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 “Intergenerational justice when future worlds are uncertain”* 

by 
Humberto Llavador (University of Pompeu Fabra) 

John E. Roemer (Yale University) 
Joaquim Silvestre (University of California, Davis) 

1. Introduction             This version: 3.23.09 

We wish to study the problem of intergenerational welfare maximization when the existence of 

future worlds is uncertain.  One of the major examples of this problem today concerns global 

warming, and how to structure resource use intertemporally in its presence.   The theoretical issues 

raised by uncertainty are quite complex, and in the interest of clarity, we will study only two 

simple models in this article – and neither of them explicitly models the effect of production on the 

biosphere and global temperature.  In a companion paper (Llavador, Roemer, and Silvestre, 2008), 

we in fact study a more complex version of the second model in this paper, which does take into 

account the biosphere as a renewable resource: but that paper studies only the case with no 

uncertainty concerning the existence of future generations.   We will suggest some inferences for 

the more complex problem, based on our results here, in the conclusion of the present paper. 

 We will study several (intergenerational) social welfare functions: utilitarian, Rawlsian, 

‘extended Rawlsian,’ and ‘Rawlsian with growth.’ The Rawlsian function is identified with the 

view of sustainability, in a model with production.  Sustainability, in our parlance, means 

sustaining human welfare over time at the highest possible level.  This is often called ‘weak 

sustainability,’ to be contrasted with ‘strong sustainability’, which advocates sustaining the 

physical stock of bio-resources – species variety, forests, and so on.  In another dimension, it is to 

be contrasted with the discounted-utilitarian approach, which does not advocate sustaining human 

welfare over time, but rather the maximization of a weighted sum of generational welfare levels. 

 There is a literature on Rawlsian social choice in the dynamic context, beginning with 

Arrow (1973), Dasgupta (1974), Solow (1974) and Phelps and Riley (1978). As far as we know, 

however, there is no literature on the Rawlsian problem when the existence of future generations is 

uncertain. 

 In the next section, we introduce an Ethical Observer (EO) who has von Neumann – 

Morgenstern preferences over the future history of the world.  These preferences can be utilitarian, 

Rawlsian or extended Rawlsian.   We show that the EO’s expected utility, evaluated at the lottery 
                                                 
* We thank Klaus Nehring, Andreu Mas-Colell and Geir Asheim for helpful comments, with the usual caveat. 
Financial support from the BBVA Foundation is gratefully acknowledged 
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which specifies stochastically when the human species will come to an end, gives rise either to 

‘discounted utilitarianism’ or ‘discounted sustainabilitarianism,’ depending on the EO’s 

preferences.  We apply these criteria to two alternative economies. 

First (Section 3), we consider a ‘cake-eating’ model: there is a single non-produced 

consumption good that must be allocated over all future generations. The perhaps surprising result 

is that the sustainabilitarian and the utilitarian recommend exactly the same solution to the cake-

eating problem (Theorem 1).  Thus, these two apparently very different social preference orders do 

not differ in their optimal choice in this simple economy. 

 We introduce in Section 4 a generalization of the classical Solow economic growth model.  

There are two links between generations: investment, which determines the change in capital 

stock, and education, which determines the transmission of skill to the next generation. It is 

obvious that the utilitarian and sustainabilitarian cannot in general choose the same path in this 

model, for with some parameter values, the discounted utilitarian program diverges, while the 

discounted sustainabilitarian program always has a (finite) solution.  Nevertheless, we show that in 

the case that the discounted utilitarian program converges, and if the initial capital-labor ratio of 

the economy is sufficiently large, then the two programs do have the same solution (Corollary, 

Section 4.4).  

 More important, perhaps, is the case when the discounted utilitarian program diverges – 

indeed, given the characterization of when this occurs (Theorem 4), this may be the empirically 

salient case.   The remarkable result is that in this case, the solutions of the discounted 

sustainabilitarian program (in the sense of the extended Rawlsian EO) and undiscounted 

sustainabilitarian program are identical (Theorem 5).   This case occurs when the economy is 

sufficiently productive, and the result says that great productivity renders it optimal for the 

sustainabilitarian EO to ignore the uncertainty concerning the possible disappearance of the human 

species in the future. 

 Some readers may find ‘sustainability,’ as we model it, too stark, as it precludes ‘human 

development,’ in the sense of increasing utility of the representative generational agent over time.  

In Section 4.5, we introduce growth, and study optimal paths when it is specified that welfare 

should grow at some exogenously specified rate g over time. 

 As noted above, it is only when the initial capital-labor ratio is above a certain lower bound 

that the discounted utilitarian and sustainabilitarian programs have the same solution.   In the 
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Appendix we compute an example showing how the optimal paths of these two programs differ 

when the initial capital-labor ratio is below this bound and the utilitarian program converges. The 

result is somewhat surprising.   

 In Section 4.6, we focus upon the case when the discounted utilitarian program diverges, 

and we note that, if an overtaking criterion is applied to order divergent paths, then the EO would 

recommend almost starving the early generations.    We contrast this with the discounted 

sustainabilitiarian, who in this case recommends equal utility for all future generations.  We find 

the latter recommendation much more appealing. 

   Section 5 concludes and offers some conjectures about the generalization of our results to 

the problem of intertemporal distribution in presence of global warming. 

 

2. Ethical Observers 

Consider an economy that will exist for an infinite number of generations; there is one 

representative agent at each date. Let P be an abstract set of feasible infinite utility streams, which 

may depend on a vector of initial conditions. Denote the generic utility stream by 

1 2 1( , ,...) ( )t tu u u ∞
=≡ .   

If the social welfare function, defined on P, is Ω , then the planner’s problem is : 

  1 2

1 2

max ( , ,...)

subject to ( , , ...) .

u u

u u

Ω

∈P
 

For example, if the planner is a utilitarian, then her maximization program is  

Program U. 1 21
max  subject to ( , ,...)tt

u u u
∞

=
∈∑ P .  

If the planner is a Rawlsian maximinner, then her maximization program is  

1 2max inf{ , ,...}u u 1 2 subject to ( , , ...)u u ∈P , 

which can also be written: 

Program SUS. Max Λ subject to 1 2( , , ...) , , 1.tu u u t∈ ≥ Λ ∀ ≥P  

 “SUS” stands for sustainability: the economy is sustainable if it chooses a path that 

guarantees a certain level of human welfare forever. Note that in programs U and SUS there is no 

uncertainty concerning the existence of future generations. 

We now introduce uncertainty. Suppose that there is an exogenous probability p that 

mankind will become extinct at each date, if it has not done so already. We suppose that the 
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preferences of the planner, whom we call an Ethical Observer (EO), satisfy the expected utility 

hypothesis. An outcome (or ‘prize’) is defined by a date T, interpreted as the last date before 

extinction, and a utility vector 1 2( , , ..., )Tu u u . Accordingly, her von Neumann-Morgenstern (vNM) 

utility function is defined on outcomes 1 2( ; , , ..., )TT u u u , with vNM utility values 

1 2( ; , , ..., )TW T u u u . Under our assumption of exogenous probabilities, the EO’s choice of a path 

1 2( , , ....)u u ∈P defines a lottery with expected utility  

2
1 1 2 1 2 3(1; ) (1 ) (2; , ) (1 ) (3; , , ) ...pW u p p W u u p p W u u u+ − + − +  

1
1 21

(1 ) ( ; , , ..., ).t
tt

p p W t u u u
∞ −
=

= −∑                                                (2.1) 

The vNM utility of a utilitarian EO if the world lasts T dates and she has chosen the path 

1 2( , ,....)u u  is  

1 1
( , ,..., )

TU
T tt

W T u u u
=

≡ ∑    , 

and the expected utility of 1 2( , ,....)u u  is  

 2
1 1 2 1 2 3(1 ) ( ) (1 ) ( ) ....pu p p u u p p u u u+ − + + − + + +         (2.2) 

 By grouping the terms in (2.2), it becomes 

 

2
1

2
2

2 2
3

1

1

(1 (1 ) (1 ) ...)

(1 ) (1 (1 ) (1 ) ...)

(1 ) (1 (1 ) (1 ) ...) ...

(1 ) .t
t

t

u p p p

u p p p p

u p p p p

p u
∞

−

=

+ − + − + +

− + − + − + +

− + − + − + +

= −∑

     (2.3) 

This immediately justifies the view that the utilitarian Ethical Observer should be, in the 

presence of uncertain future worlds, a discounted utilitarian, with the following optimization 

program.  

Program DU. 1
1 21

max  subject to ( , ,...)t
tt

u u uρ∞ −
=

∈∑ P , with 1 pρ ≡ − . 

We believe this is, indeed, the most solid justification for the discounted-utilitarian ethic1.  

Note, however, that the discount factor, 1 pρ ≡ − , should be very close to one, assuming that p is 

                                                 
1 Many economists attempt to justify the use of a discount factor on the grounds that individuals discount the utility 
they will receive at a later period in their lives.  This fact can only justify using such a (subjective) discount factor in 
the context of a model with an infinite number of generations, if we view the problem as isomorphic to a problem in 
which there is a single, infinitely lived agent.   We cannot accept the plausibility of such an isomorphism.  Just because 
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very close to zero.2 Indeed, we cannot justify, using this approach, the relatively small discount 

factors that are often used in intergenerational welfare economics.   

On the other hand, suppose that the planner is a Rawlsian: she wishes to maximize the 

minimum utility of all individuals who ever live. In this case her vNM utility function is  

1 1 2( ; , ..., ) min{ , ,., }R
T TW T u u u u u= ,         (2.4) 

and her expected utility associated with the path (u1, u2, …) is 1
1

1

(1 ) min{ ,..., }t
t

t

p p u u
∞

−

=

−∑ .  Her 

optimization program is then the following one. 

 Program R.  max 1
1

1

(1 ) min{ ,..., }t
t

t

p p u u
∞

−

=

−∑  1 2subject to ( , ,...)u u ∈P . 

Klaus Nehring, Andreu Mas-Colell and Geir Asheim have objected (in private 

communications) to (2.4) for the following reason. Interpreting the vNM values as ex 

post utilities, the External Observer will never ex post prefer a longer time span to a 

shorter one with the same utility values for the dates present in both,  i. e., she will ex 

post weakly prefer the outcome 1( ; , ..., )TT u u   to the outcome 1 1( ; , ..., , , ..., )T T TT u u u u+ +τ+ τ , 

and she will actually prefer the shorter one if 1min{ ,..., }t Tu u u<  for some t T> . 

Consider for instance the outcomes (5; , , , , )u u u u u −ε and (4; , , , )u u u u . In the second 

case, humans disappear at date 5; in the first case, at date 6, and the last generation has 

almost the utility of the previous ones.   Yet the EO under formulation (2.4) must ex post 

prefer the second, shorter outcome.   

The difficulty may not be critical as long as probabilities are exogenous, because 

the EO chooses, ex ante, lotteries with fixed probabilities, rather than outcomes. For 

instance, under our assumption of constant, exogenous probability, the EO would 

certainly choose the lottery ( , , , , ,0,0,....)u u u u u −ε over the lottery ( , , , ,0,0,0,....)u u u u . 

But the problem would become serious in a more realistic model with endogenous 

                                                                                                                                                 
an individual may today discount his future utility does not imply that ethical observers, today, are entitled to discount 
the utility of future generations.  This point was clearly stated by Ramsey (1928) in his pioneering work on the theory 
of saving, who wrote, “One point should be emphasized more particularly; we do not discount later enjoyments in 
comparison with earlier ones, a practice which is ethically indefensible and arises merely from weakness of the 
imagination; we shall, however, in Section II, include such a rate of discount in some of our investigations.”  
2 Indeed the Stern Report (2007) chooses ρ = 0.999 per annum, which we believe is reasonable. Nordhaus (2008), on 
the contrary, uses the low discount factor 0.985.   
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probabilities, where the intricacies of variable population ethics could not be avoided. 

Indeed, there are well-known criticisms of the maximin approach: but they become even 

more telling in the presence of a variable population, which is the case of future histories 

of the world with an unknown number of generations. 

Nehring’s suggestion is that we modify the vNM utility function to be 

    1 1 2( ; ,..., ) min{ , ,., }N
T TW T u u T u u u= .   (2.5) 

Thus, in the example just given, the EO would ex post prefer the first outcome as long as 

ε <
u

5
.   Formulation (2.5) confers a powerful role to the length T of human history (i. e., 

the population size across time). More generally, the EO may adopt a vNM utility 

function of the form  

1 1 2( ; , ..., ) (1 ( 1) ) min{ , ,., }T TW T u u T u u uθ θ= + − ,       (2.6) 

with [0,1]∈θ , which reduces to (2.4) when 0θ = and to (2.5) when 1θ = .  An EO with the vNM 

utility function of (2.6) will be called an Extended Rawlsian EO. 

 We study the optimization programs of the various EO’s in two particular economic 

models: the cake-eating economy, and the education & capital economy, which yield quite 

different results. We will say that two programs are equivalent if one possesses a solution if and 

only if the other possesses a solution, and when both possess a solution, the solutions are the 

same.  

Our main result in the cake-eating economy is the equivalence between programs DU and 

R: the Rawlsian ethical observer and the utilitarian ethical observer make identical choices in the 

presence of uncertain future worlds.  

In the education & capital economy, DU may diverge or converge: our main result there is 

that, if DU diverges, then, for any [0,1]∈θ , the EO’s optimization problem under the vNM of 

(2.6), which, as noted, includes as special case Program R, is equivalent to the uncertainty-free 

program SUS:  the Extended Rawlsian EO can then ignore uncertainty. 

We conclude this section with a lemma. 

Lemma 1. If  “ 1 2( , , ...)R Ru u solves Program R 1, 1R R
t tu u t+⇒ ≥ ∀ ≥ ” and  “ 1 2( , , ...)DU DUu u solves 

Program DU 1 , 1DU DU
t tu u t+⇒ ≥ ∀ ≥ ,” then Programs R and DU are equivalent. 
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Proof. Note that 1 2min{ , ,., }t tu u u u= , ∀t > 1, if and only if 1, 1t tu u t+≥ ∀ ≥ , in which case 

the objective function of Program R is 1

1

(1 )t
t

t

p p u
∞

−

=

−∑ , and Program R can be rewritten as 

Program CDU: max 1

1

(1 )t
t

t

p p u
∞

−

=

−∑  s. t. 1, 1t tu u t+≥ ∀ ≥  and 1 2( , , ...)u u ∈P .  

The objective function of Program CDU is that of Program DU multiplied by the positive 

constant p. If  “ 1 2( , ,...)DU DUu u solves Program DU 1 , 1DU DU
t tu u t+⇒ ≥ ∀ ≥ ,” then the constraints  

1t tu u +≥  can be added to Program DU, which then becomes equivalent to Program CDU.   

 Remark 1. Lemma 1 cannot cover the Extended Rawlsian EO with 0θ > , who has a 

different objective function.  

  

3. The cake-eating economy 

Postulate an economy with a single good, non-producible and initially available in the amount 0y .   

A consumption path is written 1 2( , , ....)y y , where ty  is the consumption of the agent (or 

generation) alive at date t. For t = 1, 2,…, the utility function of Agent t  is denoted 

: : ( )t tu y u y+ℜ →ℜ 6 , and assumed to be non-decreasing. Hence, a consumption path 

1 2( , , ....)y y induces the utility path 1 2 1 2( , , ...) ( ( ), ( ),...)u u u y u y= . Taking 0 1y = , the set of feasible 

consumption paths is 1 2 1
{( , ,....) : 1},tt

y y y
∞∞

+ =
ℑ ≡ ∈ℜ ≤∑ with the set of feasible utility paths  

1 2 1 2{( , ,....) : ( , , ...)  such that ( ), 1}t tu u y y u u y t∞= ∈ℜ ∃ ∈ℑ = ∀ ≥P . 

The discounted utilitarian program DU specializes to Program DU1, as follows, in the 

cake-eating economy. 

Program DU1. 1

1

max ( ) . . 1 ,  0, 1t
t t t

t

u y s t y y tρ
∞

−

=

≤ ≥ ∀ ≥∑ ∑  . 

Lemma 2. If 1 2( , , ...)DU DUy y solves Program DU1 , then 1 , 1DU DU
t ty y t+≥ ∀ ≥ . 

Proof. Suppose that for some T, 
1

DU DU
T Ty y+ > .   Then switch these two terms, and the new 

policy strictly dominates 1 2( , , ...)DU DUy y , because the coefficients of the objective function of DU1 

are strictly decreasing.  Contradiction.   

The Rawlsian Program R becomes, in the cake-eating economy, Program R1, as follows. 
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Program R1. 2
1 1 2 1 2 3max ( ) (1 ) min{ ( ), ( )} (1 ) min{ ( ), ( ), ( )} ...pu y p p u y u y p p u y u y u y+ − + − +  

                                    . . 1,   0,     1t ts t y y t≤ ≥ ∀ ≥∑ . 

Lemma 3. If 1 2( , , ...)R Ry y  solves Program R1, then 1, 1R R
t ty y t+≥ ∀ ≥ . 

Proof. Appendix. 

Theorem 1.  Programs DU1 and R1 are equivalent, and 1, 1,t ty y t+≥ ∀ ≥  at any solution. 

Proof. Immediate from Lemmas 1-3.     

 Theorem 1, perhaps surprisingly, tells us that the egalitarian EO behaves just like a 

discounted utilitarian  – and uses the same discount factor. 

 We now analyze the (common) solutions to programs DU1 and R1. 

Theorem 2. Let u be concave, differentiable on ++ℜ  and increasing, and suppose that 

0
lim ( )
y

u y
→

′ = ∞ . (I.e., u satisfies the “Inada condition.”) Let u(0)  be finite, and normalize this value 

to zero. If 1 2( , , ...)DU DUy y solves Program DU1 ,  then 0DU
ty >  for all t.  

Proof:  Appendix.  

 Example A1 in the Appendix provides an instance of utility function u (concave, 

increasing, differentiable except at zero) for which the programs of the theorem do not possess a 

solution. 

 The next theorem studies the case when the derivative of u at zero is finite. 

Theorem 3.  Let u be strictly concave, increasing, and differentiable on +ℜ ; let 

′u (0) = γ < ∞ .   Then Program R1 possesses a unique solution 1 2( , , ...)R Ry y , and there is a date T 

such that 0R
ty =  for all t ≥ T .   

Proof:  Appendix.  

Hence, the Rawlsian EO would prescribe zero consumption for all sufficiently distant 

generations. 

 We may thus summarize as follows, for functions u which are strictly concave, increasing, 

and differentiable except perhaps at zero: 

• If ′u (0) < ∞  , then solutions to programs DU1 and R1 exist, are unique, and are identical.  

Furthermore, there is a T such that the optimal policy awards zero resource to all dates 

t ≥ T ; 
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• If ′u (0) = ∞ , and if there is a solution to the programs, then it is unique and identical for 

both programs, and 0ty >  for all t.   

• There are functions u satisfying the Inada condition for which the programs have no 

solution.  But if ( )tu y′  does not approach infinity too fast as yt approaches zero, then a 

solution exists. 

 

4. An economy with education and capital 

 4.1. The model 

At date t, the available amount of labor, measured in skill units and denoted xt ,  is 

partitioned into three parts:  leisure ( xt
l ), labor used in the production of commodities ( xt

c ) and 

labor used to educate the next generation ( xt
e ).  Utility depends on consumption (ct) and leisure, 

and is given by the function u(ct,  xt
l ): when no confusion is likely, we will denote ut = u(ct,  xt

l ).   

Labor and (physical) capital ( k
ts ) produce output, which is partitioned into consumption and 

investment (it). The initial endowment is the pair of stocks 2
0 0( , )e kx s ++∈ℜ .  Given the initial 

endowment, a path for the economic variables is feasible if it satisfies the following inequalities 

for ∀t > 1: 

1(1 ) k k
t t ts i sδ −− + ≥   (law of motion of capital), 

( , )k c
t t t tf s x c i≥ +    (technology for the production of output), 

4 1
e e c
t t t tk x x x x− ≥ + + A  (education technology). 

The last inequality models the technology of education: the quantity of skilled labor at the 

next date t is simply a multiple k4 of the efficiency units of labor devoted to teaching at date t −1.  

Thus k4 , what will turn out to be a key parameter, is the rate at which skilled labor can reproduce 

itself intergenerationally, or, in another locution, the student-teacher ratio.  The problem is non-

traditional in one way: utility depends not upon raw leisure but upon educated leisure.  Thus, we 

assume that a person’s leisure activities are more fulfilling, if she is more highly educated.  One 

might challenge this as an elitist view, but we insist upon it, as we believe that education opens up 

for the individual increasing opportunities for the use of leisure.   We may think of education as 



   10

permitting the diversification of the leisure resource, which increases its usefulness. In the words 

of Martin Wolf (2007): 

    The ends people desire are, instead, what makes the means they employ valuable. Ends 
should always come above the means people use. The question in education is whether it, 
too, can be an end in itself and not merely a means to some other end – a better job, a 
more attractive mate or even, that holiest of contemporary grails, a more productive 
economy. 

The answer has to be yes. The search for understanding is as much a defining 
characteristic of humanity as is the search for beauty. It is, indeed, far more of a defining 
characteristic than the search for food or for a mate. Anybody who denies its intrinsic 
value also denies what makes us most fully human. 

 
 On the role of education in production, we are reminded of the recent work of Goldin and 

Katz (2008), who argue that the main reason for the excellent performance of the American 

economy in the twentieth century was universal education.  Similar points have been made with 

respect to South Korea and Japan.  Of course, the Goldin-Katz claim is somewhat different from 

ours – theirs is based on the growth of consumption, while ours is based on the centrality of the 

educational technology for growth of welfare. 

Assumption A. (a)  u and f are concave and homogeneous of degree one; 

               (b) u and f are strictly increasing on 2
++ℜ ; 

  (c) u(c,0) = 0 , for any c, and for any x, f (x,0) = f (0, x) = 0 ; 

  (d) k4 > 1 ; 

   (e) f (1, x)  is monotone increasing without bound in x; 

(f) for any x > 0 ,
0

( , )
lim
s

f s x

s→

∂
= ∞

∂
, and for any s > 0  

0

( , )
lim
x

f s x

x→

∂
= ∞

∂
. 

The sustainability program SUS specializes to Program SUS2( s0
k , x0

e ), as follows, in the 

education & capital economy. 

Program SUS2( s0
k , x0

e ).  max Λ subject to: 

       1

4 1

( )          ( , ) ,  1,

( )           (1 ) , 1,

( )            ( , ) , 1,

( )           , 1.

t t t

k k
t t t t

k c
t t t t t

e e c
t t t t t

v u c x t

a s i s t

b f s x c i t

d k x x x x t

δ −

−

≥ Λ ≥

− + ≥ ≥

≥ + ≥

≥ + + ≥

A

A

        

We have written the dual variables in parentheses for future use. 
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 We state a turnpike theorem for the SUS2  program, proved in a companion paper. 

Turnpike Theorem (Llavador, Roemer and Silvestre, 2008). 

1.  There is a ray 2ˆ
+Γ∈ℜ such that, if 0 0

ˆ( , )∈Γe kx s , then the solution path of Program  

SUS2 ( s0
k , x0

e ) is stationary. 

2. If 0 0
ˆ( , )∉Γe kx s , then along the solution path the sequence 1 1 2 2(( , ), ( , ),...)e k e kx s x s converges 

to a point on Γ̂ .  

3. Along the solution path, all constraints hold with equality (in particular, utility is 

constant over t).   

 

4.2. Discounted utilitarianism: the convergence condition ρ < 1 / k4  

The discounted utilitarian program DU of Section 2 specializes to program DU2( 0 0, ,k es xρ ), 

as follows, for the education & capital economy.  

Program DU2( 0 0, ,k es xρ ). 1

1

max ( , )t
t t

t

u c xρ
∞

−

=
∑ A subject to 

  
1

4 1

(1 ) , 1,              

( , ) , 1,

, 1.

k k
t t t

k c
t t t t

e e c
t t t t

s i s t

f s x c i t

k x x x x t

δ −

−

− + ≥ ≥

≥ + ≥

≥ + + ≥A

 

 Note that whether or not DU2 (ρ, s0
k , x0

e )  converges depends only on ρ  and the initial 

‘capital-labor ratio’ σ = s0
k / x0

e ,  by the homogeneity of the program.  (The set of feasible paths is 

a convex cone.) We are interested in understanding the set { (ρ,σ ) | DU2 (ρ, s0
k , x0

e )  converges}. 

Theorem 4. A. If ρ > 1 / k4  then Program DU2 (ρ, s0
k , x0

e )  diverges for all 2
0( , )exσ ++∈ℜ . 

B. If ρ < 1 / k4 , then Program DU2 (ρ, s0
k , x0

e )  converges for all 2
0( , )exσ ++∈ℜ . 

Proof: Appendix. 

 Theorem 4 is important for our theory, and perhaps surprising, for it says that the ‘power’ 

of the economy, in the sense of its capacity to cause the DU2 program to diverge, depends only on 

the efficiency of the educational technology, namely, the coefficient k4 . In particular, we need no 

special assumptions on the technology f other than the standard ones in Assumption A.  
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The proof of Theorem 4 is not particularly transparent, and so we provide here a more 

intuitive argument. Let x0
e = 1 . Suppose we can find positive numbers (σ ,c, i, xc , xl )  such that the 

following equations holds for some given positive g: 

   

4

( ) ,                                   (4.1)

( , ) ,                                  (4.2)

1 .                                 (4.3)

c

c l

g i

f x c i

k g x x

δ σ
σ
+ =

= +

= + + +

 

Then, from an initial endowment of (s0
k , x0

e ) = (σ ,1) , we can produce a balanced growth 

path in which all variables grow by a rate g at each period. Just notice that the investment defined 

by (4.1) will make s1
k = (1+ g)σ , that equation (4.3) says that x1

e = (1+ g)x0
e , and that the solution 

(c, i, xc , xl )  will grow at rate g from date one onwards, invoking the fact that all three equations 

are homogeneous of degree one in the five variables. Now, in order to solve these equations, it is 

obviously necessary that 1+ g < k4 , for otherwise (4.3) would have no positive solution for 

(xc , xl ) .  The interesting fact is that the converse is true as well: as long as 1+ g < k4 , we can 

produce the required solution, which would support a balanced growth path at growth rate g 

beginning at a capital-labor ratio σ . To see this, eliminate i using (4.1) (which will surely be 

positive for any positive σ); then we must find (σ ,c, xc , xl )  positive such that: 

  
4

( , ) ( ) ,

(1 ) ,

c

c l

f x c g

k g x x

σ δ σ= + +

− + = +
 

which is equivalent to finding (σ , xc )  such that 

  
4

( , ) ( ) ,

0 (1 ).

c

c

f x g

x k g

σ δ σ> +

< < − +
 

But this can be accomplished if and only if there exists σ > 0  such that 

  f (σ ,k4 − (1+ g)) > (g + δ )σ , 

or, invoking the fact that  f  is one-homogeneous, if and only if: 

   f (1,
k4 − (1+ g)

σ
) > g + δ . 

But since f increases without bound as we increase its labor argument, we can surely find 

σ  sufficiently small that this is true. Let the value of such an admissible σ  be denoted σ̂ .   
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 Now beginning with an arbitrary positive endowment vector (s0
k , x0

e ) , we can reach the 

capital-labor ratio σ̂  in a finite number of steps; from there we take off at any desired growth rate 

g < k4 −1 .  Since utility is also homogenous of degree one in (c, xl ) , it grows at that rate too.  So 

the growth factor of utility is (1+ g) < k4 .  It is now clear that Program DU2 diverges if and only 

if ρk4 > 1 .   

 The reason the above argument is only an intuition for, rather than a proof of, Theorem 4, 

is that a proof cannot limit itself to studying only balanced growth paths. 

We remind the reader that Theorem 4 depends, as well, on our assumption that the leisure 

argument of the utility function is measured in quality units, one that we strongly defend, 

although it may be somewhat controversial.   

 

4.3. The divergence of discounted utilitarianism and the sustainability of the extended 

Rawlsian path 

Consider the Extended Rawlsian EO, i. e., with vNM utility function given by (2.6) above, 

with [0,1]θ ∈ . Her optimization program for the education & capital economy can be written as 

follows. 

Program 0 0( , , )k eR s xθ ρ . 2
1 1 2 1 2 3max (1 2 ) min{ , } (1 3 ) min{ , , } ...u u u u u uρ θ ρ θ+ + + + +  subject 

to ( , )  t t tu u c x≡ A and 

  
1

4 1

 (1 ) ,                  

( , ) ,             

.         

k k
t t t

k c
t t t t

e e c
t t t t

s i s

f s x c i

k x x x x

δ −

−

− + ≥

≥ +

≥ + + A

 

Lemma 4. For any path 1 2( , , ...)u u ∞
+∈ℜ , the sum 1

11
[1 ( 1) ]min{ ,..., }t

tt
t u uρ θ∞ −

=
+ −∑  

converges. 
Proof. For any 1 2( , ,...)u u , 1 1 1min{ ,..., } min{ ,..., }t tu u u u +≥ .  Therefore 

1 1
1 1

1 1

[1 ( 1) ]min{ ,..., } [1 ( 1) ]t t
tt u u u tρ θ ρ θ

∞ ∞
− −+ − ≤ + −∑ ∑  
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0 1 2 3
1

1 2 3

2 3

3

[ ....

...

...

...

...]

u ρ ρ ρ ρ

θρ θρ θρ

θρ θρ

θρ

= + + + +

+ + + +

+ + +

+ +
+

 
2

1 1 1

1 2 3

1
[ ...] ...

1 1 1
t t t ρ ρρ θ ρ ρ θ

ρ ρ ρ

∞ ∞ ∞
− − − ⎛ ⎞

= + + + = + + +⎜ ⎟− − −⎝ ⎠
∑ ∑ ∑  

1

1 1 1

θ ρ
ρ ρ ρ

⎛ ⎞
= + < ∞⎜ ⎟− − −⎝ ⎠

. 

Hence, the sum 1
11

[1 ( 1) ]min{ ,..., }t
tt

t u uρ θ∞ −
=

+ −∑ of nonnegative terms converges.  

Lemma 5. If 1 2( , ,...)u u solves Program 0 0( , , )k eR s xθ ρ , then ut ≥ ut+1  for all t. 

Proof:  Suppose to the contrary that u2 > u1 . Then it follows that 1 1 2min{ , }u u u= . We can 

distribute back a small amount of resources from date 2 to date 1: reduce by a small amount ε the 

value of 1
ex , increase x1

l by ε, and decrease x2 by k4ε ,  making the date 2 agent take the reduction 

of  his skilled labor supply entirely in a reduction of leisure.  This will increase the values of 

1 1 2 and (1+ )min{ , }u u uθ  and will leave all other numbers 1(1 ( 1) min{ ,..., }tt u uθ+ −  unchanged or 

possibly greater. Hence, since the objective was finite by Lemma 4, it is now increased, a 

contradiction. The general claim follows from an induction argument.    

Although we have not worked out rigorous proofs, we trust that all the optimization 

programs in this section have unique solutions, and will so assume in what follows without explicit 

mention. 

Theorem 5. Let (s0
k , x0

k )∈Γ̂ .  If ρk4 ≥ 1 , then for [0,1]θ ∈ , the solution to Program 

0 0( , , )k eR s xθ ρ  is the solution to Program SUS2 (s0
k , x0

e ) .   

Proof:  Appendix.     

 Combined with Theorem 4, we have that, if DU2  diverges, then the Extended Rawlsian 

EO can ignore uncertainty in choosing the optimal path (at least in the case when the initial 

endowment vector lies on the ray Γ̂ : we conjecture that Theorem 5 is true even if the initial 

endowment is not on the ray Γ̂ , although we have no proof).  
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4.4. The case where discounted utilitarianism converges  

This section focuses on the case θ = 0, for which Program Rθ  is just the application of the 

Rawlsian Program R of Section 2 above to the education & capital economy: let us refer to it as 

Program R2 (ρ, s0
k , x0

e ) , or simply Program R2 . We expect that, if k4ρ < 1 , then the solution to 

Program R2  will not be the solution to Program SUS2, which is to say that the inequalities 1t tu u +≥  

of Lemma 5 will not all be satisfied with equality. Thus, the solution of the Rawlsian planner’s 

problem under uncertainty R2 may involve decreasing utilities over time. Indeed this is true for ρ  

sufficiently close to zero, as the following simple result shows. 

Theorem 6. Given (s0
k , x0

e ) , there is a number ρ > 0  such that, if ρ < ρ , then the solution 

to 2 0 0( , , )k eR s xρ  entails 1 2u u> on the solution path. 

Proof: Appendix. 

 Moreover, a consequence of Theorem 7 below, is that, under Cobb-Douglas assumptions,  

for any ρ < 1 / k4 , if the capital-labor ratio s0
k / x0

e  is sufficiently high, then utilities are strictly 

monotone decreasing on the optimal path. 

We now ask: If the DU2 (ρ, s0
k , x0

e )  program converges, is its solution the same as the 

solution to R2 (ρ, s0
k , x0

e ) ? By Lemmas 1 and 5, this will be the case if, at the solution of 

DU2 (ρ, s0
k , x0

e ) , utilities are weakly decreasing with time.  

 For an initial condition (s0
k , x0

e ) , define the ‘capital-labor ratio’ σ 0 = s0
k / x0

e .  We 

assume that the utility and production functions are Cobb-Douglas: 1( , )u c x c xα α−= , and 
1( , )f s x s xβ β−= . Define the following variables: 

  

1

4

4 4
1 1

1
1 0 1

1 1 1 1
0 1 1 1

( ) (1 ),

( ) (1 ) ( )(1 )
, , ,

1 1

( ) (1 ) ,

(1 ) , , , ((1 ) ) .

c l e t
t

c

k t k c c t l l t t
t t t t

E k

k E k E
x x x E

c x

s s x x E x x E c c E

αβ

β β β

β β

ρ δ
α β α
αβ αβ

σ δ

δ δ

−

− − − −

= −

− − − −
= = =

− −

= −

= − = = = −

� � �

� �
� � � � � � �
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Theorem 7. Assume that the functions u and f are Cobb-Douglas. Suppose that ρk4 < 1 , 

and that 
s0

k

x0
e

= σ 0 ≥ σ
*  where σ *  is the root of the equation 

1

1/( )1 1
4

1

(1 )
(1 ) ( )

(1 ) (1 )

c

l

x c
k

x

β
αβ β αβ ρ

δ σ σ αβ

−
⎛ ⎞ −

− =⎜ ⎟− −⎝ ⎠

� �
�

.         

Then the solution to DU2 (ρ, s0
k , x0

e )  is given by the geometric sequence: 

0 0 0 0, , , , 0k k e e e e l l e c c e
t t t t t t t t ts s x x x x x x x x x x i= = = = =� � � �  for all t ≥ 1 . 

Proof. Appendix. 

Corollary. Under the Cobb-Douglas assumptions, if ρk4 < 1 and σ 0 ≥ σ
* , then Programs 

DU2 (ρ, s0
k , x0

e )  and E2 (ρ, s0
k , x0

e )  are equivalent. 

Proof. Along the solution to Program DU2 , we have that ( ) 11 1
1 ((1 ) )

t

tu u E Eβ β α αδ
−− −= −  , 

where 1
1 1 1( )lu c xα α−= ; thus utilities are strictly decreasing with time because E < 1.    The result 

then follows from lemmas 1 and 5.   

 What happens when σ 0 < σ
* ? The solution of DU2 will not be the well-behaved 

solution of geometric decay of Theorem 7. Will, nevertheless, utilities still be monotone 

decreasing on the optimal path?  Perhaps, surprisingly, the answer is in general negative.  

Example A2 in the Appendix has the property that, along the solution path to Program 

DU2, u2 > u1, whereas the utilities from date 2 onwards decay geometrically as in 

Theorem 7.  

How do the solutions to DU2 and R2 compare when they are different and DU2 

converges?  To see this, we calculate the solution of R2 for the example in the Appendix.  There, 

the Rawlsian EO gives higher utility to the first generation than the utilitarian planner, but the 

reverse is true for all dates after that. In fact, the ratio of utilities for the two programs is constant 

for dates 2 and later at 1.015, with the larger utility associated with DU2: this is perhaps a 

surprise. 

This concludes our discussion of the relationship between the DU2 and R2 programs in the 

case where DU2 converges.   Unlike the cake-eating problem, the solutions to these two programs 

are not always identical – although they are identical when the initial capital-labor ratio is 

sufficiently large.  
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Based on Example A2 in the Appendix, we may conjecture what the general solution of 

DU2 (ρ, s0
k , x0

e )  looks like in the convergent case.   There will be a sequence of numbers 

 �σ > σ * > σ1 > σ 2 > .... > 0  where σ *  is given in Theorem 7, where, if σ k > σ 0 > σ k+1 , the first k 

dates will have it > 0 , and at date k+1, the capital-labor ratio will be  �σ , at which point the 

geometric-decay solution of Theorem 7 takes over.  The same pattern should be true in the 

solution to Program
2 0 0( , , )k eR s xρ , except that utility will be equal for all the dates when investment 

is positive. 

 

4.5. Growth 

 Some may find sustainability, in the sense of program SUS, to be too stark, as it leads to a 

constant level of human welfare until the disappearance of the species.   If, however, we treat 

resources, such as the biosphere, as of limited capacity, then sustainability may be the best we can 

hope for.   

Nevertheless, we now introduce a program which permits the growth of welfare.  

Program g-SUS (s0
k , x0

e ) ). max Λ subject to 

  

1

1

4 1

( ) ( , ) (1 ) , 1,

( ) ( , ) , 1,               

( ) (1 ) , 1,

( ) , 1.

l t
t t t

k c
t t t t t

k k
t t t t

e e c l
t t t t t

r u c x g t

a f s x c i t

b s i s t

d k x x x x t

δ

−

−

−

≥ + Λ ≥

≥ + ≥

− + ≥ ≥

≥ + + ≥

 

Program g-SUS maximizes the date-1 welfare subject to assuring that welfare grows at the 

rate g forever.   Obviously, Program g-SUS becomes SUS2 when g = 0.    

 What is the largest g for which Program g-SUS possesses a solution?   We give a partial 

answer with the next theorem.  

Definition.  A balanced growth path at rate g is a path satisfying the (at ),(bt )  and (dt )  

constraints of Program 0 0- ( , )k eg SUS s x  such that: 

 
st

k = (1+ g)st−1
k  and xt

e = (1+ g)xt−1
e  for t ≥1,

zt = (1+ g)zt−1  for all other variables z ∈ {xc , xl , i,c} for t ≥ 2.
 

Theorem 8.  Suppose that 0 ≤ g < k4 −1  and x0
e = 1 .  Suppose further that u and f 

are Cobb-Douglas. Then there exists a value s0
k  such that the solution to Program 
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0 0- ( , )k eg SUS s x  is a balanced growth path at rate g.  Conversely, if g ≥ k4 −1 , then there 

exists no such path for any value of s0
k .(We are not interested in the problem with 

negative g.) 

Proof: Appendix. 

 We expect that a turnpike theorem exists for the g-SUS model as well, and so, if and only 

if 0 ≤ g < k4 −1 , and given any value of s0
k , Program g-SUS will possess a solution at which all 

constraints bind, which converges to a balanced growth path at rate g. 

 

 4.6.  Social choice when DU2 (ρ, s0
k , x0

e )  diverges 

 According to Theorem 4, DU2 (ρ, s0
k , x0

e )  diverges when ρk4 > 1 . The usual way of 

choosing among paths in the case of divergence is to use a version of the overtaking criterion: the 

latest proposal that we have seen along these lines is that of Basu and Mitra (2007). The utility 

path 1 2( , , ...)u u is at least as good as the utility path 1 2( , , ...)u u according to the overtaking 

criterion  if there exists a T such that 
1 1

1 1

1 1

 and 
T T

t t
t t t t

t

u u t T u uρ ρ
− −

− −

=

≥ ≥ ⇒ ≥∑ ∑ . This defines a pre-

order (i.e., an incomplete order) on feasible paths when a program diverges.  

The proof of Theorem 8 showed that balanced growth paths exist for the education & 

capital economy as long as g < k4 −1 .   The condition for a divergence of such a path in Program 

DU2 is ρ(1+ g) ≥ 1 .   This condition surely holds when g is close to k4 −1  because 

ρ(1+ (k4 −1)) > ρk4 > 1 . 

 Let 1 2( , , ...)u u  and 1 2( , , ...)u u  be two feasible balanced-growth paths for a given initial 

endowment (s0
k , x0

e )  which grow at rates g1  and g2 , respectively,  where g2 > g1 .   It is easy to see 

that 1 2( , , ...)u u  is better than the utility path 1 2( , , ...)u u according to the overtaking criterion. But it 

is also the case that utility will be smaller for the early date(s) on the preferred path.   (To grow 

forever faster requires making early sacrifices.)   This is interesting, because discounted 

utilitarianism is usually associated with implying that the later generations sustain low utility.   

This, however, is only the case when the program converges.  Indeed, as the proof of Theorem 8 

shows, as the growth rate g approaches its unattainable supremum 4( 1)k −  (and these high-

growth-rate paths are the most desirable paths according to the overtaking criterion) , the utility of 
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the first generation approaches zero.   We do not take this as a criticism of overtaking: rather, it is 

a criticism of discounted utilitarianism. 

 In contrast, as Theorem 5 showed, ifρk4 ≥ 1 , then the solution to Program 

2 0 0( , , )k eR s xρ entails constant utility for all generations, at the highest possible level at which such 

a level can be sustained.  We find this distinctly superior, from the ethical viewpoint, to the 

recommendation of the discounted utilitarian.  

 Finally, we note that the case of divergence may be the salient one. By definition, 

4
1 1

t t
e e
t t

x x
k

x xτ− −

= = , where τ e  is the fraction of the labor force of generation t −1 that is devoted to 

teaching. As a rough approximation, assume that population growth is zero and that skill growth 

is zero; then xt = xt−1  and so, if τ e ≈ 0.05 , we have k4 ≈ 20 .   Since we have suggested, 

following Stern (2007),  that ρ = 0.999  is appropriate, we have ρk4 >> 1.  

   

5. Conclusion 

In the cake-eating problem, we showed that two Ethical Observers, facing uncertain possible 

future worlds, who have utilitarian and Rawlsian von Neumann Morgenstern preferences over 

risk, respectively, would recommend the same allocation of the exhaustible resource over future 

generations.  At first blush, it seems surprising that these two Observers, with apparently very 

different preferences, would agree on the recommended path.  The best analogy we can think of is 

with the solution of the problem with no uncertainty concerning the existence of future 

generations, and a finite horizon.  The utilitarian and the Rawlsian will recommend the same 

allocation of the exhaustible resource in this case – namely, split it equally among all generations.  

This solution is unique only if u is strictly concave – if u is linear, then the utilitarian is indifferent 

among all possible distributions of the resource.   

 We then introduced a generalization of the classical growth model, which includes an 

education sector.  Moreover, we postulated that welfare depends on consumption and educated 

leisure. Now, the program of the utilitarian Ethical Observer, in the presence of uncertainty, does 

not always converge, while the program of the sustainabilitarian does.    We characterized when 

the former program converges (Theorem 4), and we showed that when it does not converge, the 

(extended) sustainabilitarian proposes the same path as she would if there were no uncertainty 
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(Theorem 5).  We believe this is an important result, as parameter values in the real world are 

likely to be such that the discounted utilitarian program does not converge (see Section 4.6).

 Moreover, we argued that if this is the case, then the most desirable paths according to the 

discounted-utilitarian objective would leave the early generations with very low utility.   (This 

conclusion is very different from the recommendation of discounted utilitarianism in the 

convergent case.)   In contrast, when the discounted utilitarian program diverges, as we said, the 

sustainabilitarian recommends equal welfare for all generations. 

 Finally, we showed that when the discounted utilitarian program converges, it is not 

generally the case that the two Ethical Observers will recommend the same paths, although they 

do if the capital-labor ratio of the initial endowment vector is sufficiently large (Theorem 7).     

 In our companion paper Llavador, Roemer and Silvestre (2008), we study a model which 

is a ramification of the model of Section 4 of the present paper, one which articulates the issue of 

global warming.  In that model, production of the consumption-investment good affects 

negatively the quality of the biosphere (carbon emissions increase global temperature), and the 

quality of the biosphere enters into the utility of individuals.  As well as a production and 

education sector, that model also contains an R&D sector, where research produces knowledge 

that both improves the technology of commodity production, and enters directly into the utility of 

people.  (Knowledge and biospheric quality are global public goods.)  We  know that with 

appropriate parameter values, the discounted utilitarian program of the more ramified model 

diverges; we do not know whether analogues of the theorems presented here continue to hold.   

Naturally, we would be interested in eventually extending the present analysis to that model: we 

propose to think of the central results of the model of Section 4 as conjectures concerning the 

global-warming model.  In particular, if the discounted-utilitarian objective function diverges on 

the set of paths defined or the global-warming model, then we conjecture that the 

sustainabilitarian can ignore the kind of uncertainty studied in the present paper (Theorem 5).   

However, we must say that there is another kind of uncertainty, not discussed here, which is more 

the focus of current discussions of global warming: the uncertainty about the relationship between 

atmospheric carbon and global temperature (biospheric quality).   That kind of uncertainty 

involves quite different considerations from those studied here. 
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APPENDIX                                                    This version: 3.23.09 

 

Proof of Lemma 3. We claim that for every T,  1 2min{ , ,..., }R R R R
T Ty y y y= .   For suppose this 

were not the case, for some T.   Then let 1 2 1min{ , ,..., }R R R R
T Ty y y yε −= − .  By hypothesis, ε > 0 . 

Define the path 1 2( , , ...)y y as follows: 

     

,
2

,  for 1 1,
2( 1)

,  for .

R
T T

R
t t

R
t t

y y

y y t T
T

y y t T

ε

ε

= −

= + ≤ ≤ −
−

= >

  

Obviously 1 2( , ,...)y y is feasible for Program R1. In the move from 1 2( , ,...)R Ry y  to 1 2( , ,...)y y ,   the 

first T terms in the objective function of Program R1 all (strictly) increase.  Furthermore, all terms 

greater than the T th term either increase or stay the same.  Notice that Ty  remains at least 
ε
2

 

greater than the minimum of 1 2{ , ,...., }ty y y  for all t > T , since that minimum is bounded above by 

1 1min{ ,..., }Ty y − .   So  ( )Tu y  is never the minimum in any of the terms of the objective with t > T . 

Consequently, the objective function of Program R1 (obviously bounded) attains a higher value at 

1 2( , ,...)y y  than at 1 2( , ,...)R Ry y  , a contradiction.  

Proof of Theorem 2. Step 1. Let 1 2( , , ...)DU DUy y solve Program DU1 . Suppose there is a T 

such that 0DU
ty = . Then  T must be greater than one.   For if 1 0DUy = , simply define a new path 

1 2( , ,...)y y  by 1
DU

t ty y += for all t = 1, 2,… This path increases the value of the objective function in 

DU1, an impossibility.  Therefore T > 1 . 

Step 2.  Now let T be the smallest date for which 0DU
ty = .   Then it must be the case that 

for any sufficiently small ε > 0 , we have 1 1( ) ( ) ( )DU DU
T Tu y u u yε ρ ε− −− + ≤ , for otherwise, a transfer of 

ε  from date T-1 to date T would increase the value of the objective function in Program  DU1.    

But this inequality can be written 1 1( ) ( ) ( )DU DU
T Tu u y u yρ ε ε− −≤ − − .   Dividing both sides by ε and 

letting ε approach zero, this implies that 1

( )
lim ( )DU

T

u
u y

ερ
ε −′≤ .  But lim

ε→0

u(ε)

ε
= ∞ , which gives the 

desired contradiction.       
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Example A1. A function u for which Program DU1 has no solution. Consider the function 

1/: : ( ) .yu u y e dy y++ℜ →ℜ = −∫  We have 
1/

1/
2

( ) 1, ( )
y

y e
u y e u y

y
′ ′′= − = − . Thus, u is an increasing, 

concave function on the positive real line, and the Inada condition holds. If the path 1 2( , ,...)DU DUy y  

solves problem DU1 for this u, then 1 2( , , ...)DU DUy y  must be strictly positive because of the domain 

of u.  It follows that the first-order Kuhn-Tucker conditions hold – there is a number λ > 0  such 

that 1/
1

1 ,  for all ty

t
e t

λ
ρ −= + . But this implies that 

1

1

log[1 ]
t

t

y
λ
ρ −

=
+

,  and so it must be the case 

that 
1

log[1+
λ
ρt−1 ]t=1

∞

∑ = 1 . For large t, we can approximate the denominator in the terms in this 

series by log
λ
ρt−1 = logλ + (t −1)log

1

ρ
. But these terms grow like k(t −1) ,  where k = log(1 / ρ) , 

and so the series grows like 
1

k(t −1)
, and therefore it does not converge, a contradiction.  

Therefore there is no solution to program DU1, and hence to the Program R1, for this u.  

 The intuition here is that the derivative of u is increasing too fast (exponentially) as y 

approaches zero.  Let 1 2( , ,...)RV y y  be the value of the objective function of Program R1 at path 

1 2( , , ...)y y .  The result is perhaps surprising, because it is easy to see that the function 1 2( , ,...)RV y y  

is bounded on the feasible set.  Hence, it must be the case for this u that the finite supremum of 

1 2 1 2{ ( , ,...) | ( , ,...) is feasible}RV y y y y  is never attained. It is easy to check that if ( )
ry

u y
r

= , for any 

r ∈(−∞,1) , then Program DU1 has a solution.   The Inada condition holds for these functions, and 

the first order-conditions can be solved for a positive path whose components sum to unity. 

Proof of Theorem 3. Step 1.  We introduce the following sequence of programs.  Define 

Program DUT as: 
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1

1

1

max ( )

. . 1,                     

0, 1.

T
t

t
t

T

t
t

t

u y

s t y

y t

ρ −

=

=

≤

≥ ∀ ≥

∑

∑  

Step 2.  Note that for sufficiently large T, it must be the case that the solution 

1 2( , ,..., )Tz z z to Program DUT , which of course exists, has zT = 0 .   For if not, and 1 2( , ,..., )Tz z z >> 

0, then there are first order conditions of the form: 

   ρ t−1 ′u (zt ) = λ ,  some positive number λ. 

Of course it follows, from the usual argument, that 1 2( , ,..., )Tz z z  is a weakly decreasing sequence, 

and consequently, by choosing a large T,  we can guarantee that zT  is bounded above by an 

arbitrarily small number, because of the cake-eating constraint.   Consequently λ must be very 

close to ρT −1γ , and hence must be arbitrarily small.   But since ′u (z1) = λ , this implies that z1  

becomes arbitrarily large, contradicting the fact that zt∑ = 1 .     Thus there is a date T such that 

the solution to Program DUT  has zT = 0 .   

Step 3.  Now let T be the smallest date such that zT = 0 ; denote the solution to Program 

DUT   by 1 2( , ,..., )Tz z z .  We will assume that zt > 0 for t < T , but the proof can be modified in an 

obvious way if this is not the case. Then the following Kuhn-Tucker conditions must hold for the 

(concave) Program DUT : 

 There are non-negative numbers λ,μT  such that: 

   
1

1

( ) 0,  for ,

0.

t
t

T
T

u z t Tρ λ

ρ γ λ μ

−

−

′ − = <

− + =
 

Step 4. We claim that the path 1( ,..., ,0)T
Tz z z≡  is the solution to Program DUT+1.   To see 

this, write down the K-T conditions for this program, namely: 

 There are non-negative numbers (λ,μT ,μT +1)  such that: 

   

1

1

1

( ) 0,  for ,

0,

0.

t
t

T
T

T
T

u z t Tρ λ

ρ γ λ μ

ρ γ λ μ

−

−

+

′ − = <

− + =

− + =
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We note that the values of λ  and μT  continue to solve these FOCs, for the vector zT +1 , and 

we define the new shadow price by  

  μT +1 = λ − ρ
Tγ > 0 . 

Thus, since we have a concave program, we have shown that zT +1  is its solution. 

Step 5.  We continue in this manner to show that the vector zS = (z,0,0,....0)  is the solution 

for Program DUS  for any S > T .   The new Lagrangian multiplier at each step is defined by: 

  μS = λ − ρ
S−1γ ,  

and so we note, for use below, that lim
S→∞

μS = λ . 

Step 6.   We now claim that the vector 1 2( , , ...) ( ,0,0,....)z z z∞ ∞ ≡  solves Program DU1.   We 

proceed by contradiction.  Denote by 1 2( , ,...)DUV y y  the value of the objective function of Program 

DU1 at the path 1 2( , ,...)y y . Suppose the claim were false, and there is a path 1 2( , , ...)y y  which 

1 2( , , ...)DUV y y > 1 2( , , ...)DUV z z∞ ∞ . Write t t ty z g∞= +  for all t; of course, gt∑ = 0 .   We define a 

function :H ℜ→ℜ  as follows: 

 
1

1 1

1 1

( ) ( ) (0 ) (1 ( )) (0 )
T

t t
t t t t t t t

t t T t t T

H u z g u g z g gε ρ ε ρ ε λ ε μ ε
− ∞ ∞ ∞

− ∞ − ∞

= = = =

= + + + + − + + +∑ ∑ ∑ ∑ . 

Verify that (0) ( )DUH V z∞=  and that 1 2(1) ( , , ...)DUH V y y≥ , which follows from the fact that 

1 2( , ,...)y y  is feasible and that the Lagrangian multipliers are all non-negative.  Suppose we can 

show that H is maximized at zero:  then we will know that (0) (1)H H≥ , which implies that 

1 2( ) ( , , ...)DU DUV z V y y∞ ≥ , which is the desired contradiction. 

Step 7.  It therefore remains to show that zero maximizes H.  Note that H is a concave 

function, so it suffices to show that '(0) 0H = .    We compute: 

 
1

1 1

1 1

'(0) ( )
T

t t
t t t t t t

t t T t t T

H u y g g g gρ ρ γ λ μ
− ∞ ∞ ∞

− −

= = = =

′= + − +∑ ∑ ∑ ∑ . 

Grouping together all terms associated with the same gt , we see that  for t < T , the coefficient of 

gt  is ρ t−1 ′u (zt ) − λ = 0 , and for t ≥ T  the coefficient of gt  is ρ t−1γ − λ + μt = 0.  Thus the 

derivative vanishes at zero, as required. 

Step 8.  There is a final, transversality condition: We must show that the function H is well-

defined on the interval [0,1].  The only term that might cause concern is the last one, which is 
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ε μt
t=1

∞

∑ gt .   But since μt → λ  and gt → 0  and gt
t=T

∞

∑ = − gt
t=1

T −1

∑ , it follows that μt
t=1

∞

∑ gt  converges, 

and the proof is complete.  

Proof of Part A of Theorem 4. Step 1. Let x0
e = 1 .   We claim that for any small ε > 0 , we 

can find values σ and i such that: 

   4

4

( 1) ,

(( ) , ).

i k

i f k

ε δ σ
ε σ ε

= − + −

= −
 

By plotting the graphs of these two functions in (σ , i)  space, we can observe that they cross 

at the origin and at some positive value of i – by the concavity of f, and assumption A(f). 

Step 2.  Let ε < (k4ρ −1) / ρ , and let σ  be chosen to satisfy the equations in step 1, thus 

defining investment at date 1 when 

  x1
c = ε, x1

e = k4 − ε, c1 = 0 = x1
l . 

Note from step 1 that we may take s1
k = (k4 − ε)σ . Let V (s0

k , x0
e )  be the value function of 

Program DU2 ( s0
k , x0

e ), if it converges. Then we must have, by consideration of the choice of date 

1values above, V (σ ,1) ≥ 0 + (k4 − ε)ρV (σ ,1) . But (k4 − ε)ρ > k4ρ − (k4ρ −1) = 1 , implying that the 

last equation stated cannot hold, and hence Program DU2  must diverge beginning with endowment 

(σ ,1) .   

Step 3.  It immediately follows that Program DU2 diverges for σ̂ > σ .  (Just throw away 

some capital at date 1 and reduce the capital-labor ratio to σ .)  Moreover, the program must 

diverge for 0 < σ̂ < σ  as well (at date 1, invest very little in education, thus increasing the capital-

labor ratio at date 2 to a value s1
k / x1

e ≥ σ ).    

Proof of Part B of Theorem 4. Step 1. Let x0
e = 1 . The largest possible investment that can 

be made at date 1 if s0
k = σ is given by I(σ ) , defined by the equation: 

  f ((1−δ )σ + I(σ ),k4 ) = I(σ ) , 

because x1
c ≤ k4 .  Define σ *  such that: 

 *4
4 1 4*

((1 ), ) / ( (1 )) 1 ((1 ) , )
k

f k f kδ δ δ σ
σ

− − − = − − , 
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where 1( , ) ( , )
f

f s x s x
s

∂
=
∂

. A monotonicity argument, invoking the intermediate value theorem, 

shows that σ *  exists uniquely. 

 Let *
1 4((1 ) , )m f kδ σ= −   and note that 0 < m < 1 . 

Step 2. The graph of the function  

 z(i) = f ((1− δ )σ * + i,k4 )  

lies everywhere on or below the graph of the function 

 y(i) = f ((1−δ )σ *,k4 ) + mi  

and y(0) = z(0)  (by the concavity of f).  The second graph meets the 45 0 ray in (i, y)  space at the 

point i =
f ((1− δ )σ *,k4 )

1− m
.  Therefore 

 I(σ *) ≤
f ((1−δ )σ *,k4 )

1− m
. 

Step 3.  Hence, beginning at s0
k = σ * : 

 
s1

k ≤ (1− δ )σ * + I(σ *) ≤ (1− δ )σ * + f ((1− δ )σ *,k4 ) / (1− m) ≤

(1− δ )σ * + σ *(k4 − (1− δ )) = k4σ
*.

 

Therefore: 

 u(c1, x1
l ) ≤ u( f (s1

k ,k4 ),k4 ) ≤ u( f (k4σ
*,k4 ),k4 ) ≤ k4M ,  

where M ≡ u( f (σ *,1),1).  

Step 4.  For any number γ > 1 , we have: 

 f ((1−δ )γσ * + γ I(σ *),k4 ) < f ((1− δ )γσ * + γ I(σ *),γ k4 ) = γ I(σ *) . 

Consider the function Γ(x) = x − f ((1− δ )γσ * + x,k4 ) ;  note that ′Γ (x) > 0  (since m < 1).   

We have (from the above) that Γ(γ I(σ *)) > 0 , and by definition, Γ(I (γσ *)) = 0 .  It follows that 

I(γσ *) < γ I (σ * ) .   

Step 5. Now compute that 
* * * * * * 2 *

2 1 1 4 4 4 4 4 4(1 ) ( ) (1 ) ( ) (1 ) ( ) ((1 ) ( ))k k ks s I s k I k k k I k I kδ δ σ σ δ σ σ δ σ σ σ≤ − + ≤ − + ≤ − + = − + ≤  

which follows by invoking the definition of I(⋅) , and steps 3 and 4. 

By induction we have st
k ≤ k4

tσ * . But xt
c ≤ k4

t  and xt
l ≤ k4

t  as well, and so 
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u(ct , xt
l ) ≤ u( f (st

k ,k4
t ),k4

t ) ≤ k4
t M .    It follows that 1 1

4 4( )t t
tu k k Mρ ρ− −≤ < ∞∑ ∑ . 

Step 6. Now suppose that σ > σ * ; let σ = γσ *, γ > 1. Then beginning at s0
k = σ : 

s1
k ≤ (1− δ )σ + I (σ ) = (1− δ )γσ * + I (γσ *) < γ ((1− δ )σ * + I (σ *)),  by step 4,

                                                                   ≤ γ k4σ
* = k4σ .

 

And so u(ct , xt
l ) ≤ u( f (st

k ,k4
t ),k4

t ) ≤ k4
t u( f (σ ,1),1) , and as before: 

  1
4( )t

tk uρ − < ∞∑ . 

Step 7. Therefore DU2  converges for σ ≥ σ * . A fortiori, it converges for σ < σ * , by the 

free disposal of capital.    

Consider the constrained discounted utility program 2 0 0( , , )k eCDU s xρ  (which specializes 

program CDU in the proof of Lemma 1 to the education & capital economy), as follows. 

 Program 2 0 0( , , )k eCDU s xρ .  1

1

max ( , )t
t t

t

u c xρ
∞

−

=
∑ A  subject to:  

                                      

1

4 1

1 1

(1 ) ,

( , ) ,

,

( , ) ( , ), 1.

k k
t t t

k c
t t t t

e e c
t t t t

t t t t

s i s

f s x c i

k x x x x

u c x u c x t

δ −

−

− −

− + ≥

≥ +

≥ + +

≥ ≥

A

A A

 

Note that Program CDU2 is not concave, because of the last constraint, which is not quasi-

concave.  (The last constraint is quasi-concave only if u is linear.) Hence we cannot immediately 

use concave optimization theory to analyze Program CDU2.  

Lemma A1. The solution to R2 (ρ, s0
k , x0

e )  is also the solution to CDU2 (ρ, s0
k , x0

e ) . 

Proof. Immediate from Lemma 5.          

But the solution to CDU2 is in general different from the solution to DU2, the last being 

sometimes unbounded, while CDU2 is surely bounded. 

 Now if DU2 (ρ, s0
k , x0

e ) diverges, then utility is unbounded above over time. It seems 

reasonable to conjecture that, in this case, the last constraint of CDU2 (ρ, s0
k , x0

e )  will bind at every 

date. But if this is the case, then the solution to CDU2 (ρ, s0
k , x0

e )  is just the solution to SUS2 (s0
k , x0

e ) , 

which means that the egalitarian ethical observer in the environment with uncertain worlds will 

behave just as if there were no uncertainty. 

 We now prove that this conjecture is true.  To do so we make use of the following program. 
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   Program PP (ρ, s0
k , x0

e ) . 1

2

max
1

t
tρ λ

ρ

∞
−Λ

−
− ∑ subject to:    

                                          
1

1

4 1

( ) ( , ) , 1,

( ) , 1,

( ) ( , ) , 1,

( ) (1 ) , 1,

( ) , 1,

t t t t

t t t

k c
t t t t t

k k
t t t t

e c l e
t t t t t

v u c x t

m t

a f s x c i t

b s i s t

d k x x x x t

λ
λ λ

δ

+

−

−

≥ Λ − ≥

≥ ≥

≥ + ≥

− + ≥ ≥

≥ + + ≥

A

   

where λ1 ≡ 0 .   Dual variables are stated to the left of the constraints.  The primal variables in 

Program PP are all the usual economic variables, plus the variables Λ,λ2 ,λ3,....  We call the usual 

economic variables of a feasible path in Program PP the economic part of the path.  Note that PP 

is a concave program, so it may be solved with traditional methods.   

Lemma A2. Let (s0
k , x0

k )∈Γ̂ .3  If ρk4 ≥ 1 , then the solution to Program SUS2 (s0
k , x0

e )  forms 

the economic part of the solution to Program PP (ρ, s0
k , x0

e ) ).   

Proof. Step 1. We first write down the Kuhn-Tucker conditions which characterize the 

solution to Program SUS2( s0
k , x0

e ).  These are:  

              

1

1

2

1 1

2

4 1

( 1) ( ) : 1 ,

( 2) ( ) : [ ] ,

( 3) ( ) : [ ] ,

( 4) ( ) : [ ] (1 ) 0,

( 5) ( ) : ,

( 6) ( ) : [ ] ,

( 7) ( ) : ,

t

t t t

l
t t t

k
t t t t

t t t

c
t t t

e
t t t

SUS v

SUS c v u t a

SUS x v u t d

SUS s a f t b b

SUS i a b

SUS x a f t d

SUS x k d d

δ

∞

+

+

∂Λ =

∂ =

∂ =

∂ + − − =

∂ =

∂ =

∂ =

∑

 

where we use the notation 
 
u1[t] ≡

∂
∂ct

u(ct , xt
l ), u2[t] ≡

∂
∂xt

l u(ct , xt
l ) , etc.  At the solution to SUS2, 

non-negative dual variables satisfying the above conditions exist and all the primal constraints are 

binding.   Denote the primal (economic) variables at the solution by{Λ̂, ĉt , x̂t ,...} . If  (s0
k , x0

l )∈Γ̂ , 

then, because the solution is stationary, u1[t] = u1[1]  for all t, and likewise for the other derivatives 

of u and f.  
                                                 
3 Recall the definition of Γ̂  in the statement of the Turnpike Theorem. 
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Step 2. Define λ̂t = Λ̂ , for all t ≥ 2 .   We wish to show that 

Φ̂ = {Λ̂, ĉt , x̂t ,...}∪ {λ̂t } comprises the solution to Program PP (ρ, s0
k , x0

e ) ).   Let 

Φ = {Λ,ct , xt ,...}∪ {λt } be any feasible path for Program PP (ρ, s0
k , x0

e ) .   Denote the difference 

between these two paths by: 

 Δct = ct − ĉt , ΔΛ = Λ − Λ̂ , etc.; 

that is, schematically, ΔΦ ≡ Φ − Φ̂ .   

 Define: 

                     

ˆ / (1 ), 1,

ˆ / (1 ), 1,

ˆ / (1 ), 1,

ˆ / (1 ), 1.

t t

t t

t t

t t

a a t

b b t

v v t

d d t

ρ

ρ
ρ

ρ

= − ≥

= − ≥

= − ≥

= − ≥

 

  Now define the following function of a real variable: 

 

Θ(ε) =
Λ̂ + εΔΛ

1− ρ
− ρ t−1

2

∞

∑ ελt + v̂t
1

∞

∑ u(ĉt + εΔct , x̂t
l + εΔxt

l ) − (Λ̂ + εΔΛ) + (λ̂t + εΔλt )( )+
mt

1

∞

∑ ε(λt+1 − λt ) + ât
1

∞

∑ f (ŝt
k + εΔst

k , x̂t
c + εΔxt

c − (ĉt + εΔct ) − (ît + εΔit )( )+

b̂t
1

∞

∑ (1− δ )(ŝt−1
k + εΔst−1

k ) + (ît + εΔit ) − (ŝt
k + εΔst

k )( )+

d̂t
1

∞

∑ k4 (x̂t−1
e + εΔxt−1

e ) − (x̂t
e + εΔxt

e ) − (x̂t
c + εΔxt

c ) − (x̂t
l + εΔxt

l )( ).

 

All the variables in this function are defined except for the sequence of 

numbers 1 2( , , ...)m m .   Note that Θ  is a concave function, a consequence of the concavity of u and 

f.   Note that Θ  is defined on [0,1] , since the feasible set of Program PP is convex. Suppose we 

can produce a non-negative sequence 1 2( , , ...)m m such that the derivative of Θ  exists and is zero at 

ε = 0 . Then Θ  will be maximized at zero, and so in particular, Θ(0) ≥ Θ(1) . Now note that 

Θ(0) =
Λ̂

1− ρ
, which is the value of the objective function of Program PP at the path Φ̂ ; all the 

other terms vanish, since all the primal constraints of Program SUS2 are binding on this path.   We 

also have: 
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Θ(1) =
Λ

1− ρ
− ρ t−1

2

∞

∑ λt + non-negative terms .   It will therefore follow that  

                       
Λ̂

1− ρ
≥

Λ
1− ρ

− ρt−1

2

∞

∑ λt , 

proving that the value of the objective function of Program PP at Φ̂  dominates the value at any 

other feasible path, and hence Φ̂  is a solution to Program PP. 

Step 3. We now evaluate ′Θ (0) , by taking the derivative of Θ  w. r. t. ε  term by term, 

gathering terms together.   Indeed, what we are doing is re-deriving the Kuhn-Tucker conditions: 

we are going through this process because there is a step at which we must deviate from the usual 

procedure.   We compute: 

 

′Θ (0) = ΔΛ{
1

1− ρ
− v̂t

1

∞

∑ } + Δct
1

∞

∑ {v̂tu1[t]− ât } + Δxt
l

1

∞

∑ {v̂tu2[t]− d̂t } +

Δxt
c

1

∞

∑ {ât f2[t]− d̂t } + Δxt
e

1

∞

∑ {k4d̂t+1 − d̂t } + Δit
1

∞

∑ {b̂t − ât } + Δst
k {(1− δ )b̂t+1

1

∞

∑ − b̂t + ât f1[t]} +

mt
1

∞

∑ (λt+1 − λt ) − ρt−1λt + v̂tλt
1

∞

∑
2

∞

∑⎧
⎨
⎩

⎫
⎬
⎭

.

             

Notice that all terms on the r. h. s. of this equation except the last bracketed term vanish by 

conditions (SUS1)-(SUS7) of step 1, and the definition of the ^ dual variables. Furthermore, it is 

legitimate to collect and recombine terms as we have, because all the relevant series converge.   

The point at which care must be taken is not to attempt to recombine terms in the bracketed term, 

because the series in the bracketed term may not converge. 

Step 4.  It follows that we will have shown ′Θ (0) = 0  if we can produce a non-negative 

sequence 1 2( , , ...)m m such that 

             mt
1

∞

∑ (λt+1 − λt ) − ρ t−1λt
2

∞

∑ + v̂t
1

∞

∑ λt = 0  .                                             (A.1) 

If the sequence 1 2( , ,...)λ λ is identically zero, then obviously any choice of 1 2( , , ...)m m will 

work.  So suppose this is not the case.  Then for some T ≥ 1, (λT +1 − λT ) > 0   (recall that λ1 = 0 ) 

and all terms (λt+1 − λt ) ≥ 0  (see the constraint in Program PP).  Consequently, by choosing 
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mT ≥ 0  appropriately, and mt = 0  for all t ≠ T , we can make the sum mt
1

∞

∑ (λt+1 − λt )  equal any 

desired non-negative number.   Hence we can solve (A.1) if (and only if): 

                                 − ρ t−1λt
2

∞

∑ + v̂t
1

∞

∑ λt = λt
2

∞

∑ (v̂t − ρ
t−1) ≤ 0 .    (A.2) 

Note that both series on the l. h. s. of (A.2) converge, since 1 2( , , ....)λ λ  is bounded above by 

Λ , and v̂t  is a geometric series converging to zero  (see below), so it is permissible to add these 

two series together term-wise. 

 We now invoke the premise that the solution Φ̂  is stationary.  Using this fact, we can solve 

the Kuhn-Tucker conditions in step 1 and compute that  v̂t =
1

k4

⎛

⎝⎜
⎞

⎠⎟

t
k4 −1

1− ρ
.   

Now observe that   

2

∞

∑ (v̂t − ρ
t−1) =

1

k4

⎛
⎝⎜

⎞
⎠⎟

t
k4 −1

1− ρ
− ρ t−1

⎛

⎝
⎜

⎞

⎠
⎟ =

2

∞

∑ k4 −1

k4 (1− ρ)

1 / k4

1−1 / k4

−
ρ

1− ρ
=

1 / k4

1− ρ
−

ρ
1− ρ

< 0,  

 
where the last inequality follows because ρk4 > 1 .4     Note that the terms in this sum are surely 

positive for small values of t (at least for t = 1) but eventually they turn negative and stay negative 

forever.  This is clear if we note that the sign of the t th term is the same as the sign of 

   
k4 −1

(1− ρ)k4

− (k4ρ)t−1 , 

which becomes negative at some t because (k4ρ)t−1  grows without bound. 

Let us denote 14

4

11

1

t

t
t

k

k
ζ ρ

ρ
−

⎛ ⎞⎛ ⎞ −⎜ ⎟= −⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠
.   We have shown 

2

0.tζ
∞

<∑  Let T be the largest 

integer for which tζ is non-negative.    Then we may write: 

 
2 2 1 2 1 2

0,
T T

t t t t t t T t T t T T
T T

λζ λζ λζ λ ζ λ ζ λ ζ
∞ ∞ ∞ ∞

+ +

= + ≤ + = ≤∑ ∑ ∑ ∑ ∑ ∑  

where we have invoked the fact that 1 2( , ,...)λ λ  is a weakly increasing non-negative sequence.  

This proves (A.2), and hence the lemma, except for the case ρk4 = 1 . 

                                                 
4 We deal with the boundary case ρk4 = 1  below. 
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 If ρk4 = 1 , then 0tζ =  for all t, and (A.2) obviously holds.    

Lemma A3.  If the solution to Program SUS2 (s0
k , x0

e ) ) is the economic part of the solution 

to Program PP (ρ, s0
k , x0

e ) , then it is also the solution to Program CDU2 (ρ, s0
k , x0

e ) .  

Proof.  Denote the solution to Program SUS2 by Φ̂ , as in the proof of Lemma A2.  Denote 

the solution to Program CDU2 by  { , ,...}t tc xΦ =� � � .  We can extend the path  �Φ  to a feasible path for 

Program PP by defining 1 1 and t tu u uλΛ = = −�� � � � .   The path Φ̂  is extended in like manner to a 

feasible path for Program SUS2 (and in fact its solution path, by the premise) by letting λ̂t = 0  for 

all t. If the solution to Program CDU2 were not the solution to Program PP, then we would have: 

 1 11 1
1

2 1

ˆ
( )

1 1
t t

t t

u u
u u uρ ρ

ρ ρ

∞ ∞
− −> − − =

− − ∑ ∑
� � � � . 

But note that the solution to SUS2 –path Φ̂ -- is a feasible path for CDU2; thus, the last equation 

contradicts the optimality of the  �Φ path for CDU2 . This contradiction proves the lemma.    

Lemma A4.  Let (s0
k , x0

k )∈Γ̂ .  If ρk4 ≥ 1 , then the solution to Program R2 (ρ, s0
k , x0

e ) is the 

solution to Program SUS2 (s0
k , x0

e ) .   

Proof:  Follows immediately from lemmas A1-A3.     

Proof of Theorem 5. Step1.  From Lemma 5, we can write Program Rθ as follows: 

  

1

1

1

max [1 ( 1) ]

s.t.   ,

 for 1.

t
t

t

t t

t u

u

u u t

ρ θ
∞

−

=

+

+ −

∈
≥ ≥

∑
P               

Since the value of the program is finite (by Lemma 4), we can break up the series in the 

objective function, and write it as: 
2 3

1 2 3 4

2 3
2 3 4

2 3
3 4

3
4

....

...

...

...

u u u u

u u u

u u

u

ρ ρ ρ

θρ θρ θρ

θρ θρ

θρ

+ + + +

+ + + +

+ + +

+ +

  

1 1 1 1

1 2 3 4

[ ...]t t t t
t t t tu u u uρ θ ρ ρ ρ

∞ ∞ ∞ ∞
− − − −= + + + +∑ ∑ ∑ ∑  .  (A.3) 
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Step 2.  Suppose, contrary to the claim, that * *
1 2( , , ...)u u  solves Program Rθ (ρ, s0

k , x0
e )  but 

not Program SUS2 (x0
e, s0

k ) , whose solution has constant utilities at the level denoted by *Λ . 

Because Program DU2 (x0
e, s0

k ) diverges, we know by lemmas 4 and A4 that the solution to Program 

SUS2 is the same as the solution to program R2, which, by Lemma 5, is equivalent to Program 

CDU2 (x0
e, s0

k ) : 

  

1

1

1

max

s.t.    ,

.

t
t

t t

u

u

u u

ρ
∞

−

+

∈
≥

∑
P  

Hence, the solution to Program CDU2 is * *( , , ...)Λ Λ . The assumption that * *
1 2( , , ...)u u  is not 

the solution to Program SUS2 then implies that * *
1 2( , , ...)u u is not the solution to Program 

CDU2 (x0
e, s0

k ) either, i. e.,  

  
*

1 * 1 *

1 1 1
t t

tuρ ρ
ρ

∞ ∞
− − Λ

< Λ =
−∑ ∑           (A.4) 

(since * *
1 2( , , ...)u u  is feasible for Program SUS2 and the solution to that program is unique), i.e.,  the 

first term in (A3) evaluated at * *
1 2( , , ...)u u  is less than

*

1 ρ
Λ
−

.   

Step 3. The proof will be completed after showing that (A.4) implies that the value of the 

objective function of Rθ at * *( , , ...)Λ Λ  is higher that at * *
1 2( , , ...)u u , and, hence, * *

1 2( , , ...)u u does not 

solve Rθ, contrary to hypothesis. If θ = 0, then from (A.3) the value of the objective function of Rθ 

at * *
1 2( , , ...)u u is 1 *

1

t
tuρ

∞
−∑ , by (A.4) less than 1 *

1

tρ
∞

− Λ∑ , which is the desired contradiction. So let θ 

> 0. Again by (A.4), the first term of (A.3) is less than 
*

1 ρ
Λ
−

.  Suppose now that the second term in 

(A.3) evaluated at * *
1 2( , , ...)u u is greater than *

1

ρθ
ρ
Λ

−
, which, because θ  > 0, implies that 

1 * *

2 1

t t
tuρ ρ

∞ ∞
− > Λ∑ ∑ ,                        (A.5) 
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If we had that * *
1u ≥ Λ , then, by  (A.5) , * 1 * * *

1
2 1

t t
tu uρ ρ

∞ ∞
−+ > Λ + Λ∑ ∑ = 

* * *1

1 1

ρ
ρ ρ

Λ + Λ = Λ
− −

, contradicting (A.4). Thus, * *
1u < Λ  and, therefore, by Lemma 5,    

  * * *
1  for all tu u t≤ < Λ , 

and (A.5) so would be false.   Therefore the second term of (A.3) when evaluated at * *
1 2( , , ...)u u  is 

1 *

2

t
tt

uθ ρ∞ −
=∑ , which is less than or equal to *

1

ρθ
ρ
Λ

−
. By induction, we see that for all values 

2τ ≥ : 

   1 * 1 *t t
t

t t

u
τ τ

θ ρ θ ρ
∞ ∞

− −

= =

≤ Λ∑ ∑ . 

Hence, * *( , , ...)Λ Λ dominates * *
1 2( , , ...)u u in Program Rθ while satisfying its constraints, a 

contradiction which establishes the theorem.    

Proof of Theorem 6. Step 1.  It is obvious that if ρ = 0 , then the solution to Program R2 

requires simply maximizing the utility of the first generation.  In particular, this will require x1
e = 0  

and hence 2 0u = . 

Step 2.  More generally, suppose that in the solution to Program R2, we have 1 2u u= > 0.   

Then if we reduce x2
l  by k4ε , we can increase x1

l  by ε . This leaves all variables after date 2 

unchanged, since Generation 2 continues to pass down the same endowment to Generation 3. It 

therefore must be the case that this change does not increase the value of  1 2u uρ+ ;  therefore we 

must have: 

  1 1 2 2
4

1 2

( , ) ( , )
0

l l

l l

u c x u c x
k

x x
ρ∂ ∂

− ≤
∂ ∂

. 

Choosing 1 1 2 2
4

1 2

( , ) ( , )
/

l l

l l

u c x u c x
k

x x
ρ

⎛ ⎞∂ ∂
= ⎜ ⎟∂ ∂⎝ ⎠

 therefore proves the theorem.  

Proof of Theorem 7. Step 1.   Without loss of generality, we assume that x0
e = 1 , and so 

s0
k = σ 0 .  Since the set of feasible paths is a convex cone, the primal variables at the solution of the 

general problem where x0
e ≠ 1  are simply the ones computed here, multiplied by x0

e . 

We write the DU2 program with its dual variables: 
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1

1

1

4 1

max ( , ) subject to

( 1) : (1 ) , ( )

( 2) : ( , ) , ( )

( 3) : , ( )

( 4) : 0 .                             ( )

t
t t

k k
t t t t

k c
t t t t t

e e l c
t t t t t

t t

u c x

C s i s a

C f s x c i b

C k x x x x d

C i e

ρ

δ

∞
−

−

−

− + ≥

≥ +

≥ + +

≥

∑ A

 

The Kuhn-Tucker conditions for a solution to this program where all the constraints bind 

are: 
1

1

1
2

1
4 1

2

1 1

( 1)( ) : [ ] ,

( 2)( ) : [ ] ,

( 3)( ) : (1 / ) ,

( 4)( ) : [ ] ,

( 5)( ) : (1 ) [ ],

( 6)( ) : ,

t
t t

l t
t t

e t
t t

c
t t t

k
t t t t

t t t t

KT c u t b

KT x u t d

KT x d k d

KT x b f t d

KT s a a b f t

KT i a b e

ρ

ρ

δ

−

−

−

+

∂ =

∂ =

∂ =

∂ =

∂ − = −

= −

         

where all equations hold for t = 1,2, 3,... . Again, u j[t]  and f j[t]  are the jth  partial derivatives of 

the utility function (u) and the production function (f), for j = 1,2 . 

We will show that there exist non-negative dual variables such that the proposed path 

satisfies all the Kuhn-Tucker constraints.  All the relevant infinite series converge, so that the 

satisfaction of the K-T constraints suffices to prove optimality of this infinite program. 

Step 2. Our method will be to substitute the values on the proposed solution path into the 

primal and dual constraints, and to show that non-negative values of all dual variables can be 

computed.  To this end, the educational constraint (C3) gives us: 

    k4 − E = x1
l + x1

c ,                         (A.6) 

recalling that x0
e = 1 .     

Step 3.  The dual K-T constraints imply the following: 

   
2 2 1

4 2 2

1 1 1

[ ] [ ] [ ],            (A.7)

[ 1] [ ],                 (A.8)

(1 ) (1 [ ]) (1 ) . (A.9)t t t t

u t f t u t

k u t u t

e e f t b b

ρ
δ δ+ +

=

+ =

− − = − − −

 

The remaining dual constraints simply define (non-negative) values of the dual variables. 

Step 4.  Equation (A.7) says that 
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  0
1

1

(1 )1
(1 )

t
t
l t c
t

c

x E x

δ σα β
α −

⎛ ⎞−−
= − ⎜ ⎟

⎝ ⎠
; 

substituting  �ct  for ct  allows us to reduce this equation to: 

                                1
1

(1 )
.                                  (A.10)

(1 )

c
lx

x
α

α β
−

=
−

 

Eqns. (A.9) and (A.10) comprise two linear equations in (x1
c , x1

l ) , which solve to give 

  1 1 1 1,c c l lx x x x= =� �  

as required. 

Step 5. We next analyze equation (A.8), which says: 

  1
4

1

( ) 1.                          (A.8)
l

t t
l
t t

c x
k

x c

α α

ρ +

+

⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

Substituting in the values   and l
t tc x� �  gives us an equation in the variable E: 

  4

1
1,k

E

αβδρ −⎛ ⎞ =⎜ ⎟
⎝ ⎠

 

which solves to give the prescribed value for E.  Note that E < 1 since ρk4 < 1 . 

Step 6.  The prescribed values of all primal variables have been verified. The Kuhn-Tucker 

equations (KT1-3) give us non-negative solutions for bt  and dt .   It is left only to solve for et  and 

to show that for all t, bt ≥ et , which will give non-negative values for at .    

Step 7.  Define the new variables: 

 mt = (1− f1[t])ρ
t−1u1[t]− (1− δ )ρtu1[t +1].  

We show in this step that there exists a number σ̂  such that if σ 0 ≥ σ̂ , then 

mt ≥ 0 for all t ≥ 1 .  The desired result us equivalent to: 

 
1 (1 )1

?1( 1) 1 (1 )
(1 ) 1

c t

t

x E E
t

β α β

β δ ρ
σ δ δ

− −−⎛ ⎞ ⎛ ⎞∀ ≥ − ≥ −⎜ ⎟ ⎜ ⎟− −⎝ ⎠⎝ ⎠

�
  .    (A.11) 

Since 
E

1−δ
< 1, the l. h. s. of (A.11) is increasing in t; thus we need only verify (A.11) for t = 1, 

which is to say, to verify that: 

  
1 (1 )

?11 (1 )
(1 ) 1

cx E
β β α

β δ ρ
σ δ δ

− −⎛ ⎞ ⎛ ⎞− ≥ −⎜ ⎟ ⎜ ⎟− −⎝ ⎠⎝ ⎠

�
, 
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an inequality which holds for sufficiently large σ  if and only if: 

  
(1 )

1 (1 )
1

E
β α

δ ρ
δ

−
⎛ ⎞> − ⎜ ⎟−⎝ ⎠

, 

which is immediately seen to be true from the definition of E.  

Step 8.  Now note that equation (A.9) can be written 

  et − (1− δ )et+1 = mt , t ≥ 1 . 

This system of difference equations yields the following solution: 

  eT =
e1

(1− δ )T −1
− mt (1− δ )t−T

t=1

T −1

∑ , T = 2, 3,...  

Now choose  e1 = (1− δ )t−1mt
t=1

∞

∑ .    (We note that this series converges.) 

To verify that eT ≥ 0 for all T ≥ 1  we must show that 

 T ≥ 2 ⇒ e1 ≥ mt (1− δ )t−1

t=1

T −1

∑ ,  

a fact which follows from the definition of e1 and the fact that 1 2( , , ...)m m is a non-negative 

sequence.   

Step 9. The final step is to show that at ≥ 0 where at = bt − et . It suffices to show that for 

all T ≥ 1 ,  (1− δ )T −1bT ≥ (1− δ )T −1eT , or that: 

 (1− δ )T −1bT ≥? mt (1− δ )t−1

t=T

∞

∑ . 

The r. h. s. of this inequality can be shown (with some algebra) to equal 

 ((1− δ )ρ)T −1(1− f1[T ])u1[T ]− f1[t]((1− δ )ρ)t−1u1[t]
T +1

∞

∑ ; 

since bT = ρT −1u1[T ] , our desired inequality reduces to showing that 

 ((1−δ )ρ)T −1u1[T ] ≥? ((1−δ )ρ)T −1(1− f1[T ])u1[T ]− a positive term,  

which is surely true.   This concludes the demonstration that all the K-T conditions hold with the 

dual variables as defined. 

Step 10.   Finally, we derive the critical valueσ * . The infinite-series expression for e1  can 

be expanded and reduced (with much algebra) to the show that 
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1

1
1 0 1 1 4

1 0

1
( ) (1 [1]) [1] ( )

1l

c
e f u k

x

α

αβαβ ασ ρ
σ αβ

⎛ ⎞ −
= − −⎜ ⎟ −⎝ ⎠

�
�

,       (A.12) 

which we write as a function of the initial capital-labor ratio.  The reader should note, from the K-

T conditions (KT1-6) in step 1 that the dual variables are functions only of the marginal utilities 

and productivities at the various dates, which are, for the Cobb-Douglas case, functions of ratios of 

the primal variables.  Therefore the dual variables are independent of the scale of the endowment 

vector (i. e., the value of x0
e ).    

 The critical value of σ 0  is that number σ *  for which e1(σ
*) = 0 : for if e1(σ 0 ) > 0  then a 

slight decrease in σ 0  will still deliver a positive value of e1 , and all the other et .  But this would 

mean that investment is identically zero on the optimal path.   The zero of equation (A.12) is the 

solution to the equation in the statement of the theorem, which concludes the proof.   

Example 2. An education & capital economy where, along the solution path to Program 

DU2, u2 > u1, whereas the utilities from date 2 onwards decay geometrically.  

The example is presented in lemmas A5 and A6 below. 

Lemma A5.  Let 4( , , , , ) (0.66,0.25,0.1,1.1,0.9)kα β δ ρ =  and (s0
k , x0

e ) = (0.15,1).  In 

particular, ρk4 < 1 .  Then σ * = 0.186198 and so σ 0 = 0.15 < σ * .   The solution to DU2 is given by  

(c1, x1
l , x1

c , x1
e,i1, s1

k ) = (0.192294, 0.0482943, 0.870989, 0.154375, 0.0746361, 0.114795). We have 

σ1 = 0.1979 > σ *  and the variables from date 2 onwards are given by: 

1 1 12 : 0, , ,k e k e e
t t t t t t tt i s x s x x x c x c′≥ = = = =� � � .   In particular, 1 2 10.1138 and 0.1169u u u= = >  .   

The utilities from date 2 onwards decay geometrically as in Theorem 7.  

Proof. Step1. We will produce the example by finding an initial endowment vector (s0
k , x0

k )  

such that σ 0 < σ
*  and the solution to DU2 (ρ, s0

k , x0
k )  has the following property: on the optimal 

path, at date 1, we have σ1 = s1
k / x1

e > σ * .  For we then know what the optimal path is from date 1 

onwards: it is just the path stipulated in Theorem 7.   Our strategy will be to find such values of 

(s0
k , x0

k ) , where, on the optimal path, we have 1 2u u< . 

 We write down the program we wish to solve, where (s0
k , x0

k )  is now an unknown 

endowment. 
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Program PP*. 2

1

max ( , )t
t tu c xρ

∞
−∑ A  subject to: 

   

1

4 1

(1 ) , 1, ( )

( , ) , 1, ( )

, 1, ( )

0, 1. ( )

k k
t t t t

k c
t t t t t

e e l c
t t t t t t

t t

s i s t a

f s x c i t b

k x x x x x t d

i t e

δ −

−

− + ≥ ≥

≥ + ≥

≥ ≡ + + ≥

≥ ≥

  

Note that we have factored outρ from the usual statement of the objective function.  Of 

course this makes no difference to the solution. The reason for doing so will become apparent 

momentarily. 

We are searching for a solution such thatσ1 > σ
* , i1 > 0 , and it follows (by Theorem 7) that 

it = 0, t ≥ 2 . Hence all constraints of program PP* will bind except for the first investment 

constraint. This gives the following K-T conditions: 
2

1

2
2

2

4 1

1 1

1 1

( ) : [ ] , 1,

( ) : [ ] , 1,

( ) : [ ] , 1,

( ) : , 1,

( ) : ,

           , 1,

( ) : (1 ) [ ], 1.

t
t t

l t
t t

c
t t t

e
t t t

t

t t t

k
t t t t

c u t b t

x u t a t

x b f t d t

x k d d t

i a b

a b e t

s a a b f t t

ρ

ρ

δ

−

−

+

+

∂ = ≥

∂ = ≥

∂ = ≥

∂ = ≥

∂ =

= − >

∂ − = − ≥

 

Step 2. In Theorem 7, we solved the DU2 problem with the normalization σ 0 = s0
k , x0

e = 1.    

Recall from step 10 of the proof of Theorem 7 that the values of the dual variables of that program 

are functions only of σ 0 : that is, they depend only on the capital-labor ratio at date 0, not on the 

scale of the initial endowment vector. 

Step 3. Program PP* beginning at date 1 (not date 0) is exactly the program solved in 

Theorem 7.  (That is why we factored out ρ  from the objective.)  Since σ1 > σ
*  in the solution we 

are looking for, it follows that the dual variables from date 1 on in Program PP* are exactly the 

dual variables computed in Theorem 7, where the initial capital – labor ratio is σ1 ,  and the primal 

variables from date 1 are exactly the tilde primal variables of Theorem 7, multiplied by x1
e , 

whatever that turns out to be. 
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 Denote the dual variables computed in the proof of Theorem 7 with tildes -- ( ), ( ),t ta bσ σ��  

etc., where σ  is the initial capital-labor ratio of that program.  

  Step 4. We now compute what information is contained in the K-T constraints for Program 

PP*.  First, we know that 2 1 1( )d d σ= � : this follows from the above discussion.    But  

d2 =
1

k4

d1 = ρ−1u2[1]  and therefore: 

   2 4 1 1[1] ( )u k dρ σ= � .                                             (A.13)         

From Theorem 7, we know that 1 1
1 1 2

1 1

( )
( ) [1] (1 )

( )l

c
d u

x

α
σσ α
σ

⎛ ⎞
= = − ⎜ ⎟

⎝ ⎠

�� �
�

, and we therefore can 

write, manipulating equation (A.13):  

  1/1 1 1
4

1 1 1

( )
( )

( )l l

c c
k

x x
α σρ

σ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

�
�

.                                                  (A.14) 

where c1, x1
l  are the date 1 values on the optimal path for Program PP*. 

 Our second equation is  

  
u2[1]

u1[1]
= f2[1] ,  

which comes from the first three K-T constraints of Program PP*. This gives: 

  1 1 1 1

1 1 1

( , )1
(1 ) (1 )

k c k

l c c

c f s x s

x x x

β
α β β

α
⎛ ⎞−

= − = − ⎜ ⎟
⎝ ⎠

  .                 (A.15) 

The next three equations simply restate the primal constraints: 

         0 1 1(1 ) k ks i sδ− + = ,       (A.16) 

4 0 1 1 1
e e l ck x x x x= + + ,       (A.17) 

1 1 1 1( , )k cf s x c i= + ,       (A.18) 

Equation (A.18) comes from the (∂s1
k )  K-T condition. As before, we know that 

2 1 1 2 1 1 2 2 2 1 1 1 1( ) and ( ) and so  ( ) ( )b b e e a b e b eσ σ σ σ= = = − = −� �� � . Thus, we may write that KT 

condition as: 

  
1 1

1 1 1
1 1 1 1

1 1

(1 )( ( ) ( )) (1 )
l c

k

x x
b e

c s

α β

δ σ σ αρ β
− −

− ⎛ ⎞ ⎛ ⎞
− − = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
� � .  (A.19) 
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The six equations (A.14)-(A.19) are equations in the six unknowns x1
e, x1

l , x1
c ,i1,c1, s1

k  when 

the endowment (s0
k , x0

e )  is given.   Of course, σ1 = s1
k / x1

e .    We know the expressions for all the 

tilde variables from Theorem 7, as functions of σ1 . 

 Indeed, these six equations contain all the new information about the solution to Program 

PP* -- the remaining K-T conditions simply emulate the solution of the program from date 1 

onwards, which we know from Theorem 7.   

 We now show how to solve these six equations.   Define two new variables: 

  A =
c1

x1
l
, B =

s1
k

x1
c

. 

Note that equations (A.14), (A.15) and (A.19) above are simultaneous equations in the 

three unknowns A, B and σ1 . Hence we can solve for these three variables (which we will do in an 

example, given below). Now, knowing these three variables, we can write all the information 

remaining in the six equations as the following system of six linear equations in the six unknowns: 

   

1 1 1

0 1 1

1 1 1

1 1

4 0 1 1 1

1
1

,

(1 ) ,

( ,1) ,

,

,

.

k e

k k

c

l

e e l c

k
c

s x

s i s

x f B c i

c Ax

k x x x x

s Bx

σ

δ

=

− + =

= +

=

= + +

=

. 

 

We write these equations in matrix form: 

  Mz = Q ,  

where  

  M =

0 0 0 −σ1 0 1

0 0 0 0 −1 1

−1 0 f (B,1) 0 −1 0

−1 A 0 0 0 0

0 1 1 1 0 0

0 0 B 0 0 −1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,  Q =

0

(1− δ )s0
k

0

0

k4x0
e

0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

. 
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(The order of the variables is (c1, x1
l , x1

c , x1
e,i1, s1

k ) .) Hence we can compute the solution z = M−1Q .    

If we insert an endowment vector (s0
k , x0

e )  with σ 0 < σ
*  and the solution Q generated is a positive 

vector, and 
s1

k

x1
e
≥ σ * ,  then we have a solution to PP* of the required form.  For it will immediately 

follow that all the dual variables are non-negative, from the K-T conditions, and so we have 

produced a path where all the K-T conditions hold—by again invoking Theorem 7.  

Step 5. Examine the Mathematica program (available from the authors) which calculates 

this solution for several numerical values. In particular, an instance is provided in which 1 2u u<  on 

the optimal path, which proves the lemma.    

Lemma A6.   The solution to E2 (ρ, s0
k , x0

e )  with the data of the premise of Lemma A5 is 

given by: (s1
k , i1,c1, x1

e, x1
c , x1

l ,σ1) = (0.167583, 0.0325828, 0.131227, 0.847974, 0.162572, 0.894544, 

0.197627) and for t > 1 :  1 1 10, , ,k e k e e
t t t t t t ti s x s x x x c x c= = = =� � � .   At the solution, 1 2u u= .  Indeed, 

the utilities at the solutions of DU2 and R2   for this economy are given by: 

 
1u  2u  , 2tu t >  

DU2 0.1138 0.1169 geometric decay 

R2 0.1152 0.1152 geometric decay 

 

Proof. Step 1. We will find a solution to Program PP (ρ, s0
k , x0

e ) : this will also be a solution 

to CDU2 (ρ, s0
k , x0

e )  and hence to R2 (ρ , s0
k , x 0

e ) .  Recall that Program PP (ρ, s0
k , x0

e ) is: 

  

1

2

1

1

4 1

max . .
1

( ) ( , ) , 1,

( ) , 1,

( ) ( , ) , 1,

( ) (1 ) , 1,

( ) , 1,

( ) 0, 1,

t
t

t t t t

t t t

k c
t t t t t

k k
t t t t

e c l e
t t t t t

t t

s t

v u c x t

m t

b f s x c i t

a s i s t

d k x x x x t

e i t

ρ λ
ρ

λ
λ λ

δ

∞
−

+

−

−

Λ
−

−

≥ Λ − ≥

≥ ≥

≥ + ≥

− + ≥ ≥

≥ + + ≥

≥ ≥

∑
A

            

where λ1 ≡ 0 . For the specified economy, we conjecture a solution where 1 2 3 .....u u u= > > .   and 

where the geometric-decay solution begins at date 2.   Thus, of the set of mt  constraints, only the 
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m1  constraint will bind, and so mt = 0 for t > 1 .  The e1  constraint will be slack, since we 

conjecture that i1 > 0 .   All other constraints will bind at the solution.  The K-T conditions are 

therefore: 

  

1

2 1 2

1

2

4 1

1 1

1 1 1

1
( ) : ,

1

( ) : 0,

( ) : , 2,

( ) : , 1,

( ) : , 1,

( ) : [ ] , 1,

( ) : , 1,

( ) : (1 ) [ ] 0, 1,

( ) :

( ) : , 1.

t

t
t t

t t t t

l
t t t t

c
t t t

e
t t t

k
t t t t

t t t t

v

m v

v t

c v u b t

x v u d t

x b f t d t

x k d d t

s a a b f t t

i a b

i a b e t

ρ
λ ρ

λ ρ

δ

∞

−

+

+

∂Λ =
−

∂ − + + =

∂ = >

∂ = ≥

∂ = ≥

∂ = ≥

∂ = ≥

∂ − − + = ≥

∂ =

∂ = − >

∑

 

 Step 2.  We can reduce the first three dual K-T conditions to the equations: 

  v2 = 1+ ρ − v1, m1 = v1 −1 , 

thus eliminating the variables v2  and m1 . We must, after finding a value for v1 , check that 

v2  and m1  are non-negative. 

 For t ≥ 2 , we define all the dual variables to equal the dual variables of the geometric-

decay solution which begins at date 2 with the endowment (s1
k , x1

e ),  multiplied by λ . Denoting the 

latter variables with tildes, we therefore define for t ≥ 2 : 

  1 1 1 1, , ,t t t t t t t ta a b b d d e eρ ρ ρ ρ− − − −= = = =� �� � . 

 Then all the dual constraints which involve these variables are satisfied where the primal 

variables for dates t ≥ 2  are given by the geometric-decay solution of Theorem 7. For this to be a 

solution, we must check that σ1 ≡ s1
k / x1

e ≥ σ * . We are left only with the dual constraints 

associated with date 1, which are: 

    

1 1 1

1 2 1

2 2 1

4 2 1

2 1 1

[1] ,

[1] ,

[1] [1] [1],

,

(1 ) (1 [1]).

v u b

v u d

u f u

k d d

a b fδ

=

=

=

=

− = −
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 The first two of the above constraints simply define b1  and d1 . Thus we are left with three 

substantive equations. Substituting in for the values of d2  and a2 , these become: 

   2 2 1[1] [1] [1]u f u= ,     (A.20) 

   4 1 1 2[1]k d v uρ =� ,     (A.21) 

   1 1 1 1 1( )(1 ) [1](1 [1])b e v u fρ δ− − = −� � .   (A.22) 

 Recall from the proof of Theorem 7 that the expressions for 1 1 1, ,d b e� � �  are known functions 

of σ1 ≡ s1
k / x1

e .   In particular, we have: 

  
1

1 1
1

1

( )
l

c
b

x

α
σα

−
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

��
�

,    1 1
1

1

( )
(1 )

l

c
d

x

α
σα

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠

��
�

, 

while the expression for  �e1  is given as equation (A.12) in step 10 of the proof of Theorem 7. 

 In addition we have the primal constraints: 

  

1 1 1 1 1 1 1 2

1 1 1 1 1

0 1 1

( , ) ( ( ), ) ( . ., ) ,                                       (A.23)

( / ,1)     ,                                                                 (A.24))

(1 )

l e l

c k c

k k

u c x x u c x i e u u

x f s x c i

s s i

σ

δ

= =

= +

− = −

� �

4 0 1 1 1

 ,                                                                           (A.25)

.                                                                          (A.26) e e c lk x x x x= + +

. 

 The seven equations (A.20)-(A.26) define a system of seven equations in the seven 

unknowns (s1
k , i1,c1, x1

e, x1
c , x1

l ,v1) .    

Step 3.  We proceed to solve these equations as follows.  Define A = c1 / x1
l , B = s1

k / x1
c .  

Rewriting equation (A.20) as  

  1
(1 )A Bβα β

α
−

= −       (A.20) 

allows us express A as a function of B: 

  (1 )
[ ]

1
A B Bβα β

α
−

=
−

.     (A.20) 

 We define the following mapping.  Begin with an arbitrary positive value for B.  Then 

compute A by (A.20).  Now equations (A.21) and (A.22) comprise two simultaneous equations in 

(σ1,v1) .  Solve them. This leaves us with the four equations (A.23)-(A.26), which are now linear 

equations in the primal variables, once A, B and σ1  are specified constants.  To these, append the 

equations: 
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   σ1x1
e = s1

k , Ax1
l = c1 . 

 We now have a linear system of six equations in the six date-one primal variables. Solve 

them, and define B̂ = s1
k / x1

c . A fixed point of the mapping B→ B̂  generates a solution to the 

seven equations (A.20-A.26) in the six primal variables plus v1 . 

 We find the fixed point of this mapping for the stipulated economy.  (See the available 

Mathematica program.) We find that v1 = 1.01304 , and it follows that v2  and m1  are positive and 

σ1 = 0.1976 > σ * .  Hence we have a solution to all the Kuhn-Tucker conditions, and hence, since 

PP is a concave program, to Program PP.  The solution is reported in the lemma’s statement.   

Proof of Theorem 8. Step 1.  We first write down the Kuhn-Tucker conditions for a 

solution to Program g-SUS. 

1

1

1

2

4 1

2

1 1

( ) : 1 (1 ) ,

( ) : [ ] ,

( ) : [ ] ,

( ) : ,

( ) : [ ] ,

( ) : [ ] (1 ) ,

( ) : .

t
t

t t t

l
t t t

e
t t t

c
t t t

k
t t t t

t t t

r g

c ru t a

x ru t d

x k d d

x a f t d

s a f t b b

i a b

δ

∞
−

+

+

∂Λ = +

∂ =

∂ =

∂ =

∂ =

∂ + − =

∂ =

∑

 

In addition, let all the primal constraints hold with equality.   We shall attempt to solve all 

these equations for a balanced growth path.    

 On such a path, uj[t] = uj[t] and f j[t] = f j[1]  for j = 1,2 and t ≥ 1 .  The primal and dual 

equations yield the following substantive relations on a balanced growth path for the economic 

variables: 

   i1 = (g + δ )s0
k ,     (A.27) 

   k4 − (1+ g) = x1
c + x1

l ,    (A.28) 

   f2[1] =
u2[1]

u1[1]
,     (A.29) 

   k4 =
1− δ

1− f1[1]
,     (A.30) 

   f ((1+ g)s0
k , x1

c ) = c1 + i1 .   (A.31) 
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The other dual constraints simply define non-negative dual variables in terms of the primal 

variables, with one exception: we must verify that the series in the (∂Λ)  constraint converges.    

Thus, given g, if we can solve the five equations (A.27)-(A.31) for (s0
k , x1

c , x1
l ,c1, i1)  and the series 

in (∂Λ) converges, then the balanced growth path at rate g defined by these values, along with the 

associated dual variables, solves the Kuhn-Tucker constraints.  Modulo transversality conditions, 

which we will comment upon below, and since g-SUS is a concave program, the theorem will be 

demonstrated. 

Step 2.  From the dual K- T conditions, we deduce that rt =
d1

u2[1]

1

k4

⎛
⎝⎜

⎞
⎠⎟

t−1

.   Consequently 

the series in the (∂Λ)  K- T condition defines a value for d1  if and only if 
1+ g

k4

< 1.   This is true 

because by hypothesis, g < k4 −1 . 

Step 3. Thus, it remains to solve the five equations (A.27)-(A31).   Although this can 

probably be done without the Cobb-Douglas restriction, we are content to study this special case.  

Specializing to Cobb-Douglas, we re-write the five equations as follows. 

    i1 = (g + δ )s0
k ,    (A.27) 

    k4 − (1+ g) = x1
c + x1

l ,    (A.28) 

    0 1

1 1

(1 ) (1 )
(1 )

k

c l

g s c

x x

β
αβ

α
⎛ ⎞+ −

− =⎜ ⎟
⎝ ⎠

, (A.29) 

      
1

1 4

0 4

(1 )

(1 )

c

k

x k

g s k

β
δβ

−
⎛ ⎞ − −

=⎜ ⎟+⎝ ⎠
, (A.30) 

    1
0 1 1 0((1 ) ) ( ) ( )k c kg s x c g sβ β δ−+ = + + . (A.31) 

Step 4.  Now denote X =
x1

c

s0
k

, Y =
c1

x1
l

.  Solve (A.29) and (A.30) for X and Y:  

   

1/(1 )

4

4

/(1 )

4

4

(1 )
(1 ) ,

(1 )(1 )
.

1

k
X g

k

k
Y

k

β

β β

δ
β

δα β
α β

−

− −

⎛ ⎞− −
= + ⎜ ⎟

⎝ ⎠

⎛ ⎞− −−
= ⎜ ⎟− ⎝ ⎠
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Next, divide equation (A.31) through by s0
k , giving: 

  11

0

(1 ) ( ),
k

c
g X g

s
β β δ−= + − +   (A.32) 

which generates a necessary condition: 

  1(1 ) ( ).g X gβ β δ−+ > +   (A.33) 

Now, noting that XY =
c1

s0
k

x1
c

x1
l

, and using (A.33), we have: 

 11

1

,  where (1 ) ( ),
c

l

x
Z XY Z g X g

x
β β δ−= ≡ + − +  

or x1
c =

x1
l XY

Z
.  Using (A.28), and substituting this value for x1

c , we can solve for x1
l : 

 x1
l =

Z

Z + XY
(k4 − (1− δ )) . 

Consequently, from (A.28), x1
c =

XY

XY + Z
(k4 − (1− δ )) .   Thus both x1

c  and x1
l  are positive 

numbers.   We can now use the equations to solve quickly for positive values of s0
k , i1  and c1 . 

Step 5.  We now verify (A.33).  Define the function 4

4

(1 )
( ) (1 ) ( )

k
g g g

k

δ δ
β
− −

Γ = + − + .  

Check that Γ(0) > 0  if and only if 4

1

1
k

δ
βδ
−

>
−

; but this is true because k4 > 1 .  Check that 

4 4

1
( 1) ( (1 )) 0.k k

βδ
β
−

Γ − = − − >  Since Γ  is linear, it follows that Γ(g) > 0 on the interval 

[0,k4 −1] , demonstrating (A33). 

Step 6.  We finally remark that all the transversality conditions hold because each sequence 

of dual variables (e. g., 1 2( , , ...)a a ) converges to zero geometrically.   This proves the first direction 

of the theorem. 

Step 7. To prove the converse, let g = k4 −1 . On a balanced growth path, we therefore 

require x1
e = (1+ g)x0

e = k4x0
e  , which implies that x1

c = x1
l = 0 . So no balanced growth path can be 

supported at the rate g = k4 −1 . It is obvious, a fortiori, that no such path exists for g > k4 −1 .           

 


