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Two-fund separation in dynamic general equilibrium

KARL SCHMEDDERS

Kellogg School of Management, Northwestern University

This paper examines the two-fund separation paradigm in the context of an
infinite-horizon general equilibrium model with dynamically complete markets
and heterogeneous consumers with time- and state-separable utility functions.
With the exception of the dynamic structure, we maintain the assumptions of the
classical static models that exhibit two-fund separation with a riskless security.
Agents have equi-cautious HARA utility functions. In addition to a security with
state-independent payoffs, agents can trade a collection of assets with dividends
following a time-homogeneous Markov process. We make no further assumptions
about the distribution of asset dividends, returns, or prices. If the riskless security
in the economy is a consol then agents’ portfolios exhibit two-fund separation.
However, if agents can trade only a one-period bond, this result no longer holds.
The underlying intuition is that general equilibrium restrictions lead to interest
rate fluctuations that destroy the optimality of two-fund separation in economies
with a one-period bond and result in different equilibrium portfolios.

KEYWORDS. Portfolio separation, dynamically complete markets, consol, one-
period bond, interest rate fluctuation, reinvestment risk.

JEL CLASSIFICATION. D53, G11, G12.

1. INTRODUCTION

The two-fund separation theorem, which is among the most remarkable results of clas-
sical finance theory, states that investors who must allocate their wealth between a num-
ber of risky assets and a riskless security should all hold the same mutual fund of risky
assets. An investor’s risk aversion affects only the proportions of wealth that he invests
in the risky mutual fund and the riskless security. The allocation of wealth across the
different risky assets does not depend on the investor’s preferences.

Cass and Stiglitz (1970) and Merton (1973) are perhaps the most prominent works
on this fundamental result. Cass and Stiglitz (1970) derive necessary and sufficient con-
ditions on investors’ utility functions for the optimal portfolio in investors’ static asset
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demand problems to satisfy the separation property. They use the phrase “monetary
separation” for the notion of portfolio separation that most people now have in mind
when they talk about two-fund separation, specifically for the separation of investors’
portfolios into the riskless asset and a common mutual fund of risky assets. For ex-
amples, see Canner et al. (1997) and Elton and Gruber (2000). Merton (1973) estab-
lishes two-fund monetary separation for an intertemporal capital asset pricing model
in a continuous-time setting without assumptions on utility functions but under the
conditions that the returns of the risky assets are log-normally distributed and that the
interest rate is constant through time. Although these two seminal works along with
many other papers on the subject have established the two-fund separation paradigm
at the heart of the foundations of modern finance theory, the paradigm has not been
examined in the context of the celebrated Lucas asset pricing model (Lucas 1978). This
paper aims to fill this gap in the literature.

We prove that in a Lucas-style discrete-time infinite-horizon general equilibrium
model with heterogeneous agents, two-fund monetary separation holds only if a con-
sol, a perpetual bond with safe coupon payments and no maturity date, is available for
trade on financial markets. Two-fund separation typically fails if only risky assets and
a one-period bond (cash) can be traded on financial markets. In the model, markets
are dynamically complete and utility functions are time- and state-separable. All asset
dividends or payoffs follow a time-homogeneous Markov process. Efficient equilibria
in this model have time-homogeneous consumption and asset price processes. After
one round of initial trading, portfolios are constant over time. We emphasize that we do
not impose this buy-and-hold nature of agents’ portfolios ex ante, but that this feature
is a result of equilibrium efficiency in the general equilibrium model (Judd et al. 2003).
We maintain the classical assumptions on utility functions (Cass and Stiglitz 1970). All
agents have HARA utilities with linear absolute risk tolerances having identical slopes.
We assume that in addition to stocks with Markovian dividend processes there is also a
security with state-independent payoffs (consol or cash). The general equilibrium na-
ture of our model prohibits us from making any further assumptions about the distribu-
tion of asset returns or prices. These quantities, along with interest rates, are determined
in equilibrium.

The underlying intuition for our results is that general equilibrium restrictions create
interest rate fluctuation. This fluctuation affects agents holding a consol differently than
agents holding a one-period bond. Portfolios are constant over time in the dynamic
model equilibrium. When a consol is present, an agent establishes a desired position
at time zero and then keeps this consol holding forever. Changes in the price (interest
rate) of the consol do not affect the agent since she does not trade the consol. In an
economy without a consol but with a one-period bond, equilibrium portfolios are also
constant over time. Now, however, an agent must reestablish the constant bond position
in every period. In such an environment the agent faces reinvestment risk due to bond
price (interest rate) fluctuation in equilibrium. This fluctuation destroys the optimality
of two-fund separation and leads to a different equilibrium portfolio.

The first two-fund separation results were obtained by Tobin (1958) and Markowitz
(1959), who analyze portfolio demand in the mean-variance framework. Subsequent
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work on two-fund separation revealed that either assumptions on utility functions or
on asset return distributions (or both) are necessary to establish further results. Cass
and Stiglitz (1970) derive necessary and sufficient conditions on investors’ utility func-
tions that ensure two-fund separation in investors’ static asset demand problems. Ross
(1978) presents conditions on asset return distributions under which two-fund sepa-
ration holds for static demand problems. Russell (1980) presents a unified approach
of Cass and Stiglitz and Ross. Ingersoll (1987) provides a detailed overview of various
separation results, and highlights the distinction between restrictions on utility func-
tions and restrictions on asset return distributions. Rubinstein (1974) shows that if all
investors have equi-cautious HARA utility, then the two-fund monetary separation the-
orem holds in an equilibrium model. Essentially he extends the Cass-Stiglitz result to
equilibrium analysis. (We use the same assumption of equi-cautious HARA utilities in
a dynamic general equilibrium model.) Gollier (2001) also states the separation result
of Cass and Stiglitz in the context of a static equilibrium model. We cannot possibly do
justice to the huge literature on portfolio separation and mutual fund theorems in static
models and, therefore, just refer to textbook overviews such as Ingersoll (1987) or Huang
and Litzenberger (1988), and to the summary in Ross (1978).

The standard reference for two-fund separation in dynamic economies is Merton
(1973), even though some of the results are already present in Merton (1971). Merton
(1973) shows for his continuous-time capital asset pricing model that two-fund mone-
tary separation holds independently of preferences, wealth distribution, and time hori-
zon, if returns of risky assets are log-normally distributed and the investment opportu-
nity set is constant. The latter assumption requires, among other conditions, the interest
rate of the riskless asset to be constant over time. Merton also shows that two-fund sep-
aration no longer holds as soon as the (instantaneously riskless) interest rate changes
stochastically over time. He establishes a “three fund” theorem, but both the composi-
tion of the fund of risky assets and agents’ holdings of the three funds change contin-
uously over time. For a further generalization of the three-fund theorem to an m -fund
theorem, see Merton (1990). We relate our results in this paper to Merton’s theorems in
our discussion of a detailed example in Section 3.

The paper is organized as follows. In Section 2 we describe the general equilibrium
model and characterize efficient equilibria. Section 3 presents an illustrative example
exposing the basic intuition underlying our results. In Section 4 we state some helpful
equilibrium properties. Section 5 develops the two-fund separation theory for our dy-
namic model, proving the generalization of the classical static result when a consol is
available for trade and showing that two-fund separation fails generically when there is
only a one-period bond. Section 6 points to the relevance of our results for the asset
allocation puzzle. The Appendix contains all technical proofs.

2. THE ASSET MARKET ECONOMY

The purpose of this section is to introduce the economic framework for all the analysis
in this paper. We first describe the general equilibrium model with dynamically com-
plete markets. Next we explain how we can easily characterize efficient equilibria in
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the model. And finally we review the notion of two-fund monetary separation for the
general equilibrium model.

2.1 General equilibrium model

We examine a standard Lucas asset pricing model (Lucas 1978) with heterogeneous
agents and dynamically complete asset markets. Time is indexed by t ∈N0 ≡ {0, 1, 2, . . .}.
A time-homogeneous recurrent Markov process of exogenous states (yt )t∈N0 takes val-
ues in a discrete setY = {1, 2, . . . ,S}, S ≥ 2. The Markov transition matrix is denoted byΠ.
A date-event σt is the history of shocks up to time t , i.e. σt = (y0y1 . . . yt ). Let Σt denote
the possible histories σt up to time t and let Σ = ∪tΣt denote all possible histories of
exogenous states. We denote the predecessor of a date-event σ ∈ Σ by σ∗. The starting
nodeσ0 = y0 has a predecessorσ∗0 =σ−1.

There is a finite number of typesH = {1, 2, . . . , H} of infinitely-lived agents. There is
a single perishable consumption good, which is produced by firms. The agents have no
individual endowment of the consumption good. The firms distribute their output each
period to its owners through dividends. Investors trade shares of the firms and other se-
curities in order to transfer wealth across time and states. There are J = S assets traded
on financial markets. An asset is characterized by its state-dependent dividends or pay-
offs. We denote asset j ’s dividend or payoff by d j : Y → R+, j = 1, . . . ,S, which solely
depends on the current state y ∈ Y . Each security is either an infinitely-lived (long-
lived) asset or a single-period asset. There are J l ≥ 1 long-lived assets in the economy.
The remaining S − J l securities are short-lived assets that are issued in each period. A
short-lived asset j issued in period t pays d j (y ) in period t +1 if state y occurs and then
expires. For ease of exposition we collect the infinitely lived assets in a set L ≡ {1, . . . , J l }
and the one-period assets in a set O ≡ {J l +1, . . . ,S}.

We denote the portfolio of agent h at date-eventσ ∈Σby θ h (σ)≡ (θ hL(σ),θ hO (σ)) =
(θ h1(σ), . . . ,θ hS(σ)) ∈RS . His initial endowment of asset j prior to time 0 is denoted by

θ
h j
−1 , j ∈ L. Each agent has zero initial endowment of the short-lived assets and so these

assets are in zero net supply. The infinitely-lived assets that represent firm dividends are
in unit net supply. Other financial assets, such as a consol, are in zero net supply. We
write θ L

−1 ≡ (θ
hL
−1 )h∈H . The aggregate endowment of the economy in state y is e (y ) =

∑

j∈L

�
∑

h∈H θ
h j
−1

�

d j (y ). Agent h’s initial endowment of dividends before time 0 is given

byωh (y ) =
∑

j∈L θ
h j
−1 d j (y )> 0. To avoid unnecessary complications we assume that all

agents have nonnegative initial holdings of each asset and a positive initial holding of at
least one asset.

Let q (σ)≡ (q 1(σ), . . . ,qS(σ)) be the prices of all assets at date-eventσ after dividends
or coupon payoffs have been paid. At each date-eventσ= (σ∗y ) agent h faces the bud-
get constraint

c h (σ) =
∑

j∈L

θ h j (σ∗)(q j (σ)+d j (y ))+
∑

j∈O
θ h j (σ∗)d j (y )−

S
∑

j=1

θ h j (σ)q j (σ).
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Each agent h has a time-separable utility function

Uh (c ) = E

¨ ∞
∑

t=0

β t u h (c t )

«

,

where c = (c0, c1, c2, . . .) is a consumption process. All agents have the same discount
factor β ∈ (0, 1). We assume that the Bernoulli functions u h : X → R are strictly mono-
tone, twice differentiable, and strictly concave on some interval X ⊂R. Below we discuss
conditions that ensure equilibrium consumption at every date-event to always lie in the
interior of an appropriately chosen consumption set X .

Let the matrix

d = (d 1, . . . , d S) =









d 1(1) · · · d S(1)
...

...
...

d 1(S) · · · d S(S)









represent security dividends or payoffs. The vector of utility functions is U = (U1, . . . ,UH ).
We denote the primitives of the economy by the expression E = (d , X ,β ,U ;θ L

−1,Π).
We define a standard notion of financial market equilibrium.

DEFINITION 1. A financial market equilibrium for an economy E is a process of portfolio
holdings {(θ̄ 1(σ), . . . , θ̄H (σ))} and asset prices {(q̄ 1(σ), . . . , q̄S(σ))} for all σ ∈ Σ satisfying
the following conditions.

1.
H
∑

h=1

θ̄ h (σ) =
H
∑

h=1

θ h
−1 for allσ ∈Σ.

2. For each agent h ∈H ,

(θ̄ h (σ))σ∈Σ ∈ arg max
θ

Uh (c ) s.t.

c h (σ) =
∑

j∈L

θ̄ h j (σ∗)(q̄ j (σ)+d j (y ))+
∑

j∈O
θ̄ h j (σ∗)d j (y )−

S
∑

j=1

θ̄ h j (σ)q̄ j (σ)

and sup
σ∈Σ

�

�

�

S
∑

j=1

θ̄ h j (σ)q̄ j (σ)
�

�

�<∞.

2.2 Equilibrium in dynamically complete markets

Judd et al. (2003) characterize efficient financial market equilibria in our model through
a simple system of equations. (See also the comments by Bossaerts and Zame 2006 and
the reply by Judd et al. 2006b.) Here we summarize their results and defer a more tech-
nical discussion of the underlying assumptions until Section 4.

Two results of Judd et al. (2003) greatly simplify the equilibrium analysis. First, ef-
ficient equilibria exhibit time-homogeneous consumption processes and asset prices.
That is, consumption allocations and asset prices in date-event σ = (σ∗y ) depend only
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on the last shock y . Second, after one round of initial trading in period 0, each agent’s
portfolio is constant across states and time. So equilibrium portfolios do not even de-
pend on the last shock y . These results imply that we do not need to express equilibrium
values as functions of the date-event σ or through policy or value functions on some
large state space. Instead we can index consumption and asset prices with the current
exogenous shock y through a subscript. For example, c h

y denotes the consumption of
agent h in state y .

The simple structure of efficient equilibria means that computing an equilibrium re-
duces to finding finitely many numbers. We first can compute equilibrium consumption
allocations using the Negishi approach (Negishi 1960) of Judd et al. (2003). For this pur-
pose we define py = u ′1(c

1
y ) to be the price of consumption in state y and p = (py )y∈Y ∈

RS
++ to be the (column) vector of prices. We denote the S×S identity matrix by IS , Negishi

weights by λh , h = 2, . . . , H , and use⊗ to denote element-wise multiplication of vectors.
If the economy starts in the state y0 ∈ Y at time t = 0, then the Negishi weights and
consumption vectors must satisfy the following equations.

u ′1(c
1
y )−λ

h u ′h (c
h
y ) = 0, h = 2, . . . , H , y ∈Y , (1)

([IS −βΠ]−1(p ⊗ (c h −ωh )))y0 = 0, h = 2, . . . , H , (2)
H
∑

h=1

c h
y −

H
∑

h=1

ωh
y = 0, y ∈Y . (3)

Equations (1) require that marginal utility vectors are collinear. Equations (2) are the
(infinite-horizon) budget equations for agents h = 2, 3, . . . , H , given that the economy
starts in state y0. Walras’ Law allows us to omit the budget equation for the first agent
in the presence of the market-clearing conditions (3). The equations (1)–(3) constitute
a nonlinear system with HS+(H −1) unknowns and equations. There are HS unknown
state-contingent consumption levels c h

y , h ∈ H , y ∈ Y , and H − 1 Negishi weights λh ,
h = 2, 3, . . . , H . We can easily solve such a system of equations on a personal computer
using Newton’s method.

Once we know the consumption levels and thus the state price vector p we deter-
mine asset prices from the Euler equations. The price vector q j = (q j

y )y∈Y of a long-lived
asset j is given by the linear expressions

q j ⊗p = [IS −βΠ]−1βΠ(p ⊗d j ). (4)

The price of a short-lived asset j in state y is

q j
y =
βΠy ·(p ⊗d j )

py
, (5)

where Πy · denotes row y of the transition matrix Π.
In the last step we can compute agents’ portfolios from their budget equations. After

one initial round of trading at time 0, all agents hold a state-independent portfolio vector
Θh ≡ θ h

y for all y ∈Y . Define the matrix D = (d 1, . . . , d J l , d J l+1−q J l+1, . . . , d S −qS). The
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portfolio of agent h, h ∈H , is now the solution to the linear system of budget equations
across all states y ∈Y ,

c h =DΘh . (6)

In summary, the consumption allocations, asset prices, and portfolio holdings in every
efficient financial market equilibrium solve the system of equations (1)–(6) (and vice
versa). All our analysis in this paper is based on this characterization of equilibria. In
Section 3 we solve these equations numerically to compute an equilibrium for an illus-
trative example. In Sections 4 and 5 we use the equations to prove general results for our
model.

2.3 Two-fund separation

Classical two-fund monetary separation (see, for example, Cass and Stiglitz 1970, Mer-
ton 1973, Ingersoll 1987, Huang and Litzenberger 1988) states that investors who must
allocate their wealth between a number of risky assets and a riskless security should all
hold the same mutual fund of risky assets. An investor’s risk aversion affects only the
proportions of wealth that (s)he invests in the risky mutual fund and the riskless secu-
rity. The allocation of wealth across the different risky assets does not depend on the
investor’s preferences. In the context of our general equilibrium model with several het-
erogeneous agents this property states that the proportions of wealth invested in any
two risky assets are the same for all agents in the economy.

DEFINITION 2. Consider an economy E with an asset that has a riskless payoff vector,
d S

y = 1 for all y ∈ Y . The remaining S− 1 assets are risky and in unit net supply. We say
that portfolios exhibit two-fund monetary separation if

q
j
yΘh j

q k
y Θ

hk
=

q
j
yΘh ′ j

q k
y Θ

h ′k

for all assets j , k 6=S and all agents h, h ′ ∈H in all states y ∈Y .

All risky assets are in unit net supply and so market clearing and the requirement
from the definition immediately imply that all agents’ portfolios exhibit two-fund sep-
aration if and only if Θh j = Θhk for all assets j , k 6= S and all agents h ∈ H . That is, in
equilibrium each agent must have a constant share of every risky asset in the economy.
The ratio of wealth invested in any two risky assets j , k 6=S equals the ratio q

j
y /q k

y of their
prices and thus depends on the state y ∈Y .

3. ILLUSTRATIVE EXAMPLE

The purpose of this section is to illustrate the basic theme of the paper in the context of
an example. Two-fund separation holds in an economy with a consol but it typically fails
in an economy with a one-period bond (under some standard assumptions on utilities).

The following simple example has essentially the minimal structure to capture the
main issues. Each period there are S = 3 states, which are all equally likely. That is, all
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elements of the Markov transition matrix are 1
3 . There are two stocks with the following

dividend vectors.

d 1 = (1.1, 1.0, 0.9)>

d 2 = (1.4, 0.8, 0.8)>.

The aggregate endowment in our economy is then e = d 1 + d 2 = (2.5, 1.8, 1.7)>. There
are H = 2 agents who have CARA (Bernoulli) utility functions

u h (c ) =−
1

a h
e−a h c

with coefficients of absolute risk-aversion a 1 = 1 and a 2 = 4, respectively. The agents’
discount factor isβ = 0.95. Initially, the agents both hold half of each stock. That is, their

initial holdings are θ
h j
−1 =

1
2 for h = 1, 2, j = 1, 2. The economy starts in state y0 = 1.

Equations (1)–(3) determine the equilibrium consumption allocation in this econ-
omy. We can easily solve this system of 7 nonlinear equations in 7 unknowns with New-
ton’s method. Denoting the vector (1, 1, 1)> by 13 we obtain the following consumption
vectors (rounded to three digits).

c 1 = (1.421, 0.861, 0.781)> = 0.8 · (d 1+d 2)−0.579 ·13

c 2 = (1.079, 0.939, 0.919)> = 0.2 · (d 1+d 2)+0.579 ·13.

Consumption allocations are determined by linear sharing rules. This feature of the con-
sumption allocations is the key property underlying two-fund separation in an economy
with a consol. Whenever agents’ consumption follows a linear sharing rule, asset port-
folios exhibit two-fund separation in the presence of a consol.

Next we can determine the stock prices. We know the consumption allocations of
the first agent and thus the vector of state prices py = u ′1(c

1
y ) for y = 1, 2, 3. Now the

expressions (4) immediately determine the state-contingent stock prices.

q 1 = (28.864, 16.487, 15.220)>

q 2 = (27.346, 15.620, 14.419)>.

For asset markets to be dynamically complete we need three assets in the economy.
Suppose that in addition to the two stocks there is also a consol. The linear equation (4)
for the consol allows us to trivially calculate the price vector q c of the consol,

q c = (29.432, 16.812, 15.519)>.

Finally, we can solve the linear system of equations (6) to determine agents’ equilibrium
portfolios. This system is independent of the prices of the two stocks and the consol.
Agents’ portfolio holdings depend solely on the stocks’ dividend vectors, the consol pay-
offs, and agents’ consumption vectors. Equations (6) for agent 1 are

Θ11 ·d 1+Θ12 ·d 2+Θ1c ·13 = 0.8 · (d 1+d 2)−0.579 ·13. (7)
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Observe that the agent’s portfolio holdings are simply given by the coefficients of her lin-
ear sharing rule. The slope coefficient on the aggregate endowment gives us the agent’s
portfolio position in each stock. Agent 1’s sharing rule has slope 0.8 and she holds
Θ11 = Θ12 = 0.8 units of both stocks. The constant term of an agent’s sharing rule de-
termines her holding of the consol. Agent 1’s sharing rule has a constant term of−0.579
and so holds Θ1c = −0.579 units of the consol, that is, she has a short position of 0.579
units of the consol. Thus, we trivially obtain the following equilibrium portfolios.

Θ1 = (0.8, 0.8,−0.579)>

Θ2 = (0.2, 0.2, 0.579)>.

Now consider an economy with a one-period bond instead of the consol. Markets
are again dynamically complete and so the equilibrium consumption allocations and
stock prices do not change. Equations (5) determine the state-contingent prices of the
one-period bond. The bond price vector qb is

qb = (1.472, 0.841, 0.776)>.

Equations (6) again determine agents’ equilibrium portfolios. But these equations are
somewhat different for an economy with a one-period bond than for an economy with
a consol. The bond is short-lived and therefore its price vector enters the equations. For
agent 1 these equations appear as follows.

Θ11 ·d 1+Θ12 ·d 2+Θ1b · (13−qb ) = 0.8 · (d 1+d 2)−0.579 ·13. (8)

We can no longer just read off the agent’s portfolio holdings. The appearance of the non-
constant bond price vector qb prohibits us from doing so. Solving this linear system of
equations yields the following equilibrium portfolios.

Θ1 = (0.560, 0.450,−0.371)>

Θ2 = (0.440, 0.550, 0.371)>.

The agents’ portfolios do not exhibit two-fund monetary separation. The less risk-averse
agent 1 holds considerably less of the two stocks while the more risk-averse agent 2 holds
considerably more of the two stocks than in the economy with a consol.

We point out that a generalized notion of two-fund separation continues to hold.
Note that we can rewrite the left-hand side of equations (8) as follows.

0.560 ·d 1+0.450 ·d 2−0.371 · (13−qb )

= 0.8 · (d 1+d 2)+ (−0.240 ·d 1−0.350 ·d 2−0.371 · (13−qb )),

where
1

−0.579
· (−0.240 ·d 1−0.350 ·d 2−0.371 · (13−qb )) = 13.

That is, a mutual fund consisting of 240
579 units of the first stock, 350

579 units of the second

stock, and 371
579 units of the one-period bond, synthesizes the consol. So we can view
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the agents’ portfolios as consisting of two mutual funds, one holding (risky) stocks in
equal units and the other holding various amounts of stocks and the one-period bond.
This second mutual fund synthesizes the consol. But this generalized form of two-
fund separation is not what most people have in mind when they talk about two-fund
separation—see Canner et al. (1997) or Elton and Gruber (2000). People usually think of
two-fund monetary separation in the sense of Cass and Stiglitz (1970).

This simple example reveals the main difference between the role of a consol and
that of a one-period bond in agents’ budget equations. A consol is an infinitely-lived
security and so the agents do not trade the consol after time zero. As a result the price
of the consol does not appear in the budget equations (7). We can trivially solve these
equations by simply comparing the coefficients in the linear sharing rule to the portfo-
lio weights on all assets. Two-fund separation holds. Contrary to the consol the one-
period bond is a short-lived security. While all agents have a constant position of the
one-period bond in each period, they must reestablish this position every period. Thus
the price of the bond appears in the budget equation (8). And this fact results in a differ-
ent solution for agents’ portfolio holdings. In particular, two-fund separation does not
hold.

We can relate our results to those of Merton (1973). If the price and thus the interest
rate of the one-period bond did not vary, then two-fund separation would hold. But
as in Merton’s model, the fluctuation of the short-term interest rate destroys two-fund
separation. As we have also seen, a generalized form of two-fund separation holds in the
economy with the one-period bond. The mutual fund synthesizing the consol perfectly
hedges any movements in the short-term bond price. The role of the other assets in this
mutual fund is thus comparable to the purpose of the asset whose returns are perfectly
negatively correlated with the interest rate in Merton’s model that ensures the three-
fund theorem. So, our results under the assumption of equi-cautious HARA utilities
bear some similarity to Merton’s under the assumption of log-normal returns. But in
our model agents do not trade after period zero unlike in the continuous-time model,
where they trade continuously.

We continue our intuitive discussion in Section 5.3 after the formal statements of our
results on two-fund separation. In order to establish those results we next develop some
technical background. A reader who is not interested in technical details may want to
skip the next section and instead continue with Section 5.

4. EQUILIBRIUM: EXISTENCE AND PROPERTIES

This section lays the groundwork for our analysis of two-fund separation in Section 5.
We first summarize the assumptions underlying the system of equations (1)–(6), which
is the foundation for all the analysis in this paper. Next we use this system to describe
some properties of equilibria in our model that are relevant for the analysis of two-fund
separation. And finally we derive linear sharing rules from equations (1) for economies
with equi-cautious HARA utility functions.
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4.1 Assumptions

Judd et al. (2003) need a few assumptions in addition to those mentioned in the model
description to derive their no-trade result and their characterization of equilibria by
equations (1)–(6). Our analysis prohibits some of these assumptions, so we need to
make some adjustments. We now introduce and discuss our modifications.

Judd et al. (2003) impose an Inada condition (limx→0 u ′h (x ) =∞) to ensure that the
solutions to equations (1)–(3) yield positive consumption allocations. We cannot make
that assumption since some of the classical utility functions that yield two-fund sepa-
ration (e.g., quadratic utility) do not satisfy such an Inada condition. Instead we allow
for the possibility of negative consumption. Those of our utility functions that do not
satisfy an Inada condition have the property limx→−∞u ′h (x ) =∞. Therefore, equations
(1)–(3) have a solution that is bounded below and thus an interior point of a consump-
tion set (interval) that allows for sufficiently negative consumption. In addition, we need
to ensure that consumption remains non-satiated since we want to avoid free disposal
of income. We do not state (tedious) assumptions on fundamentals and refer to Magill
and Quinzii (2000, Proposition 3), who show for quadratic utilities how to restrict pa-
rameters to ensure positive and non-satiated consumption. In summary, for an appro-
priately chosen consumption set, equations (1)–(3) are necessary and sufficient for a
consumption allocation of an efficient financial market equilibrium. (Ideally we think
of specifications of the model that result in strictly positive consumption allocations.)

For our analysis of agents’ portfolios we adopt the following key assumption from
Judd et al. (2003).

[A1] All elements of the transition matrix Π are positive:

Π∈
n

A ∈RS×S : Ay s > 0 ∀y , s ∈Y ,
S
∑

s=1

Ay s = 1 ∀y ∈Y
o

.

This assumption ensures the buy-and-hold nature of equilibrium portfolios. If the tran-
sition matrix contains zero elements then a continuum of portfolios supports an effi-
cient equilibrium allocation. For our application of the parametric transversality theo-
rem (see Section A of the Appendix) using Assumption [A1] it is useful to define an open
set that is diffeomorphic to the set of admissible transition matrices,

∆S×(S−1)
++ ≡

n

Ay s , y ∈Y , s ∈ {1, . . . ,S−1} : Ay s > 0,
S−1
∑

s=1

Ay s < 1 ∀y ∈Y
o

.

We identify transition matrices with elements in∆S×(S−1)
++ . Remark 1 below explains why

it is sensible to have genericity statements with respect to transition probabilities.
We also make the following assumption about the dividend and payoff vectors of the

assets.

[A2] Rank[d ] = S.



146 Karl Schmedders Theoretical Economics 2 (2007)

Judd et al. (2003) impose a full rank condition only on the dividends of long-lived assets
and then prove their results for generic payoffs of the short-lived assets. We cannot fol-
low this approach because we want to examine a particular short-lived asset, namely a
riskless one-period bond. Assumption [A2] is needed to ensure that an efficient financial
market equilibrium exists.

The following assumption is not crucial but simplifies our genericity arguments.

[A3] All agents have a positive initial position of the first long-lived asset.

We define the open set ∆H−1
++ ≡ {x ∈ R

H−1
++ :

∑H−1
i=1 x i < 1}. The assumption requires

(θ h1
−1 )h≥2 = (θ 21

−1,θ 31
−1, . . . ,θH1

−1 ) ∈ ∆
H−1
++ . We make statements for generic individual hold-

ings in∆H−1
++ below.

4.2 Some equilibrium properties

Equilibria in economies without aggregate risk, that is, in economies with a state-
independent social endowment, have such a simple structure that any further analy-
sis is unnecessary. For completeness we summarize the equilibrium properties of such
economies.

PROPOSITION 1 (Equilibrium without aggregate risk). Suppose the aggregate endowment
is constant: ey = ê for all y ∈Y .

(1) Consumption allocations and asset prices are the same in every efficient financial
market equilibrium. Allocations are state-independent. Consumption allocations,
asset prices, and portfolios are independent of agents’ utility functions.

(2) If [A1] and [A2] hold, then the equilibrium is unique. Each agent holds constant
shares of all long-lived assets in unit net supply and trades neither short-lived assets
nor long-lived assets in zero net supply.

Proposition 1 completely characterizes efficient financial market equilibria in econ-
omies without aggregate uncertainty. Portfolios satisfy what one could call a “one-fund”
property. Such a simple equilibrium makes any further analysis of two-fund separa-
tion superfluous. Our main results in this paper are for economies with a riskless asset.
For such economies the full-rank assumption [A2] immediately implies that the social
endowment in the economy is not constant. That is, there exist y1, y2 ∈ Y such that
e (y1) 6= e (y2).

Judd et al. (2003) prove existence of efficient financial market equilibria for generic
dividends of the short-lived assets. We cannot use this existence result since the analy-
sis of two-fund separation requires particular payoff structures. Therefore we prove an
alternative existence result that suits our analysis.

PROPOSITION 2 (Equilibrium with aggregate risk). Consider an economy E satisfying as-
sumption [A2].

(i) If all S assets are long-lived, then the economy E has an efficient financial market
equilibrium.
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(ii) Suppose also [A1] and [A3] hold. If there are S−1 long-lived assets in unit net supply
and a one-period bond, then E has an efficient equilibrium for generic subsets T ⊂
∆H−1
++ of initial holdings of the first asset andP ⊂∆S×(S−1)

++ of transition matrices.

We also show the following lemma in Section B of the Appendix.

LEMMA 1. In an efficient financial market equilibrium of the economy E the price of a
one-period bond, qb , has the following characteristics.

(i) The price qb is constant if and only if the aggregate endowment is constant. In that
case the bond price equals the discount factor: qb

y =β for all y ∈Y .

(ii) Suppose S ≥ 3 and [A1], [A2], and [A3] hold. For generic subsets T ⊂∆H−1
++ of initial

holdings of the first asset andP ⊂∆S×(S−1)
++ of transition matrices the price of a one-

period bond is not a linear function of the aggregate endowment. That is, there do
not exist numbers a , f ∈R such that qb

y = a · ey + f for all y ∈Y .

At first it may be surprising that part (ii) of the lemma only holds for a generic set of
transition probabilities. We explain why this condition is needed in Remark 1 below.

4.3 Linear sharing rules

Linear sharing rules for consumption are the foundation of two-fund separation on fi-
nancial markets. Using standard terminology we say that equilibrium consumption ad-
heres to a linear sharing rule if it satisfies

c h
y =m h ey +b h ∀h ∈H , y ∈Y

for real numbers m h ,b h for all agents h ∈ H . Obviously, in equilibrium we have
∑H

h=1 m h = 1 and
∑H

h=1 b h = 0. Our results in this paper show that we have to carefully
distinguish between linear sharing rules with nonzero intercepts and those for which
b h = 0 for all h ∈H .

Recall that the absolute risk tolerance of agent h’s utility function u h : X → R is
defined as Th (c ) =−u ′h (c )/u

′′
h (c ). Of particular interest for linear sharing rules are utility

functions with linear absolute risk tolerance, that is, Th (c ) = a h + g h c , for real numbers
g h and a h . These utility functions make up the well-known family of HARA (hyperbolic
absolute risk aversion) utilities (see Gollier 2001, Hens and Pilgrim 2002). If all agents
have HARA utilities and all their linear absolute risk tolerances have identical slopes,
that is, g h ≡ g for all h ∈ H for some slope g , then the agents are said to have equi-
cautious HARA utilities.

Utility functions exhibiting linear absolute risk tolerance with constant but nonzero
slope for all agents have the form

u h (c ) =

(

K (Ah + c
γ
)1−γ for γ 6= 0,1, c ∈ {c ∈R : Ah + c/γ> 0}

ln(Ah + c ) for γ= 1, c ∈ {c ∈R : Ah + c > 0}
[EC]
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with K = sign((1− γ)/γ) to ensure that u is strictly increasing and strictly concave (on
some appropriate consumption set). The absolute risk tolerance for these utility func-
tions is Th (c ) = Ah + c/γ. If γ > 0 and Ah = 0 for all h ∈H then we have the special case
of utility functions with identical constant relative risk aversion (CRRA). If γ = −1 then
all agents have quadratic utility functions.

The limit case for utility functions of the type [EC] as γ→∞ is the set of utility func-
tions with constant absolute risk aversion (CARA). We write

u h (c ) =−
1

a h
e−a h c [CARA]

with constant absolute risk tolerance of Th (c ) = 1/a h ≡τh .
We need the following lemma for our analysis. It follows from the classical results

on Pareto-efficient sharing rules by Wilson (1968) and Amershi and Stoeckenius (1983).
Rubinstein (1974) establishes the connection between consumption sharing rules and
asset market equilibrium. See Gollier (2001) for a textbook treatment of a static equilib-
rium problem.

LEMMA 2. If all agents have equi-cautious HARA utilities, then the consumption alloca-
tion of each agent in an efficient equilibrium satisfies a linear sharing rule.

We calculate the sharing rules directly by solving the Negishi equations (1) for given
weights λh for all h ∈H . For utility functions of type [EC], equations (1) become

�

A1+
c 1

γ

�−γ
−λh

�

Ah +
c h

γ

�−γ

= 0, h ∈H , y ∈Y ,

where we include the trivial equation for agent 1 with weight λ1 = 1 to simplify the sub-
sequent expressions. Some algebra leads to the linear sharing rule

c h
y = ey ·







(λh )
1
γ

∑

i∈H (λ
i )

1
γ






+γ






−Ah +

(λh )
1
γ

∑

i∈H (λ
i )

1
γ

∑

i∈H
A i






.

Note that for the special case of CRRA utility functions (Ah = 0 for all h ∈H ), the sharing
rule has zero intercept. For CARA utility functions the linear sharing rules are given by

c h
y = ey ·

τh
∑

i∈H τ
i
+

 

τh ln(λh )−
τh

∑

i∈H τ
i

∑

i∈H
τi ln(λi )

!

.

Recall that in our illustrative example in the previous section agents had coefficients
of absolute risk aversion of a 1 = 1 and a 2 = 4 and thus risk tolerances of τ1 = 1 and
τ2 = 0.25, respectively. This observation explains why we encountered linear sharing
rules with the respective slopes of 0.8 and 0.2 in the example.
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REMARK 1. The necessity of genericity with respect to transition probabilities in Lemma
1 is now apparent. If transition probabilities are i.i.d. and all agents have HARA utility
with γ = 1 (but possibly Ah 6= 0), then the linear sharing rule leads to the bond price
being a linear function of the endowment for any set of dividends and initial portfolios.
If c h

y =m h ey +b h for all y ∈Y then

qy =β

 

∑

s∈Y
Πy s

1

es +
∑

h∈H Ah

! 

ey +
∑

h∈H
Ah

!

.

Making genericity arguments with respect to transition probabilities saves us from hav-
ing to distinguish this case from the general case. We cannot allow for the popular per-
turbations of utility functions as, for example, in Cass and Citanna (1998) and Citanna
et al. (2006), since we want to examine two-fund separation for specific classical families
of utility functions.

Two-fund separation in models with a one-period bond (see Section 5.2) depends
crucially on whether the intercept of the sharing rules is zero. We prove the following
lemma in Section B of the Appendix.

LEMMA 3. Suppose all agents have equi-cautious HARA utility functions of the type [CARA]
or the type [EC] with

∑

h∈H Ah 6= 0 and [A3] holds. Then, for a generic set T ⊂ ∆H−1
++ of

initial holdings of the first asset, each agent’s sharing rule is linear with nonzero intercept;
that is, b h 6= 0 for all h ∈H .

For standard equi-cautious CRRA utility functions with Ah = 0 for all h ∈ H we have
b h = 0, ∀h ∈H .

5. TWO-FUND SEPARATION: CONSOL VS. ONE-PERIOD BOND

This section formalizes the intuition that we gained from our illustrative example in Sec-
tion 3. A trivial proof shows that in an economy with a consol, portfolios exhibit two-
fund separation. We then prove that this property generically fails to hold in economies
with a one-period bond. A discussion tying together our illustrative example and math-
ematical proofs concludes our analysis.

5.1 Economies with a consol

In this subsection we assume that there are no short-lived assets; that is, J l = S. Then
equation (6) immediately yields that the consumption vector of every agent h is a linear
combination of the asset dividends (or payoffs),

c h = (d 1, . . . , d S)Θh . (9)

Under the assumptions that all assets are infinitely lived and that there is a safe asset,
we recover the classical two-fund monetary separation result for static demands of Cass
and Stiglitz (1970) in our dynamic equilibrium context.
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THEOREM 1 (Two-Fund Separation Theorem). Suppose the economy E has S infinitely
lived assets with linearly independent payoff vectors and satisfies Assumptions [A1] and
[A2]. The first S − 1 assets are in unit net supply and asset S is a consol in zero net sup-
ply. If the agents have equi-cautious HARA utilities then in an efficient equilibrium their
portfolios exhibit two-fund monetary separation.

PROOF. Proposition 2 ensures that an efficient equilibrium exists. Lemma 2 implies
that sharing rules are linear and c h

y = m h ey +b h ∀h ∈ H , y ∈ Y . Under the assump-

tions of the theorem, equation (9) has the unique solution ΘhS = b h and Θh j =m h ∀j =
1, . . . ,S−1. �

We can easily extend Theorem 1 to economies with J <S long-lived assets. Markets
are dynamically complete with fewer assets than states and so portfolios exhibit two-
fund separation for J <S when a consol is present.

Kang (2003, Chapter 4) observes that the results of Judd et al. (2003) can be gener-
alized to economies with time-varying positive transition probabilities. In addition, he
notices that the results also hold for finite-horizon economies with only long-lived as-
sets. We can use these observations to extend the result of Theorem 1 to economies with
a finite time horizon or time-varying (positive) transition matrices. Either change to our
model affects the Negishi weights λh , h ∈ H , and sharing rules m h , b h , h ∈ H , but
two-fund monetary separation continues to hold.

5.2 One-period riskless bond

We now assume that the riskless asset is not a consol but instead a one-period bond.
In addition the economy has S − 1 infinitely lived assets in unit net supply. In such an
economy two-fund monetary separation generically fails even when sharing rules are
linear with nonzero intercepts.

THEOREM 2. Consider an economy E that satisfies the following conditions.

(i) There are J =S ≥ 3 assets.

(ii) There are S − 1 infinitely lived securities in unit net supply. The last asset is a one-
period riskless bond.

(iii) Assumptions [A1]–[A3] hold.

(iv) All agents have equi-cautious HARA utility functions of the type [CARA] or the type
[EC]with

∑

h∈H Ah 6= 0.

Then there are generic subsets T ⊂ ∆H−1
++ of initial portfolios of the first asset and

P ⊂∆S×(S−1)
++ of transition matrices such that each agent’s equilibrium portfolio does not

exhibit two-fund monetary separation.
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PROOF. All agents’ consumption allocations follow a linear sharing rule. Now suppose
that equilibrium portfolios exhibit two-fund monetary separation, so agent h holds a
portion ϑh ≡ Θh j of all infinitely lived assets j = 1, . . . ,S − 1, and ΘhS of the one-period
bond. Then equation (6) implies that the portfolio shares satisfy

m h · e +b h 1S = ϑh · e +ΘhS(1S −qS) for all h ∈H , (10)

where qS denotes the bond price and 1S the vector consisting solely of ones. If b h = 0
for all h ∈H then ΘhS = 0 and m h = ϑh is a solution to this equation. Thus, two-fund
monetary separation holds. But Lemma 3 states that under conditions (iii) and (iv) we
have b h 6= 0 for all h ∈H for a generic set of initial portfolio holdings.

Now suppose b h 6= 0 for all h. Then any solution to equation (10) must haveΘhS 6= 0.
Thus we can rewrite the equation as

qS =
ϑh −m h

ΘhS
· e +

ΘhS −b h

ΘhS
·1S .

But now the price of the one-period bond is a linear function of the aggregate endow-
ment. Lemma 1, part (ii), states that for a generic set of initial portfolios and transition
matrices there are no (endogenous) coefficients a , f ∈R such that qS = a · e + f . Hence,
equation (10) generically does not have a solution. The intersection of generic sets is
generic. The statement of the theorem now follows. �

5.3 Discussion

Recall that our illustrative example already provides us with much intuition for the main
results of this paper. Now that we have seen the proofs of our two theorems we can
continue the discussion from Section 3. Equation (10) in the proof of Theorem 2 is very
instructive in providing intuition for the lack of two-fund monetary separation when
the bond is short-lived. Recall that for an economy with a consol the corresponding
equation would be

m h · e +b h 1S = ϑh · e +ΘhS1S for all h ∈H .

So the only difference that the short-lived bond introduces into the portfolio equation
is that the bond position ΘhS is multiplied by the coupon payment minus the price in-
stead of being multiplied only by the coupon payment. The economic reason for this
difference is that the agent does not trade the consol after time zero but must reestab-
lish the position in the short-lived bond in every period. This change has no impact on
the portfolio weights if agents’ sharing rules have zero intercept and so the riskless secu-
rity is not traded. But if sharing rules have nonzero intercept, then the bond price affects
the portfolio weights. The appearance of the bond price still does not destroy two-fund
monetary separation if this price is a linear function of the social endowment. But if that
relationship does not hold, then the fluctuations of the bond price lead to a change of
the portfolio weights that implement equilibrium consumption.

In summary, fluctuations in the equilibrium interest rates (bond prices) of the short-
term bond lead to the breakdown of two-fund monetary separation. These fluctuations
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expose an agent holding a nonzero bond position in equilibrium to reinvestment risk
because he must rebuild that position in every period. This reinvestment risk affects
agents’ bond and thus stock portfolios and leads to a change of the equilibrium portfolio
weights. In contrast, in an economy with a consol, the agent establishes a position in the
consol at time zero once and for all. Fluctuations in the price of the consol therefore do
not affect the agent, just as he is unaffected by stock price fluctuations. The agent does
not have to reinvest the proceeds from an expiring security at fluctuating prices and
so does not face reinvestment risk. This fact allows him to hold a portfolio exhibiting
two-fund monetary separation. In our dynamic model only the consol is a riskless asset.

The fact that interest rate variability has significant economic consequences in a dy-
namic equilibrium model has also been noted by Magill and Quinzii (2000). They exam-
ine an infinite-horizon CAPM economy with stochastic endowments and observe that
with fewer assets than states an Arrow–Debreu allocation can be achieved only if a con-
stant consumption stream can be spanned by the payoff matrix. But such a spanning
condition may not hold if the interest rate fluctuates in equilibrium. As a consequence
markets will be incomplete.

6. ASSET ALLOCATION PUZZLE

In a paper that received a lot of attention in the finance literature, Canner et al. (1997)
document recommendations from different investment advisers who all encourage
conservative investors to hold a higher ratio of bonds to stocks than aggressive in-
vestors.1 They point out that this financial planning advice violates the two-fund mon-
etary separation theorem and call this observation the “asset allocation puzzle.” Simi-
larly, Bossaerts et al. (forthcoming) state that the separation result cannot be reconciled
with casual empirical observations and conclude that “many tests of asset pricing mod-
els address only the pricing predictions—but these pricing predictions rest on portfolio
choice predictions which seem obviously wrong.”

Both critiques assume that the classical notion of two-fund monetary separation is
applicable to the dynamic world of modern financial markets. This supposition is a
far-reaching generalization of the two-fund separation paradigm beyond the classical
results (Cass and Stiglitz 1970, Merton 1973, and many others), which make strong as-
sumptions on utility functions or return distributions. Moreover, both critiques clearly
assume the existence of a riskless asset in actual financial markets. Canner et al. (1997)
explicitly regard cash as the “safe” asset.

In light of the results in this paper, it should come as no surprise that observed in-
vestors’ portfolios do not satisfy two-fund separation. Cash is a safe investment only
in the very short term (see also, for example, Campbell and Viceira 2002). Because

1Canner et al. consider portfolios consisting of stocks, bonds, and cash, with cash being treated as the
risk-free asset. They document that investment advisors recommend conservative (and even moderately
risk averse) investors to hold a significant fraction of their wealth—beyond what liquidity needs would
require—in cash assets. Advisors treat bonds as being somewhat risky relative to cash, so that the risky-
asset portfolio consists of both stocks and bonds. The fact that the recommended ratio of these assets
depends on the investor’s risk aversion violates portfolio separation.
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investors must continually reinvest cash in the future at unknown and fluctuating in-
terest rates, cash is not a safe asset for the long term. Instead cash positions expose
investors to reinvestment risk. Therefore, we should not consider cash as a riskless asset
in dynamic financial markets. Arguably investors do not have access to a truly safe asset.
On modern financial markets, investors can certainly trade a huge number of financial
assets including many finite-maturity bonds. But consols (with the exception of some
perpetual bonds issued by the British Treasury in the 19th century) are not available for
trade. And although (inflation-indexed) bonds with many different maturities do exist,
investors cannot trade such bonds with a maturity matching just any desired (very long)
investment horizon.

In summary, the critiques of Canner et al. (1997) and Bossaerts et al. (forthcoming)
are based on the incorrect assumption that investors have access to a safe asset. Their
criticism of two-fund monetary separation is, therefore, not justified. For further dis-
cussion of the asset allocation puzzle, see Brennan and Xia (2000).

Our results naturally lead us to question whether modern financial markets may en-
able investors to synthesize a consol through a variety of other assets, thereby leading to
a generalized form of two-fund separation. Judd et al. (2006a) study this question by ex-
amining families of bonds with variable but finite maturity structures. They argue that
a finite number of bonds can span a consol for some non-generic transition matrices
and dividend structures. In such situations all agents hold the same fund of risky stocks.
Their computational exercises show that this result does not hold in general but that
such portfolios can be approximately optimal in general if bonds with a sufficiently rich
maturity structure are available for trade.

APPENDIX

A. PARAMETRIC SYSTEMS OF EQUATIONS

We state the theorem on a parametric system of equations that we use in the genericity
proofs below.

THEOREM 3 (Parametric Systems of Equations). Let Ω⊂Rk , X ⊂Rn be open sets and let
h : Ω× X → Rm be a smooth function. If n < m and for all (ω̄, x̄ ) ∈ Ω× X such that
h(ω̄, x̄ ) = 0 we have rank[Dω,x h(ω̄, x̄ )] =m , then there exists a set Ω∗ ⊂ΩwithΩ−Ω∗ a set
of Lebesgue measure zero, such that {x ∈X : h(ω,x ) = 0}= ; for allω∈Ω∗.

For a detailed discussion of this theorem see Magill and Quinzii (1996b, Paragraph
11; 1996a). This theorem is a specialized version of the parametric transversality the-
orem (see Guillemin and Pollack 1974, Chapter 2, Paragraph 3, and Mas-Colell 1985,
Chapter 8). Billingsley (1986, Section 12) provides a detailed exposition on the k -
dimensional Lebesgue measure in Euclidean space. For an exposition of sets of mea-
sure zero see Guillemin and Pollack (1974, Chapter 1, Paragraph 7). A set is said to have
full measure if its complement is a set of Lebesgue measure zero. An open set of full
Lebesgue measure is called generic.
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B. PROOFS

This section contains all proofs that are omitted in the main body of the paper.

PROOF OF PROPOSITION 1. Market-clearing and collinearity of marginal utilities imply
that in an efficient equilibrium all agents have state-independent consumption alloca-
tions. Define ĉ h ≡ c̄ h

y for all y ∈ Y . Equations (2) imply that the agents’ consumption
allocations are

ĉ h =
([IS −βΠ]−1)y0·ω

h
∑

s∈Y ([IS −βΠ]−1)y0s

for all h ∈ H . The resulting asset prices are q j = [IS −βΠ]−1βΠd j , j ∈ L for infinitely
lived assets and q j = βΠd j , j ∈ O for one-period assets. If the matrix d has full col-
umn rank then the solution to equations (6) is unique and gives the agents’ holdings of
infinitely-lived assets j ∈ L in unit net supply,

Θh j =
ĉ h

ê
=

1

ê

([IS −βΠ]−1)y0·ω
h

∑

s∈Y ([IS −βΠ]−1)y0s
.

(If the matrix d does not have full column rank then this solution is only one in a con-
tinuum of optimal portfolios.) The agents do not trade any of the other assets (including
infinitely-lived assets in zero net supply). Note that all expressions in this proof are in-
dependent of the agents’ utility functions. �

PROOF OF PROPOSITION 2. The existence result of Mas-Colell and Zame (1991) implies
that there exist equilibrium state-contingent consumption values c h

y , h ∈H , y ∈Y , that
solve the system of equations (1)–(3). The critical remaining issue for the existence of an
efficient financial market equilibrium is now whether the matrix D has full rank. In that
case equations (6) yield the agents’ equilibrium portfolios. (Actually, a careful reading of
Judd et al. 2003 shows that we also need the matrix (d 1+q 1, . . . , d J l +q J l , d J l+1, . . . , d S)
to have full rank. But that condition is equivalent to D having full rank.)

If all assets are long-lived then D = d and so D has full rank. We now show that for
economies with a one-period riskless bond the matrix D generically has full rank. If D
does not have full rank then the following set of equations must have a solution.

u ′1(c
1
y )−λ

h u ′h (c
h
y ) = 0, h = 2, . . . , H , y ∈Y (11)

�

[IS −βΠ]−1(p ⊗ (c h −
∑

j∈L

θ
h j
−1 d j ))

�

y0
= 0, h = 2, . . . , H (12)

H
∑

h=1

c h
y − ey = 0, y ∈Y (13)

qS
y py −βΠy ·p = 0, y ∈Y (14)

∑

j∈L

d j (y )a j +(1−qS(y )) = 0, y ∈Y . (15)
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We denote the system of equations (11)–(15) by F ((c h )h∈H , (λh )h≥2,qS , a ; (θ h1
−1 )h≥2,Π·1)

= 0. The expression F(i ) = 0 denotes equations (i). We now show that this system has no
solutions for generic sets of individual holdings of the first asset and transition proba-
bilities.

The system (11)–(15) has HS+(H−1)+S+(S−1) endogenous unknowns c h , h ∈H ,
λh , h = 2, . . . , H , qS , and a j , j = 1, . . . ,S− 1, in (H − 1)S+(H − 1)+S+S+S equations. In
addition, the function F depends on the (H − 1) +S exogenous parameters (θ h1

−1 )h≥2 ∈
∆H−1
++ andΠ·1 whereΠ−S ∈∆S×(S−1)

++ denotes the first S−1 columns ofΠ. Assumption [A2]
allows us to assume without loss of generality that e1 6= eS .

We now prove that the Jacobian of F taken with respect to c h ,qS ,θ h1
−1 , andΠ·1 has full

row rank (H−1)S+(H−1)+S+S+S. Denote by ΛS(x )∈RS×S the diagonal matrix whose
diagonal elements are the elements of the vector x ∈RS . We denote the derivative of the
budget constraints (12) with respect to the agent’s initial holding in the first infinitely
lived asset,−([IS−βΠ]−1(p ⊗d 1))y0 , by η1. Note that η1 < 0. In order to keep the display
tractable, we show the Jacobian of F for the special case of H = 3 and write DΠ·1 F(14) for
−βΛ((p1−pS) ·1S).

c 1 c 2 c 3 qS θ 21
−1 θ 31

−1 Π·1
F(11)h=2 ΛS(u ′′1 (c

1)) ΛS(−λ2u ′′2 (c
2)) 0 0 0 0 0 S

F(11)h=3 ΛS(u ′′1 (c
1)) 0 ΛS(−λ3u ′′3 (c

3)) 0 0 0 0 S
F(12)h=2 0 0 η1 0 1
F(12)h=3 0 0 0 η1 1

F(13) IS IS IS 0 0 0 0 S
F(14) 0 0 0 0 DΠ·1 F(14) S
F(15) 0 0 0 −IS 0 0 0 S

S S S S 1 1 S

The variables above the matrix indicate the variables with respect to which derivatives
have been taken in the column underneath. The numbers to the right and below the
matrix indicate the number of rows and columns, respectively. The terms to the left
indicate the equations. Missing entries are not needed for the proof.

We now perform column operations to obtain zero matrices in the first set of
columns of the Jacobian. The sets of columns for c h , h ∈ H , of the Jacobian then ap-
pear as follows.

c 1 c 2 c 3

F(11)h=2 0 ΛS(−λ2u ′′2 (c
2)) 0 S

F(11)h=3 0 0 ΛS(−λ3u ′′3 (c
3)) S

F(12)h=2 0 1
F(12)h=3 0 1

F(13) IS +Λ
�

u ′′1 (c
1)

λ2u ′′2 (c
2)

�

+Λ
�

u ′′1 (c
1)

λ3u ′′3 (c
3)

�

IS IS S

F(14) 0 0 S
F(15) 0 0 0 S
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The transformed matrix has submatrices of the following ranks.

c 1 c 2 c 3 qS θ 21
−1 θ 31

−1 Π·1
F(11)h=2 0 S 0 0 0 0 0 S
F(11)h=3 0 0 S 0 0 0 0 S
F(12)h=2 0 0 1 0 1
F(12)h=3 0 0 0 1 1

F(13) S S S 0 0 0 0 S
F(14) 0 0 0 0 S S
F(15) 0 0 0 S 0 0 0 S

S S S S 1 1 S

The term DΠ·1 F(14) =−βΛ((p1−pS) ·1S) has rank S since p1 6= pS because e1 6= eS .
This matrix has full row rank (H − 1)S + (H − 1) + 3S which exceeds the number of

endogenous variables by 1. The function F is defined on open sets with c h ∈ int(X ) for
all h ∈H , λh ∈RS

++ for h ≥ 2, a ∈RS−1, qS ∈RS
++, (θ h1

−1 )h≥2 ∈∆H−1
++ , and Π−S ∈∆S×(S−1)

++ .
Hence F satisfies the hypotheses of the theorem on parametric systems of equations,
Theorem 3. We conclude that there exist subsets T ⊂ ∆h−1

++ and P ⊂ ∆S×(S−1)
++ of full

Lebesgue measure such that the solution set of the system (11)–(15) is empty. The sets
T and P are open. The solutions to (11)–(15) change smoothly with the exogenous
parameters. A small variation in initial portfolios and probabilities does not lead to a
solvable system if there is no solution for the original parameters.

We conclude that the matrix D has full rank S and so an equilibrium exists for initial
holdings (θ h1

−1 )h≥2 ∈T of the first asset and transition matrices such that Π−S ∈P . �

PROOF OF LEMMA 1. Part (i). The price of the one-period bond is qb
y =βΠy ·u ′1(c )/u

′
1(cy ),

where u ′1(c ) denotes the column vector of utilities u ′1(cy ), y ∈ Y . If the social en-
dowment e is not constant, every agent has nonconstant consumption. Choose y1 ∈
arg min{c 1

y : y ∈ Y } such that Πy1s > 0 for some s /∈ arg min{c 1
y : y ∈ Y }. Similarly,

choose y2 ∈ arg max{c 1
y : y ∈ Y } such that Πy2s > 0 for some s /∈ arg max{c 1

y : y ∈ Y }.
Obviously, y1 6= y2. Then Πy1·u

′
1(c )< u ′1(cy1 ) and Πy2·u

′
1(c )> u ′1(cy2 ) and so qb

y2
>β >qb

y1
.

If there is no aggregate risk in the economy, then the bond price equation immediately
yields qb =β .

Part (ii). The price of the one-period bond in state y ∈Y satisfies qy py =βΠy ·p . If in
equilibrium the price is a linear function of the social endowment e , then the following
set of equations must have a solution.

u ′1(c
1
y )−λ

h u ′h (c
h
y ) = 0, h = 2, . . . , H , y ∈Y (16)

�

[IS −βΠ]−1(p ⊗ (c h −
∑

j∈L

θ
h j
−1 d j ))

�

y0
= 0, h = 2, . . . , H (17)

H
∑

h=1

c h
y − ey = 0, y ∈Y (18)

(a ey + f )py −βΠy ·p = 0, y ∈Y . (19)
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We denote the system of equations (16)–(19) by F ((c h )h∈H , (λh )h≥2, a , f ; (θ h1
−1 )h≥2,Π·1) =

0. The expression F(i ) = 0 denotes equations (i). The system has HS + (H − 1) + 2 en-
dogenous unknowns c h , h ∈H , λh , h = 2, . . . , H , a , and f and (H −1)S+(H −1)+S+S
equations. (Note that the coefficients a and f of the linear price function are endoge-
nous variables.) In addition, F depends on the (H−1)+S exogenous parameters θ h1

−1 , h =
2, . . . , H , andΠ·1. The aggregate endowment is not constant and so we can assume with-
out loss of generality that p1 6= pS .

The Jacobian of F taken with respect to c h ,θ h1
−1 , and Π·1 is identical to the respective

columns of the corresponding submatrix in the proof of Proposition 2. After perform-
ing the same column operations as in that proof we obtain a transformed matrix with
submatrices of the following ranks.

c 1 c 2 c 3 θ 21
−1 θ 31

−1 Π·1
F(16)h=2 0 S 0 0 0 0 S
F(16)h=3 0 0 S 0 0 0 S
F(17)h=2 0 1 0 1
F(17)h=3 0 0 1 1

F(18) S S S 0 0 0 S
F(19) 0 0 0 0 S S

S S S 1 1 S

This matrix has full row rank (H −1)S+(H −1)+S+S which exceeds the number of en-
dogenous variables by S−2≥ 1. The function F is defined on open sets with c h ∈ int(X )
for all h ∈ H , λh ∈ RS

++ for h ≥ 2, a , f ∈ R, (θ h1
−1 )h≥2 ∈ ∆H−1

++ and Π−S ∈ ∆S×(S−1)
++ .

Hence, F satisfies the hypotheses of Theorem 3 and the proof proceeds like that of
Proposition 2. �

PROOF OF LEMMA 3. We first consider an economy where all agents have equi-cautious
HARA utility functions of the type [EC]. Then if b h = 0 for some agent h in equilibrium
the following equations must hold.

u ′1(c
1
y )−λ

h u ′h (c
h
y ) = 0, h = 2, . . . , H , y ∈Y (20)

�

[IS −βΠ]−1(p ⊗ (c h −
∑

j∈L

θ
h j
−1 d j ))

�

y0
= 0, h = 2, . . . , H (21)

H
∑

h=1

c h
y − ey = 0, y ∈Y (22)

�

−A h̄ +
(λh̄ )

1
γ

∑

i∈H (λ
i )

1
γ

∑

i∈H
A i

�

= 0, for one h̄ ∈H . (23)

We denote the system of equations (20)–(23) by F ((c h )h∈H , (λh )h≥2; (θ h1
−1 )h≥2) = 0. The

system has HS + (H − 1) endogenous unknowns c h , h ∈ H and λh , h = 2, . . . , H , and
(H−1)S+(H−1)+S+1 equations. In addition, the function F depends on the H −1 ex-
ogenous parameters θ h1

−1 , h = 2, . . . , H . We show that the Jacobian of F taken with respect
to c h ,λh , and θ h1

−1 has full row rank (H −1)S+(H −1)+S+1.
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For h̄ ≥ 2 denote the derivative in equation (23) with respect to λh̄ by

η2
h̄
=

1
γ
(λh̄ )

1
γ
−1 ·
�
∑H

i=1(λ
i )

1
γ − (λh̄ )

1
γ
�

�
∑H

i=1(λ
i )

1
γ
�2

H
∑

i=1

A i .

For h̄ = 1 we cannot take the derivative in (20) with respect toλ1, since it does not appear
(it is normalized to one). Instead we differentiate with respect to λ2 and obtain

η2
1 =−

1
γ
(λ2)

1
γ
−1

�
∑H

i=1(λ
i )

1
γ
�2

H
∑

i=1

A i .

Note that under the condition from the lemma,
∑

i∈H A i 6= 0, we have η2
h̄
6= 0. For the

special case of H = 3 the Jacobian Dc h ,θ h1
−1 ,λh̄ F appears as follows.

c 1 c 2 c 3 θ 21
−1 θ 31

−1 λh̄

F(20)h=2 ΛS(u ′′1 (c
1)) ΛS(−λ2u ′′2 (c

2)) 0 0 0 S

F(20)h=3 ΛS(u ′′1 (c
1)) 0 ΛS(−λ3u ′′3 (c

3)) 0 0 S

F(21)h=2 0 η1 0 0 1

F(21)h=3 0 0 η1 0 1

F(22) IS IS IS 0 0 0 S

F(23) 0 0 0 0 0 η2
h̄

1

S S S 1 1 S

After the same column operations as in the proof of Proposition 2 we obtain the follow-
ing ranks for the various submatrices of the transformed matrix.

c 1 c 2 c 3 θ 21
−1 θ 31

−1 λh̄

F(20)h=2 0 S 0 0 0 S
F(20)h=3 0 0 S 0 0 S
F(21)h=2 0 1 0 0 1
F(21)h=3 0 0 1 0 1

F(22) S S S 0 0 0 S
F(23) 0 0 0 0 0 1 1

S S S 1 1 S

This matrix has full row rank HS+(H −1)+1 which exceeds the number of endogenous
variables by 1. The function F is defined on open sets with c h ∈ int(X ) for all h ∈ H ,
λh ∈RS

++ for h ≥ 2, and (θ h1
−1 )h≥2 ∈∆H−1

++ . Hence, F satisfies the hypotheses of Theorem 3
and the proof proceeds like that of Proposition 2. We can perform the proof for each
agent and then take the intersection of generic sets which in turn yields a generic set for
which no agent has a linear sharing rule with zero intercept.
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In the proof for CARA utilities we must replace equation (23) with the equation

τh̄ ln(λh̄ )−
τh̄

∑

i∈H τ
i

∑

i∈H
τi ln(λi ) = 0

for some agent h̄ ∈H . The proof is now identical to the one for [EC] type utilities. �
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