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Abstract

It is natural to think of belief revision as the interaction of belief
and information over time. Thus branching-time temporal logic seems a
natural setting for a theory of belief revision. We propose two extensions
of a modal logic that, besides the �next-time�temporal operator, contains
a belief operator and an information operator. The �rst logic is shown to
provide an axiomatization of the �rst six postulates of the AGM theory of
belief revision, while the second, stronger, logic provides an axiomatization
of the full set of AGM postulates.

1 Introduction

There is an unsatisfactory lack of uniformity in the literature between how static
beliefs and changes in beliefs are modeled. Starting with Hintikka�s [7] seminal
contribution, the notion of static belief has been studied mainly within the
context of modal logic. On the syntactic side a belief operator B is introduced,
with the intended interpretation of B� as �the individual believes that ��.
Various properties of beliefs are then expressed by means of axioms.1 On the
semantic side Kripke structures (Kripke [9]) are used, consisting of a set of
states (or possible worlds) 
 together with a binary relation B on 
, with the
interpretation of �B� as �at state � the individual considers state � possible�.
The connection between syntax and semantics is then obtained by means of a
valuation that associates with every atomic proposition p the set of states at
which p is true. Rules are given for determining the truth of an arbitrary formula
at every state of a model; in particular, the formula B� is true at state � if and
only if � is true at every � such that �B�, that is, if � is true at every state

1For example, the positive introspection axiom B� ! BB�, which says that if the indi-
vidual believes � then she believes that she believes �:
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that the individual considers possible at �. Often one can show that there is
a correspondence between a syntactic axiom and a property of the accessibility
relation in the sense that every instance of the axiom is true at every state of
every model whose accessibility relation satis�es the property and vice versa.2

The advantage of the syntactic approach is that it allows one to state properties
of beliefs in a clear and transparent way.

On the other hand, with a few exceptions, the tools of modal logic have not
been employed in the analysis of belief revision. In their seminal contribution
Alchourron, Gärdenfors and Makinson [1] model beliefs as sets of formulas in a
given syntactic language and belief revision is construed as an operation that
associates with every belief set K (thought of as the initial beliefs) and formula
� (thought of as new information) a new belief set K�

� representing the revised
beliefs. Several requirements are imposed on this operator in order to capture
the notion of �rational� belief change. Their approach has become known as
the AGM theory of belief revision and has stimulated a large literature.

The purpose of this paper is to bridge the gap between these two strands
of the literature, by representing the AGM postulates as axioms in a modal
language. It is natural to think of belief revision as the interaction of belief
and information over time. Thus temporal logic is a natural starting point.
Besides the �next-time� operator  (and it inverse) our language contains a
belief operator B and an information operator I. The information operator is
not a normal operator and is formally similar to the �only knowing�operator
introduced by Levesque in [10]. On the semantic side we consider branching-
time frames to represent di¤erent possible evolutions of beliefs. For every date
t, beliefs and information are represented by binary relations Bt and It on a
set of states 
. As in the static setting, the link between syntax and semantics
is provided by the notion of valuation and model. The truth of a formula in a
model is de�ned at a state-instant pair (!; t).
The �rst logic that we propose axiomatizes the �rst six AGM postulates (the

so-called �basic set�), in the following sense (Proposition 11):
(1) if K is the initial belief set, � is a Boolean (i.e. non-modal) formula and

K�
� is the revised belief set that satis�es the �rst six AGM postulates then there

is a model of the logic, a state � 2 
 and instants t1 and t2 such that: (i) t2
is an immediate successor of t1, (ii) the set of propositions that the individual
believes at (�; t1) coincides with K, (iii) the individual at time t2 and state � is
informed that �, that is, (�; t2) j= I� and (iv) the set of Boolean propositions
that the individual believes at (�; t2) coincides with K�

�, and
(2) for every model that validates the logic, every state � and every instants

t1 and t2 such that t2 is an immediate successor of t1, if at time t2 and state �
the individual is informed that � (that is, (�; t2) j= I�) then K and K�

� de�ned
as the sets of Boolean formulas that the individual believes at (�; t1) and (�; t2),
respectively, satisfy the �rst six AGM postulates.

2For example, the positive introspection axiom B� ! BB� corresponds to transitivity of
the relation B.
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The remaining two AGM postulates deal with comparing how the individual
revises his beliefs after learning �rst that � and then that  with his revision
when he learns that � ^  . This is where the branching-time structure that
we use becomes important, since two di¤erent evolutions of beliefs need to be
compared. The second logic that we propose extends the �rst by adding two
axioms, which are proved to correspond exactly to the last two AGM postulates.
We show (Proposition 12) that the stronger logic provides an axiomatization of
the full set of AGM axioms, in a sense analogous to the previous result.
The paper is organized as follows. In Section 2 we start with the semantics of

temporal belief revision frames. In Section 3 we introduce the basic logic and two
extensions of it, which - in Section 4 - are proved to provide an axiomatization
of the �rst six and full set of AGM postulates, respectively. Section 5 concludes.

2 The semantics

On the semantic side we consider branching-time structures with the addition
of a belief relation and an information relation for every instant t.

De�nition 1 A next-time branching frame is a pair hT;�i where T is a (pos-
sibly in�nite) set of instants or dates and � is a binary �precedence� relation
on T satisfying the following properties: 8t1; t2; t3 2 T;

(1) uniqueness if t1 � t3 and t2 � t3 then t1 = t2
(2) acyclicity if ht1; :::; tni is a sequence with ti � ti+1

for every i = 1; :::; n� 1, then tn 6= t1:

The interpretation of t1 � t2 is that t2 is an immediate successor of t1
or t1 is the immediate predecessor of t2 : every instant has at most a unique
immediate predecessor but can have several immediate successors.

De�nition 2 A temporal belief revision frame is a quintuple
hT;�;
; fBtgt2T ; fItgt2T i where hT;�i is a next-time branching frame, 
 is
a set of states (or possible worlds) and, for every t 2 T , Bt and It are binary
relations on 
.

The interpretation of !Bt!0 is that at state ! and time t the individual con-
siders state !0 possible (an alternative expression is �!0 is a doxastic alternative
to ! at time t�). On the other hand, the interpretation of !It!0 is that at state
! and time t, according to the information received, it is possible that the true
state is !0: We shall use the following notation:

Bt(!) = f!0 2 
 : !Bt!0g and, similarly, It(!) = f!0 2 
 : !It!0g:

Temporal belief frames can be used to describe either a situation where the
objective facts describing the world do not change � so that only the beliefs
of the agent change over time � or a situation where both the facts and the
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doxastic state of the agent change. In the computer science literature the �rst
situation is called belief revision, while the latter is called belief update (see [8]).
We shall focus on belief revision.3

We consider a propositional language with �ve modal operators: the next-
time operator  and it inverse �1, the belief operator B; the information
operator I and the �all state� operator A. The intended interpretation is as
follows:

� : �at every next instant it will be the case that ��
�1� : �at every previous instant it was the case that ��
B� : �the agent believes that ��
I� : �the agent is informed that ��
A� : �it is true at every state that ��.

Given a temporal belief revision frame hT;�;
; fBtgt2T ; fItgt2T i one ob-
tains a model based on it by adding a function V : S ! 2
 (where S is the set
of atomic propositions and 2
 denotes the set of subsets of 
) that associates
with every atomic proposition q the set of states at which q is true. Note that
de�ning a valuation this way is what frames the problem as one of belief revi-
sion, since the truth value of an atomic proposition q depends only on the state
and not on the time.4 Given a model, a state !, an instant t and a formula
�, we write (!; t) j= � to denote that � is true at state ! and time t. Let k�k
denote the truth set of �, that is, k�k = f(!; t) 2 
 � T : (!; t) j= �g and let
d�et � 
 denote the set of states at which � is true at time t, that is, d�et =
f! 2 
 : (!; t) j= �g. Truth at a pair (!; t) is de�ned recursively as follows.

if q 2 S, (!; t) j= q if and only if ! 2 V (q):
(!; t) j= :� if and only if (!; t) 2 �:
(!; t) j= � _  if and only if either (!; t) j= � or (!; t) j=  (or both).
(!; t) j=� if and only if (!; t0) j= � for every t0 such that t� t0:

(!; t) j=�1� if and only if (!; t
00
) j= � for every t

00
such that t

00 � t:
(!; t) j= B� if and only if Bt(!) � d�et, that is,

if (!0; t) j= � for all !0 2 Bt(!):
(!; t) j= I� if and only if It(!) = d�et, that is, if (1) (!0; t) j= �

for all !0 2 It(!), and (2) if (!0; t) j= � then !0 2 It(!):
(!; t) j= A� if and only if 
 = d�et, that is, if (!0; t) j= � for all !0 2 
:

Note that, while the truth condition for the operator B is the standard one,
the truth condition for the operator I is non-standard: instead of simply requir-
ing that It(!) � d�et we require equality: It(!) = d�et. Thus our information
operator is formally similar to the �only knowing� operator discussed in the
computer science literature (see [10]), although the interpretation is di¤erent.

3For example, our analysis would be appropriate to model the evolving belief states of an
archaeologist who is trying to learn what truly happened several thousand years ago. New
archaeological discoveries provide clues and information about the past, which the scientist
uses to update his beliefs. However, the facts he is trying to learn do not change: their truth
value was �xed in the distant past.

4Belief update would require a valuation to be de�ned as a function V : S ! 2
�T :
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The non-normality of the I operator is what makes it necessary to add the �all
state�operator A (see [6]).

A formula � is valid in a model if k�k = 
� T , that is, if � is true at every
state-instant pair (!; t). A formula � is valid in a frame if it is valid in every
model based on it.

3 The basic logic and two extensions

The formal language is built in the usual way (see [2]) from a countable set of
atomic propositions, the connectives : and _ (from which the connectives ^,
! and $ are de�ned as usual) and the modal operators , �1, B, I and A.

Let �� def
= : :�, and ��1� def

= :�1 :�. Thus the interpretation of �� is
�at some next instant it will be the case that � �while the interpretation of
��1� is �at some previous instant it was the case that ��.
We denote by L0 the basic logic of belief revision de�ned by the following

axioms and rules of inference.

AXIOMS:

1. All propositional tautologies.

2. Axiom K for , �1, B and A:

(�� ^�(�!  ))! � for � 2 f;�1; B;Ag (K)

3. Temporal axioms relating  and �1:

�!��1� (O1)
�!�1�� (O2)

4. Backward Uniqueness axiom:

��1�!�1� (BU)

5. S5 axioms for A:

A�! � (TA)
:A�! A:A� (5A)

6. Inclusion axiom for B (note the absence of an analogous axiom for I):

A�! B� (InclB)

7. Axioms to capture the non-standard semantics for I:

(I� ^ I )! A(�$  ) (I1)
A(�$  )! (I�$ I ) (I2)
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RULES OF INFERENCE:

1. Modus Ponens: �; �! 
 (MP )

2. Necessitation for A,  and �1:

�
�� for � 2 f;�1; Ag: (Nec)

Note that from (MP ), (InclB) and Necessitation for A one can derive ne-
cessitation for B ( �B� ). On the other hand, necessitation for I is not a rule of
inference of this logic (indeed it is not validity preserving).

Remark 3 By (MP), axiom K and necessitation, the following is a derived rule
of inference for the operators,�1, B and A: �! 

��!� for � 2 f;�1; B;Ag:
We call this rule RK. On the other hand, rule RK is not a valid rule of infer-
ence for the operator I (despite the fact that axiom K for I can be shown to be
a theorem of L0).

The proof of the following proposition is standard and is relegated to the
Appendix.5

Proposition 4 Logic L0 is sound with respect to the class of temporal belief
revision frames (cf. De�nition 2), that is, every theorem of L0 is valid in every
model based on a temporal belief frame

Our purpose is to model how the factual beliefs of an individual change
over time in response to factual information. Thus the axioms we introduce
are restricted to Boolean formulas, which are formulas that do not contain any
modal operators. That is, Boolean formulas are de�ned recursively as follows:
(1) every atomic proposition is a Boolean formula, and (2) if � and  are Boolean
formulas then so are :� and (� _  ). As the following proposition shows, the
truth value of a Boolean formula does not change over time: it is only a function
of the state. We denote by �B the set of Boolean formulas.

Proposition 5 Let � 2 �B. Fix an arbitrary model and suppose that (!; t) j=
�. Then, for every t0 2 T , (!; t0) j= �.

Proof. The proof is by induction on the complexity of �. If � = q where q
is an atomic proposition, then (!; t) j= q if and only if ! 2 V (q) and therefore
(!; t0) j= q for every t0 2 T . Suppose now that the statement is true for � and
 , that is, if (!; t) j= � then (!; t0) j= � for every t0 2 T and similarly for  .
By de�nition, (!; t) j= :� if and only if (!; t) 2 �; by the induction hypothesis
(!; t) 2 � if and only if (!; t0) 2 � for every t0 2 T . Hence (!; t0) j= :� for every

5Completeness issues are not relevant for the results of this paper and are dealt with in a
separate paper that studies several extensions of L0 besides the two considered here.
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t0 2 T . By de�nition, (!; t) j= �_ if and only if either (!; t) j= � or (!; t) j=  ;
by the induction hypothesis, if (!; t) j= � then (!; t0) j= � for every t0 2 T and
if (!; t) j=  then (!; t0) j=  for every t0 2 T: Thus (!; t0) j= � _  for every
t0 2 T:

We now introduce two sets of axioms that provide two extensions of logic
L0, one of which will be shown to axiomatize the basic sets of AGM postulates
and the other the full set. Note that all of the following axioms apply only to
Boolean formulas.

The �rst axiom says that factual information is believed. This is known in
the literature as Success or Acceptance (�A�stands for �Acceptance�): if � is a
Boolean formula,

I�! B�: (A)

The second axiom requires the individual not to drop any of his current
factual beliefs at any next instant where he is informed of some fact that he
currently considers possible (�ND�stands for �Not Drop�): if � and  are Boolean
formulas

(:B:� ^B )!(I�! B ): (ND)

The third axiom requires that if the individual considers it possible that
(�^: ) then at any next instant where he is informed that � he does not believe
that  , that is, he cannot add new factual beliefs, unless they are implied by
the old beliefs and the information received (�NA�stands for �Not Add�): if �
and  are Boolean formulas,

:B:(� ^ : )!(I�! :B ): (NA)

The fourth axiom says that if the individual receives consistent information
then his beliefs are consistent, in the sense that he does not simultaneously
believe a formula and its negation (�WC�stands for �Weak Consistency�): if �
is a Boolean formula,

(I� ^ :A:�)! (B ! :B: ): (WC)

We call the following property of temporal belief frames �Qualitative Bayes
Rule�(QBR): 8t1; t2 2 T;8! 2 
;

if t1 � t2 and Bt1(!) \ It2(!) 6= ; then Bt2(!) = Bt1(!) \ It2(!): (QBR)

The expression �Qualitative Bayes Rule�is motivated by the following observa-
tion (see [3]). In a probabilistic setting, let P!;t1 be the probability measure over
a set of states 
 representing the individual�s beliefs at state ! and time t1, let
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F � 
 be an event representing the information received by the individual at a
later date t2 and let P!;t2 be the posterior probability measure representing the
revised beliefs at state ! and date t2. Bayes�rule requires that, if P!;t1(F ) > 0,

then, for every event E � 
, P!;t2(E) =
P!;t1 (E\F )
P!;t1 (F )

: Bayes�rule thus implies

the following (where supp(P ) denotes the support of the probability measure
P ):

if supp(P!;t1) \ F 6= ?, then supp(P!;t2) = supp(P!;t1) \ F:

If we set Bt1(!) = supp(P!;t1), F = It2(!), with t1 � t2, and Bt2(!) =
supp(P!;t2) then we get the Qualitative Bayes Rule as stated above. Thus in a
probabilistic setting the proposition �at date t the individual believes ��would
be interpreted as �the individual assigns probability 1 to the event d�et � 
�.

Let Lb be the logic obtained by adding the above four axioms to the basic
logic L0. We denote this by writing Lb = L0+A+ND+NA+WC (the subscript
�b�was chosen because, as shown later, logic Lb provides an axiomatization of
the basic set of AGM postulates).

De�nition 6 An Lb-frame is a temporal belief revision frame that satis�es the
following properties:
(1) the Qualitative Bayes Rule,
(2) 8! 2 
, 8t 2 T , Bt(!) � It(!),
(3) 8! 2 
, 8t 2 T , if It(!) 6= ? then Bt(!) 6= ?.

An Lb-model is a model based on an Lb-frame.

Proposition 7 Logic Lb is sound with respect to the class of Lb-frames. That
is, every theorem of Lb is valid in every Lb-model.

Proof. By Proposition 4 it is enough to show that the four axioms A, ND,
NA and WC are valid in an arbitrary model based on a frame that satis�es the
above three properties. Fix an arbitrary such model.
Validity of A. Let ! 2 
, t 2 T and � 2 �B be such that (�; t) j= I�. Then

It(�) = d�et. Hence, by property (2), Bt(�) � d�et, that is, (�; t) j= B�.
Validity of ND. Let ! 2 
, t1 2 T and �;  2 �B be such that (!; t1) j=

:B:�^B . Fix an arbitrary t2 2 T such that t1 � t2 and (!; t2) j= I�: Then
It2(!) = d�et2 . Since (!; t1) j= :B:�, there exists an !0 2 Bt1(!) such that
(!0; t1) j= �. Since � is Boolean, by Proposition 5, (!0; t2) j= � and, therefore,
!0 2 It2(!). Thus Bt1(!)\It2(!) 6= ; and, by (QBR), Bt2(!) � Bt1(!): Fix an
arbitrary !00 2 Bt2(!). Then !00 2 Bt1(!) and, since (!; t1) j= B , (!00; t1) j=  .
Since  is Boolean, by Proposition 5, (!00; t2) j=  . Hence (!; t2) j= B .
Validity of NA. Let ! 2 
, t1 2 T and �;  2 �B be such that (!; t1) j=

:B:(� ^ : ). Fix an arbitrary t2 2 T such that t1 � t2 and suppose that
(!; t2) j= I�. Then It2(!) = d�et2 . Since (!; t1) j= :B:(� ^ : ), there exists
an !0 2 Bt1(!) such that (!0; t1) j= � ^ : . Since � and  are Boolean, by
Proposition 5, (!0; t2) j= �^: . Thus !0 2 It2(!), so that !0 2 Bt1(!)\It2(!):
By (QBR), !0 2 Bt2(!). Thus, since (!0; t2) j= : ; (!; t2) j= :B .
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Validity of WC. Let ! 2 
, t 2 T and � 2 �B be such that (�; t) j=
I�^:A:�. Then It(�) = d�et and there exists a � such that (�; t) j= �. Thus
It(�) 6= ? and by property (3) Bt(�) 6= ?. Fix an arbitrary formula  and
suppose that (�; t) j= B . Then, 8! 2 Bt(�), (!; t) j=  . Since Bt(�) 6= ?,
there exists a  2 Bt(�). Thus (; t) j=  and hence (�; t) j= :B: .

We now strengthen logic Lb by adding two more axioms.
The �rst axiom says that if there is a next instant where the individual is

informed that � ^  and believes that �, then at every next instant it must
be the case that if the individual is informed that � then he must believe that
(�^ )! � (we call this axiomK7 because, as we will show later, it corresponds
to AGM postulate (K*7)): if �,  and � are Boolean formulas,

�(I(� ^  ) ^B�)!(I�! B ((� ^  )! �)): (K7)

The second axiom says that if there is a next instant where the individual
is informed that �, considers � ^  possible and believes that  ! �, then at
every next instant it must be the case that if the individual is informed that
� ^  then he believes that � (we call this axiom K8 because it corresponds to
AGM postulate (K*8)): if �,  and � are Boolean formulas,

�(I� ^ :B:(� ^  ) ^B( ! �))!(I(� ^  )! B�): (K8)

Let LAGM be the logic obtained by adding the above two axioms to Lb.
Thus LAGM = L0 + A + ND + NA +WC + K7 + K8 (the subscript �AGM�
was chosen because, as shown later, logic LAGM provides an axiomatization of
the full set of AGM postulates).

De�nition 8 An LAGM -frame is an Lb-frame (cf. De�nition 6) that satis�es
the following additional property: 8! 2 
; 8t1; t2; t3 2 T ,

if t1 � t2, t1 � t3, It3(�) � It2(�) and It3(�) \ Bt2(�) 6= ;
then Bt3(�) = It3(�) \ Bt2(�).

(CAB)

An LAGM -model is a model based on an LAGM -frame.6

Proposition 9 Logic LAGM is sound with respect to the class of LAGM -frames.
That is, every theorem of LAGM is valid in every LAGM -model.

Proof. By Proposition 7 it is enough to show that axioms K7 and K8
are valid in an arbitrary model based on a frame that satis�es (CAB). Fix an
arbitrary such model.
Validity of K7. Let � and t1 be such that (a; t1) j= �(I(�^ )^B�), where

�,  and � are Boolean formulas. Then there exists a t3 such that t1 � t3

6 In the above property �CAB�stands for �Comparison Across Branches�
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and (�; t3) j= I(� ^  ) ^ B�. Then It3(�) = d� ^  et3 . Fix an arbitrary t2
such that t1 � t2 and suppose that (�; t2) j= I�. Then It2(�) = d�et2 . Since
� and  are Boolean, by Proposition 5 d� ^  et3 = d� ^  et2 . Thus, since
d� ^  et2 � d�et2 , It3(�) � It2(�). If It3(�) \ Bt2(�) = ;, then, for every
! 2 Bt2(�), (!; t2) j= :(�^ ) and thus (!; t2) j= (�^ )! �, so that (�; t2) j=
B ((� ^  )! �). If, on the other hand, It3(�) \ Bt2(�) 6= ;, then, by (CAB),
It3(�)\Bt2(�) = Bt3(�). Fix an arbitrary � 2 Bt2(�). If (�; t2) j= :(�^ ) then
(�; t2) j= (�^ )! �. If (�; t2) j= �^ , then, by Proposition 5, (�; t3) j= �^ 
and, therefore, � 2 It3(�): Hence � 2 Bt3(�): Since (�; t3) j= B�, (�; t3) j= �
and, therefore, (�; t3) j= (�^ )! �. Since (�^ ! �) is Boolean (because �,
 and � are), by Proposition 5, (�; t2) j= (� ^  )! �. Thus, since � 2 Bt2(�)
was chosen arbitrarily, (�; t2) j= B(� ^  ! �):
Validity of K8. Let �,  and � be Boolean formulas and let � and t1 be such

that (�; t1) j= �(I�^:B:(�^ )^B( ! �)). Then there exists a t2 such that
t1 � t2 and (�; t2) j= I� ^ :B:(� ^  ) ^ B( ! �): Thus It2(�) = d�et2 and
there exists a � 2 Bt2(�) such that (�; t2) j= �^ : Fix an arbitrary t3 such that
t1 � t3 and suppose that (�; t3) j= I(� ^  ). Then It3(�) = d� ^  et3 . Since
�^ is a Boolean formula and (�; t2) j= �^ , by Proposition 5 (�; t3) j= �^ 
and therefore � 2 It3(�). Hence It3(�) \ Bt2(�) 6= ;. Furthermore, since �
is Boolean, by Proposition 5 d�et3 = d�et2 . Thus, since d� ^  et3 � d�et3 it
follows that It3(�) � It2(�). Hence, by (CAB), Bt3(�) = It3(�) \ Bt2(�).
Fix an arbitrary  2 Bt3(�). Then  2 Bt2(�) and, since (�; t2) j= B( !
�), (; t2) j=  ! �. Since  ! � is a Boolean formula, by Proposition 5
(; t3) j=  ! �. Since Bt3(�) � It3(�) (by de�nition of LAGM -frame) and
It3(�) = d� ^  et3 , (; t3) j=  . Thus (; t3) j= �. Hence (�; t3) j= B�:

We end this section with a Lemma that will be used later.

Lemma 10 In any logic where B is a normal operator (that is, it satis�es
axiom K and the rule of necessitation) the following is a theorem:

(B� ^ :B: )! :B:(� ^  ):

Proof. (�PL�stands for �Propositional Logic�)
1. B� ^B(�! : )! B: Axiom K for B
2. B�! (B(�! : )! B: ) 1, PL
3. (B(�! : )! B: )! (:B: ! :B(�! : )) tautology
4. B�! (:B: ! :B(�! : )) 2, 3, PL
5. (B� ^ :B: )! :B(�! : ) 4, PL
6. :(� ^  )! (�! : ) tautology
7. B:(� ^  )! B(�! : ) 6, RK (cf. Remark. 3)
8. :B(�! : )! :B:(� ^  ) 7, PL
9. (B� ^ :B: )! :B:(� ^  ) 5, 8, PL.
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4 Axiomatization of the AGM theory

The AGM theory of belief revision was developed within the framework of belief
sets. Let � be the set of formulas in a propositional language. Given a subset
F � �, its PL-deductive closure [F ]PL is de�ned as follows:  2 [F ]PL if and
only if there exist �1; :::; �n 2 F such that (�1 ^ ::: ^ �n) !  is a tautology
(that is, a theorem of Propositional Logic). A set F � � is consistent if [F ]PL 6=
� (equivalently, if there is no formula � such that both � and :� belong to
[F ]PL). A set F � � is deductively closed if F = [F ]PL. Given a consistent and
deductively closed set K (thought of as the initial beliefs of the individual) and
a formula � (thought of as a new piece of information), the revision of K by �,
denoted by K�

�, is a subset of � that satis�es the following conditions, known
as the AGM postulates:

(K*1) K�
� is deductively closed

(K*2) � 2 K�
�

(K*3) K�
� � [K [ f�g]PL

(K*4) if :� =2 K, then [K [ f�g]PL � K�
�

(K*5) K�
� = � if and only if � is a contradiction

(K*6) if �$  is a tautology then K�
� = K�

 

(K*7) K�
�^ �

h
K�
� [ f g

iPL
(K*8) if : =2 K�

�, then
h
K�
� [ f g

iPL
� K�

�^ :

(K*1) requires the revised belief set to be deductively closed. In our frame-
work this corresponds to requiring the B operator to be a normal operator, that
is, to satisfy axiom K and the inference rule Necessitation.

(K*2) requires that the information be believed. In our framework, this
corresponds to imposing the Acceptance axiom (for Boolean �): I�! B�.

(K*3) says that beliefs should be revised minimally, in the sense that no new
belief should be added unless it can be deduced from the information received
and the initial beliefs. As shown below, this requirement corresponds to our
axiom NA (for Boolean � and  ): :B:(� ^ : )!(I�! :B ).
(K*4) says that if the information received is compatible with the initial be-

liefs, then any formula that can be deduced from the information and the initial
beliefs should be part of the revised beliefs. As shown below, this requirement
corresponds to our axiom ND (for Boolean � and  ): (:B:�^B )!(I�!
B ).

(K*5) requires the revised beliefs to be consistent, unless the information
� is contradictory (that is, :� is a tautology). This corresponds to out axiom
WC (for Boolean �): (I� ^ :A:�)! (B ! :B: ).
(K*6) is automatically satis�ed in our framework, since if � $  is a tau-

tology then k�k = k k in every model and therefore the formula I� $ I is
valid. Hence revision based on � must coincide with revision based on  .

11



(K*7) and (K*8) are a generalization of (K*3) and (K*4) that

�applies to iterated changes of belief. The idea is that if K�
� is a

revision of K and K�
� is to be changed by adding further sentences,

such a change should be made by using expansions of K�
� whenever

possible. More generally, the minimal change of K to include both �
and  (that is, K�

�^ ) ought to be the same as the expansion of K
�
�

by  , so long as  does not contradict the beliefs in K�
��(Gärdenfors

[5], p. 55).7

We will show below that (K*7) corresponds to our axiom K7 and (K*8) to
axiom K8:
The set of postulates (K*1) through (K*6) is called the basic set of postulates

for belief revision (Gärdenfors, [5] p. 55).

The following proposition shows that logic Lb provides an axiomatization of
the set of basic postulates.

Proposition 11 Logic Lb axiomatizes the set of basic AGM postulates (K*1)-
(K*6), in the sense that both (A) and (B) below hold:

(A) Fix an arbitrary Lb-model and let t1; t2 2 T and � 2 
 be such that
t1 � t2 and (�; t2) j= I�, with � 2 �B (where �B � � denotes the sub-
set of Boolean formulas). De�ne K =

�
 2 �B : (�; t1) j= B 

	
and K�

� =�
 2 �B : (�; t2) j= B 

	
. Then K�

� satis�es AGM postulates (K*1)-(K*6).

(B) Let K � �B be a consistent and deductively closed set and � 2 �B.
If K�

� � �B satis�es AGM postulates (K*1)-(K*6) then there is an Lb-model,
t1; t2 2 T and � 2 
 such that
(B.1) t1 � t2
(B.2) K =

�
 2 �B : (�; t1) j= B 

	
(B.3) (�; t2) j= I�
(B.4) K�

� =
�
 2 �B : (�; t2) j= B 

	
(B.5) if � is consistent then (�; t) j= � for some � 2 
 and t 2 T .

Proof. (A) Fix an Lb-model and let t1; t2 2 T and � 2 
 be such that
t1 � t2 and (�; t2) j= I�, with � 2 �B . Let K =

�
 2 �B : (�; t1) j= B 

	
and K�

� =
�
 2 �B : (�; t2) j= B 

	
. We need to prove that AGM postulates

(K*1)-(K*6) are satis�ed.

(K*1): we need to show thatK�
� is deductively closed, that is,K

�
� =

h
K�
�

iPL
.

If  2 K�
� then  2

h
K�
�

iPL
, because  !  is a tautology. Now let  2h

K�
�

iPL
. Then there exist �1; :::; �n 2 K�

� such that (�1 ^ ::: ^ �n) !  is a

tautology, hence a theorem of Lb. Then, by necessitation for B and Proposition
7, (�; t2) j= B ((�1 ^ ::: ^ �n)!  ). By de�nition of K�

�, since �1; :::; �n 2 K�
�,

7The expansion of K�
� by  is

h
K�
� [ f g

iPL
:
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(�; t2) j= B (�1 ^ ::: ^ �n) : By axiom K for B and Proposition 7, (�; t2) j=
B ((�1 ^ ::: ^ �n)!  ) ^ B (�1 ^ ::: ^ �n) ! B . Thus (�; t2) j= B , that is,
 2 K�

�.

(K*2): we need to show that � 2 K�
�, that is, (�; t2) j= B�. By Axiom A

and Proposition 7, (�; t2) j= I� ! B� and by hypothesis (�; t2) j= I�. Thus
(�; t2) j= B�.

(K*3): we need to show that K�
� � [K [ f�g]PL. Let  2 K�

�, i.e. (�; t2) j=
B . First of all, note that axiom NA is tautologically equivalent to �(I� ^
B )! B(�!  ). Thus, by Proposition 7, (�; t1) j= �(I�^B )! B(�!  ).
By hypothesis, (�; t2) j= I�^B and t1 � t2. Thus (�; t1) j= �(I�^B ) and,
therefore, (�; t1) j= B(� !  ), that is (� !  ) 2 K. Hence f�; (�!  )g 2
K [ f�g so that, since (� ^ (�!  ))!  is a tautology,  2 [K [ f�g]PL.
(K*4): we need to show that if :� =2 K then [K [ f�g]PL � K�

�. Suppose
that :� =2 K, that is, (�; t1) j= :B:�. First of all, note that axiom ND
is tautologically equivalent to :B:� ! (B ! (I� ! B )). Thus, by
Proposition 7, (�; t1) j= :B:�! (B !(I�! B )). Hence

(�; t1) j= B !(I�! B ); for every Boolean formula  : (*)

Let � 2 [K [ f�g]PL, that is, there exist �1; :::; �n 2 K [ f�g such that
(�1 ^ ::: ^ �n)! � is a tautology. We want to show that � 2 K�

�, i.e. (�; t2) j=
B�. Since (�1 ^ ::: ^ �n)! � is a tautology, by necessitation for B and Propo-
sition 7, (�; t1) j= B ((�1 ^ ::: ^ �n)! �). If �i 2 K for every i = 1; :::; n,
then (�; t1) j= B (�1 ^ ::: ^ �n) and therefore (using axiom K for B and Propo-
sition 7) (�; t1) j= B�: Thus, by (*), (�; t1) j= (I� ! B�) so that, since
t1 � t2, (�; t2) j= I� ! B�. Since, by hypothesis, (�; t2) j= I�, it follows
that (�; t2) j= B�, i.e. � 2 K�

�. If �i 62 K, for some i = 1; :::; n then we can
assume (renumbering the formulas, if necessary) that �n 62 K, which implies
that �n = �, and �1; :::; �n�1 2 K, so that (�; t1) j= B

�
�1 ^ ::: ^ �n�1

�
: Since,

by hypothesis,
�
�1 ^ ::: ^ �n�1 ^ �

�
! � is a tautology and is tautologically

equivalent to
�
�1 ^ ::: ^ �n�1

�
! (�! �), by necessitation for B and Propo-

sition 7 (�; t1) j= B
��
�1 ^ ::: ^ �n�1

�
! (�! �)

�
. Thus (�; t1) j= B (�! �)

(appealing, once again, to axiom K for B and Proposition 7). Hence, by
(*) (with  = (�! �)), (�; t1) j= (I� ! B (�! �)): Since t1 � t2,
(�; t2) j= I� ! B (�! �). By hypothesis, � j= I� and by (K*2) (proved
above), (�; t2) j= B�. Thus (�; t2) j= B (�! �)^B�. By axiom K and Propo-
sition 7, (�; t2) j= (B (�! �) ^B�)! B�. Hence (�; t2) j= B�, i.e. � 2 K�

�.

(K*5): we have to show that K�
� 6= �B , unless � is a contradiction (that

is, :� is a tautology). If � is a contradiction, then k�k = ? and since, by
hypothesis, (�; t2) j= I�, It2(�) = ?. By de�nition of Lb-model, Bt2(�) �
It2(�). Thus Bt2(�) = ? and therefore (�; t2) j= B for every formula  . Hence
K�
� = �

B . If � is not a contradiction, then, by hypothesis (B.5), (�; t) j= � for
some � 2 
 and t 2 T . Since � is Boolean, by Proposition 5, (�; t2) j= �. Thus
(�; t2) j= :A:�. By hypothesis, (�; t2) j= I�. Thus (�; t2) j= I� ^ :A:�. By
axiom WC and Proposition 7, (�; t2) j= (I� ^ :A:�)! (B ! :B: ). Thus
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(�; t2) j= B ! :B: for every formula  . Hence if  2 K�
� then : =2 K�

�.
Since, by (K*2) (proved above), � 2 K�

�, it follows that :� =2 K�
� and therefore

K�
� 6= �.
(K*6): we have to show that if � $  is a tautology then K�

� = K�
 . If

� $  is a tautology, then k�$  k = 
 � T , so that d�et2 = d et2 . Thus
(�; t2) j= I� if and only if (�; t2) j= I . Hence, by de�nition, K�

� = K�
 .

(B) Next we prove the converse, namely that if K � �B is a consistent
and deductively closed set, � 2 �B and K�

� � �B satis�es AGM postulates
(K*1)-(K*6) then there is an Lb-model, t1; t2 2 T and � 2 
 such that (B.1)-
(B.5) above are satis�ed. Let MPL

B be the set of maximally consistent sets of
formulas for a propositional logic whose set of formulas is �B . For any F � �B
let MF = f! 2 MPL

B : F � !g. By Lindenbaum�s lemma, MF 6= ? if and only
if F is a consistent set, that is, [F ]PL 6= �B .
De�ne the following belief revision frame: T = ft1; t2g,�= f(t1; t2)g, 
 =MPL

B

and, for every ! 2 
,
Bt1(!) = It1(!) =MK

It2(!) =
�
? if � is a contradiction
M� otherwise

Bt2(!) =

8<:
? if � is a contradiction
M� \MK if � is consistent and M� \MK 6= ?
MK�

�
if � is consistent and M� \MK = ?

First we show that this frame is an Lb-frame (cf. De�nition 6).
The Qualitative Bayes Rule is clearly satis�ed, since Bt1(!) \ It2(!) 6= ? if

and only if M� \MK 6= ?, in which case Bt2(!) =M� \MK = It2(!)\Bt1(!).
The property that Bt(!) � It(!) (for every ! and t) is also satis�ed: the

only case where, possibly, Bt(!) 6= It(!) is when t = t2 and � is a consistent
formula. In this case, there are two possibilities: (1) M� \MK 6= ? and (2)
M� \MK = ?. In case (1) Bt2(!) = M� \MK � M� = It2(!). In case (2)
Bt2(!) = MK�

�
and It2(!) = M�. Now, if ! 2 MK�

�
then K�

� � ! and, since by
AGM postulate (K*2), � 2 K�

�, it follows that � 2 !, that is, ! 2 M�. Hence
MK�

�
�M�.

Finally, the property that, for every ! and t, Bt(!) 6= ? whenever It(!) 6= ?
is also satis�ed. If t = t1, trivially because Bt1(!) = It1(!). If t = t2, It2(!) 6= ?
if and only if � is a consistent formula; in this case either Bt2(!) =M� \MK , if
M� \MK 6= ?, or Bt2(!) = MK�

�
, in which case by AGM postulate (K*5) K�

�

is a consistent set and therefore, by Lindenbaum�s lemma, MK�
�
6= ?.

Now de�ne the following model based on this frame: for every atomic propo-
sition q, for every ! 2 
 and for every t 2 T , (!; t) j= q if and only if q 2 !. By
a straightforward induction argument (cf. the proof of Proposition 5) it can be
shown that, for every Boolean formula  2 �B , for every ! 2 
 and for every
t 2 T ,

(!; t) j=  if and only if  2 !: (**)
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We also note the following (see Theorem 2.20 (1) in Chellas, [4], p. 57): 8F �
�B ;8 2 �B ;

 2 [F ]PL if and only if  2 !; 8! 2MF : (***)

Fix an arbitrary � 2 
. We want to show that properties (B.1)-(B.5) are
satis�ed.

(1): t1 � t2 by construction.

(2): we need to show that K =
�
 2 �B : (�; t1) j= B 

	
. First we show that

K �
�
 2 �B : (�; t1) j= B 

	
. Let  2 K. Then  2 ! for every ! 2 MK .

Thus, since Bt1(�) =MK , it follows from (**) that (�; t1) j= B . Next we show
that if  2 �B and (�; t1) j= B then  2 K. Since Bt1(�) = MK , by (**)
 2 ! for every ! 2 MK . Thus, by (***),  2 [K]PL. By hypothesis, K is
deductively closed, that is, K = [K]PL. Hence  2 K.

(3): we need to show that (�; t2) j= I�: By (**), for every ! 2 
, (!; t2) j= �
if and only if � 2 !, that is, ! 2 M�. Since, by construction, It2(�) = M�, it
follows that (�; t2) j= I�:

(4): we need to show that K�
� =

�
 2 �B : (�; t2) j= B 

	
. There are several

cases to be considered.
(4.i) � is a contradiction. Then, by AGM postulate (K*5), K�

� = �B and, by
construction, Bt2(�) = ?, so that (�; t2) j= B for every formula  . Hence�
 2 �B : (�; t2) j= B 

	
= �B = K�

�.
(4.ii) � is consistent and M� \MK = ?. In this case, by construction, Bt2(�) =
MK�

�
. If  2 K�

� then  2 ! for all ! 2 MK�
�
and, therefore, (�; t2) j= B .

Conversely, if (�; t2) j= B then by (**)  2 ! for all ! 2MK�
�
and, therefore,

by (***)  2
h
K�
�

iPL
. By AGM postulate (K*1), K�

� =
h
K�
�

iPL
. Thus  2 K�

�.

(4.iii) � is consistent andM�\MK 6= ?, in which case Bt2(�) =M�\MK . First
of all, note that M� \MK = MK[f�g. Secondly, it must be that :� =2 K (if
:� 2 K then :� 2 ! for every ! 2 MK and therefore M� \MK = ?). Hence,
by AGM postulates (K*3) and (K*4), K�

� = [K [ f�g]PL. By (***), for every
Boolean formula  ,  2 [K [ f�g]PL if and only if  2 !; for all ! 2 MK[f�g.
Hence

�
 2 �B : (�; t2) j= B 

	
= [K [ f�g]PL = K�

�.

(5): we need to show that, if � is consistent, then (�; t) j= � for some � 2 
 and
t 2 T . If � is consistent, then by Lindenbaum�s lemma, there exists a � 2MPL

B

such that � 2 �. By (**), (�; t) j= � for all t 2 T .

The following proposition shows that logic LAGM provides an axiomatization
of the AGM theory of belief revision.

Proposition 12 Logic LAGM provides an axiomatization of the full set of AGM
postulates (K*1)-(K*8), in the sense that both (A) and (B) below hold:

(A) Fix an arbitrary LAGM -model and let t1; t2; t3 2 T and � 2 
 be such
that t1 � t2, t1 � t3, (�; t2) j= I� and (�; t3) j= I(� ^  ) with �;  2 �B.
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De�ne K =
�
 2 �B : (�; t1) j= B 

	
, K�

� =
�
 2 �B : (�; t2) j= B 

	
and

K�
�^ =

�
� 2 �B : (�; t3) j= B�

	
. Then K�

� and K
�
�^ satisfy AGM postulates

(K*1)-(K*8).

(B). Let K � �B be a consistent and deductively closed set and �;  2 �B.
If K�

�;K
�
�^ � �B satisfy AGM postulates (K*1)-(K*8) then there is an LAGM -

model, t1; t2; t3 2 T and � 2 
 such that
(B.1) t1 � t2
(B.2) K =

�
� 2 �B : (�; t1) j= B�

	
(B.3) (�; t2) j= I�
(B.4) K�

� =
�
� 2 �B : (�; t2) j= B�

	
(B.5) if � is consistent then (�; t) j= � for some � 2 
 and t 2 T
(B.6) t1 � t3
(B.7) (�; t3) j= I(� ^  )
(B.8) K�

�^ =
�
� 2 �B : (�; t3) j= B�

	
:

Proof. (A) Fix an arbitrary LAGM -model and let t1; t2; t3 2 T and � 2 

be such that t1 � t2, t1 � t3, (�; t2) j= I� and (�; t3) j= I(� ^  ) with �;  2
�B . De�ne K =

�
 2 �B : (�; t1) j= B 

	
, K�

� =
�
 2 �B : (�; t2) j= B 

	
and

K�
�^ =

�
� 2 �B : (�; t3) j= B�

	
. We need to show that K�

� and K
�
�^ satisfy

AGM postulates (K*1)-(K*8).The proof that AGM postulates (K*1)-(K*6) are
satis�ed is the same as in Proposition 11 (every LAGM -model is an Lb-model).
Thus we shall only prove that AGM postulates (K*7) and (K*8) are satis�ed.

First we show that (K*7) is satis�ed, that is, that K�
�^ � [K�

� [ f g]PL.
Fix an arbitrary � 2 K�

�^ , that is, (�; t3) j= B�. By hypothesis, (�; t3) j=
I(� ^  ). Thus (�; t3) j= I(� ^  ) ^ B� and, since t1 � t3, (�; t1) j= �(I(� ^
 ) ^ B�): By axiom K7 and Proposition 9, (�; t1) j= �(I(� ^  ) ^ B�) !
(I� ! B ((� ^  )! �)). Hence (�; t1) j= (I� ! B ((� ^  )! �)), from
which it follows, since t1 � t2, that (�; t2) j= I� ! B ((� ^  )! �). By
hypothesis, (�; t2) j= I�. Hence (�; t2) j= B (�! ( ! �)) [since (� ^  ) ! �
is tautologically equivalent to � ! ( ! �)]. By axiom A and Proposition 9,
(�; t2) j= I� ! B� and by hypothesis (�; t2) j= I�. Thus (�; t2) j= B�. By
axiom K and Proposition 9, (�; t2) j= (B (�! ( ! �)) ^ B�) ! B( ! �).
Thus (�; t2) j= B( ! �), that is, ( ! �) 2 K�

�. Hence � 2 [K�
� [ f g]PL:

Next we prove that (K*8) is satis�ed, that is, that if : =2 K�
� then [K

�
� [

f g]PL � K�
�^ . Fix an arbitrary � 2 [K�

�[f g]PL: Then there exist �1; :::; �n 2
K�
� [ f g such that (�1 ^ ::: ^ �n) ! � is a tautology. If �i 2 K�

� for every
i = 1; :::; n then, since by AGM postulate (K*1) K�

� is deductively closed (that
is, K�

� = [K�
�]
PL), � 2 K�

� and thus ( ! �) 2 K�
� (since � ! ( ! �)

is a tautology). If �i =2 K�
� for some i then we can assume (renumbering the

formulas, if necessary) that �n =2 K�
�, from which it follows that �n =  .

Since, by hypothesis, (�1 ^ ::: ^ �n) ! � is a tautology and it is tautologi-
cally equivalent to (�1 ^ ::: ^ �n�1) ! (�n ! �) and �n =  , it follows that
( ! �) 2 [K�

�]
PL = K�

�. Thus

( ! �) 2 K�
�, that is, (�; t2) j= B( ! �): (y)
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By hypothesis, : =2 K�
�, that is, (�; t2) j= :B: : By axiom A and Proposition

9, (�; t2) j= I�! B� and by hypothesis (�; t2) j= I�. Thus (�; t2) j= B� and,
therefore, (�; t2) j= B� ^ :B: . By Lemma 10 and Proposition 9, (�; t2) j=
(B� ^ :B: )! :B:(� ^  ). Thus

(�; t2) j= :B:(� ^  ): (yy)

By hypothesis, (�; t2) j= I�. This, together with (y) and (yy) yields (�; t2) j=
I�^:B:(�^ )^B( ! �). Hence, since t1 � t2, (�; t1) j= �(I�^:B:(�^
 ) ^ B( ! �)). By axiom K8 and Proposition 9, (�; t1) j= �(I� ^ :B:(� ^
 )^B( ! �))!(I(�^ )! B�). Thus (�; t1) j=(I(�^ )! B�) from
which it follows, since t1 � t3, that (�; t3) j= I(� ^  ) ! B�. By hypothesis,
(�; t3) j= I(� ^  ): Hence (�; t3) j= B�, that is, � 2 K�

�^ .

(B) Next we prove the converse, namely that if K � �B is consistent and
deductively closed, �;  2 �B and K�

�;K
�
�^ � �B satisfy AGM postulates

(K*1)-(K*8) then there is an LAGM -model, t1; t2; t3 2 T and � 2 
 such that
(B.1)-(B.8) are satis�ed. We proceed as in the proof of Proposition 11. Thus
MPL
B denotes the set of maximally consistent sets of formulas for a propositional

logic whose set of formulas is �B and, for F � �B , MF = f! 2MPL
B : F � !g.

De�ne the following belief revision frame: T = ft1; t2; t3g,�= f(t1; t2); (t1; t3)g,

 =MPL

B and, for every ! 2 
,
Bt1(!) = It1(!) =MK

It2(!) =
�
? if � is a contradiction
M� otherwise

Bt2(!) =

8<:
? if � is a contradiction
M� \MK if � is consistent and M� \MK 6= ?
MK�

�
if � is consistent and M� \MK = ?

It3(!) =
�
? if � ^  is a contradiction
M�^ otherwise

Bt3(!) =t2 (!) =

8<:
? if � ^  is a contradiction
M�^ \MK if � ^  is consistent and M�^ \MK 6= ?
MK�

�^ 
if � ^  is consistent and M�^ \MK = ?

First we show that this frame is an LAGM -frame (cf. De�nition 8). Note that
Bt1 , It1 , Bt2 and It2 are the same as in the Lb-frame de�ned in the proof of
Proposition 11. Thus we only need to focus on the additional elements.

The Qualitative Bayes Rule is satis�ed, since Bt1(!)\It3(!) 6= ? if and only
if MK \M�^ 6= ?, in which case Bt3(!) =MK \M�^ = Bt1(!) \ It3(!).
The property that, for every ! and t, Bt(!) � It(!) is also satis�ed. The

only case left to examine is the case where t = t3 and � ^  is a consistent
formula. If M�^ \MK 6= ?, then Bt3(!) = M�^ \MK � M�^ = It3(!). If
M�^ \MK = ? then Bt3(!) =MK�

�^ 
and It3(!) =M�^ . Now, if ! 2MK�

�^ 

then K�
�^ � ! and, since by AGM postulate (K*2), � ^  2 K�

�^ , it follows
that � ^  2 !, that is, ! 2M�^ . Hence MK�

�^ 
�M�^ .
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The property that, for every ! and t, Bt(!) 6= ? whenever It(!) 6= ? is
also satis�ed. The only case left to examine is the case where t = t3. Now,
It3(!) 6= ? if and only if � ^  is a consistent formula; in this case either
Bt3(!) =M�^ \MK , ifM�^ \MK 6= ?, or Bt3(!) =MK�

�^ 
, in which case by

AGM postulate (K*5) K�
�^ is a consistent set and therefore, by Lindenbaum�s

lemma, MK�
�^ 

6= ?.
Next we have to show that the LAGM -speci�c property is satis�ed, namely

that if t1; t; t0 and ! are such that t1 � t, t1 � t0, It0(!) � It(!) and It0(!) \
Bt(!) 6= ? then Bt0(!) = It0(!) \ Bt(!).
We start with t = t3 and t0 = t2. In this case the joint condition It2(!) �

It3(!) and It2(!)\Bt3(!) 6= ? holds if and only if (�^ ) is consistent (implying
that � is consistent) and M� � M�^ , which implies that M�^ = M�. This,
in turn, implies that (� ^  ) $ � is a tautology, so that, by AGM postulate
(K*6), K�

�^ = K�
�. Then

Bt2(!) =
�
M� \MK if M� \MK 6= ?
MK�

�
if M� \MK = ?

and

Bt3(!) =
�
M�^ \MK =M� \MK if M� \MK 6= ?
MK�

�^ 
=MK�

�
if M� \MK = ?

Thus Bt2(!) = Bt3(!). Hence, since Bt2(!) � It2(!) (proved above for all t), it
follows that Bt2(!) = It2(!) \ Bt3(!).
Next we consider the case where t = t2 and t0 = t3. In this case we do have

that It3(!) � It2(!) (in fact, It3(!) 6= ? if and only if � ^  is consistent, in
which case � must be consistent and then It2(!) =M� and It3(!) =M�^ and
M�^ � M�). Now, It3(!) \ Bt2(!) 6= ? only if � ^  is consistent in which
case It3(!) =M�^ . Assume, therefore, that �^ is consistent (which implies
that � is consistent). We need to consider several cases.
(i) M�^ \MK 6= ?. Then, since M�^ � M�, M� \MK 6= ?; it follows, by
construction, that Bt2(!) =M� \MK and Bt3(!) =M�^ \MK so that (since
M�^ �M�) Bt3(!) = It3(!) \ Bt2(!).
(ii) M�^ \ MK = ? but M� \ MK 6= ?. In this case Bt2(!) = M� \ MK

and thus It3(!) \ Bt2(!) = M�^ \MK = ? and therefore there is nothing
to prove, since the requirement that Bt3(!) = It3(!) \ Bt2(!) only holds if
It3(!) \ Bt2(!) 6= ?.
(iii) M� \MK = ?, which implies that M�^ \MK = ?. In this case Bt2(!) =
MK�

�
and Bt3(!) = MK�

�^ 
, so that It3(!) \ Bt2(!) 6= ? if and only if M�^ \

MK�
�
6= ?. Assume this. Then it must be that : =2 K�

�
8 . Thus, by AGM

postulates (K*7) and (K*8), K�
�^ = [K�

� [ f g]PL. We need to show that
Bt3(!) = It3(!)\Bt2(!), that is, that MK�

�^ 
=MK�

�
\M�^ . Let ! 2MK�

�^ 
.

Then ! � K�
�^ = [K

�
� [f g]PL � K�

�: Thus ! 2MK�
�
: Furthermore, by AGM

postulate (K*2), (� ^  ) 2 K�
�^ , so that MK�

�^ 
� M�^ . Thus MK�

�^ 
�

8By AGM postulate (K*2), � 2 K�
�. Thus if it were the case that : 2 K�

�, then we would
have that (� ^ : ) 2 ! for every ! 2 MK�

�
, contradicting the fact that M�^ \MK�

�
6= ?.
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MK�
�
\M�^ . To complete the proof we need to show that MK�

�
\M�^ �

MK�
�^ 
. Since, by AGM postulate (K*2), � 2 K�

�, [K
�
� [ f g]PL = [K�

� [ f� ^
 g]PL. Thus, if ! 2MK�

�
\M�^ then ! � [K�

�[f�^ g]PL = [K�
�[f g]PL =

K�
�^ , that is, ! 2MK�

�^ 
.

5 Conclusion

We proposed a temporal logic where information and beliefs are modeled ex-
plicitly by means of two modal operators I and B, respectively. This logic
can accommodate not only the AGM theory of belief revision but also iterated
revision, a topic that has received considerable attention in recent years (see,
for example, [11]). As remarked in the introduction, there are two advantages
to modeling belief revision in a modal framework: (1) one achieves a uniform
treatment of static and dynamic beliefs, thus providing a uni�ed theory of both,
and (2) the approach allows one to state properties of beliefs in a clear and
transparent way by means of syntactic axioms.
Some of the ideas contained in this paper (in particular the modeling of

information by means of a non-normal modal operator) were �rst put forward
in [3]. The framework in that paper was di¤erent, however, since it was not
based on branching-time structures and only two dates were considered with two
associated belief operators, B0 (representing initial beliefs) and B1 (representing
revised beliefs). The main contribution of that paper was a soundness and
completeness result for the proposed logic with respect to the class of frames
that satisfy the Qualitative Bayes Rule.
For a detailed discussion of literature that is somewhat related to the general

approach discussed here, the reader is referred to [3].

A Appendix

Proof of Proposition 4. The proof that L0 is sound with respect to the class
of temporal belief revision frames is along the usual lines (see [2] or [4]). We
need to show that (1) the rules of inference are validity preserving and (2) the
axioms of L0 are valid in an arbitrary temporal belief revision frame. The proof
of (1) is entirely standard and is omitted. The proof of validity of axiom K for
,�1 and A and for the temporal axioms (O1) and (O2) is also standard and
is omitted.
Validity of the backward uniqueness axiom (BU) is an immediate conse-

quence of the fact that in a belief revision frame every instant t has at most a
unique immediate predecessor: if (!; t2) j= ��1� then there exist a t1 such that
t1 � t2 and (!; t1) j= �. Since, for every t 2 T , t � t2 if an only if t = t1, it
follows that (!; t2) j=�1�.
Validity of the S5 axioms for A is also straightforward. Suppose that (�; t) j=

A�. Then (!; t) j= � for every ! 2 
; thus in particular for ! = �. Similarly,
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if (�; t) j= :A� then there exists a � 2 
 such that (�; t) j= :�. Hence
(!; t) j= :A� for every ! 2 
 and therefore (�; t) j= A:A�.
The proof that the inclusion axiom for B (InclB) is valid is straightforward

and is omitted.
Validity of axiom I1: I� ^ I ! A(�$  ). Suppose that (�; t) j= I� ^ I .

Then It(�) = d�et and I(�) = d et : Thus d�et = d et and hence d�$  et =

, yielding (�; t) j= A(�$  ).
Validity of axiom I2: A(� $  ) ! (I� $ I ). Suppose that (�; t) j=

A(�$  ). Then d�$  et = 
 and, therefore, d�et = d et. Thus, (�; t) j= I�
if and only if It(�) = d�et if and only if It(�) = d et, if and only if (�; t) j= I .
Hence (�; t) j= I�$ I .
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