ��1(B� ^ :B ) ^ I�! :B 7, PL.
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(B� ^ :B )!(I�! :B ): (WNA)

Thus, by WND, no belief can be dropped and, by WNA, no belief can be
added, at any next instant at which the individual is informed of a fact that he
currently believes.

De�nition 6 An axiom is characterized by (or characterizes) a property of
frames if it is valid in a frame if and only if the frame satis�es that property.

Proposition 7 Axiom WND is characterized by the following property:

if t1 � t2, Bt1(!) 6= ? and Bt1(!) � It2(!) then Bt2(!) � Bt1(!): (PWND)

Proof. Fix a frame that satis�es PWND, an arbitrary model based on it and
arbitrary � 2 
, t1 2 T and Boolean formulas � and  and suppose that
(�; t1) j= (B�^B ^:B:�). Since (�; t1) j= :B:�, there exists an ! 2 Bt1(�)
such that (!; t1) j= �. Thus Bt1(�) 6= ?: Fix an arbitrary t2 2 T such that
t1 ! t2 and suppose that (�; t2) j= I�. Then It2(�) = d�et2 . Fix an arbitrary
� 2 Bt1(�): Since (�; t1) j= B�, (�; t1) j= �: Since � is Boolean, by Proposition 4
(�; t2) j= �, that is, � 2 d�et2 Hence � 2 It2(�). Thus Bt1(�) � It2(�). Hence,
by PWND Bt2(�) � Bt1(�): Fix an arbitrary ! 2 Bt2(�). Then ! 2 Bt1(�)
and, since (�; t1) j= B , (!; t1) j=  : Since  is Boolean, by Proposition 4
(!; t2) j=  . Thus (�; t2) j= B .
Conversely, suppose that PWND is violated. Then there exist � 2 
 and

t1; t2 2 T such that t1 � t2, Bt1(�) 6= ?, Bt1(�) � It2(�) and Bt2(�) * Bt1(�).
Let p and q be atomic propositions and construct a model where jjpjj = It2(�)�
T and jjqjj = Bt1(�)�T: Then (�; t1) j= (Bp^Bq^:B:q). By hypothesis, there
exists a � 2 Bt2(�) such that � =2 Bt1(�), so that (�; t2) 2 q: Hence (�; t2) 2 Bq
while (�; t2) j= Ip, so that (�; t2) 2 Ip ! Bq. Thus, since t1 � t2, WND is
falsi�ed at (�; t1):

Proposition 8 Axiom WNA is characterized by the following property:

if t1 � t2 and Bt1(!) � It2(!) then Bt1(!) � Bt2(!): (PWNA)

Proof. Fix a frame that satis�es PWNA, an arbitrary model based on it and
arbitrary � 2 
, t1 2 T and Boolean formulas � and  and suppose that
(�; t1) j= B� ^ :B . Then there exists a � 2 Bt1(�) such that (�; t1) j= : .
Fix an arbitrary t2 2 T such that t1 � t2 and suppose that (�; t2) j= I�. Then
It2(�) = d�et2 . Fix an arbitrary ! 2 Bt1(�). Since (�; t1) j= B�, (!; t1) j= �.
Since � is Boolean, by Proposition 4 (!; t2) j= � and therefore ! 2 It2(�). Thus
Bt1(�) � It2(�) and, by PWNA, Bt1(�) � Bt2(�). Since (�; t1) j= : and : 
is Boolean (because  is), by Proposition 4 (�; t2) j= : . Since � 2 Bt1(�) and
Bt1(�) � Bt2(�); � 2 Bt2(!) and therefore (�; t2) j= :B :
Conversely, suppose that PWNA is violated. Then there exist � 2 
 and

t1; t2 2 T such that t1 � t2 and Bt1(�) � It2(�) and Bt1(�) * Bt2(�). Let p
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and q be atomic propositions and construct a model where jjpjj = It2(�) � T
and jjqjj = Bt2(�)� T: Then (�; t1) j= Bp^:Bq and (�; t2) j= Ip^Bq; so that
(�; t1) j= (Bp ^ :Bq) ^ : (Ip! :Bq):

Let LW (where �W�stands for �Weak�) be the logic obtained by addingWND
and WNA to L0: We denote this by writing LW = L0 +WNA+WND. The
following is a corollary of Propositions 7 and 8.

Corollary 9 Logic LW is characterized by the class of temporal belief revision
frames that satisfy the following property:

if t1 � t2, Bt1(!) 6= ? and Bt1(!) � It2(!) then Bt1(!) = Bt2(!):

Logic LW captures a weak notion of minimal change of beliefs in that it
requires the agent not to change his beliefs if he is informed of some fact that
he already believes. This requirement is stated explicitly in the following axiom
(�WNC�stand for �Weak No Change�): if � and  are Boolean formulas,

(I� ^ ��1(B� ^ :B:�))! (B $ ��1B ): (WNC)

WNC says that if the agent is informed of a fact that he believed non-trivially
in the immediately preceding past, then he now believes a fact if and only if he
believed it then.

Proposition 10 WNC is a theorem of LW .

Proof. First of all, note that, since �1 is a normal operator, the following is
a theorem of L0 (hence of LW ):

��1� ^�1� ! ��1(� ^ �): (*)

It follows from (*) and axiom BU that the following is a theorem of L0:

��1� ^ ��1� ! ��1(� ^ �): (**)

The following is a syntactic derivation of WNC:
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1. ��1(B� ^ :B:�) ^ ��1B ! ��1(B� ^ :B:� ^B ) Theorem of L0
(see ** above)

2. ��1(B� ^ :B:� ^B ) ^ I�! B equivalent to
axiom WND
(see Footnote 2)

3. ��1(B� ^ :B:�) ^ ��1B ^ I�! B 1, 2, PL
4. I� ^ ��1(B� ^ :B:�)! (��1B ! B ) 3, PL
5. ��1(B� ^ :B:�) ^�1:B ! ��1(B� ^ :B:� ^ :B ) Theorem of L0

(see * above)
6. :(B� ^ :B )! :(B� ^ :B:� ^ :B ) Tautology
7. �1:(B� ^ :B )!�1:(B� ^ :B:� ^ :B ) 6, rule RK

for �1

8. ��1(B� ^ :B:� ^ :B )! ��1(B� ^ :B ) 7, PL,
de�nition of ��1

9. ��1(B� ^ :B:�) ^�1:B ! ��1(B� ^ :B ) 5, 8, PL
10. ��1(B� ^ :B ) ^ I�! :B equivalent to

axiom WNA
(see Footnote 3)

11. ��1(B� ^ :B:�) ^�1:B ^ I�! :B 9, 10, PL
12. I� ^ ��1(B� ^ :B:�)! (�1:B ! :B ) 11, PL
13. (�1:B ! :B )! (B ! ��1B ) tautology and

de�nition of ��1
14. I� ^ ��1(B� ^ :B:�)! (B ! ��1B ) 12, 13, PL
15. I� ^ ��1(B� ^ :B:�)! (B $ ��1B ) 4, 14, PL.

5 The logic of the Qualitative Bayes Rule

Logic LW imposes no restrictions on belief revision whenever the individual is
informed of some fact that he did not previously believe. We now consider a
stronger logic than LW . The following axiom strengthens (WND) by requiring
the individual not to drop any of his current factual beliefs at any next instant
at which he is informed of some fact that he currently considers possible (with-
out necessarily believing it: the condition B� in the antecedent of WND is
dropped): if � and  are Boolean,

(:B:� ^B )!(I�! B ): (ND)

The corresponding strengthening of (WNA) requires that if the individual
considers it possible that (�^: ) then at any next instant where he is informed
that � he does not believe that  :4 if � and  are Boolean,

4Axiom NA can alternatively be written as :B(�!  )!(I�! :B ), which says that
if the individual does not believe that whenever � is the case then  is the case, then - at any
next instant - if he is informed that � then he cannot believe that  . Another, propositionally
equivalent, formulation of NA is the following: �(I� ^ B )! B(�!  ), which says that if
there is a next instant at which the individual is informed that � and believes that  , then

10



:B:(� ^ : )!(I�! :B ): (NA)

Proposition 11 Axiom ND is characterized by the following property:

if t1 � t2 and Bt1(!) \ It2(!) 6= ? then Bt2(!) � Bt1(!): (PND)

Proof. Fix a frame that satis�es PND, an arbitrary model based on it and
arbitrary � 2 
, t1 2 T and Boolean formulas � and  and suppose that
(�; t1) j= :B:� ^B . Fix an arbitrary t2 2 T such that t1 � t2 and (�; t2) j=
I�: Then It2(�) = d�et2 . Since (�; t1) j= :B:�, there exists a � 2 Bt1(�) such
that (�; t1) j= �. Since � is Boolean, by Proposition 4 (�; t2) j= � and, therefore,
� 2 It2(�). Thus Bt1(�) \ It2(�) 6= ? and, by PND, Bt2(�) � Bt1(�): Fix an
arbitrary ! 2 Bt2(�). Then ! 2 Bt1(�) and, since (�; t1) j= B , (!; t1) j=  .
Since  is Boolean, by Proposition 4, (!; t2) j=  . Hence (�; t2) j= B .
Conversely, �x a frame that does not satisfy PND. Then there exist � 2 


and t1; t2 2 T such that t1 � t2, Bt1(�)\It2(�) 6= ? and Bt2(�) * Bt1(�). Let p
and q be atomic propositions and construct a model where kpk = Bt1(�)�T and
kqk = It2(�) � T . Then (�; t1) j= :B:q ^ Bp and (�; t2) j= Iq: By hypothesis
there exists a � 2 Bt2(�) such that � =2 Bt1(�): Thus (�; t2) 2 p and therefore
(�; t2) j= :Bp. Hence (�; t1) j= :B:q ^Bp ^ : (Iq ! Bp):

Proposition 12 Axiom NA is characterized by the following property:

if t1 � t2 then Bt1(!) \ It2(!) � Bt2(!): (PNA)

Proof. Fix a frame that satis�es PNA, an arbitrary model based on it and
arbitrary � 2 
, t1 2 T and Boolean formulas � and  and suppose that
(�; t1) j= :B:(�^: ). Fix an arbitrary t2 2 T such that t1 � t2 and suppose
that (�; t2) j= I�. Then It2(�) = d�et2 . Since (�; t1) j= :B:(� ^ : ), there
exists a � 2 Bt1(�) such that (�; t1) j= � ^ : . Since � and  are Boolean,
by Proposition 4 (�; t2) j= � ^ : . Thus � 2 It2(�) and, by PNA, � 2 Bt2(�).
Thus, since (�; t2) j= : ; (�; t2) j= :B .
Conversely, �x a frame that does not satisfy PNA. Then there exist � 2 


and t1; t2 2 T such that t1 � t2 and Bt1(�) \ It2(�) * Bt2(�). Let p and q be
atomic propositions and construct a model where kpk = It2(�)� T and kqk =
Bt2(�)� T . Then (�; t2) j= Ip ^Bq and, therefore, (�; t1) j= : (Ip! :Bq).
Since Bt1(�) \ It2(�) * Bt2(�) there exists a � 2 Bt1(�) \ It2(�) such that
� =2 Bt2(�). Thus (�; t1) j= p^:q. Hence (�; t1) j= :B:(p^:q), so that axiom
NA is falsi�ed at (�; t1).

One of the axioms of the AGM theory of belief revision (see [10]) is that
information is believed. Such axiom is often referred to as �Success� or �Ac-
ceptance�. The following axiom is a weaker form of it: information is believed
when it is not surprising. If the agent considers a fact � possible, then he will

he must now believe that whenever � is the case then  is the case.
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believe � at any next date at which he is informed that �: We call this axiom
�Quali�ed Acceptance� (QA): if � is Boolean,

:B:�!(I�! B�): (QA)

Proposition 13 Axiom (QA) is characterized by the following property:

if t1 � t2 and Bt1(!) \ It2(!) 6= ? then Bt2(!) � Tt2(!): (PQA)

Proof. Fix a frame that satis�es PQA, an arbitrary model based on it and
arbitrary � 2 
, t1 2 T and Boolean formula � and suppose that (�; t1) j=
:B:�. Then there exists a � 2 Bt1(�) such that (�; t1) j= �. Fix an arbitrary
t2 such that t1 � t2 and suppose that (�; t2) j= I�: Then It2(�) = d�et2 . Since
� is Boolean and (�; t1) j= �, by Proposition 4 (�; t2) j= �. Thus � 2 It2(�) and,
therefore, Bt1(�) \ It2(�) 6= ?. By PQA, Bt2(�) � Tt2(�): Thus (�; t2) j= B�.
Hence (�; t1) j=(I�! B�).
Conversely, suppose that PQA is violated. Then there exist � 2 
 and

t1; t2 2 T such that t1 � t2, Bt1(�) \ It2(�) 6= ? and Bt2(�) 6� Tt2(�): Let p
be an atomic proposition and construct a model where kpk = It2(�)� T . Then
(�; t1) j= :B:p and (�; t2) j= Ip. By hypothesis, there exists a � 2 Bt2(�)
such that � =2 Tt2(�). Thus (�; t2) 2 p and therefore (�; t2) j= :Bp: Hence
(�; t1) 2(Ip! Bp).

We call the following property of temporal belief revision frames �Qualitative
Bayes Rule�(QBR): 8t1; t2 2 T;8! 2 
;

if t1 � t2 and Bt1(!) \ It2(!) 6= ? then Bt2(!) = Bt1(!) \ It2(!): (QBR)

The expression �Qualitative Bayes Rule�is motivated by the following observa-
tion (see [4]). In a probabilistic setting, let P!;t1 be the probability measure over
a set of states 
 representing the individual�s beliefs at state ! and time t1; let
F � 
 be an event representing the information received by the individual at a
later date t2 and let P!;t2 be the posterior probability measure representing the
revised beliefs at state ! and date t2. Bayes�rule requires that, if P!;t1(F ) > 0,

then, for every event E � 
, P!;t2(E) =
P!;t1 (E\F )
P!;t1 (F )

: Bayes�rule thus implies

the following (where supp(P ) denotes the support of the probability measure
P ):

if supp(P!;t1) \ F 6= ?, then supp(P!;t2) = supp(P!;t1) \ F:
If we set Bt1(!) = supp(P!;t1), F = It2(!) (with t1 � t2) and Bt2(!) =
supp(P!;t2) then we get the Qualitative Bayes Rule as stated above. Thus in a
probabilistic setting the proposition �at date t the individual believes ��would
be interpreted as �the individual assigns probability 1 to the event d�et � 
�.
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Proposition 14 The conjunction of axioms ND, NA and QA characterizes
the Qualitative Bayes Rule.

Proof. It is a corollary of Propositions 11, 12 and 13.

Let LQBR = L0 +ND +NA+QA.

Remark 15 Logic LQBR contains (is a strengthening of) LW . In fact, WND
is a theorem of logic L0 +ND, since (B� ^ :B:� ^B )! (:B:� ^B ) is a
tautology, and WNA is a theorem of logic L0 +NA as the following derivation
shows:

1. :B(�!  )!(I�! :B ) Axiom NA5

2. B(�!  )! (B�! B ) Axiom K for B
3. (B� ^ :B )! :B(�!  ) 2, PL
4. (B� ^ :B )!(I�! :B ) 1, 3, PL.

6 The logic of AGM

We now strengthen logic LQBR by adding four more axioms.
The �rst axiom is the Acceptance axiom, which is a strengthening of Quali-

�ed Acceptance:

I�! B�: (A)

Remark 16 It is straightforward to show that axiom A is characterized by the
following property: 8! 2 
;8t 2 T; Bt(!) � It(!).

The second axiom says that if there is a next instant where the individual
is informed that � ^  and believes that �, then at every next instant it must
be the case that if the individual is informed that � then he must believe that
(� ^  ) ! � (we call this axiom K7 because it corresponds to AGM postulate
(K*7)): if �,  and � are Boolean formulas,

�(I(� ^  ) ^B�)!(I�! B ((� ^  )! �)): (K7)

Proposition 17 Axiom (K7) is characterized by the following property:

if t1; t2; t3 and � are such that t1 � t2, t1 � t3 and
It3(�) � It2(�) then It3(�) \ Bt2(�) � Bt3(�).

(PK7)

5Note that :(� ^ : ) is tautologically equivalent to (� !  ), so that :B:(� ^ : ) is
equivalent to :B(�!  ):
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Proof. Fix a frame that satis�es property PK7. Let � and t1 be such that
(a; t1) j= �(I(� ^  ) ^ B�), where �,  and � are Boolean formulas. Then
there exists a t3 such that t1 � t3 and (�; t3) j= I(� ^  ) ^B�. It follows that
It3(�) = d� ^  et3 . Fix an arbitrary t2 such that t1 � t2 and suppose that
(�; t2) j= I�. Then It2(�) = d�et2 . Since � and  are Boolean, by Proposition
4 d� ^  et3 = d� ^  et2 . Thus, since d� ^  et2 � d�et2 , It3(�) � It2(�). Hence
by PK7, It3(�) \ Bt2(�) � Bt3(�). Fix an arbitrary � 2 Bt2(�). If (�; t2) j=
:(�^ ) then (�; t2) j= (�^ )! �. If (�; t2) j= �^ , then, by Proposition 4,
(�; t3) j= �^ and, therefore, � 2 It3(�): Hence � 2 Bt3(�): Since (�; t3) j= B�,
(�; t3) j= � and, therefore, (�; t3) j= (�^ )! �. Since (�^ )! � is Boolean
(because �,  and � are), by Proposition 4, (�; t2) j= (� ^  )! �. Thus, since
� 2 Bt2(�) was chosen arbitrarily, (�; t2) j= B((� ^  )! �):
Conversely, suppose that PK7 is violated. Then there exist t1, t2, t3 and

� such that t1 � t2, t1 � t3, It3(�) � It2(�) and It3(�) \ Bt2(�) * Bt3(�):
Let p, q and r be atomic propositions and construct a model where jjpjj =
It2(�) � T , jjqjj = It3(�) � T and jjrjj = Bt3(�) � T . Then, (�; t3) j= Br
and, since It3(�) � It2(�), It3(�) = dp ^ qet3 so that (�; t3) j= I(p ^ q). Thus,
since t1 ! t3; (�; t1) j= �(I(p ^ q) ^ Br). By construction, (�; t2) j= Ip.
Since It3(�) \ Bt2(�) * Bt3(�), there exists a � 2 It3(�) \ Bt2(�) such that
� =2 Bt3(�). Thus (�; t2) 2 r; furthermore, since � 2 It3(�), (�; t3) j= p ^ q
and, by Proposition 4, (�; t2) j= p ^ q. Thus, (�; t2) 2 (p ^ q) ! r. Since
� 2 Bt2(�) it follows that (�; t2) 2 B ((p ^ q)! r). Hence, since t1 � t2,
(�; t1) 2(Ip! B((p ^ q)! r) so that axiom K7 is falsi�ed at (�; t1).

The third axiom says that if there is a next instant where the individual is
informed that �, considers �^ possible and believes that  ! �, then at every
next instant it must be the case that if the individual is informed that � ^  
then he believes that � (we call this axiom K8 because it corresponds to AGM
postulate (K*8)): if �,  and � are Boolean formulas,

�(I� ^ :B:(� ^  ) ^B( ! �))!(I(� ^  )! B�): (K8)

Proposition 18 Axiom (K8) is characterized by the following property:

if t1; t2; t3 and � are such that t1 � t2, t1 � t3, It3(�) � It2(�)
and It3(�) \ Bt2(�) 6= ? then Bt3(�) � It3(�) \ Bt2(�).

(PK8)

Proof. Fix a frame that satis�es property PK8. Let �,  and � be Boolean
formulas and let � and t1 be such that (�; t1) j= �(I� ^ :B:(� ^  ) ^ B( !
�)). Then there exists a t2 such that t1 � t2 and (�; t2) j= I� ^ :B:(� ^
 ) ^ B( ! �): Thus It2(�) = d�et2 and there exists a � 2 Bt2(�) such
that (�; t2) j= � ^  : Fix an arbitrary t3 such that t1 � t3 and suppose that
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(�; t3) j= I(� ^  ). Then It3(�) = d� ^  et3 . Since � ^  is a Boolean formula
and (�; t2) j= � ^  , by Proposition 4 (�; t3) j= � ^  and therefore � 2 It3(�).
Hence It3(�) \ Bt2(�) 6= ?. Furthermore, since � is Boolean, by Proposition 4
d�et3 = d�et2 . Thus, since d� ^  et3 � d�et3 it follows that It3(�) � It2(�).
Hence, by property PK8; Bt3(�) � It3(�)\Bt2(�). Fix an arbitrary  2 Bt3(�).
Then  2 It3(�)\Bt2(�) and, since (�; t2) j= B( ! �), (; t2) j=  ! �. Since
 ! � is a Boolean formula, by Proposition 4 (; t3) j=  ! �. Since  2 It3(�)
and It3(�) = d� ^  et3 , (; t3) j=  . Thus (; t3) j= �. Hence (�; t3) j= B�:
Conversely, �x a frame that does not satisfy property PK8. Then there exist

t1; t2; t3 and � such that t1 � t2, t1 � t3, It3(�)\Bt2(�) 6= ?; It3(�) � It2(�)
and Bt3(�) * It3(�) \ Bt2(�). Let p; q and r be atomic propositions and
construct a model where jjpjj = It2(�) � T , jjqjj = It3(�) � T and jjrjj =
(It3(�) \ Bt2(�)) � T . Then (�; t2) j= Ip and, since It3(�) � It2(�), if ! 2
It3(�) then (!; t) j= p ^ q for every t 2 T . Thus, since It3(�) \ Bt2(�) 6= ?,
(�; t2) j= :B:(p ^ q): Fix an arbitrary ! 2 Bt2(�); if ! 2 It3(�) then (!; t2) j=
r; if ! =2 It3(�) then (!; t2) j= :q; in either case (!; t2) j= q ! r. Thus
(�; t2) j= B(q ! r): Hence (�; t2) j= Ip ^ :B:(p ^ q) ^ B(q ! r) and thus
(�; t1) j= � (Ip ^ :B:(p ^ q) ^B(q ! r)). Since It3(�) = dqet3 and It2(�) =
dpet2 and, by Proposition 4 , dpet2 = dpet3 and It3(�) � It2(�), if follows that
It3(�) = dp ^ qet3 , so that (�; t3) j= I(p ^ q). Since Bt3(�) * It3(�) \ Bt2(�),
there exists a � 2 Bt3(�) such that � =2 It3(�) \ Bt2(�). Then (�; t3) 2 r
and therefore (�; t3) 2 Br. Thus (�; t3) 2 I(p ^ q) ! Br and hence, (�; t1) 2
(I(p ^ q)! Br), so that axiom K8 is falsi�ed at (a; t1).

The fourth axiom says that if the individual receives consistent information
then his beliefs are consistent, in the sense that he does not simultaneously
believe a formula and its negation (�WC�stands for �Weak Consistency�): if �
is a Boolean formula,

(I� ^ :A:�)! (B ! :B: ): (WC)

Proposition 19 Axiom WC is characterized by the following property: 8! 2

, 8t 2 T , if It(!) 6= ? then Bt(!) 6= ?.

Proof. Let � be a Boolean formula, � 2 
, t 2 T and suppose that (�; t) j=
I� ^ :A:�. Then It(�) = d�et and there exist � 2 
 that (�; t) j= �. Thus
It(�) 6= ? and, by the above property, Bt(�) 6= ?. Fix an arbitrary formula  
and suppose that (�; t) j= B . Then, 8! 2 Bt(�), (!; t) j=  . Since Bt(�) 6= ?,
there exists a  2 Bt(�). Thus (; t) j=  and hence (�; t) j= :B: .
Conversely, �x a frame that does not satisfy the above property. Then there

exist � 2 
 and t 2 T such that It(�) 6= ? while Bt(�) = ?. Let p be an atomic
proposition and construct a model where kpk = It(�) � T . Then (�; t) j= Ip.
Furthermore, since It(�) 6= ?, there exists a � 2 It(�). Thus (�; t) j= p and
hence (�; t) j= :A:p. Since Bt(�) = ?, (�; t) j= B for every formula  , so
that (�; t) j= Bp ^B:p. Thus WC is falsi�ed at (�; t).
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Let LAGM = L0+A+ND+NA+K7+K8+WC. Since QA can be derived
from A, logic LAGM contains (is a strengthening of) logic LQBR.
It is shown in [5] that LAGM can be viewed as an axiomatization of the

theory of belief revision due to Alchourrón et al [1], known as the AGM theory.
For a precise statement of this result and a proof the reader is referred to [5].

De�nition 20 An LAGM -frame is a temporal belief revision frame that satis�es
the following properties:
(1) the Qualitative Bayes Rule,
(2) 8! 2 
, 8t 2 T , Bt(!) � It(!),
(3) 8! 2 
, 8t 2 T , if It(!) 6= ? then Bt(!) 6= ?.
(4) 8! 2 
; 8t1; t2; t3 2 T ,
if t1 � t2, t1 � t3, It3(�) � It2(�) and It3(�) \ Bt2(�) 6= ?
then Bt3(�) = It3(�) \ Bt2(�).

An LAGM -model is a model based on an LAGM -frame.

Remark 21 It follows from Remark 16 and Propositions 11, 12, 17, 18 and 19
that logic LAGM is characterized by the class of LAGM -frames.

7 The logic of plausibility orderings

As is well-known the AGM axioms can be associated with the existence of a
plausibility ordering: depending on the context, the plausibility ordering is de-
�ned either on the set of formulas (see [10]) or on the set of possible worlds (see
[3], [12], [19]). Although our previous results establish a semantic characteriza-
tion of logic LAGM which does not invoke the notion of plausibility ordering,
it is natural to ask whether logic LAGM implies the existence of a plausibility
ordering on the set of states 
 that rationalizes belief revision.

De�nition 22 A plausibility well-ordering of 
 is a binary relation - on 

that satis�es the following properties:
(1) completeness (or connectedness): 8!; !0 2 
, either ! - !0 or !0 - !;
(2) transitivity: if ! - !0 and !0 - !00 then ! - !00;
(3) well-foundedness: there is no in�nite sequence h!1; !2; :::; !n; :::i such

that :::!n � !n�1 � ::: � !1 (where ! � !0 if and only if ! - !0 and !0 6- !).

Thus a plausibility ordering is a total order of 
 satisfying the property
that every non-empty subset of 
 has minimal elements. The interpretation
of ! - !0 is that state ! is at least as plausible as state !0 (! � !0 means
that ! is more plausible than !0 and ! � !0 means that ! is as plausible as
!0, where ! � !0 if and only if ! - !0 and !0 - !). If � � 
 we de�ne
min-� = f! 2 � : ! - !0; 8!0 2 �g. Well-foundedness ensures that if � 6= ?
then min-� 6= ?.
We want to investigate the conditions under which belief revision is guided by

a plausibility ordering, in the sense that the states that the individual considers
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possible (doxastically accessible) are precisely those that are the most plausible
among the ones that are consistent with the information received.

De�nition 23 A plausibility frame is a belief revision frame that satis�es the
following property: for every ! 2 
 and t 2 T , there exists a plausibility ordering
-!;t of 
 such that
(1) Bt(!) = min-!;t

It(!),
(2) if !0 2 Bt(!) and !00 2 
nBt(!), then !0 �!;t !00,
(3) for every t0 2 T , if t� t0 then Bt0(!) = min-!;t

It0(!).

Thus in a plausibility frame the set of states that the individual considers
possible at state ! and time t0, where t0 is an immediate successor of t, is the set
of most plausible states among the ones that are compatible with the information
received at state ! and time t0, using the plausibility relation associated with
(!; t). Furthermore, the states that the individual considers possible at (!; t)
are more plausible than all the other states. This requirement is necessary
in order to ensure that a plausibility frame is an LAGM frame. To see this,
consider the following frame: T = ft1; t2g; � = f(t1; t2)g, 
 = f�; �g, Bt1 =
It1 = f(�; �); (�; �)g; Bt2 = It2 = f(�; �); (�; �); (�; �); (�; �)g. The frame is
illustrated in Figure 1 where the relations It are represented by rectangles and
the relations Bt are represented by ovals.

α β

t 1

t 2
α β

Figure 1

Consider the following plausibility relation: ��;t1= f(�; �); (�; �); (�; �); (�; �)g.
Then the frame satis�es conditions (1) and (3) of De�nition 23 but not condi-
tion (2). Indeed this frame is not an LAGM frame since it does not satisfy the
Qualitative Bayes Rule: Bt1(�) \ It2(�) = f�g 6= ? and yet Bt2(�) = f�; �g 6=
Bt1(�) \ It2(�).
The following lemma will be used in the proof of the next proposition.

Lemma 24 Let - be a complete and transitive binary relation on 
 and X �
Y � 
. If

�
min- Y

�
\X 6= ? then min-X =

�
min- Y

�
\X:
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Proof. First we show that
�
min- Y

�
\X � min-X: If

�
min- Y

�
\X = ? there

is nothing to prove. Therefore let � 2
�
min- Y

�
\X: Then � 2 X and � - 

for all  2 Y: Since X � Y; it follows that � 2 min-X: Next we show that if�
min- Y

�
\X 6= ? then min-X �

�
min- Y

�
\X: Let � 2

�
min- Y

�
\X. Fix

an arbitrary  2 min-X. Then  2 X and  - �. Suppose that  =2 min- Y .
Then there exists a � 2 Y such that � �  (that is, � -  and  6- �). By
transitivity (since  - �), � � �, contradicting the fact that � 2 min- Y .

Proposition 25 Every plausibility frame is an LAGM frame, but the converse
is not true.

Proof. Fix an arbitrary plausibility frame and arbitrary ! 2 
 and t 2 T .
By (1) of De�nition 23, there exists a plausibility ordering -!;t of 
 such that
Bt(!) = min-!;t

It(!). Thus Bt(!) � It(!) and property (2) of de�nition 20
is satis�ed. Furthermore, if It(!) 6= ?, by (3) of de�nition 22, min-!;t

It(!) 6=
?: Hence property (3) of De�nition 20 is satis�ed. Next we show that the
Qualitative Bayes Rule is satis�ed. Let t1 be such that t � t1 and Bt(!) \
It1(!) 6= ?. By (3) of de�nition 23, Bt1(!) = min-!;t

It1(!): First we show
that if � 2 Bt(!) \ It1(!) then � 2 Bt1(!). Suppose not. Then there exists a
� 2 It1(!) such that � �!;t �. If � 2 Bt(!), then since, Bt(!) = min-!;t

It(!),
� �!;t �, yielding a contradiction. On the other hand, if � 62 Bt(!), then,
by property (2) of De�nition 23, since � 2 Bt(!), � �!;t �, again yielding
a contradiction. Next we show that if � 2 Bt1(!) and Bt(!) \ It1(!) 6= ?
then � 2 Bt(!) \ It1(!). Suppose that � 62 Bt(!) \ It1(!). Since Bt1(!) �
It1(!) (proved above), � 2 It1(!). Thus it must be that � 62 Bt(!). Let
� 2 Bt(!) \ It1(!). Then by property (2) of De�nition 23, � �!;t �. Since
� 2 It1(!) this contradicts the fact that Bt1(!) = min-!;t

It1(!). Finally we
need to show that property (4) of De�nition 20 is satis�ed. Let t2 and t3 be such
that t� t2, t� t3, It3(!) � It2(!) and It3(!)\Bt2(!) 6= ?. We need to show
that Bt3(!) = It3(!)\Bt2(!). By (3) of De�nition 23, Bt2(!) = min-!;t

It2(!)
and Bt3(!) = min-!;t

It3(!). The desired property then follows from Lemma
24, letting X = It3(!) and Y = It2(!).
To complete the proof we give an example of an LAGM frame which is

not a plausibility frame. Let T = ft1; t2; t3g, � = f(t1; t2); (t1; t3)g; 
 =
f�; �; ; �; "g; for every ! 2 
, It1(!) = 
 and Bt1(!) = f"g; It2(�) = It2(�) =
It2() = f�; �; g, It2(�) = It2(") = f�; "g, Bt2(�) = Bt2(�) = Bt2() = f�; �g,
Bt2(�) = Bt2(") = f"g; It3(�) = It3() = It3(�) = f�; ; �g, It3(�) = Bt3(�) =
f�g, It3(") = Bt3(") = f"g, Bt3(�) = Bt3() = Bt3(�) = f�; g. This frame
is illustrated in Figure 2. It is straightforward to check that it is an LAGM
frame (note, in particular, that property (4) of De�nition 20 is satis�ed at " and
vacuously satis�ed at every other state). However, it is not a plausibility frame.
To see this, suppose that -�;t1 is a plausibility relation on 
 that satis�es the
properties of De�nition 23. Then, since  2 It2(�) and  =2 Bt2(�) = f�; �g
it must be that  6-�;t1 �. On the other hand, since  2 Bt3(�) \ It3(�) and
Bt3(�) = f�; g, it must be that  -�;t1 �, yielding a contradiction.
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t 1

t 2 t 3

β α γ δ ε

β α γ δ ε β α γ δ ε

Figure 2

In order to capture the semantic notion of plausibility frame we need a
stronger logic than LAGM .

The following axiom says that if there is a next instant where the agent is
informed that � and believes that �, then at every next instant it must be the
case that he believes that �! �: if � and � are Boolean formulas

�(I� ^B�)!B (�! �) : (K7s)

Proposition 26 Axiom (K7s) is characterized by the following property:

if t1; t2; t3 and � are such that t1 � t2, t1 � t3 and
It3(�) \ Bt2(�) 6= ? then It3(�) \ Bt2(�) � Bt3(�):

(PK7s)

Proof. Fix a frame that satis�es property PK7s. Let � and t1 be such that
(a; t1) j= �(I(�^B�), where � and � are Boolean formulas. Then there exists a
t3 such that t1 � t3 and (�; t3) j= I� ^B�. It follows that It3(�) = d�et3 . Fix
an arbitrary t2 such that t1 � t2 and an arbitrary � 2 Bt2(�). If � =2 It3(�)
then (�; t3) 2 � and, since � is Boolean, by Proposition 4, (�; t2) 2 �, so
that (�; t2) j= (� ! �). If � 2 It3(�), then (�; t3) j= �; furthermore, by
property PK7s, � 2 Bt3(�) and, therefore, since (�; t3) j= B�, (�; t3) j= �.
Thus (�; t3) j= (� ! �). Since (� ! �) is Boolean (because � and � are), by
Proposition 4, (�; t2) j= (�! �). Thus (�; t2) j= B(�! �):
Conversely, suppose that PK7s is violated. Then there exist t1, t2, t3 and

�; � such that t1 � t2, t1 � t3, � 2 It3(�) \ Bt2(�) and � =2 Bt3(�): Let p
and q be atomic propositions and construct a model where jjpjj = It3(�) � T
and jjqjj = Bt3(�) � T . Then, (�; t3) j= Ip ^ Bq so that (�; t1) j= �(Ip ^
Bq). Since � =2 Bt3(�), (�; t2) 2 q and since � 2 It3(�), (�; t2) j= p. Thus
(�; t2) j= :(p ! q). Hence, since � 2 Bt2(�), (�; t2) 2 B(p ! q) and therefore
(�; t1) 2B(p! q).

Let LPLS = L0 + A + ND + NA + K7s + K8 + WC (�PLS� stands for
�plausibility�) be the logic obtained from LAGM by replacing axiom K7 with
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K7s. Then logic LPLS contains (is an extension of) logic LAGM . In fact, K7
can be derived from K7s.6

De�nition 27 An LPLS-frame is a temporal belief revision frame that satis�es
the following properties:
(1) the Qualitative Bayes Rule,
(2) 8! 2 
, 8t 2 T , Bt(!) � It(!),
(3) 8! 2 
, 8t 2 T , if It(!) 6= ? then Bt(!) 6= ?,
(4) 8! 2 
; 8t1; t2; t3 2 T , if t1 � t2, t1 � t3, It3(!) � It2(!) and

It3(!) \ Bt2(!) 6= ? then Bt3(!) � It3(!) \ Bt2(!),
(5) 8! 2 
; 8t1; t2; t3 2 T , if t1 � t2, t1 � t3 and It3(!) \ Bt2(!) 6= ?

then It3(!) \ Bt2(!) � Bt3(!).

Remark 28 It follows from Remark 16 and Propositions 11, 12, 18, 19 and 26
that logic LPLS is characterized by the class of LPLS-frames.

The next proposition shows that every LPLS-frame is a plausibility frame.
Thus logic LPLS captures the notion of belief revision based on a plausibility
ordering of the set of states.
Note, however, that not every plausibility frame is an LPLS-frame, that is,

the set of LPLS-frames is a proper subset of the set of plausibility frames, as
the following example shows: T = ft1; t2; t3g, � = f(t1; t2); (t1; t3)g; 
 =
f�; �; ; �g; for every ! 2 
, It1(!) = 
 and Bt1(!) = f�g; It2(�) = It2(�) =
f�; �g, It2() = It2(�) = f; �g, Bt2(�) = Bt2(�) = f�g, Bt2() = Bt2(�) =
f�g; It3(�) = f�g, It3(�) = It3() = f�; g; It3(�) = f�g, Bt3(�) = f�g,
Bt3(�) = Bt3() = fg, Bt3(�) = f�g. This frame is illustrated in Figure 3. It
is a plausibility frame, based on the following plausibility ordering: for every
! 2 
, � �!;t1  �!;t1 � �!;t1 �. However, it is not an LPLS-frame since it fails
to satisfy property (5) of De�nition 27: It3(�) \ Bt2(�) = f�g * Bt3(�) = fg.

t 1

t 2 t 3

α β γ δ

α α β γ δδγβ

Figure 3

6Proof.
1. �(I(� ^  ) ^B�)!(B ((� ^  )! �)): instance of K7s
2. B ((� ^  )! �)! (I�! B ((� ^  )! �)) tautology
3. B ((� ^  )! �)! (I�! B ((� ^  )! �)) 2, rule RK for 
4. �(I(� ^  ) ^B�)!(I�! B ((� ^  )! �)) 1, 3, PL.
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Proposition 29 Every LPLS-frame is a plausibility frame.

Proof. Fix an arbitrary LPLS-frame and arbitrary �0 2 
 and t0 2 T . We
will construct a plausibility ordering -�0;t0 that satis�es the three properties of
De�nition 23. Let T0 = ft 2 T : t0 � tg. Since T is countable, so is T0. Fix a
numbering of the elements of T0: T0 = ft01; t02; :::; t0n; :::g. For n 2 N (where N
is the set of natural numbers), de�ne fn : Bt0n(�0) ! N (with the convention
that t00 = t0) recursively as follows :

� f0(!) = 0, for every ! 2 Bt0(�0)

� for n > 0, let An = Bt0n(�0) \
�Sn�1

i=0 Bt0i(�0)
�
. If An 6= ?, for every

! 2 An let mn;! = min ffi(!) : i 2 f0; :::; n� 1g and ! 2 Bt0i(�0)g and
mn = min fmn;! : ! 2 Ang. For every ! 2 Bt0n(�0), de�ne

fn(!) =

�
n if An = ?
mn otherwise

:7

These functions can be de�ned for every frame, not necessarily plausibility
frames. For example, in the frame of Figure 2, letting t0 = t1, t01 = t2, t02 = t3
and �0 = � we have f0(") = 0; f1(�) = f1(�) = 1 and f2(�) = f2() = 1. In
the frame of Figure 3 we have f0(�) = 0, f1(�) = 1 and f2() = 2.
Finally let g : 
 n (

S1
i=0 Bt0i(�0)) ! f1g and, identifying functions with

sets of ordered pairs, de�ne

f =

� 1S
n=0

fn

�
[ g.

For example, in the frame of Figure 2 we have f(�) = f(�) = f() = 1,
f(�) = 1 and f(") = 0, while in the frame of Figure 3 we have f(�) = 1,
f(�) = 1, f() = 2 and f(�) = 0.
Now de�ne the following relation -�0;t0 on 
 (with the convention that, for

every n 2 N, n <1):
! -�0;t0 !0 if and only if f(!) � f(!0).

This relation is clearly a plausibility relation (complete, transitive and well-
founded). We want to show that if the frame we started with is an LPLS-frame
then
(1) Bt0(�0) = min-�0;t0

It0(�0),
(2) if !0 2 Bt0(�0) and !00 2 
nBt0(�0), then !0 ��0;t0 !00, that is, f(!0) <

f(!00),
(3) for every n > 0; Bt0n(�0) = min-�0;t0

It0n(!).
Properties (1) and (2) are satis�ed since, by (2) of De�nition 27, Bt0(�0) �
It0(�0) and by construction, for every ! 2 
, f(!) = 0 if ! 2 Bt0(�0) and
f(!) > 0 if ! =2 Bt0(�0). Fix an arbitrary n > 0. By (2) of De�nition 27,

7Note that, for every n 2 N, if An 6= ?, mn � n. We prove this by induction. First of all,
for n = 1 we have that A1 = Bt01 (�0)\Bt0 (�0) and if A1 6= ? then m1 = 0 < 1. Assume that
the statement is true for every p � n, that is, if p � n and Ap 6= ? then mp � p. We want to
show that it is true for n + 1. Suppose that An+1 6= ?. Fix an arbitrary ! 2 An+1. Then
for every i 2 f0; :::; ng, fi(!) is either equal to i or to mi and by the induction hypothesis
mi � i. Thus mn+1;! � n, so that mn+1 � n < n+ 1.
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Bt0n(�0) � It0n(�0). By construction, 8!; !0 2 Bt0n(�0), f(!) = f(!0). Thus
we only need to show that if ! 2 Bt0n(�0) and !0 2 It0n(�0) n Bt0n(�0) then
f(!) < f(!0). Since f(!) is either equal to n or to mn and, by Footnote 7,
mn � n, f(!) � n. Suppose that f(!0) < f(!). Hence f(!0) < n. Then there
exists a p < n such that !0 2 Bt0p(�0). Thus !0 2 Bt0p(�0) \ It0n(�0). It
follows from property (4) of De�nition 27 that Bt0p(�0) \ It0n(�0) � Bt0n(�0),
contradicting the hypothesis that !0 2 It0n(�0) n Bt0n(�0).

8 Conclusion

We proposed a temporal logic where information and beliefs are modeled by
means of two modal operators I and B, respectively. A third modal operator,
the next-time operator , enables one to express the dynamic interaction of
information and beliefs over time. The proposed logic can be viewed as a tem-
poral generalization of the theory of static belief pioneered by Hintikka [13] and
has the advantage of achieving a uniform treatment of static belief and of belief
revision by providing a modal logic translation of the AGM theory of belief
revision pioneered by Alchourrón et al [1].
The combined syntactic-semantic approach of modal logic allows one to state

properties of beliefs in a clear and transparent way by means of axioms and to
show the correspondence between axioms and semantic properties, such as the
qualitative version of Bayes�rule. The proposed framework can accommodate
not only the AGM theory of belief revision but also iterated revision, a topic that
has received considerable attention in recent years. In this literature a belief
state is represented by a set of beliefs together with a plausibility ordering. After
revising beliefs in response to a particular piece of information, the plausibility
ordering may change and there is much discussion in the literature about the
criteria that should guide such a change. (see, for example, [8], [17] and [18]).
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