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nonlinear time series analysis
Since the early 1980s, there has been a growing interest in
stochastic nonlinear dynamical systems of the form

xtþ1 ¼ f ðxt ; xt�1; . . . ; xt�pÞ þ sðxtÞet ,

(1)

where fxtgNt¼0 is a zero mean, covariance stationary
process, f : Rpþ1 ! R, s is the conditional volatility, and
fetgNt¼0 is an independent and identically distributed
noise process. The major recent developments in non-
linear time series are described here using this canonical
model. The first section develops representation theory
for a third order approximation. Nonparametric
approaches follow; these rely on series expansions of
the general model. Ergodic properties including path
dependence and dimension are considered next. I then
consider two widely utilized parametric models, piece-
wise linear models of f and autoregressive models for
volatility. I conclude with a discussion of hypothesis
testing and forecasting.

Volterra expansion
There is no general causal representation for nonlinear
time series as in the linear case. Series approximations
rely on the Volterra expansion,

xtþ1 ’ f ð0Þþp
i¼1f i1

xt�i1
þp

i1¼1
p
i2¼i1

f i1i2
xt�i1

xt�i2

þp
i1¼1

p
i2¼i1

p
i3¼i2

f i1i2i3
xt�i1

xt�i2
xt�i3

þ � � �
(2)

Brockett (1976) shows any continuous map over ½0;T�
can be approximated by a finite Volterra series. Mittnik
and Mizrach (1992) examine forecasts using generalized
polynomial expansions like (2). Potter (2000) shows that
in the cubic case, a one-sided Wold-type representation
in terms of white noise vt can be obtained,

xtþ1 ’ N

i¼1gi1
vt�i1
þN

i1¼1
N

i2¼i1
gi1i2

vt�i1
vt�i2

þN

i1¼1
N

i2¼i1

N
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gi1i2i3

xt�i1
xt�i2

xt�i3
.

(3)

Koop, Pesaran and Potter (1996) note that the impulse
response functions, E½xtþnjxt ; vt � � E½xtþnjxt � will depend
upon the size and sign of vt as well as the current state xt .

I now turn to nonparametric approaches which build
on approximations like 2.
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Nonparametric estimation
Consider the local polynomial approximation to f ð:Þ
around x0;

bf ðxÞ¼m
j¼0bjðx � x0Þj. (4)

In the case j ¼ 0, this corresponds to the kernel regression
estimator of Nadaraya and Watson,

bf ðxÞ ¼
T
t¼1xtþ1Khðxt � x0Þ

T
t¼1Khðxt � x0Þ

. (5)

The Kh are kernels, usually functions with a support on a
compact set, assigning greater weight to observations
closer to x0. h is the bandwidth parameter, determining
the size of the histogram bin. Nearest neighbours estima-
tion is the case where h is adjusted to find a fixed number
of nearby observations k.

More generally, the local linear approximation solves,

a0; b0 min xtþ1 � a0 � b0ðxt � x0Þð Þ2

Khðxt � x0Þ.
(6)

The estimator (5) corresponds to the case where the only
regressor in (6) is the constant term.

The application of these methods in the time series
case is a fairly recent development. Conditions for con-
sistency and asymptotic normality rely on mixing condi-
tions where the dependence between xt+j and xt becomes
negligible as j grows large.

A closely related approach involves the use of a recur-
rent neural networks,

Ciðxt ; ht�1Þ ¼ Cðgi0 þ gi1xtþr
k¼1dikhk;t�kÞ,

xtþ1 ¼ F b0þ
p
i¼1biCiðxt ; ht�1Þ

� �
. (7)

Kuan, Hornik, and White (1994) provide convergence
results for bounded C (most commonly the logistic) as p
grows large.

A popular approach in the frequency domain is wave-
lets. The discrete wavelet transform is

xtþ1¼N

j¼�N
N

k¼�Ngðj; kÞCj;kðtÞ, (8)

where the mother wavelet CðtÞ,

Cj;kðtÞ ¼
1
ffiffiffiffi

s
j
0

q C
t � kt0s

j
0

s
j
0

 !

, (9)

is parameterized by scale s0 and translation t, and the
wavelet coefficients are given by

gðj; kÞ ¼ Cj;kðtÞ; xðtÞ
 �

. (10)

Daubechies (1992) orthonormal basis functions,

E½Cj;kðtÞCm;nðtÞ� ¼ 0; 8jam; kan,

(11)

have received the widest application.
Even when very little is known about f or s, nonlinear

time series analysis can shed light on the long run average
or ergodic properties of the dynamical system.

Ergodic properties
Mathematicians have known since Poincaré that even
simple maps like (1) can produce very complex dynam-
ics. The nonlinear time series literature has developed
tools for estimation of ergodic properties of these sys-
tems. Denote by Df ðxÞ the Jacobian matrix of partial
derivatives of (1),

@f 1=@x1 � � � @f 1=@xp

..

. . .
. ..

.

@f p=@x1 � � � @f p=@xp

2

6
6
6
4

3

7
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5

(12)

evaluated at x: Replacing 12 with a sample analog,

Jt ¼
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(13)

we compute eigenvalues Vi,

ViðQ0TQTÞ (14)

rank ordered from 1; . . . ; p, where

QT ¼ JT�p � JT�p�1 � � � J1 (15)

The Lyapunov exponents are defined for the positive
eigenvalues Vþi as

T !N lim li ¼
1

2ðT � pÞ ln Vþi , (16)

and a single exponent greater than 1 characterizes a
system with sensitive dependence. Popularly known as
‘chaos’, this property implies that dynamic trajectories
become unpredictable even when the state of the system
is known with certainty. Genc-ay and Dechert (1992) and
Shintani and Linton (2004) provide methods for esti-
mating these. Shintani and Linton (2003; 2004) reject the
presence of positive Lyapunov exponents in both real
output and stock returns.

The sum of the Lyapunov exponents also provides a
measure of the Kolmogorov–Sinai entropy of the system.
This tells the researcher how quickly trajectories separate.
Mayfield and Mizrach (1991) estimate this time at about
15 minutes for the S&P 500 index.
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A final quantity of interest is the dimension p of the
dynamical system. Nonlinear econometricians try to esti-
mate the dimension from a scalar m-history. A powerful
result due to Takens (1981) says this can be done as long
as m � 2pþ 1. Diks (2004) has shown that the scaling of
correlation exponents seems to be consistent with the
stochastic volatility model.

A great deal of progress has been made with paramet-
ric models of (1) as well. I begin with the widely utilized
piecewise linear models.

Piecewise linear models
The most widely applied parametric nonlinear time series
specification has been the Markov switching model
introduced by James Hamilton (1989). The function f
is a piecewise linear function,

f ðxtÞ ¼

mð1Þ þ
Pp

j¼0 f
ð1Þ
j ðxt�j � mð1Þ; St ¼ s

ð1Þ
t Þ

..

.

mðmÞ þ
Pp

j¼0 f
ðmÞ
j ðxt � mðmÞ; St ¼ s

ðmÞ
t Þ

8
>>><

>>>:

9
>>>=

>>>;

,

(17)

where the changes among states are governed by an
unobservable regime switching process, St ¼ s

ðiÞ
t , i ¼

1; . . . m, an m�m transition matrix P, and E½xt jSt ¼
s
ðiÞ
t � ¼ mðiÞ. When St is unobserved, PrðSt jxt�1Þ is non-

linear in xt�1. Hamilton has shown that a two-dimen-
sional switching model describes well the business cycle
dynamics in the United States. This model has been
extended to include regime dependence in volatility
(Kim, 1994) and time varying transition probabilities
(Filardo, 1994).

The latent state vector requires forming prior and pos-
terior estimates of which regime you are in. The EM
algorithm (Hamilton, 1990) and Bayesian Gibbs sampling
methods (Albert and Chib, 1993) have proven fruitful in
handling this problem. Hypothesis testing is also non-
standard because under the alternative of m� 1 regimes,
the conditional mean parameters are nuisance parame-
ters. Hansen (1996) has explored carefully these issues.

A closely related framework is the threshold autore-
gressive (TAR) model,

f ðxtÞ

¼

mð1Þ þ
Pp
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j xt�j � mð1Þ
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(18)

Ið:Þ is the indicator function, and qðxt�d;ZtÞ, the regime
switching variable, is assumed to be an observable func-
tion of exogenous variables Zt and lagged x’s. The integer
d is known as the delay parameter. When q depends only
upon x, the model is called self-exciting.

Teräsvirta (1994) has developed a two-regime version
of the TAR model in which regime changes are gov-
erned by a smooth transition function Gðxt�d;ZtÞ : Rk !
½0; 1�,

f ðxtÞ ¼Gðxt�d;ZtÞpj¼0f
ð1Þ
j ðxt�j � mð1ÞÞ

þ ð1� Gðxt�d;ZtÞÞpj¼0f
ð2Þ
j ðxt�j � mð2ÞÞ.

(19)

Luukkonen, Saikkonen and Teräsvirta (1988) have shown
that inference and hypothesis testing in this model is
often much simpler than in the piecewise linear models.
Van Dijk and Franses (1999) have extended this model to
multiple regimes. Applications of this framework have
been widespread from macroeconomics (Teräsvirta and
Anderson, 1992) to empirical finance (Franses and van
Dijk, 2000).

Krolzig (1997) considers the multivariate case where
xt ¼ ðx1;t ; x2;t ; . . . ; xk;tÞ0 is k� 1. Balke and Fomby (1997)
introduced threshold cointegration by incorporating error
correction terms into the thresholds. Koop, Pesaran and
Potter (1996) develop a bivariate model of US GDP and
unemployment where the threshold depends upon the
depth of the recession.

I now turn to models that introduce nonlinearity
through the error term.

Models of volatility
Engle and Bollerslev have introduced the generalized
autoregressive conditional heteroskedasticity (GARCH)
model,

ht ¼ a0þq
i¼1ais2ðxt�iÞe2

t�iþ
p
i¼1biht�i,

(20)

where ht ¼ E½ðxt � E½xt jOt�1�Þ2jOt�1� is the conditional
variance. This is just a Box–Jenkins model in the squared
residuals of 1 of order ðmax½p; q�; pÞ. The model is non-
linear because the disturbances are uncorrelated, but
their squares are not.

The GARCH model describes the volatility clustering
and heavy-tailed returns in financial market data, and
has found wide application in asset pricing and risk
management applications.

Volatility modelling has been motivated by the litera-
ture on options pricing. Popular alternatives to the
GARCH model include the stochastic volatility (SV)
model (Ghysels, Harvey and Renault, 1996), and the real-
ized volatility approach of Andersen et al. (2003) and
Barndorff-Nielsen and Shephard (2002). The discrete-time
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SV model takes the form,

xt ¼ se exp ðht=2Þet , (21)

ht ¼ bht�1 þ shZt ,

where xt is the demeaned log asset return, and et and Zt are
noise terms. Realized volatility sums high-frequency
squared returns as an approximation of lower frequency
volatility. Both GARCH and SV have been successful in
explaining the departures from the Black–Scholes
observed empirically.

The final two sections address the marginal contribu-
tion of nonlinear modelling to goodness of fit and
forecasting.

Testing for linearity and Gaussianity
There is a large literature on testing the importance of the
nonlinear components of a model. The most widely used
test is due to Brock, Dechert, Scheinkman and LeBaron
(BDSL, 1996). Their nonparametric procedure is built
upon U-statistics. Serfling (1980) is a good introduction.

The first step is to form m-histories of the data,

xm
t ¼ ðxt ; xtþ1; :::; xtþm�1Þ, (22)

with joint distribution Fðxm
t Þ. Introduce the kernel

h : Rm � Rm ! R,

hðxm
t ; x

m
s Þ ¼ Iðxm

t ; x
m
s ; eÞ � I xm

t � xm
s

�
�

�
�oe

� �
,

(23)

where Ið:Þ is the indicator function. The correlation inte-
gral of Grassberger and Procaccia (1983),

Cðm; eÞ �
Z

X

Z

X

Iðxm
t ; x

m
s ; eÞdFðxm

t ÞdFðxm
s Þ,

(24)

is the expected number of m-vectors in an e neighbour-
hood. A U-statistic,

Cðm;N; eÞ � 2

NðN � 1Þ
N�1

t¼1

N

s¼tþ1
IðXm

t ;X
m
s ; eÞ,

(25)

is a consistent estimator of 24. BDSL demonstrate the
asymptotic normality of the statistic

ffiffiffiffi
N
p Sðm;N; eÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½Sðm;N; eÞ�

p
ffiffiffiffi
N
p

d� ! Nð0; 1Þ,

(26)

where

Sðm;N; eÞ ¼ Cðm;N; eÞ � Cð1;N; eÞm.

(27)

There is a multi-dimensional extension due to Baek and
Brock (1992). De Lima (1997) explores the use of the
BDSL under moment condition failure.

There is a direct relationship between nonlinear and
non-Gaussian time series. In the model (1), even if the
disturbance term et is normal, nonlinear transformations
of Gaussian noise will make xt non-Gaussian. Testing for
Gaussianity is then an instrumental part of the nonlinear
time series toolkit.

Hinich (1982) has developed testing in the time
domain using the bicorrelation,

gðr; sÞ¼s
t¼1xtxtþrxtþs=ðN � sÞ; 0 � r � s,

(28)

and in the frequency domain using the bispectrum,

Bðo1;o2Þ¼N

r¼�N
N

s¼�Ngðr; sÞexp ½�iðo1r þ o2sÞ�.
(29)

For a Gaussian time series, the bicorrelation should be
close to zero, and the bispectrum should be flat across all
frequencies. Both tests have good power against skewed
alternatives.

Ramsey and Rothman (1996) have proposed a related
time domain procedure that looks for time reversibility,

FðXt ;Xtþ1; . . . ;XtþrÞ
¼ FðXs�t ;Xs�t�1; . . . ;Xs�t�rÞ

(30)

for any r, s and t, where Fð:Þ is the joint distribution. This
condition is stronger than stationarity because of the
triple index. The authors find evidence of business cycle
asymmetry using this diagnostic.

Forecasting
For many, the bottom line on nonlinear modelling is the
ability to generate superior forecasts. In this respect, the
results from the nonlinear literature are decidedly mixed.
Harding and Pagan (2002) are prominent sceptics.
Teräsvirta, van Dijk and Medeiros (2005) provide a very
wide set of evidence in favour of nonlinear models.

Aside from the comparison of point forecasts from
model i, ui;tþ1 ¼ xtþ1 � f iðxtÞ, with a particular loss
function gð:Þ,

H0 : E½gðui;tþ1Þ � gðuj;tþ1Þ� ¼ 0, (31)

there has been growing interest in comparing forecast
densities piðxtþ1jf iðxtÞÞ,

H0 :

Z

½piðxtþ1jf iðxtÞÞ � pjðxtþ1jf jðxtÞÞ�dx ¼ 0.

(32)

Corradi and Swanson (2005) provide a comprehensive
overview of available tools.

BRUCE MIZRACH
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See also forecasting; linear models; stochastic volatility

models.
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non-nested hypotheses
In economics, as in many other disciplines, there are
competing explanations of the same phenomena, often
characterized by alternative statistical models. Different
models may represent, for example, different theoretical
paradigms, or could be the result of alternative formu-
lations from the same paradigm. Within the classical
framework, the problem of model adequacy is
approached through ‘general specification tests’, the
‘diagnostic tests’, and the ‘non-nested tests’. All three
approaches can be used to test the same explanation or
hypothesis of interest (the null or the maintained
hypothesis), but they differ in their consideration of the
alternative(s). General specification tests intentionally
consider a broad class of alternatives, while the alterna-
tives considered under diagnostic and non-nested testing
procedures are much more specific. In the case of non-
nested tests the null hypothesis is contrasted to a specific
alternative. Non-nested tests are appropriate when rival
hypotheses are advanced for the explanation of the same
economic phenomenon, and the aim is to devise a pow-
erful test against a specific alternative.

When the null hypothesis is nested within the alter-
native, standard classical procedures such as those based
on the likelihood ratio, Wald and Lagrange multiplier (or
score) principles can be utilized. But if the null and the
alternative hypotheses belong to ‘separate’ families of
distributions, classical testing procedures cannot be
applied directly and need to be suitably modified.

This article provides an overview of the concepts and
some of the most widely used non-nested hypotheses
tests and applies these procedures to the classical regres-
sion models. Our discussion of non-nested hypothesis

testing will necessarily omit many topics. Survey articles
on this subject include McAleer and Pesaran (1986),
Gourieroux and Monfort (1994), and Pesaran and Weeks
(2001).

Non-nested models
Suppose the object of interest is the process generating
the random variable Y, observed over a sample of size n,
y ¼ ðy1; y2; . . . ; ynÞ

0. Assume that the true process gen-
erating y is characterized by a joint probability density
function, f0(y), which is unknown, and two models
(hypotheses) are advanced as possible explanations of Y,
represented by the joint probability density functions:

Hg ¼ fgðy; hÞ; h 2 Yg,
Hh ¼ fhðy; cÞ; c 2 Gg. (1)

These functions are known but depend on a finite
number of unknown parameters denoted by h 2 Y and
g 2 G, respectively. The sets Y and G represent the
‘admissible’ parameter space for which the respective
densities g(y; h) and h(y; c) are well defined. The aim is
to ascertain which of the two alternatives, Hg and Hh, if
any, can be viewed as belonging to f0(y). In this set-up
there is no natural null hypothesis; either of the two
hypotheses under consideration can be taken as the null.
In practice, the analysis of non-nested hypotheses is car-
ried out with both alternatives taken in turn as the null
hypothesis. Four outcomes are possible: (i) Hg rejected
against Hh and not vice versa, (ii) Hh rejected against Hg

and not vice versa, (iii) neither hypothesis is rejected
against the other, and finally (iv) both hypotheses are
rejected against one another. The first two outcomes are
familiar from the classical test results and are straight-
forward to interpret. The third outcome can arise when
the two models are very close to f0(y), and hence equiv-
alent observationally. The fourth outcome suggests the
existence of a third possible model which shares important
features from both models under consideration.

Pseudo-true values and closeness measures
Given the observations y, the maximum likelihood (ML)
estimators of h and c are given by

ĥn ¼ arg max
h2Y

LgðhÞ; ĉn ¼ arg max
c2G

LhðcÞ,

where the corresponding log-likelihood functions are
defined by LgðhÞ ¼ log ðgðy; hÞÞ and LhðcÞ ¼ log ðh
ðy; cÞÞ. Throughout we shall assume that probability
densities satisfy the usual regularity conditions as estab-
lished, for example in White (1982), such that ĥn and ĉn

have asymptotically normal limiting distributions under
the ‘true’ model, f0(y). In the general case where neither
of the models under consideration coincide with f0(y), ĥn

and ĉn are known as quasi-ML estimators and their
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