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Predictive Inference Under Model Misspecification with
an Application to Assessing the Marginal Predictive

Content of Money for Output ∗

Nii Ayi Armah and Norman R. Swanson
Rutgers University

August 2006

Abstract

In this chapter we discuss model selection and predictive accuracy tests in the context of parame-
ter and model uncertainty under recursive and rolling estimation schemes. We begin by summariz-
ing some recent theoretical findings, with particular emphasis on the construction of valid bootstrap
procedures for calculating the impact of parameter estimation error on the class of test statistics
with limiting distributions that are functionals of Gaussian processes with covariance kernels that
are dependent upon parameter and model uncertainty. We then provide an example of a particular
test which falls in this class. Namely, we outline the so-called Corradi and Swanson (CS: 2002) test
of (non)linear out-of-sample Granger causality. Thereafter, we carry out a series of Monte Carlo
experiments examining the properties of the CS and a variety of other related predictive accuracy
and model selection type tests. Finally, we present the results of an empirical investigation of the
marginal predictive content of money for income, in the spirit of Stock and Watson (1989), Swanson
(1998), Amato and Swanson (2001), and the references cited therein. We find that there is evidence
of predictive causation when in-sample estimation periods are ended any time during the 1980s, but
less evidence during the 1970s. Furthermore, recursive estimation windows yield better prediction
models when prediction periods begin in the 1980s, while rolling estimation windows yield better
models when prediction periods begin during the 1970s and 1990s. Interestingly, these two results
can be combined into a coherent picture of what is driving our empirical results. Namely, when
recursive estimation windows yield lower overall predictive MSEs, then bigger prediction models
that include money are preferred, while smaller models without money are preferred when rolling
models yield the lowest MSE predictors.
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1 Introduction

In a series of recent papers, Chao, Corradi and Swanson (2001) and Corradi and Swanson (2002,

2004, 2006a, 2007) discuss model selection and predictive accuracy tests in the context of parameter

and model uncertainty under recursive and rolling estimation schemes. In this chapter, we begin

by summarizing some of the theoretical findings of these papers, with particular emphasis on the

construction of valid bootstrap procedures for calculating the impact of parameter estimation error

on the class of test statistics with limiting distributions that are functionals of Gaussian processes

with covariance kernels that are dependent upon parameter and model uncertainty. We then provide

an example of a particular test which falls in this class. Namely, we outline the so-called Corradi and

Swanson (CS: 2002) test of (non)linear out-of-sample Granger causality. Thereafter, we carry out a

series of Monte Carlo experiments examining the properties of the CS and a variety of other related

predictive accuracy and model selection type tests, including the Deibold and Mariano (DM: 1995)

and West (1996) predictive accuracy test as well as the encompassing test of Clark and McCracken

(CM: 2004). This is done for both recursive and rolling window estimators, hence shedding light

on the finite sample impact of using shorter rolling windows rather than recursive windows, for

example. Finally, we present the results of an empirical investigation of the marginal predictive

content of money for income, in the spirit of Stock and Watson (1989), Swanson (1998), Amato

and Swanson (2001), and the references cited therein. The empirical results shed new light on the

importance of sample periods and estimation schemes when carrying out empirical investigations.

Parameter estimation error is a crucial component of model selection and predictive accuracy

tests that is often overlooked, or more precisely is often assumed away by making the assumption

that the in-sample estimation period grows more quickly than the out-of-sample predictive eval-

uation period. However, in some circumstances, such as when constructing DM tests for equal

(pointwise) predictive accuracy of two models, limiting distributions are normal random variables,

and parameter estimation error can be accounted for using the framework of West (1996). In other

circumstances, such as when constructing tests which have power against generic alternatives (e.g.

the CS test), statistics have limiting distributions that can be shown to be functionals of Gaussian

processes with covariance kernels that reflect both (dynamic) misspecification as well as the con-

tribution of parameter estimation error. Such limiting distributions are not nuisance parameter

free, and critical values cannot be tabulated. Nevertheless, valid asymptotic critical values can
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be obtained via use of a bootstrap procedure that allows for the formulation of statistics which

properly mimic the contribution of 1√
P

PT−1
t=R

³bθt − θ†
´
(i.e. parameter estimation error). In the

first part of the chapter we summarize block bootstrap procedures which are valid for recursive and

rolling m-estimators (see e.g. Corradi and Swanson (2006a, 2007)).

In the second part of the chapter we review the so-called CS test, which is an out-of-sample

version of the integrated conditional moment (ICM) test of Bierens (1982,1990) and Bierens and

Ploberger (1997), and which yields out-of-sample tests that are consistent against generic (nonlin-

ear) alternatives (see Corradi and Swanson (2002, 2005, 2007) and Swanson and White (1997)).

The CS test can alternatively be viewed as a consistent specification test, in the spirit of Bierens,

or as a nonlinear Granger causality test, as discussed in Chao, Corradi and Swanson (2001). Note,

however, that The CS test differs from the ICM test developed by Bierens (1982, 1990) and Bierens

and Ploberger (1997) because parameters are estimated in either recursive or rolling fashion, the

test is of the out-of-sample variety, and the null hypothesis is that the reference model delivers the

best “loss function specific” predictor, for a given information set. Furthermore, the CS test allows

for model misspecification under both hypotheses (see Corradi and Swanson (2006b)).

In order to provide evidence on the usefulness of the bootstrap methods discussed above, and

in particular in order to compare bootstraps based on recursive and rolling estimators, we carry

out a Monte Carlo investigation that compares the finite sample properties of our block bootstrap

procedures with two alternative naive block bootstraps; all within the context of the CS test and

a simpler non-generic version of the CS test due to Chao, Corradi and Swanson (CCS: 2001). In

addition, various other related tests, including the standard F-test, the DM test and the CM test

are included in the experiments. Results support the finding of Corradi and Swanson (2007) that

the recursive block bootstrap outperforms alternative naive nonparametric block bootstraps. Ad-

ditionally, we find that the rolling version of the bootstrap also outperforms the naive alternatives,

Finally, we find that the finite sample properties of the other tests vary to some degree. Of note

is that the Kilian (1999) bootstrap is a viable alternative to ours, although theoretical assessment

thereof remains to be done (see Corradi and Swanson (2007) for further discussion).

In the last part of the chapter, an empirical illustration is presented, in which it is found that

results concerning the (non)linear marginal predictive content for money for output are not only

sample dependent, but also vary to some limited degree depending upon whether recursive or

rolling estimation windows are used. In particular, there is evidence of predictive causation when
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in-sample estimation periods are ended any time during the 1980s, but little evidence of causality

otherwise. Furthermore, recursive estimation windows yield better models when prediction periods

begin in the 1980s, while rolling estimation windows yield better models when prediction periods

begin during the 1970s and 1990s. Interestingly, these two results can be combined into a coherent

picture of what is driving our empirical results. Namely, when recursive estimation windows yield

lower overall predictive MSEs, then bigger prediction models that include money are preferred, while

smaller models without money are preferred when rolling models yield the lowest MSE predictors.

Hereafter, P ∗ denotes the probability law governing the resampled series, conditional on the

sample, E∗ and V ar∗ are the mean and variance operators associated with P ∗, o∗P (1) Pr−P denotes
a term converging to zero in P ∗−probability, conditional on the sample, and for all samples except
a subset with probability measure approaching zero, and O∗P (1) Pr−P denotes a term which is

bounded in P ∗−probability, conditional on the sample, and for all samples except a subset with
probability measure approaching zero. Analogously, Oa.s.∗(1) and oa.s.∗(1) denote terms that are

almost surely bounded and terms that approach zero almost surely, according the the probability

law P ∗, and conditional on the sample. Note that P is also used to denote the length of the

prediction period, and unless otherwise obvious from the context in which it is used, clarification

of the meaning is given.

2 Block Bootstraps for Recursive and Rolling m−Estimators
In this section, we draw largely from Corradi and Swanson (2006a, 2007).

Recursive Estimation Window:

Define the block bootstrap estimator that captures the effect of parameter estimation error

in the context of recursive m-estimators, as follows. Let Zt = (yt, ..., yt−s1+1, Xt, ...,Xt−s2+1),

t = 1, ..., T, and let s = max{s1, s2}. Additionally, assume that i = 1, ..., n models are estimated

(thus allowing us to establish notation that will be useful in the applications presented in subsequent

sections). Now, define the recursive m-estimator for the parameter vector associated with model

3



i as:1

bθi,t = arg min
θi∈Θi

1

t

tX
j=s

qi(yj, Z
j−1, θi), R ≤ t ≤ T − 1, i = 1, ..., n (1)

Further, define

θ†i = arg min
θi∈Θi

E(qi(yj, Z
j−1, θi)), (2)

where qi denotes the objective function for model i. As the discussion below does not depend on

any specific model, we drop the subscript i. Following standard practice (such as in the real-time

forecasting literature), this estimator is first computed using R observations. In our applications

we focus on 1-step ahead prediction (although results can be extended quite easily to multiple step

ahead prediction), and so that recursive estimators are thus subsequently computed using R + 1

observations, and then R+ 2 observations, and so on, until the last estimator is constructed using

T −1 observations. This results in a sequence of P = T −R estimators. These estimators can then
used to construct sequences of P 1-step ahead forecasts and associated forecast errors, for example.

The overlapping block resampling scheme of Künsch (1989) involves drawing b blocks (with

replacement) of length l from the sample Wt = (yt, Z
t−1), where bl = T − s, at each replication.

Thus, the first block is equal to Wi+1, ...,Wi+l, for some i = s − 1, ..., T − l + 1, with probability
1/(T − s− l+1), the second block is equal to Wi+1, ...,Wi+l, again for some i = s− 1, ..., T − l+1,
with probability 1/(T − s − l + 1), and so on, for all blocks, where the block length grows with
the sample size at an appropriate rate. More formally, let Ik, k = 1, ..., b be iid discrete uniform

random variables on [s− 1, s, ..., T − l + 1]. Then, the resampled series, W ∗
t = (y

∗
t , Z

∗,t−1), is such

that W ∗
1 ,W

∗
2 , ...,W

∗
l ,W

∗
l+1, ...,W

∗
T = WI1+1,WI1+2, ...,WI1+l,WI2+1, ...,WIb+l, and so a resampled

series consists of b blocks that are discrete iid uniform random variables, conditional on the sample.

Suppose we define the bootstrap estimator, bθ∗t , to be the direct analog of bθt. Namely,
bθ∗t = argmin

θ∈Θ
1

t

tX
j=s

q(y∗j , Z
∗,j−1, θ), R ≤ t ≤ T − 1. (3)

By first order conditions, 1
t

Pt
j=s∇θq(y

∗
j , Z

∗,j−1, bθ∗t ) = 0, and via a mean value expansion of

1Within the context of full sample estimation, the first order validity of the block bootstrap for m−estimators has
been shown by Goncalves and White (2004), for dependent and heterogeneous series.
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1
t

Pt
j=s∇θq(y

∗
j , Z

∗,j−1, bθ∗t ) around bθt, after a few simple manipulations, we have that
1√
P

T−1X
t=R

³bθ∗t − bθt´

= B†
aR,0√
P

RX
j=s

∇θq(y
∗
j , Z

∗,j−1, bθR) +B† 1√
P

P−1X
j=1

aR,j∇θq(y
∗
R+j , Z

∗,R+j−1, bθR+j)
+oP∗(1) Pr−P, (4)

where θ
∗
t ∈

³bθ∗t , bθt´ , B† = E
³
−∇2θq(yj , Zj−1, θ†)

´−1
, aR,j =

1
R+j +

1
R+j+1 + ... +

1
R+P−1 , j =

0, 1, ..., P − 1, and where the last equality on the right hand side of (4) follows immediately, using
the same arguments as those used in Lemma A5 of West (1996). Analogously,

1√
P

T−1X
t=R

³bθt − θ†
´

= B†
aR,0√
P

RX
j=s

∇θq(yj, Z
j−1, θ†) +B†

1√
P

P−1X
j=1

aR,j∇θq(yR+j , Z
R+j−1, θ†) + oP (1). (5)

Now, given (2), E
³
∇θq(yj , Z

j−1, θ†)
´
= 0 for all j, and 1√

P

PT−1
t=R

³bθt − θ†
´
has a zero mean

normal limiting distribution (see Theorem 4.1 in West (1996)). On the other hand, as any block of

observations has the same chance of being drawn,

E∗
³
∇θq(y

∗
j , Z

∗,j−1, bθt)´ = 1

T − s
T−1X
k=s

∇θq(yk, Z
k−1, bθt) +Oµ l

T

¶
Pr−P, (6)

where the O
³
l
T

´
term arises because the first and last l observations have a lesser chance of being

drawn (see e.g. Fitzenberger (1997)). Now, 1
T−s

PT−1
k=s ∇θq(yk, Z

k−1, bθt) 6= 0, and is instead of order
OP

³
T−1/2

´
. Thus, 1√

P

PT−1
t=R

1
T−s

PT−1
k=s ∇θq(yk, Z

k−1, bθt) = OP (1), and does not vanish in proba-
bility. This clearly contrasts with the full sample case, in which 1

T−s
PT−1
k=s ∇θq(yk, Z

k−1, bθT ) = 0,
because of the first order conditions. Thus, 1√

P

PT−1
t=R

³bθ∗t − bθt´ cannot have a zero mean normal
limiting distribution, but is instead characterized by a location bias that can be either positive or

negative depending on the sample.

Given (6), our objective is thus to have the bootstrap score centered around 1
T−s

PT−1
k=s ∇θq(yk, Z

k−1, bθt).
Hence, define a new bootstrap estimator, eθ∗t , as:

eθ∗t = argmin
θ∈Θ

1

t

tX
j=s

Ã
q(y∗j , Z

∗,j−1, θ)− θ0
Ã
1

T

T−1X
k=s

∇θq(yk, Z
k−1, bθt)

!!
, (7)
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R ≤ t ≤ T − 1.2
Now, note that first order conditions are 1t

Pt
j=s

³
∇θq(y

∗
j , Z

∗,j−1, eθ∗t )− ³ 1T PT−1
k=s ∇θq(yk, Z

k−1, bθt)´´ =
0; and via a mean value expansion of 1t

Pt
j=s∇θq(y

∗
j , Z

∗,j−1, eθ∗t ) around bθt, after a few simple ma-
nipulations, we have that:

1√
P

T−1X
t=R

³eθ∗t − bθt´

= B†
1√
P

TX
t=R

⎛⎝1
t

tX
j=s

Ã
∇θq(y

∗
j , Z

∗,j−1, bθt)−
Ã
1

T

T−1X
k=s

∇θq(yk, Z
k−1, bθt)

!!⎞⎠
+oP ∗(1), Pr−P.

Thus, given (6), it is immediate to see that the bias associated with 1√
P

PT−1
t=R

³eθ∗t − bθt´ is of
order O

³
lT−1/2

´
, conditional on the sample, and so it is negligible for first order asymptotics, as

l = o(T 1/2).

Theorem 1, which summarizes these results, requires the following assumptions.

Assumption A1: (yt,Xt), with yt scalar and Xt an <ζ−valued (0 < ζ <∞) vector, is a strictly
stationary and absolutely regular β−mixing process with size −4(4 + ψ)/ψ, ψ > 0.

Assumption A2: (i) θ† is uniquely identified (i.e. E(q(yt, Zt−1, θ)) > E(q(yt, Zt−1, θ†)) for any

θ 6= θ†); (ii) q is twice continuously differentiable on the interior of Θ, and for Θ a compact subset

of <%; (iii) the elements of ∇θq and ∇2θq are p−dominated on Θ, with p > 2(2 + ψ), where ψ is

the same positive constant as defined in Assumption A1; and (iv) E
¡−∇2θq(θ)¢ is negative definite

uniformly on Θ.3

Assumption A3: T = R+ P, and as T →∞, P/R→ π, with 0 < π <∞.
Assumptions A1 and A2 are standard memory, moment, smoothness and identifiability condi-

tions. A1 requires (yt,Xt) to be strictly stationary and absolutely regular. The memory condition

is stronger than α−mixing, but weaker than (uniform) φ−mixing. Assumption A3 requires that
R and P grow at the same rate. In fact, if P grows at a slower rate than R, i.e. P/R → 0, then

1√
P

PT
t=R

³bθt − θ†
´
= oP (1) and so there were no need to capture the contribution of parameter

estimation error.
2More precisely, we should use 1

t−s and
1

T−s to scale the summand in (7). For notational simplicity,
1
t−s and

1
T−s

are approximated with 1
t
and 1

T
.

3We say that ∇θq(yt, Z
t−1, θ) is 2r−dominated on Θ if its j − th element, j = 1, ..., %, is such that¯̄

∇θq(yt, Z
t−1, θ)

¯̄
j
≤ Dt, and E(|Dt|2r) < ∞. For more details on domination conditions, see Gallant and White

(1988, pp. 33).
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Theorem 1 (Corradi and Swanson (2007)): Under recursive estimation, let A1-A3 hold. Also,

assume that as T →∞, l→∞, and that l
T 1/4
→ 0. Then, as T,P and R→∞,

P

Ã
ω : sup

v∈<%

¯̄̄̄
¯P ∗T

Ã
1√
P

TX
t=R

³eθ∗t − bθt´ ≤ v
!
− P

Ã
1√
P

TX
t=R

³bθt − θ†
´
≤ v

!¯̄̄̄
¯ > ε

!
→ 0,

where P ∗T denotes the probability law of the resampled series, conditional on the (entire) sample.

Theorem 1 states that 1√
P

PT−1
t=R

³eθ∗t − bθt´ has the same limiting distribution as 1√
P

PT−1
t=R

³bθt − θ†
´
,

conditional on sample, and for all samples except a set with probability measure approaching zero.

Of note is that if Assumption 3 is violated and P/R → 0, then the statement in the theorem

above is trivially satisfied, in the sense that both 1√
P

PT
t=R

³eθ∗t − bθt´ and 1√
P

PT
t=R

³bθt − θ†
´
have

a limiting distribution degenerate on zero. Hence, the crucial impact of allowing for non-vanishing

parameter estimation error is quite apparent.

Rolling Estimation Window:

In the rolling estimation scheme, one constructs a sequence of P estimators using a rolling

window of R observations. The first estimator is constructed using the first R observations,

the second using observations from 2 to R + 1, and so on, with the last estimator being con-

structed using observations from T − R to T − 1, so that we have a sequence of P estimators,

(bθR,R, bθR+1,R, . . . , bθR+P−1,R). In general, it is common to assume that P and R grow as T grows.
Giacomini and White (2003) propose using a rolling scheme with a fixed window that does not in-

crease with the sample size, so that estimated parameters are treated as mixing variables. Pesaran

and Timmerman (2004a,b) suggest rules for choosing the window of observations in order to take

into account possible structure breaks.

Using the same notation as in the recursive case, but noting that we are now constructing a

rolling estimator, define

bθi,t = arg min
θi∈Θi

1

R

tX
j=t−R+1

qi(yj, Z
j−1, θi), R ≤ t ≤ T − 1, i = 1, ..., n

In the case of in-sample model evaluation, the contribution of parameter estimation error is sum-

marized by the limiting distribution of
√
T (bθT − θ†), where θ† is the probability limit of bθT . In the

case of rolling estimation schemes, the contribution of parameter estimation error is summarized

by the limiting distribution of 1√
P

PT−1
t=R

³bθt − θ†
´
. Under mild conditions, because of the central

limit theorem,
³bθt − θ†

´
is OP (R

−1/2). Thus, if P grows at a slower rate than R (i.e. if P/R→ 0,

7



as T →∞), then 1√
P

PT−1
t=R

³bθt − θ†
´
is asymptotically negligible. In other words, if the in-sample

portion of the data used for estimation is “much larger” than the out-of-sample portion of the data

to be used for predictive accuracy testing and generally for model evaluation, then the contribution

of parameter estimation error is asymptotically negligible.

In the rolling estimation scheme, observations in the middle are used more frequently than

observations at either the beginning or the end of the sample. As in the recursive case, this

introduces a location bias to the usual block bootstrap, as under standard resampling with re-

placement, any block from the original sample has the same probability of being selected. Also,

the bias term varies across samples and can be either positive or negative, depending on the spe-

cific sample. Our objective is thus to properly recenter the objective function in order to obtain

a bootstrap rolling estimator, say eθ∗t such that 1√
P

PT−1
t=R (

eθ∗t − bθt) has the same limiting distrib-
ution as 1√

P

PT−1
t=R

³bθt − θ†
´
, conditionally on the sample. The approach and result is largely as

outlined above. Namely, resample b overlapping blocks of length l from Wt = (yt, Z
t−1), and form

a bootstrap sample, as in the recursive case. Then, define the rolling bootstrap estimator as

eθ∗t = argmin
θ∈Θ

1

R

tX
j=t−R+1

Ã
q(y∗j , Z

∗,j−1, θ)− θ0
Ã
1

T

T−1X
k=s

∇θq(yk, Z
k−1, bθt)

!!
.

As in the recursive case, the following theorem can be stated.

Theorem 2 (Corradi and Swanson (2006a)): Under rolling estimation, let Assumptions

A1-A3 and A5 hold. Also, assume that as T →∞, l→∞, and that l
T1/4
→ 0. Then, as T,P and

R→∞,

P

Ã
ω : sup

v∈<%

¯̄̄̄
¯P ∗T

Ã
1√
P

TX
t=R

³eθ∗t − bθt,rol´ ≤ v
!
− P

Ã
1√
P

TX
t=R

³bθt − θ†
´
≤ v

!¯̄̄̄
¯ > ε

!
→ 0.

3 The CS Test

As an example of the implementation of the recursive and rolling bootstrap discussed above, we

summarize the CS test discussed in different forms in Chao, Corradi and Swanson (2001) as well

as in Corradi and Swanson (2002, 2007). The test is presented in a framework that is directly

applicable to the empirical investigation discussed in a subsequent section of the chapter.

As discussed in the introduction, the test draws on both the consistent specification and predic-

tive ability testing literatures in order to propose a test for predictive accuracy which is consistent
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against generic nonlinear alternatives, which is designed for comparing nested models, and which

allows for dynamic misspecification of all models being evaluated. The CS test is an out-of-sample

version of the ICM test, as discussed in the introduction of this paper. Alternative (non DM)

tests for comparing the predictive ability of a fixed number of nested models have previously also

been suggested. For example, Clark and McCracken (2001, 2004) propose encompassing tests for

comparing two nested models for one-step and multi-step ahead prediction, respectively. Giacomini

and White (2003) introduce a test for conditional predictive ability that is valid for both nested

and nonnested models. The key ingredient of their test is the fact that parameters are estimated

using a fixed rolling window. Finally, Inoue and Rossi (2004) suggest a recursive test, where not

only the parameters, but the statistic itself, are computed in a recursive manner. One of the main

differences between these tests and the CS test is that the CS test is consistent against generic

(non)linear alternatives and not only against a fixed alternative.

The CS testing approach that will be used in the Monte Carlo and empirical sections of the

chapter, assumes that the objective is to test whether there exists any unknown alternative model

that has better predictive accuracy than a given benchmark model, for a given loss function. The

benchmark model is:

yt = θ†1,1 + θ†1,2yt−1 + θ†1,3zt−1 + u1,t, (8)

where θ†1 = (θ
†
1,1, θ

†
1,2, θ

†
1,3)

0 = argminθ1∈Θ1 E(q1(yt−θ1,1−θ1,2yt−1−θ1,3zt−1)), θ1 = (θ1,1, θ1,2, θ1,3)0, yt
is a scalar, and q1 = g, as the same loss function is used both for in-sample estimation and out-of-

sample predictive evaluation. The generic alternative model is:

yt = θ†2,1(γ) + θ†2,2(γ)yt−1 + θ†2,3(γ)zt−1 + θ†2,4(γ)w(Z
t−1, γ) + u2,t(γ), (9)

where θ†2(γ) = (θ
†
2,1(γ), θ

†
2,2(γ), θ

†
2,3(γ), θ

†
2,4(γ))

0 = argminθ2∈Θ2 E(q1(yt− θ2,1− θ2,2yt−1− θ2,3zt−1−
θ2,4w(Z

t−1, γ))), θ2(γ) = (θ2,1(γ), θ2,2(γ), θ2,3(γ), θ2,4(γ))0, θ2 ∈ Θ2, Γ is a compact subset of <d, for
some finite d. The alternative model is called “generic” because of the presence of w(Zt−1, γ), which

is a generically comprehensive function, such as Bierens’ exponential, a logistic, or a cumulative

distribution function (see e.g. Stinchcombe and White (1998) for a detailed explanation of generic

comprehensiveness). One example has w(Zt−1, γ) = exp(
Ps2
i=1 γiΦ(Xt−i)), where Φ is a measurable

one to one mapping from < to a bounded subset of <, so that here Zt = (Xt, ..., Xt−s2+1), and we
are thus testing for nonlinear Granger causality. In fact, the above setup can be described within
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the context of our empirical example in Section 5. Namely, in Section 5 we set Xt is equal to a

vector of two variables including money supply growth and a cointegration term connecting output,

money and prices; yt is set equal to output growth; and zt is an interest rate spread. Turning back

to our current discussion, note that the hypotheses of interest are:

H0 : E(g(u1,t+1)− g(u2,t+1(γ))) = 0 versus HA : E(g(u1,t+1)− g(u2,t+1(γ))) > 0. (10)

Clearly, the reference model is nested within the alternative model, and given the definitions of θ†1
and θ†2(γ), the null model can never outperform the alternative.4 For this reason, H0 corresponds

to equal predictive accuracy, while HA corresponds to the case where the alternative model out-

performs the reference model, as long as the errors above are loss function specific forecast errors.

As discussed in Corradi and Swanson (2002), we can restate H0 and HA as:

H0 : E(g
0(u1,t+1)w(Zt, γ)) = 0 versus HA : E(g0(u1,t+1)w(Zt, γ)) 6= 0, (11)

for ∀γ ∈ Γ, except for a subset with zero Lebesgue measure. Finally, define the forecast error as
bu1,t+1 = yt+1 − ³ 1 yt zt

´ bθ1,t. The relevant test statistic is:
MP =

Z
Γ
mP (γ)

2φ(γ)dγ, (12)

where

mP (γ) =
1

P 1/2

T−1X
t=R

g0(bu1,t+1)w(Zt, γ), (13)

and where
R
Γ φ(γ)dγ = 1, φ(γ) ≥ 0, with φ(γ) absolutely continuous with respect to Lebesgue

measure. Note also that “ 0 ” denotes derivative with respect to the argument of the function.

Elsewhere, we use “∇x” to denote derivative with respect to x. In the sequel, we require the
following assumptions.

Assumption A4: (i) w is a bounded, twice continuously differentiable function on the interior

of Γ and ∇γw(Z
t, γ) is bounded uniformly in Γ; and (ii) ∇γ∇θ1q

0
1,t(θ1)w(Z

t−1, γ) is continuous

on Θ1 × Γ, where q01,t(θ1) = q01(yt − θ1,1 − θ1,2yt−1 − θ1,3zt−1), Γ a compact subset of <d, and is
2r−dominated uniformly in Θ1 × Γ, with r ≥ 2(2 + ψ), where ψ is the same positive constant as

that defined in Assumption A1.
4Needless to say, in finite samples the forecasting mean square prediction error from the small model can be lower

than that associated with the larger model.
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Assumption A5 requires the function w to be bounded and twice continuously differentiable;

such a requirement is satisfied by logistic or exponential functions, for example.

Theorem 3 (Corradi and Swanson (2007): Under either recursive of rolling estimation, let

Assumptions A1-A4 hold. Then, the following results hold: (i) Under H0,

MP =
Z
Γ
mP (γ)

2φ(γ)dγ
d→
Z
Γ
Z(γ)2φ(γ)dγ,

where mP (γ) is defined in equation (13) and Z is a Gaussian process with covariance kernel given

by:

K(γ1, γ2) = Sgg(γ1, γ2) + 2Πµ
0
γ1B

†ShhB†µγ2 +Πµ
0
γ1B

†Sgh(γ2)

+Πµ0γ2B
†Sgh(γ1),

with µγ1 = E(∇θ1(g
0
t+1(u1,t+1)w(Z

t, γ1))), B
† = (E(∇2θ1q1(u1,t)))−1,

Sgg(γ1, γ2) =
P∞
j=−∞E(g0(u1,s+1)w(Zs, γ1)g0(u1,s+j+1)w(Zs+j , γ2)),

Shh =
P∞
j=−∞E(∇θ1q1(u1,s)∇θ1q1(u1,s+j)

0),

Sgh(γ1) =
P∞
j=−∞E(g0(u1,s+1)w(Zs, γ1)∇θ1q1(u1,s+j)

0), and γ, γ1, and γ2 are generic elements of

Γ.

(ii) Under HA, for ε > 0, limP→∞ Pr
³
1
P

R
ΓmP (γ)

2φ(γ)dγ > ε
´
= 1.

Clearly, the form of the covariance kernel depends upon whether recursive or rolling estimation

is used (for further detailed discussion of these covariance kernels, the reader is referred to the

appendices in Corradi and Swanson (2006a, 2007). It is also clear that the limiting distribution

under H0 is a Gaussian process with a covariance kernel that reflects both the dependence structure

of the data and the effect of parameter estimation error. Hence, critical values are data dependent

and cannot be tabulated.

In order to implement this statistic using the block bootstrap for recursive or rolling m-

estimators discussed above. Namely, we define:

eθ∗1,t = (eθ∗1,1,t, eθ∗1,2,t, eθ∗1,3,t)0 = arg min
θ1∈Θ1

1

t

tX
j=2

[q1(y
∗
j − θ1,1 − θ1,2y

∗
j−1 − θ1,3z

∗
j−1)

−θ01
1

T

T−1X
i=2

∇θq1(yi − bθ1,1,t − bθ1,2,tyi−1 − bθ1,3,tzi−1)] (14)

Also, define eu∗1,t+1 = y∗t+1 − ³ 1 y∗t z∗t
´ eθ∗1,t. The bootstrap test statistic is:

M∗
P =

Z
Γ
m∗P (γ)

2φ(γ)dγ,

11



where, recalling that g = q1,

m∗P (γ)

=
1

P 1/2

T−1X
t=R

Ã
g0
³
y∗t+1 −

³
1 y∗t z∗t

´ eθ∗1,t´w(Z∗,t, γ)− 1

T

T−1X
i=2

g0
³
yi −

³
1 yi−1 zi−1

´ bθ1,t´w(Zi−1, γ)
!

(1

the bootstrap statistic in (15) is characterized by the fact that the bootstrap (resampled) com-

ponent is constructed only over the last P observations, while the sample component is constructed

over all T observations. This differs from the usual approach that would involve calculating:

m∗∗P (γ) =
1

P 1/2

T−1X
t=R

³
g0
³
y∗t+1 −

³
1 y∗t z∗t

´ eθ∗1,t´w(Z∗,t, γ)− g0 ³yt+1 − ³ 1 yt zt
´ bθ1,t´w(Zt, γ)´

(16)

However, the recursive (rolling) feature of the parameter estimation error in the CS test in the

current context ensures that for all samples except a set with probability measure approaching

zero, m∗∗P (γ) does not have the same limiting distribution as mP (γ) (see Corradi and Swanson

(2007) for further details).

Theorem 4 (Corradi and Swanson (2007)): Under either recursive or rolling estimation, let

Assumptions A1-A3 and A5 hold. Also, assume that as T →∞, l→∞, and that l
T 1/4
→ 0. Then,

as T, P and R→∞,

P

Ã
ω : sup

v∈<

¯̄̄̄
P ∗T

µZ
Γ
m∗P (γ)

2φ(γ)dγ ≤ v
¶
− P

µZ
Γ
mµP (γ)

2φ(γ)dγ ≤ v
¶¯̄̄̄
> ε

!
→ 0,

where mµP (γ) = mP (γ)−
√
PE

¡
g0(u1,t+1)w(Zt, γ)

¢
.

The above result suggests proceeding in the following manner. For any bootstrap replication,

compute the bootstrap statistic, m∗P (γ). Perform B bootstrap replications (B large) and compute

the quantiles of the empirical distribution of the B bootstrap statistics. Reject H0, if mP (γ) is

greater than the (1− α)th-percentile. Otherwise, do not reject.

4 Monte Carlo Experiments

In this section we carry out a series of Monte Carlo experiments comparing the recursive and rolling

block bootstrap with a variety of other bootstraps, and comparing the finite sample performance of
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the test discussed above with a variety of other tests. In addition to the fact that rolling as well as

recursive estimators are used, the experiments in this section differ from those discussed in Corradi

and Swanson because they estimate an AR(1) model as their benchmark model (i.e. the model

used in size experiments), while our benchmark model includes an additional explanatory variable,

zt, which corresponds to the interest rate spread in our empirical implementation. Furthermore,

they include in all models an omitted variable, which we do not use in our specifications. As shall

be discussed below, it is in fact this omitted variable that drives much of the size distortion in

Corradi and Swanson (2007) when comparing the F-test with various other tests.

With regard to the bootstrap, we consider 4 alternatives. Namely: (i) the “Recur Block Boot-

strap”, which is the block bootstrap for recursive m-estimators discussed above; (ii) the “Roll

Block Bootstrap”, which is also discussed above, (iii) the “Block Bootstrap, no PEE, no adjust”,

which is a strawman block bootstrap used for comparison purposes, where it is assumed that

there is no parameter estimation error (PEE), so that bθ1,t is used in place of eθ∗1,t in the construc-
tion of M∗

P , and the term
1
T

PT−1
i=1 g

0
³
yi+1 −

³
1 yi zi

´ bθ1,t´w(Zi, γ) in m∗P is replaced with
g0
³
yt+1 −

³
1 yt zt

´ bθ1,t´w(Zt, γ) (i.e. there is no bootstrap statistic adjustment, thus con-
forming with the usual case when the standard block bootstrap is used) and (iv) the “Standard

Block Bootstrap”, which is the standard block bootstrap (i.e. this bootstrap is the same as that

outlined in (iii), except that bθ1,t is replaced with bθ∗1,t.
As discussed in Section 3, the hypotheses of interest are:

H0 : E(g(u1,t+1)− g(u2,t+1(γ))) = 0 versus HA : E(g(u1,t+1)− g(u2,t+1(γ))) > 0. (17)

where u1,t and u2,t are out-of-sample 1-step ahead prediction errors of the following models:

yt = θ†1,1 + θ†1,2yt−1 + θ†1,3zt−1 + u1,t, (18)

yt = θ†2,1(γ) + θ†2,2(γ)yt−1 + θ†2,3(γ)zt−1 + θ†2,4(γ)w(Z
t−1, γ) + u2,t(γ), (19)

where θ†1 = (θ†1,1, θ
†
1,2, θ

†
1,3)

0, and θ†2 = (θ†2,1, θ
†
2,2, θ

†
3,3, θ

†
3,4)

0 are parameter vectors, where zt−1is an

additional explanatory variable in the “small” model, and where Zt−1 in the “big” model includes

the variable which is being tested for inclusion in the small model (denoted xt in Table 1).

The test statistics examined in our experiments include: (i) the standard in-sample F-test;

(ii) the encompassing test due to Clark and McCracken (CM: 2004) and Harvey, Leybourne and
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Newbold (1997); (iii) the Diebold and Mariano (DM: 1995) test; (iv) the CS test; and (v) the CCS

test.5 Of note in this context is that in the CS test we are implicitly testing whether any (non)linear

function of Zt−1 would be useful for constructing a better prediction model of yt. Alternatively, the

other tests only consider inclusion of a linear function of Zt−1, so that they are essentially setting

w to be an affine function.

To be more specific, note that the CM test is an out-of-sample encompassing test, and is defined

as follows:

CM = (P − h+ 1)1/2
1

P−h+1
PT−h
t=R bct+h

1
P−h+1

Pj

j=−j
PT−h
t=R+jK

³
j
M

´
(bct+h − c) (bct+h−j − c) ,

where bct+h = bu1,t+h (bu1,t+h − bu2,t+h) , c = 1
P−h+1

PT−τ
t=R bct+h, K (·) is a kernel (such as the Bartlett

kernel), and 0 ≤ K
³
j
M

´
≤ 1, with K(0) = 1, and M = o(P 1/2). Additionally, h is the forecast

horizon (set equal to unity in our experiments), P is as defined above, and bu1,t+1 and bu2,t+1 are the
out—of sample forecast errors associated with least squares estimation of “smaller” and “bigger”

linear models, respectively (see below for further details). Note that j does not grow with the

sample size. Therefore, the denominator in CM is a consistent estimator of the long run variance

only when E
³
ctct+|k|

´
= 0 for all |k| > h (see Assumption A3 in Clark and McCracken (2004)).

Thus, the statistic takes into account the moving average structure of the multistep prediction

errors, but still does not allow for dynamic misspecification under the null. This is one of the main

differences between the CM and CS (CCS) tests.

Note also that the DM test is the mean square error version of the Diebold and Mariano (1995)

test for predictive accuracy, and is defined as follows:

DM =
√
P

1
P

PT
t=R

bdt+h
1

P−h+1
Pj

j=−j
PT−h
t=R+jK

³
j
M

´³ bdt+h − d´³ bdt+h−j − d´ ,
5The CCS statistic is essentially the same as the CS test, but uses Zt instead of a generically comprehensive

function thereof (recall that Zt contains the additional variables included in the “big” model defined below). Thus,

this test can be seen as a special case of the CS test that is designed to have power against linear alternatives, and

it is not explicitely designed to have power against generic nonlinear alternatives as is the CS test. The theory in

Section 3 of this paper thus applies to both the CS and CCS tests. Additionally, the CM test is included in our study

because it is an encompassing test which is designed to have power against linear alternatives, and so it is directly

comparable with the CCS test. Finally, the F and DM tests are included in our analysis because they are the most

commonly applied and examined in- and out-of-sample tests used for model selection. They thus serve as a kind of

benchmark against which the performance of the other tests can be measured.
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where bdt+h = bu21,t+h− bu22,t+h, and d = 1
P−h+1

PT−τ
t=R

bdt+h. The limiting distributions of the CM and

DM statistics are given in Theorems 3.1 and 3.2 in Clark and McCracken (2004), and for h > 1

contain nuisance parameters so that critical values cannot be directly tabulated, and hence Clark

and McCracken (2004) use the Kilian parametric bootstrap to obtain critical values. In this case,

as discussed above, it is not clear that the parametric bootstrap is asymptotically valid. However,

again as alluded to above, the parametric bootstrap approach taken by Clark and McCracken is

clearly a good approximation, at least for the DGPs and horizon considered in our experiments,

given that these tests have very good finite sample properties (see discussion of results below).

Data are generated according to the DGPs summarized in Table 1 as : Size1-Size2 and Power1-

Power12.

In our setup, the benchmark model (denoted by Size1 in Table 1) is an ARX(1). (The bench-

mark model is also called the “small” model.) The null hypothesis is that no competing model

outperforms the benchmark model. Twelve of our DGPs (denoted by Power1-Power12) include

(non)linear functions of xt−1. In this sense, our focus is on (non)linear out-of-sample Granger

causality testing. Some regression models estimated in these experiments are misspecified not just

because of neglected nonlinearity, but also because fitted regression functions ignore the MA error

component that appears in some DGPs. Recall also, as discussed above, that CS and CCS tests

only require estimation of the benchmark models. The CM, F, and DM tests require estimation

of the benchmark models as well as the alternative models. In our context, the alternative model

estimated is simply the benchmark model with xt−1 added as an additional regressor, regardless of

which DGP is used to generate the data. The alternative is also sometimes called the “big” model.

The functional forms that are specified under the alternative include: (i) exponential (Power1,

Power7); (ii) linear (Power2); (iii) self exciting threshold (Power3), squared (Power8) and absolute

value (Power9). In addition, Power4-Power6 and Power10-Power12 are the same as the others,

except that an MA(1) term is added. Notice that Power1 includes a nonlinear term that is similar

in form to the test function, w(·), which is defined below. Also, Power2 serves as a linear causality
benchmark. Test statistics are constructed by fitting what is referred to in the next section as a

“small model” in order to construct the CS and CCS test statistics. Note that the “big model”

(which is a linear ARX(1) model in yt−1, and wt−1 with xt−1 added as an additional regressor)

is only fitted in order to construct the F, CM, and DM test statistics. It is not necessary to fit

this model when constructing the CS and CCS statistics. All test statistics are formed using one-
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step ahead predictions (and corresponding prediction errors) from recursive and rolling window

estimated models.

In all experiments, we set w(zt−1, γ) = exp(
P3
i=1(γi tan

−1((zi,t−1 − zi)/2bσzi))), with z1,t−1 =
xt−1, z2,t−1 = yt−1, z3,t−1 = wt−1 and γ1, γ2, γ3 scalars.Additionally, define Γ = [0.0, 5.0]×[0.0, 5.0]×
[0.0, 5.0]. We consider a grid that is delineated by increments of size 0.5. All results are based on

500 Monte Carlo replications, and a sample of T=540 is used. All tests are empirical rejection

frequencies. The following parameterizations are used: a1 = 1.0, a2 = {0.3, 0.6, 0.9}, and a3 = 0.3.
Additionally, bootstrap critical values are constructed using 100 simulated statistics, the block

length, l, is set equal to {2, 5, 10}, {4, 10, 20}, or {10, 20, 50}, depending upon the degree of DGP
persistence, as given by the value of a2. Finally, all results are based on P = (1/2)T recursive and

rolling window formed predictions.

We summarize our findings from the Monte Carlo simulations in Tables 2-3 for the CS test and

Tables 4-5 for the F, DM, CM and CCS tests. In additions, Tables 2 and 4 consider results under

recursive estimation whiles Tables 3 and 5 consider results under rolling window estimation. The

first column in the mentioned tables states the DGP used to generate the data. The names are

further defined in Table 1. Size1-Size2 refer to empirical size experiments and Power1-Power12

refer to empirical power experiments. All numerical entries are test rejection frequencies. Details of

the mnemonics used to describe the columns in the tables and also refer to the different approaches

for critical value construction are contained in the footnotes to Table 2 and 4.

In the following discussion, we consider two broad issues. First, is the recursive/rolling bootstrap

useful, or could one simply use more naive bootstraps such as the standard block bootstrap? Second,

what can we say about the use of recursive as opposed to rolling window estimation schemes for

estimating model parameters and in particular with respect to inference. As an ancilliary issue,

we also consider the issue of in-sample versus out-of-sample testing since we include the in-sample

F-test as an alternative test.

A first look at Tables 2 and 3 where the CS test is examined under the “Recur/Rolling Block

Bootstrap” indicates that in general, empirical levels are larger and closer to the 10% nominal level

under recursive estimation (Table 2) than under rolling window estimation (Table 3). For example,

in Panel A of Tables 2 and 3, empirical rejection levels for l = 2, 5, 10 are 0.07, 0.07, 0.08 (Table 2)

and 0.05, 0.06, 0.07 (Table 3) for Size1. However, empirical power is in general closer to 1 under

rolling window estimation (Table 3) than under recursive estimation (Table 2). For example, in
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Panel A of Tables 2 and 3 empirical power for l = 2, 5, 10 is 0.53, 0.73,and 0.80 (Table 2) and

0.62, 0.87, and 0.90 (Table 3) for Power1. This observation about empirical power also holds for

the other bootstrap techniques considered. These findings are not surprising, given the that the

rolling windows are fixed in length, while the recursive windows increase in length. Furthermore,

it is worth stressing that both window types appear to be yield quite reasonable finite sample

properties, overall, when the nonparametric bootstrap is used. Finally, notice also that in all

panels of Tables 2 and 3, CS tests constructed using data generated according to Size2 yield poorer

empirical level performance than under Size1. This is as expected, given that Size2 DGPs include

unmodelled serial error dependence.

A closer look at Table 2 reveals that regardless of the level of dependence in the lagged endoge-

nous variable as determined by the value of a2, the nonparametric block bootstrap developed in

this paper consistently has the empirical level closest to the nominal level. For example in Table

2, the closest empirical level to the nominal level is 0.08 and it occurs in Panel A when under

“Recur Block Bootstrap” and Size1 when l = 10. This same observation can be made in Table 3.

However, such a blanket conclusion cannot be drawn when comparing empirical power. In Panels

A and B of Table 2, for the smallest block lengths of 2 and 4 respectively, the “Block Bootstrap”

in general has the highest power levels. For the medium block lengths of 5 and 10 of Panels A and

B respectively, the “BB, no PEE, no adj” nonparametric bootstrap has higher power. Finally, for

the highest block length, “Recur Block Bootstrap” has the highest empirical power. When there

is too much persistence in the model as in Panel C, these conclusions no longer hold. The same

analysis and conclusions can generally be drawn under the rolling window estimation in Table 3.

We now turn to a discussion of Tables 4 and 5, where results for the rest of the test statistics

examined in the Monte Carlo experiments are reported. Relative to the Monte Carlo results in CS

(2007), the F-test is not nearly as severely oversized. Indeed, judging from its empirical level and

power figures, the F-test seems to have good size and power properties. The main reason for this

is that the F-test is in-sample, and is carried out with a correctly specified model in the current

analysis. Of course, an in-sample analysis of a correctly specified model for any test will generally

yield superior performance. However, as shown in CS (2007), where there is model misspecification

in the form of an omitted variable, the in-sample F-test is highly oversized. It is in such cases (i.e.

model misspecification) that the argument can be made for considering alternative tests of model

performance, even under an assumption of linearity, and particularly when nonlinearities may be
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present in the true underlying DGPs.

In addition to this, in both Tables 4 and 5, there is a dramatic improvement in the empirical

size of the DM test depending upon which critical values are used (i.e. whether we assume that

π = 0 or π > 0 - see footnote to Table 4 for further explanation of π). The empirical size under

π > 0 is much closer to the nominal size of 10%. This suggests that parameter estimation error is

relevant in our setup, as standard normal critical values (under π = 0) are simply too big. For the

CM test in both Tables 4 and 5, the assumption that π > 0 still generates some improvement in

empirical size values albeit marginal. Empirical power is very high for the F, CM and DM tests

under either assumption on π; and unlike the CS test in Tables 2 and 3, power is not compromised

by high persistence levels. This is however not the case for the CCS test. In Panel A and B of

Table 4, the CCS test is grossly oversized regardless of block length. However, for both Tables 4

and 5, as the model becomes more persistent, there is an improvement in size and a redection in

power. The fact that this sort of result arises for the CS and CCS tests and not for the F, DM or

CM tests indicates that the power loss is due to the use of a block length dependent bootstrap for

calculating critical values. Indeed, it is worth noting that the power reduction is also characteristic

of the other naive bootstrap techniques in Tables 2 and 3. Furthermore, it is worth noting that

under model misspecification of the variety looked at in CS (2007), the F, CM and DM tests are

no longer dominant in the above respect. In the next section, we estimate models that are clearly

approximations to the true underlying DGP and hence are proably misspecified. We use the CS

test which is robust to model misspecification under both hypotheses, as well as the other tests

examined above, to assess the models.

5 Empirical Illustration: The Marginal Predictive Content of Money

for Output

In this section we implement the F, CM, DM, CS and CCS tests that are described in Table 1,

and examined in the previous Monte Carlo section. In particular, we use these tests together with

recursive and rolling window estimation schemes to assess the marginal predictive content of money

for real income. Recent contributions to this important literature include the papers of Swanson

(1998), Amato and Swanson (2001), and the papers cited therein.

The variables used are the same as those examined by Christiano and Ljungqvist (1988), Stock
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and Watson (1989), Friedman and Kuttner (1993) and Thoma (1994). In particular, the variables

used are monthly observations of industrial production (IP ), the wholesale price index (P ), the

secondary market rate on 90-day U.S. Treasury bills (R), the interest rate on three-month prime

commercial paper (C) and Divisia monetary aggregates of money supply (M2). The sample period

is 1959:01 to 2003:12. Seasonally adjusted nominal measures of M2 exhibit erratic behavior after

1985, which can be accounted for by documented shifts in the public’s demand for money balances.

This might explain why the relationship between nominalM2, IP and P has been unstable in recent

years. Our approach in dealing with shifting money demand is to consider the Divisia monetary

aggregates ofM2. Other approaches, such as including structural breaks and explicit nonlinearities

in the models are left to future research. All data with the exception of the three-month prime

commercial paper (C) were obtained from the St. Louis Federal Reserve Bank. The data on C

were obtained from Stock and Watson (2005).

We define the small model as a vector error correction model with:

yt = θ†1,1 + θ†1,2yt−1 + θ†1,3z1,t−1 + u1,t

where

θ†1 = (θ
†
1,1, θ

†
1,2, θ

†
1,3)

0 = arg min
θ1∈Θ1

E(q1(yt − θ1,1 − θ1,2yt−1 − θ1,3z1,t−1)) is defined conformably,

yt = (∆ log IPt,∆ logPt,∆Rt)
0

and

z1,t−1 = Ct−1 −Rt−1.

We further define the generic alternative (big) model as:

yt = θ†2,1(γ) + θ†2,2(γ)yt−1 + θ†2,3(γ)z1,t−1 + θ†2,4(γ)w(Z
t−1, γ) + u2,t(γ)

where

θ†2(γ) = (θ
†
2,1(γ), θ

†
2,2(γ), θ

†
2,3(γ), θ

†
2,4(γ))

0 = arg min
θ2∈Θ2

E(q1(yt−θ2,1−θ2,2yt−1−θ2,3z1,t−1−θ2,4w(Zt−1, γ)))

and

yt = (∆ log IPt,∆ logPt,∆ logM2t,∆Rt)

z1,t−1 = Ct−1 −Rt−1
z2,t−1 = logM2t−1 − log IPt−1 − logPt−1.
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Finally, Zt−1 = (z2,t−1, ∆ logM2t−1). Notice that z1,t−1 and z2,t−1 can be interpreted as vector

error correction terms, and are consistent with evidence presented in Swanson (1998) and Amato

and Swanson (2001). Since we are interested in examining the (non)linear marginal predictive

content of money for income, our forecasting analysis and test statistics are constructed based on

estimates of the first equation in the vector error correction model specified above (i.e. the equation

with ∆ log IPt as dependent variable).

Of note is that standard F-tests or Wald-tests for Granger causality are prone to severe upward

size distortions when vector error correction (VEC) models are estimated using only differenced

data, without accounting for cointegrating restrictions (see e.g. Swanson (1998) and Swanson,

Ozyildirim and Pisu (2003)). One of the reasons why this problem arises is that the moving

average representation for a model with cointegrated regressors will not yield a finite order VAR

representation. In Swanson (1998) it is noted that at a 1% significance level, trace test statistics

support the presence of one cointegrating (CI) vector when the data are linearly detrended, and

when an intercept or an intercept and a trend are included in the cointegrating relation. One of

the two cointegrating vectors is z1,t−1, based on a likelihood ratio test (see Johansen (1988,1991)).

Of further note is that the null hypothesis that the other CI vector is z2,t−1 almost always fails to

reject, although confidence intervals are quite wide relative to those for the interest rate spread CI

vector. Finally, it should be recalled (see discussion in Section 4) that in the DM, CM, CCS, and

F tests, unlike the CS test, the alternative model is explicitly estimated. In such cases, linearity

is assumed, so that the bigger model includes linear functions of z2,t−1 and ∆ logM2t−1. This is

one of the main reasons why it should not be expected that the results of the different empirical

tests “agree”. Indeed, if the CS test rejects while all others fail to reject, we have direct evidence of

nonlinear Granger causality coupled with evidence of an absence of linear causality, for example.6

We construct tests statistics using 1-steap ahead forecasts formed via recursive and rolling

window estimated models. Thus, models are re-estimated (using least squares) at each point in

time, before each new prediction is constructed. The beginning date for the in-sample period is

1959:1. when constructing the CS, CCS, DM, CM, and F tests, the prediction periods reported on

are 1978:1-2003:12 (π = 1.4), 1981:1-2003:12 (π = 1.0) and 1987:1-2003:12 (π = 0.6), so that initial

6Here, we are using the notion of “causality” interchangeably with the notion of prediction, in the spirit of what

Granger originally had in mind when he introduced causlaity to the time series profesion (see the discussion in Chao,

Corradi and Swanson (2001) for further details).
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estimation samples for both the recursive and rolling window schemes include data for the periods

1959:1-1977:12, 1959:1-1980:12 and 1959:1-1986:12, respectively. The block length is set equal to 6

in application of the recursive block bootstrap.7 In all cases, the dependent variable in regressions

and the target variable in forecasts is the first log difference of industrial production (output). As

discussed above, all estimated models are linear, and explanatory variables include lags of the first

log difference of industrial production, prices, lag first difference of interest rates as well as the CI

term Ct−1 −Rt−1 (in the benchmark or “small” model). Lags of the first log difference of M2 and
the CI term z2,t−1 are added for the alternative (“big”) model. Lags are selected via use of the

Schwarz information criterion. Again as discussed above, and given this setup, our tests can be

viewed as tests of (non) linear Granger causality.8

Results are gathered in Tables 6-7. In Table 6, point mean square forecast errors (MSEs) are

tabulated for the “small model” and the “big model” under rolling window and recursive window

estimation schemes respectively. Results are given not only for the three prediction periods outlined

above, but also for all prediction periods beginning with 1974:1, 1975:1, ..., 1993:1. In Tables 7,

CS, CCS, F, DM and CM test results for the three prediction periods outlined above are reported.

Turning first to the MSE result in Table 6, note that in the case of recursive estimation, the

“big” model consistently outperforms the “small” model, for every prediction period. However,

in many instances the MSEs are very close in absolute and relative magnitude, with differences

often less than 1%. Interestingly, this pattern does not emerge when viewing MSEs associated with

models estimated using rolling windows. In particular, the bigger model that includes money only

“wins” for prediction periods beginning in 1984, 1988, 1989, 1990, and 1991. This puzzle is further

confounded by noting that the lowest MSE model across both estimation window types is sometimes

associated with the recursive modelling strategy, and sometimes with the rolling estimation strategy

(note that the bold figures denote the lowest MSE across all estimation strategies and model types

for a given start year). Thus, it appears that choice of recursive versus rolling estimation in our

exercise is quite dependent upon sample prediction period start date.

As mentioned above, the bigger model is always preferred for recursive estimation, while the

7It should be noted that we do not use real-time data in this empirical illustration, even though both variables

considered are subject to periodic revision. Extension of our results to incorporate real-time data is left to future

research.
8It should be stressed that the results presented in this section are meant primarily to illustrate the uses of the

different tests, and to underscore potentially important differences between the tests.
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results are mixed for rolling estimation. In particular, for rolling estimation, the bigger model is

preferred for only 5 start years. If the recursively estimated models always yielded the lowest overall

MSE across both estimation strategies, our results would be quite straightforward. However, when

one looks across estimation strategies, the rolling window approach “wins” when prediction periods

begin in the 1990s or from 1974-1982. The recursive window approach “wins” for prediction periods

beginning from 1983-1989. This corresponds to our ranking of the models when one looks across

both estimation strategies. Namely, the lowest MSE model is essentially the bigger model during

much of the 1980s (i.e. from 1983 through 1991), while the smaller model “wins” during the rest of

the years. Thus, for prediction periods that include the more turbulent 1970s, the smaller model

wins, while for prediction periods beginning after 1983, the bigger model with money “wins”. This

corresponds loosely with the money targeting experiment of the early 1980s. Namely, after this

targeting experiment ended, one might argue that a sufficiently “stable” environment ensued for

money to become a predictor for output. This is rather interesting, given that the stated goal of

the Federal Reserve Board has indeed been the stabilization at low levels of inflation.

A further point of interest is that the rolling 10 year estimator that we used in our analysis is

indeed dominant with regard to point MSE for 13 or the 20 start years (i.e. 13 of the 20 different

prediction periods). Thus, we have some evidence that there may indeed be instabilities resulting

in the relatively poorer performance of recursive estimation strategies. As might be expected, this

points to model misspecification in the form of structural breaks, missing variables, and omitted

nonlinearity, for example.

Finally, it is worth stressing that predictions of income have clearly gotten substantially more

accurate over our sample period, as evidenced by the fact that MSFEs are much bigger for early

subsamples, and are much smaller for the later sub-samples. This result is clearly due in part to

the smooth nature of recent data relative to more distant data, although one might also argue that

the more accurate results are associated in large part with instances where models that include

money yield superior point predictions, hence pointing to further evidence in favor of using money

in output prediction models. It should be stressed, however, that thus far we have only compared

MSEs, and hence have focused our attention upon the comparison of purely linear models. In order

to assess the potential impact of generic nonlinearity, for example, we need to either fit a variety

of nonlinear models (which may be a large undertaking, given the plethora of available models), or

we need to carry out tests such as the generically comprehensive nonlinear out-of-sample Granger
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causality CS test. We turn to this issue next.

As mentioned above, Table 7 contains CS, CCS, F, DM and CM test results for prediction

periods beginning in 1978, 1981, and 1987. Three conclusions emerge based upon inspection of the

results. First, the CS test fails to reject the null of no (non)linear predictive causation, regardless

of prediction period, and regardless of whether recursive or rolling estimation is used. On the

other hand, there are many rejections of the null hypothesis when the “linear” tests are used,

particularly at the 10% level. Furthermore, these rejections, in the case of recursive estimation,

correspond to the big model winning (as the MSE associated with the big model is always lower

than that associated with the small model). Thus, based on our recursive results, there is clearly

predictive causation from money to output, However, this causation appears to be “moderate” in

magnitude, given the fact that the non rejection using the CS test coupled with rejections using the

CCS test may be a result of low power associated with the CS test (i.e. the CS test is an omnibus

test, and hence has lower power in any given specific alternative than a test designed with that

alternative specifically in mind). Second, the number of rejection is close to twice as many when

moving from the rolling to the recursive estimation schemes, suggesting that parameter estimation

error is playing a significant role in our testing procedures. This finding is also indicative of further

evidence in favor of predictive causation, given that in the rolling case, small model MSEs based

on prediction periods beginning in 1978, 1981, and 1987 are always lower than corresponding big

model MSEs. In other words, in the rolling cases, rejection would imply that the small model is

significantly “better” than the big model; and hence fewer rejections supports the finding based

on the recursive estimation scheme that there is predictive causation. Third, when changing the

significance level from 5% to 10%, some rejections in the CCS, DM and CM tests become non-

rejections, which again substantiates the claim that although there is predictive causation, it is

somewhat “weak” in the sense that predictions do not change to a great extent when money is

added to the output equation.

In summary, power considerations are relevant, as should be expected, when using the CS

test, as evidenced by the fact that in our illustration the CS test may be good at detecting non-

linear Granger causality, but it is clearly not good at detecting moderate levels of linear predictive

causation. Additionally, our evidence is clearly leaning toward a finding of predictive causation

from money to output. However, much empirical work is needed before a complete picture emerges

concerning the prevalence of nonlinear Granger causality in the income/money relationship. This
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is left to future research. It is clear, though, that much can be learned by using all of the different

tests in consort with one another.

6 Concluding Remarks

We have discussed bootstrap procedures valid for construction of critical values in the case of test

statistics based on recursive and/or rolling estimation schemes that have limiting distributions

which are functionals of Gaussian processes, and which have covariance kernels that reflect para-

meter uncertainty. In these cases, limiting distributions are thus not nuisance parameter free, and

valid critical values are often obtained via bootstrap methods. In this paper, we first developed

a bootstrap procedure that properly captures the contribution of parameter estimation error in

recursive estimation schemes using dependent data. Intuitively, when parameters are estimated

recursively, as is done in our framework, earlier observations in the sample enter into test statistics

more frequently than later observations. This induces a location bias in the bootstrap distribution,

which can be either positive or negative across different samples, and hence the bootstrap modifi-

cation that we discuss is required in order to obtain first order validity of the bootstrap. Within

this framework, we discussed the Corradi and Swanson (2002: CS) model selection type test and

carried out a series of experiments evaluating the CS as well as a variety of other tests including

ones due to Diebold and Mariano (1995) and Clark and McCracken (2004). Finally, we carried

out an empirical investigation using all of the tests examined in the Monte Carlo experiments. the

investigation focused on predictive money-income causation. We found that sample size, prediction

period, and estimator type (i.e. recursive versus rolling) play an important role in our empirical

findings, although concrete evidence supporting the existence of predictive causation was found,

particularly for prediction periods beginning during the 1980s.
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Table 1: Test Statistics, Sampling Scheme, and Data Generating Processes Used in
Monte Carlo Experiments

Panel A: Test Statistic Mnemonics and Definitions

F — The standard Wald version of the in-sample F-test is calculated using the entire sample of T

observations. In particular, we use: F = T
³PT

t=1 bu21,t −PT
t=1 bu22,t)/PT

t=1 bu22,t´ , where bu1,t and bu2,t
are the in-sample residuals associated with least squares estimation of the small and big models,
respectively, and where T denotes the sample size.
CM — The Clark and McCracken (2004) test outlined in Section 4.
DM — The Diebold and Mariano (1995) test outlined in Section 4.
CS — The Corradi and Swanson (2002,2007) test outlined in Section 3.
CCS — The Chao, Corradi and Swanson (2001) test discussed in Section 4.

Panel B: Data Generating Processes Used in Monte Carlo Experiments

xt = a1 + a2xt−1 + u1,t, u1,t ∼ iidN(0, 1)
zt = a1 + a3zt−1 + u2,t, u2,t ∼ iidN(0, 1)
Size1: yt = a1 + a2yt−1 + a4zt−1 + u3,t, u3,t ∼ iidN(0, 1)
Size2: yt = a1 + a2yt−1 + a4zt−1 + a3u3,t−1 + u3,t
Power1 : yt = a1 + a2yt−1 + 2exp(tan−1(xt−1/2)) + a4zt−1 + u3,t
Power2 : yt = a1 + a2yt−1 + 2xt−1 + a4wt−1 + u3,t
Power3 : yt = a1 + a2yt−1 + 2xt−11{xt−1 > a1/(1− a2)}+ a4zt−1 + u3,t
Power4 : yt = a1 + a2yt−1 + 2exp(tan−1(xt−1/2)) + a4zt−1 + a3u3,t−1 + u3,t
Power5: yt = a1 + a2yt−1 + 2xt−1 + a4zt−1 + a3u3,t−1 + u3,t
Power6: yt = a1 + a2yt−1 + 2xt−11{xt−1 > a1/(1− a2)}+ a4zt−1 + a3u3,t−1 + u3,t.
Power7 : yt = a1 + a2yt−1 + 2exp(xt−1) + a4zt−1 + u3,t
Power8 : yt = a1 + a2yt−1 + 2x2t−1 + a4zt−1 + u3,t
Power9 : yt = a1 + a2yt−1 + 2|xt−1|+ a4zt−1 + u3,t
Power10 : yt = a1 + a2yt−1 + 2 exp(xt−1) + a4zt−1 + a3u3,t−1 + u3,t
Power11: yt = a1 + a2yt−1 + 2x2t−1 + a4zt−1 + a3u3,t−1 + u3,t
Power12: yt = a1 + a2yt−1 + 2|xt−1|+ a4zt−1 + a3u3,t−1 + u3,t.
Note that the benchmark or “small” model in our test statistic calculations is always yt = α1 + α2yt−1 +

α3zt−1 + ²t; and the “big” model is the same, but with xt−1 or generic functions of xt−1 added as an additional
regressor.
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Table 2: Recursive Estimation Scheme - Rejection Frequencies of CS Test with

T = 540, P = 0.5T ∗

Model Recur Block Bootstrap BB, no PEE, no adj Block Bootstrap
Panel A: a2 = 0.3

l = 2 l = 5 l = 10 l = 2 l = 5 l = 10 l = 2 l = 5 l = 10
Size1 0.07 0.07 0.08 0.01 0.01 0.02 0.00 0.00 0.01
Size2 0.04 0.05 0.07 0.01 0.01 0.01 0.00 0.00 0.01
Power1 0.53 0.73 0.80 0.00 0.59 0.83 0.54 0.77 0.74
Power2 0.68 0.90 0.93 0.00 0.94 0.92 0.91 0.86 0.81
Power3 0.68 0.90 0.92 0.01 0.95 0.93 0.94 0.87 0.82
Power4 0.53 0.76 0.81 0.00 0.54 0.84 0.42 0.76 0.76
Power5 0.69 0.88 0.93 0.00 0.94 0.93 0.91 0.84 0.83
Power6 0.68 0.88 0.92 0.01 0.96 0.91 0.94 0.86 0.83
Power7 0.57 0.75 0.77 0.02 0.76 0.77 0.77 0.73 0.70
Power8 0.66 0.88 0.90 0.03 0.91 0.85 0.93 0.82 0.81
Power9 0.68 0.93 0.96 0.00 0.97 0.94 0.97 0.90 0.86
Power10 0.57 0.73 0.77 0.02 0.76 0.76 0.79 0.73 0.71
Power11 0.68 0.88 0.89 0.01 0.92 0.88 0.92 0.85 0.80
Power12 0.71 0.91 0.95 0.00 0.97 0.94 0.97 0.90 0.90

Panel B: a2 = 0.6
l = 4 l = 10 l = 20 l = 4 l = 10 l = 20 l = 4 l = 10 l = 20

Size1 0.05 0.07 0.08 0.01 0.01 0.03 0.01 0.01 0.01
Size2 0.03 0.07 0.07 0.00 0.02 0.01 0.00 0.01 0.01
Power1 0.59 0.69 0.75 0.00 0.65 0.80 0.56 0.64 0.68
Power2 0.71 0.84 0.86 0.01 0.91 0.84 0.79 0.75 0.76
Power3 0.78 0.86 0.89 0.07 0.92 0.86 0.80 0.78 0.78
Power4 0.57 0.69 0.78 0.00 0.61 0.82 0.56 0.66 0.69
Power5 0.73 0.85 0.86 0.01 0.92 0.86 0.80 0.78 0.77
Power6 0.77 0.87 0.91 0.05 0.92 0.88 0.81 0.78 0.77
Power7 0.56 0.64 0.68 0.05 0.64 0.67 0.53 0.60 0.63
Power8 0.72 0.83 0.86 0.14 0.87 0.82 0.77 0.75 0.73
Power9 0.82 0.92 0.93 0.04 0.95 0.88 0.83 0.80 0.80
Power10 0.57 0.62 0.67 0.07 0.67 0.67 0.62 0.61 0.63
Power11 0.76 0.83 0.87 0.15 0.86 0.82 0.79 0.72 0.73
Power12 0.80 0.90 0.93 0.04 0.94 0.88 0.86 0.81 0.79

Panel C: a2 = 0.9
l = 10 l = 20 l = 50 l = 10 l = 20 l = 50 l = 10 l = 20 l = 50

Size1 0.01 0.03 0.07 0.00 0.01 0.03 0.00 0.00 0.01
Size2 0.01 0.03 0.06 0.00 0.01 0.02 0.00 0.00 0.01
Power1 0.41 0.56 0.64 0.00 0.47 0.75 0.29 0.53 0.61
Power2 0.59 0.71 0.77 0.06 0.78 0.79 0.58 0.65 0.72
Power3 0.61 0.72 0.79 0.09 0.82 0.77 0.61 0.68 0.71
Power4 0.42 0.53 0.64 0.00 0.43 0.73 0.27 0.50 0.61
Power5 0.61 0.69 0.77 0.03 0.81 0.78 0.57 0.67 0.70
Power6 0.62 0.72 0.80 0.12 0.81 0.79 0.59 0.68 0.72
Power7 0.41 0.47 0.54 0.07 0.47 0.54 0.34 0.46 0.53
Power8 0.57 0.67 0.75 0.23 0.76 0.69 0.56 0.62 0.66
Power9 0.61 0.72 0.82 0.13 0.83 0.81 0.62 0.67 0.72
Power10 0.42 0.47 0.53 0.06 0.50 0.54 0.35 0.47 0.52
Power11 0.60 0.66 0.75 0.27 0.76 0.73 0.59 0.63 0.66
Power12 0.64 0.76 0.83 0.17 0.85 0.81 0.59 0.66 0.71

∗ Notes: All entries are rejection frequencies of the null hypothesis of equal predictive accuracy based on 10% nominal size
critical values constructed using the bootstrap approaches discussed above, where l denotes the block length, and empirical
bootstrap distributions are constructed using 100 bootstrap statistics. In particular, “Recur Block Bootstrap” is the bootstrap
developed in this paper, “BB, no PEE, no adj” is a naive block bootstrap where no parameter estimation error is assumed,
and no recentering (i.e. adjustment) is done in parameter estimation or bootstrap statistic construction, “Block Bootstrap” is
the usual block bootstrap that allows for parameter estimation error, but does not recenter parameter estimates or bootstrap
statistics. For all models denoted Poweri, i = 1, ..., 12, data are generated with (non) linear Granger causality (see above for
further discussion of DGPs. In all experiments, the ex ante forecast period is of length P , which is set equal to (1/2)T , where
T is the sample size. All models are estimated recursively, so that parameter estimates are updated before each new prediction
is constructed. All reported results are based on 500 Monte Carlo simulations. See Table 1 and Section 4 for further details.
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Table 3: Rolling Estimation Scheme - Rejection Frequencies of CS Test with T = 540,

P = 0.5T ∗

Model Rolling Block Bootstrap BB, no PEE, no adj Block Bootstrap
Panel A: a2 = 0.3

l = 2 l = 5 l = 10 l = 2 l = 5 l = 10 l = 2 l = 5 l = 10
Size1 0.05 0.06 0.07 0.01 0.02 0.01 0.00 0.00 0.00
Size2 0.03 0.06 0.07 0.01 0.02 0.02 0.00 0.00 0.00
Power1 0.62 0.87 0.90 0.00 0.67 0.88 0.80 0.86 0.83
Power2 0.74 0.95 0.96 0.01 0.97 0.94 0.98 0.94 0.91
Power3 0.77 0.95 0.98 0.01 0.97 0.94 0.98 0.94 0.92
Power4 0.59 0.89 0.92 0.00 0.55 0.89 0.71 0.87 0.82
Power5 0.75 0.96 0.97 0.00 0.97 0.95 0.98 0.94 0.92
Power6 0.76 0.95 0.97 0.01 0.98 0.94 0.98 0.95 0.92
Power7 0.67 0.83 0.84 0.03 0.82 0.82 0.86 0.82 0.80
Power8 0.78 0.90 0.91 0.04 0.92 0.88 0.96 0.90 0.86
Power9 0.79 0.96 0.96 0.01 0.97 0.94 0.98 0.94 0.92
Power10 0.68 0.82 0.84 0.03 0.81 0.81 0.86 0.82 0.82
Power11 0.80 0.90 0.92 0.04 0.91 0.89 0.95 0.89 0.86
Power12 0.78 0.94 0.96 0.00 0.97 0.94 0.98 0.93 0.92

Panel B: a2 = 0.6
l = 4 l = 10 l = 20 l = 4 l = 10 l = 20 l = 4 l = 10 l = 20

Size1 0.03 0.04 0.05 0.01 0.00 0.01 0.00 0.00 0.01
Size2 0.03 0.03 0.06 0.01 0.01 0.01 0.00 0.00 0.00
Power1 0.68 0.81 0.85 0.01 0.69 0.85 0.74 0.75 0.75
Power2 0.82 0.91 0.94 0.04 0.94 0.90 0.90 0.84 0.84
Power3 0.88 0.96 0.95 0.08 0.97 0.91 0.90 0.84 0.85
Power4 0.65 0.84 0.88 0.01 0.67 0.85 0.69 0.77 0.78
Power5 0.84 0.93 0.94 0.02 0.95 0.91 0.88 0.84 0.83
Power6 0.89 0.96 0.95 0.09 0.96 0.92 0.93 0.88 0.86
Power7 0.65 0.70 0.72 0.07 0.67 0.68 0.68 0.67 0.68
Power8 0.83 0.89 0.89 0.17 0.89 0.85 0.85 0.82 0.81
Power9 0.90 0.94 0.94 0.12 0.94 0.92 0.92 0.89 0.88
Power10 0.63 0.70 0.73 0.05 0.69 0.69 0.65 0.68 0.67
Power11 0.82 0.88 0.90 0.14 0.89 0.86 0.85 0.85 0.82
Power12 0.90 0.93 0.94 0.08 0.94 0.92 0.92 0.89 0.89

Panel C: a2 = 0.9
l = 10 l = 20 l = 50 l = 10 l = 20 l = 50 l = 10 l = 20 l = 50

Size1 0.01 0.03 0.06 0.00 0.00 0.01 0.00 0.00 0.00
Size2 0.01 0.02 0.03 0.00 0.01 0.01 0.00 0.00 0.01
Power1 0.37 0.54 0.72 0.00 0.53 0.75 0.36 0.56 0.63
Power2 0.64 0.75 0.83 0.13 0.82 0.82 0.60 0.69 0.75
Power3 0.68 0.78 0.88 0.16 0.86 0.84 0.67 0.71 0.77
Power4 0.35 0.54 0.74 0.00 0.43 0.76 0.32 0.52 0.67
Power5 0.61 0.75 0.85 0.07 0.80 0.82 0.60 0.67 0.77
Power6 0.71 0.80 0.87 0.16 0.86 0.84 0.67 0.72 0.78
Power7 0.48 0.54 0.60 0.06 0.49 0.55 0.44 0.54 0.58
Power8 0.67 0.77 0.81 0.24 0.81 0.75 0.65 0.68 0.72
Power9 0.76 0.83 0.89 0.14 0.89 0.86 0.70 0.76 0.79
Power10 0.47 0.56 0.60 0.06 0.50 0.56 0.42 0.54 0.58
Power11 0.67 0.75 0.81 0.21 0.82 0.75 0.66 0.70 0.73
Power12 0.75 0.84 0.89 0.18 0.89 0.85 0.71 0.77 0.79

∗ Notes: See notes to Table 2.
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Table 4: Recursive Estimation Scheme - Rejection Frequencies of Various Tests with

T = 540, P = 0.5T ∗

Model Assume π = 0 Assume π > 0 Recur Block Bootstrap
F DM CM DM CM CCS-l1 CCS-l2 CCS-l3

Panel A: a2 = 0.3
Size1 0.11 0.01 0.06 0.10 0.10 0.20 0.21 0.20
Size2 0.11 0.01 0.07 0.11 0.11 0.17 0.17 0.17
Power1 1.00 1.00 1.00 1.00 1.00 1.00 0.97 0.94
Power2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99
Power3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.96
Power4 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.96
Power5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99
Power6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97
Power7 1.00 1.00 1.00 1.00 1.00 0.98 0.89 0.78
Power8 1.00 1.00 1.00 1.00 1.00 1.00 0.96 0.92
Power9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98
Power10 1.00 1.00 1.00 1.00 1.00 0.99 0.88 0.77
Power11 1.00 1.00 1.00 1.00 1.00 1.00 0.97 0.91
Power12 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98

Panel B: a2 = 0.6
Size1 0.09 0.02 0.04 0.10 0.09 0.19 0.22 0.20
Size2 0.11 0.01 0.06 0.10 0.09 0.14 0.16 0.19
Power1 1.00 1.00 1.00 1.00 1.00 0.95 0.91 0.89
Power2 1.00 1.00 1.00 1.00 1.00 1.00 0.96 0.95
Power3 1.00 1.00 1.00 1.00 1.00 0.98 0.94 0.93
Power4 1.00 1.00 1.00 1.00 1.00 0.96 0.91 0.86
Power5 1.00 1.00 1.00 1.00 1.00 0.98 0.96 0.94
Power6 1.00 1.00 1.00 1.00 1.00 0.99 0.94 0.92
Power7 1.00 1.00 1.00 1.00 1.00 0.80 0.69 0.64
Power8 1.00 1.00 1.00 1.00 1.00 0.97 0.89 0.84
Power9 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.91
Power10 1.00 1.00 1.00 1.00 1.00 0.81 0.67 0.61
Power11 1.00 1.00 1.00 1.00 1.00 0.97 0.86 0.84
Power12 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.92

Panel C: a2 = 0.9
Size1 0.10 0.01 0.06 0.11 0.11 0.10 0.11 0.14
Size2 0.13 0.01 0.08 0.11 0.14 0.09 0.11 0.16
Power1 1.00 1.00 1.00 1.00 1.00 0.68 0.74 0.76
Power2 1.00 1.00 1.00 1.00 1.00 0.81 0.83 0.86
Power3 1.00 1.00 1.00 1.00 1.00 0.80 0.80 0.82
Power4 1.00 1.00 1.00 1.00 1.00 0.63 0.67 0.73
Power5 1.00 1.00 1.00 1.00 1.00 0.80 0.82 0.85
Power6 1.00 1.00 1.00 1.00 1.00 0.76 0.79 0.84
Power7 1.00 0.96 1.00 1.00 1.00 0.47 0.43 0.49
Power8 1.00 1.00 1.00 1.00 1.00 0.70 0.73 0.78
Power9 1.00 1.00 1.00 1.00 1.00 0.75 0.78 0.82
Power10 1.00 0.96 1.00 1.00 1.00 0.42 0.45 0.48
Power11 1.00 1.00 1.00 1.00 1.00 0.69 0.75 0.78
Power12 1.00 1.00 1.00 1.00 1.00 0.77 0.77 0.81

∗ Notes: See notes to Table 2. Test statistics, denoted by F, DM, CM, CS, and CCS are summarized in Table 1. Block lengths
are denoted by l1, l2, and l3, so that CCS − l3 is the CCS test with block length l3. Block lengths corrspond to those used
in Table 2 and 3, so that for a2 = 0.3, l1, l2, l3=2,5,10. The block lengths for a2 = 0.6 and a2 = 0.9 are l1, l2, l3=4,10,20 and
l1, l2, l3=10,20,50, respectively. π = 0 corresponds to the case where standard critical values based upon the assumption that
parameter estimation error vanishes asymptotically are used (i.e. π = limT−>∞P/R = 0). π > 0 corresponds to the case
where nonstandard critical values (see McCracken (2004)) based upon the assumption that parameter estimation error does
not vanish asymptotically are used (i.e. π = limT−>∞P/R > 0). In this case, we assume that π = 1.
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Table 5: Rolling Estimation Scheme - Rejection Frequencies of Various Tests with

T = 540, P = 0.5T ∗

Model Assume π = 0 Assume π > 0 Recur Block Bootstrap
F DM CM DM CM CCS-l1 CCS-l2 CCS-l3

Panel A: a2 = 0.3
Size1 0.11 0.00 0.06 0.07 0.09 0.17 0.17 0.16
Size2 0.10 0.00 0.06 0.10 0.09 0.14 0.14 0.13
Power1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98
Power2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Power3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98
Power4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98
Power5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Power6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Power7 1.00 1.00 1.00 1.00 1.00 1.00 0.87 0.81
Power8 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.94
Power9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99
Power10 1.00 1.00 1.00 1.00 1.00 1.00 0.87 0.80
Power11 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95
Power12 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99

Panel B: a2 = 0.6
Size1 0.10 0.01 0.05 0.08 0.08 0.13 0.14 0.16
Size2 0.13 0.01 0.06 0.10 0.10 0.11 0.13 0.15
Power1 1.00 1.00 1.00 1.00 1.00 0.99 0.94 0.93
Power2 1.00 1.00 1.00 1.00 1.00 1.00 0.97 0.96
Power3 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.96
Power4 1.00 1.00 1.00 1.00 1.00 0.99 0.94 0.91
Power5 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.96
Power6 1.00 1.00 1.00 1.00 1.00 1.00 0.97 0.96
Power7 1.00 0.99 1.00 1.00 1.00 0.86 0.71 0.67
Power8 1.00 1.00 1.00 1.00 1.00 1.00 0.94 0.90
Power9 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.95
Power10 1.00 0.99 1.00 1.00 1.00 0.84 0.72 0.68
Power11 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.91
Power12 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.94

Panel C: a2 = 0.9
Size1 0.11 0.02 0.04 0.08 0.10 0.07 0.12 0.13
Size2 0.13 0.02 0.06 0.12 0.13 0.06 0.07 0.13
Power1 1.00 1.00 1.00 1.00 1.00 0.72 0.72 0.80
Power2 1.00 1.00 1.00 1.00 1.00 0.85 0.83 0.86
Power3 1.00 1.00 1.00 1.00 1.00 0.80 0.82 0.82
Power4 1.00 1.00 1.00 1.00 1.00 0.70 0.71 0.78
Power5 1.00 1.00 1.00 1.00 1.00 0.83 0.82 0.87
Power6 1.00 1.00 1.00 1.00 1.00 0.81 0.80 0.85
Power7 1.00 0.97 1.00 1.00 1.00 0.46 0.44 0.49
Power8 1.00 1.00 1.00 1.00 1.00 0.80 0.78 0.82
Power9 1.00 1.00 1.00 1.00 1.00 0.87 0.83 0.87
Power10 1.00 0.97 1.00 1.00 1.00 0.48 0.48 0.53
Power11 1.00 1.00 1.00 1.00 1.00 0.80 0.81 0.82
Power12 1.00 1.00 1.00 1.00 1.00 0.83 0.84 0.87

∗ Notes: See notes to Table 4.
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Table 6: Mean Square Forecast Errors and the Marginal Predictive Content of M2

for Output∗

Recursive Rolling
Start Year small model big model small model big model

1974 0.0000398 0.0000395 0.0000393 0.0000410
1975 0.0000359 0.0000355 0.0000345 0.0000363
1976 0.0000352 0.0000349 0.0000338 0.0000352
1977 0.0000353 0.0000350 0.0000340 0.0000345
1978 0.0000350 0.0000348 0.0000337 0.0000344
1979 0.0000345 0.0000341 0.0000334 0.0000339
1980 0.0000343 0.0000338 0.0000333 0.0000336
1981 0.0000328 0.0000325 0.0000323 0.0000330
1982 0.0000321 0.0000317 0.0000317 0.0000323
1983 0.0000285 0.0000280 0.0000284 0.0000287
1984 0.0000271 0.0000261 0.0000274 0.0000271
1985 0.0000281 0.0000271 0.0000280 0.0000281
1986 0.0000284 0.0000274 0.0000281 0.0000283
1987 0.0000281 0.0000272 0.0000278 0.0000279
1988 0.0000279 0.0000266 0.0000272 0.0000270
1989 0.0000292 0.0000279 0.0000285 0.0000280
1990 0.0000281 0.0000269 0.0000275 0.0000269
1991 0.0000278 0.0000269 0.0000269 0.0000267
1992 0.0000278 0.0000271 0.0000267 0.0000270
1993 0.0000288 0.0000280 0.0000275 0.0000279

∗ Notes: For the empirical work, the variables used are monthly observations of industrial production (IP ), the wholesale price
index (P ), the secondary market rate on 90-day U.S. Treasury bills (R), the interest rate on three-month prime commercial
paper (C) and Divisia monetary aggregates of money supply (M2). The sample period is 1959-01 to 2003-12.
We define the small model as:

yt = θ†1,1 + θ†1,2yt−1 + θ†1,3z1,t−1 + u1,t

where
θ†1 = (θ

†
1,1, θ

†
1,2, θ

†
1,3)

0 = arg min
θ1∈Θ1

E(q1(yt − θ1,1 − θ1,2yt−1 − θ1,3z1,t−1)) is defined conformably,

yt = (∆ log IPt,∆ logPt,∆Rt)
0

and
z1,t−1 = Ct−1 −Rt−1.

We further define the generic alternative (big) model as:

yt = θ†2,1(γ) + θ†2,2(γ)yt−1 + θ†2,3(γ)z1,t−1 + θ†2,4(γ)w(Z
t−1, γ) + u2,t(γ)

where

θ†2(γ) = (θ
†
2,1(γ), θ

†
2,2(γ), θ

†
2,3(γ), θ

†
2,4(γ))

0 = arg min
θ2∈Θ2

E(q1(yt − θ2,1 − θ2,2yt−1 − θ2,3z1,t−1 − θ2,4w(Z
t−1, γ)))

and

yt = (∆ log IPt,∆ logPt,∆ logM2t,∆Rt)

z1,t−1 = Ct−1 −Rt−1
z2,t−1 = logM2t−1 − log IPt−1 − logPt−1.

z1,t−1 and z2,t−1 can be interpreted as vector error correction terms. Mean square forecast errors are reported for the small
and big models as defined above. Since we are interested in examining the (non)linear marginal predictive content of money for
income, our forecasting analysis and test statistics are constructed based on estimates of the first equation in the vector error
correction model specified above. All predictions are 1-step ahead output and predictive periods begin in the year given in the
first column of entries in the table. Entries in bold represent the lowest MSFE for the corresponding year in which prediction
started.
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Table 7: Tests for the Marginal Predictive Content of M2 for Output∗

Prediction Period Begins in
Test Statistic 1987(π = 0.6) 1981(π = 1.0) 1978(π = 1.4)

Panel A: Sig Level = 5%; Recursive
CS (Recur Block Bootstrap) no reject no reject no reject
CCS (Recur Block Bootstrap) no reject reject no reject
F reject reject reject
DM (Tabulated CVs) reject no reject no reject
CM (Tabulated CVs) reject reject reject

Panel B: Sig Level = 10%; Recursive
CS (Recur Block Bootstrap) no reject no reject no reject
CCS (Recur Block Bootstrap) reject reject no reject
F reject reject reject
DM (Tabulated CVs) reject reject reject
CM (Tabulated CVs) reject reject reject

Panel C: Sig Level = 5%; Rolling
CS (Recur Block Bootstrap) no reject no reject no reject
CCS (Recur Block Bootstrap) no reject no reject no reject
F reject reject reject
DM (Tabulated CVs) no reject no reject no reject
CM (Tabulated CVs) reject no reject no reject

Panel D: Sig Level = 10%; Rolling
CS (Recur Block Bootstrap) no reject no reject no reject
CCS (Recur Block Bootstrap) reject reject no reject
F reject reject reject
DM (Tabulated CVs) no reject no reject no reject
CM (Tabulated CVs) reject no reject reject

∗ Notes: Entries denote either rejection (reject) or failure to reject (no reject) the null hypothesis that M2 has no marginal
predictive content for output. Entries denote nominal 5% and 10% level test rejection based on critical values constructed using
the approach signified in brackets in the first column of the table. The models are as described in the notes to Table 6. All
models use monthly data and all predictions are based on 1-step ahead recursive and rolling schemes.
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