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Abstract

The two-fund separation theorem from static portfolio analvsis generalizes to dy-
namic Lucas-style asset models only when a consol is present. If all bonds have finite ma-
turity and do not span the consol, then equilibrium will deviate. often significantly, from
two-fund separation even with the classical preference assumptions. Furthermore, equi-
librium bond trading volume is unrealistically large, particularly for long-term bonds.
and would be very costly in the presence of transaction costs. We demonstrate that
investors choosing two-fund portfolios with bond ladders that approximately replicate
consols do almost as well as traders with equilibrium investment strategies. This result
is enhanced by adding bonds to the collection of assets even if they are not necessary
for spanning. In light of these results, we argue that transaction cost considerations
make portfolios using two-fund separation and bond laddering nearly optimal invest-

ment strategies.
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1 Introduction

How should investors allocate their wealth? Classic two-fund separation theory derives
conditions under which they need only decide how to divide wealth between the safe asset
and the market portfolio of risky assets. Even though real world portfolio decisions are
made in a dynamic market, the static results are often applied, implicitly saying that the
allocation between safe and risky assets should be constant over time for each investor:
see, for example, Canner et al. (1997). We show that strong separation results from static
portfolio theory do not generalize to dynamic Lucas-style asset market models. The mutual
fund monetary separation theorems of static portfolio analysis hold in dynamic general
equilibrium asset market models only when a consol is present, either explicitly or implicitly
through dynamic trading of finite-maturity bonds. In the absence of a consol (or equivalent
replication strategy) equilibrium portfolios will deviate from two-fund separation even with
the classical preference assumptions. In particular, relative allocations of wealth across the
risky assets may differ across investors because of the price risk associated with short-term
bonds. We also find that the implied asset trading volume bears no relation to actual
asset markets; instead, equilibrium positions and trading volume in bonds, particularly
long-term bonds. are implausibly large in the absence of a consol. The Lucas asset model
has some more sensible predictions as the number of bonds and their duration increase; in
particular, the deviations from two-fund separation in equity positions disappear. However,
the implications remain implausible for long-term bonds. These results show that standard
equilibrium analysis of asset portfolios and trading cannot represent actual markets.

As an alternative, we consider a common bond investment strategy — the bond ladder -
for investors in a Lucas-style asset market. A bond ladder strategy buys a fixed amount of
the longest term bond in each period and holds it until maturity. The bond ladder is like
a consol in that it creates a constant stream of revenue, but it differs from a consol since
the cost of reestablishing the bond ladder in each period is risky due to price fluctuations
in bonds. We find that bond ladders combined with a mutual fund of risky assets are
an excellent alternative to the “equilibrium” investment strategy. However, the portfolio
weights between the ladder and the mutual fund will differ from the weights between a
consol and the mutual fund because of the risk in bond prices even when the time to
maturity of the longest bond is similar to that observed in actual markets. In addition.
we find a role for redundant bonds since adding more long-term bonds will improve the
performance of bond ladder strategies even though the new bonds do not improve the span
of the traded assets. Finally, while we do not explicitly model transaction costs we motivate
the idea of bond ladders as a strong response to transaction costs. Equilibrium investment
strategies imply enormous trading volume in the bond markets which would be very costly in
the presence of transaction costs. On the contrary, bond ladders minimize transaction costs
since the only transaction costs are those borne at the time the bonds are issued. Therefore.
asset redundancy is desirable since it improves the performance of bond ladder strategies

which in turn help investors economize on transaction costs. In summary, we conclude



that conventional Lucas-style asset market models cannot represent actual portfolios and
trading. but that the basic two-fund separation results are valid for dynamic environments
when investors have access to — possibly redundant - long-term bonds that allow them to
build bond ladders that approximately replicate a consol. We argue that such portfolio
strategies are particularly sensible in the presence of transaction costs.

Beginning with Tobin (1958), many financial market models imply that portfolio allo-
cation decisions can be reduced to a two-stage process: first decide the relative allocation
of assets across the risky assets, and second decide how to divide total wealth between the
risky assets and the safe asset. This is called monetary separation. The two-fund monetary
separation result and its m-fund generalizations rely on special assumptions on either re-
turns or tastes. In particular, Cass and Stiglitz (1970) have shown that two-fund monetary
separation holds if an investor has HARA utility; more precisely, if an investor has HARA
utility then his allocation of wealth in risky asset ¢ relative to risky asset j does not depend
on his total wealth. Separation theorems have strong implications for equilibrium. Rubin-
stein (1974) showed that if all investors have equi-cautious HARA utility, then all portfolios
are, in equilibrium. a convex combination of the market portfolio of risky assets and the safe
asset. The argument is simple: if all investors have equi-cautious HARA utility then each
individual's consumption in anyv Pareto efficient allocation is a linear function of aggregate
consumption. investors’ demands for assets have linear income expansion paths, and asset
demands can be aggregated.

These analvses use static models to prove two-fund separation theorems. Merton (1973)
generalizes m-fund separation theory to dvnamic contexts but only weakly. He assumes
only intertemporally separable preferences and shows that at each moment each investor's
portfolio will be a convex combination of a small number of mutual funds. as in Tobin
(1958). However, the composition of those mutual funds may change and lead to substantial
churning in portfolios. In this paper. we Jook for conditions under which mutual fund
separation leads to far less churning, corresponding to the more common application of
two-fund separation to real world investing.

Even though the classic two-fund separation theorems rely on assumptions about tastes,
these assumptions are realistic enough that many argue that the implied investment policies
are good ones to follow in general. For example. Canner et al. {1997) interpret two-fund
separation to imply that investors should divide wealth among only stocks, bonds. and
money. and do so in a time-invariant manner. They then note that many investment advisors
violate the recommendations of two-fund separation, leading to an “asset allocation puzzle.”

This paper shows that the two-fund monetary separation theorems generalize to dynamic
general equilibrium models only under unrealistic assumptions about the bond market even
assuming equi-cautious HARA investor utilities. We use the heterogeneous investor asset
model of Judd et al. (2003), which is essentially a Lucas asset pricing model with het-
erogeneous investors and dynamically complete asset markets. The key result of Judd et

al. is that no trader’s portfolio changes in equilibrium: that is, after an initial period of



trading, each investor holds a constant number of units of each asset over all times and
states. Maturation of bonds will cause some trading. Judd et al. show that each investor
has a fixed end-of-period holding of each t-year maturity bond; therefore, when a t-vear
bond becomes a t — l-year bond, some of those bonds are sold (or bought) to get back
to the target portfolio. Since stocks have infinite maturity, there is no trading of stocks.
This is a natural model to use to studv monetary separation in dynamic economies since
equilibrium already has a buy-and-hold nature. The remaining key issue is then whether
the time-invariant equilibrium asset allocations are consistent with the predictions of static
models implying monetary separation.

We show that the static monetary separation results hold in dynamic settings only
if a consol can be constructed from the bonds. The intuition is clear. In our dynamic
model, there is no change in equilibrium portfolios over time. So, if the span of the bonds
includes a perfectly safe stream of payments, the dynamic problem reduces to the static
problem. Otherwise, if bond trading cannot implement a consol, then the bond portion of
an investor’s portfolio will include some risk associated with fluctuating interest rates (bond
prices). and the portfolio weights of the risky equity assets need to be altered to achieve
the Pareto efficient allocation of consumption. This is particularly clear if there is only a
one-period bond. An investor can use that bond to buy a sure delivery of one dollar in the
next period. but bond price risk implies that next period’s price of a one-period bond is
uncertain, making it impossible to choose bond investment today that will deliver a dollar
for sure two periods hence. The only way to hedge against the interest rate fluctuations
is to alter the composition, not just the magnitude, of the stock portfolio. Since different
investors have differing demands for a safe asset, those stock portfolio adjustments will be
different for different investors. In some sense, portfolio separation still occurs. We can still
construct two different mutual funds. one implementing the consol and one implementing
the risky portion of investors’ portfolios. and find that investors will always hold a convex
combination of those two funds. While this general notion of portfolio separation holds, it is
not the notion of monetary separation that many people have in mind when they talk about
two-fund separation, see for example Canner et al. (1997} and Elton and Gruber (2000),
where the conversation is about allocation between a safe asset and the market basket of
risky assets.

We present examples showing that all investors will approximately hold the market
portfolio of stocks if bonds with very long maturities are constantly issued. However. the
presence of many bonds does not yield plausible equilibrium predictions; in particular.
almost all reasonable specifications of tastes and endowment processes imply bond trading
volume that is many orders of magnitude beyond anything sensible. The trading volumes
we find are clearly irrational for any trader with even tiny transaction costs. This realization
forces one to move away from conventional general equilibrium modeling and instead focus
on the performance of simple strategies. In particular, we examine bond laddering strategies.

A bond ladder is a portfolio with b units of a zero-coupon bond of each maturity. In each



period, the maturing bonds will produce cash, and the laddering strategy takes some of
those proceeds to reestablish the ladder by buying b units of the longest maturity bond,
and consumes the rest. If the price of the longest maturity bond were constant then this
laddering strategy would implement a consol. However, bond prices (and interest rates)
will fluctuate and the cost of reinvestment will be risky for generic asset returns processes.
particularly if the maximum maturity is small. To evaluate the rationality of bond laddering
strategies, we look at models with long maturity bonds, such as the 30-year bonds we see
in bond markets. We demonstrate that bond laddering strategies will be approximately
optimal when the number of bonds of different maturities becomes sufficiently large.

While the results are mixed the pattern is clear. If there is a consol then we get the
classic two-fund separation results. Without a consol, equilibrium portfolios will either
have investors’ equity portfolios deviating from the market basket or executing crazy bond
trading strategies; in either case, equilibrium does not display the simple portfolio patterns
like those in the static two-fund separation literature. However, when we take a pragmatic
view of the problem, we find that when the market includes long maturity bonds, then
two-fund separation is an approximately optimal response to equilibrium prices and is more
plausible and more robust to transaction costs than the exact asset market equilibrium. Of
course, all this depends critically on the HARA assumption for preferences. Future work
will reexamine these problems when there is realistic heterogeneity in preferences.

Tobin (1958) first presented the two-fund idea in his analysis of portfolio demand in
a mean-variance analysis with quadratic utility. Two-fund separation has been examined
in the CAPM model of asset market equilibrium: see for example Black (1972). Cass and
Stiglitz (1970) provide conditions on agents’ preferences that ensure two-fund separation
whereas Ross (1978) presents conditions on asset return distributions under which two-
fund separation holds. Russell (1980) presents a unified approach of Cass and Stiglitz
and Ross. Ingersoll (1987) provides a detailed overview of various separation results and
highlights the distinction between restrictions on utility functions and restrictions on asset
return distributions. See also Huang and Litzenberger {1988) for another textbook summary
of portfolio separation theorv. We stay away from analyses that rely on distributional
assumptions about asset prices since we focus on equilibrium prices and portfolios. and
there is no reason to believe that equilibrium asset prices fall into any of the special families
that produce portfolio separation. We examine a Lucas-style asset market model where
two-fund separation may be implied by investor preferences.

The numerous studies of portfolio allocations, and, for example, the many attempts to
explain the asset allocation puzzle exposited in Canner et al. (1997). generally consider only
one or two bonds and seldom pursue an equilibrium analysis. Our dynamic asset market
model allows for a rich array of bonds, enabling us to stay away from results driven by
the small number of assets and giving us a framework for examining bond ladder strategies
in a dynamic model. Despite the popularity of bond ladders as a strategy for managing

investments in fixed-income securities (for example, see Bohlin and Strickland, 2004), there



is surprising little reference to this subject in the finance literature on modern portfolio
theory. The aforementioned classical portfolio literature on two-fund separation, such as.
among many others, Tobin (1958), Cass and Stiglitz (1970), and Black (1972), examines in-
vestors’ portfolio decisions in one-period models. which by their very nature cannot examine
bond ladders. To this day, and despite the early criticism by Merton (1973), the results of
this static portfolio theory are often applied to dynamic contexts, see, for example, Canner
et al. (1997) or Elton and Gruber (2000).

The last decade has seen a growing literature on optimal asset allocation in stochastic
environments, but generally with partial equilibrium models and a small number of bonds.
One string of this literature builds on the general dynamic continuous-time framework of
Merton (1973) and assumes exogenously specified stochastic processes for stock returns or
the interest rate. Recent examples of this literature include Brennan and Xia (2000) and
Wachter (2003) among many other papers. A second string of literature uses discrete-time
factor models to examine optimal asset allocation. see for example Campbell and Viceira
(2001, 2002). Most of these papers focus on aspects of the optimal choice of the stock-
bond-cash mix but do not examine the details of a stock or bond portfolio. A particular
feature of these factor models is that only very few assets are needed for security markets
to be complete. For example. the model of Brennan and Xia (2002) can exhibit complete
security markets with only four securities, only two of which are bonds. Also Campbell and
Viceira (2001) report computational results on portfolios with only 3-month and 10-year
bonds. Because of the small number of bonds, the described portfolios in these models
do not include bond ladders. Analyzing more bonds in these models would certainly be
possible, but additional bonds would be redundant securities since markets are already
complete. As a result there would be continua of optimal asset allocations and so any
further analysis of particular bond portfolios would depend on quite arbitrary modeling
choices. On the contrary. our model allows for a large number of exogenous states and
so we can examine equilibria with a large number of non-redundant bonds. Furthermore,
models with a small number of bonds make unrealistic assumptions about bond trading.
Continuous-time models with only a short-term safe bond imply that bonds are created and
liquidated at an infinite rate. Models that assume only 3-month and 10-year bonds imply
strange trading behavior at the beginning of each month. The 3-month bonds purchased
in the previous month become 2-month bonds; therefore, the investor will liquidate these
bonds and buy 3-mouth bonds. Similarly for the 10-year bonds purchased in the previous
month. This description of bond markets is unrealistic in many ways. Such trading behavior
is costly in the presence of any transaction costs. Real bond markets have bonds of many
maturities.

Recent papers on government financing (Angeletos, 2002, and Buera and Nicolini, 2004)
have noted the strange portfolios implied by a fiscal authority’s attempt to use bonds for
hedging purposes. These models differ significantly from our analysis. Since these models

assume a representative agent, the bond positions are large only because the government



is using small fluctuations in bond prices to counter large exogenous shocks in government
revenue needs. In our model, bond trading volumes are derived from individual investors’
tastes and are orders of magnitude larger. Also, both papers restrict their attention to
asset structures with only very few bonds. For example. Buera and Nicolini (2002) report
numerical results for models with two and four bonds. And as a result they must allow
for bonds with non-consecutive maturity structures that exhibit the problems we discussed
above.

The remainder of this paper is organized as follows. Section 2 presents the basic dynamic
general equilibrium asset market model anc the classic assumptions on preferences. Section
3 discusses two-fund separation theory for our dynamic model, proves that the classic static
result continues to hold when the safe asset is a consol, and argues that the classical result
fails when only a short-maturity bond is available. In Section 4 we present numerous
numerical examples, which motivate and guide our further analysis. In Section 5 we develop
sufficient conditions for a small number of bonds of finite maturity to span the consol.
In such economies portfolios exhibit two-fund separation for equity but bond portfolios
tyvpically look far different from the classic two-fund prediction. Section 6 examines a notion
of approximate equilibrium. We argue that as the number of bonds with finite maturities
increases the welfare loss from holding a non-optimal portfolio satisfying two-fund separation

instead of the equilibrium portfolio tends to zero. Section 7 concludes.

2 The Asset Market Economy

We examine a standard Lucas asset pricing model with heterogeneous agents and complete
asset markets. The exogenous dividend state follows a Markov chain with finite state space
Y = {1.2.....Y}. Y > 3. and transition matrix 1. We assume a finite number of types

H = {1,2....H} of infinitelv-lived agents. There is a single perishable consumption good.

Each agent h has a time-separable utility function
ox
q}ﬂmv =F M Qmﬁrﬂﬁnv
t=0

where ¢ is consumption at time f. Our analvsis of two-fund separation will assume par-
ticular parametric forms for the utility functions us : R — K. In order to attain a simple
stationary characterization of equilibrium, we assume that the discount factor 3 € (0.1) is
the same for all agents. and that all agents agree on the transition matrix I1.

The initial endowment of each agent consists only of shares in the firms. The firms
distribute their output each period to its owners through dividends. Investors trade shares
of firms and other securities in order to transfer wealth across time and states. We assume
that there are J > 2 stocks, j € J ={1,2,..., J}, traded on financial markets. A stock s
an infinitely-lived asset (“Lucas tree” ) characterized by its state-dependent dividends. We
denote the dividend of stock j by & =Y — Ra. 7 € 7. and assume that the dividend

vectors @’ are linearly independent. Agent h has an initial endowment emro in stock j € J.
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We assume that all stocks are in unit ~et supply, that is, Y ohen @w.o =

1forall jeJ.
and so the social endowment in the eco: omy in state y is the sum of all firms’ dividends
in that state, sO ey = ) _ ¢ 7 d} for all y € V. We assume that all stocks have non-constant
dividends and that the social endowment ..Iso has a positive variance.

Our model includes the possibility of tv o types of bonds. One type of bond we analyze
is a consol. The consol pays one unit of “he consumption good in each period in each
state, that is, dj = 1 for all y € V. We ai-0 study finite-lived bonds. There are K > 1
bonds of maturities 1,2,. .., K traded on fin. ncial markets. We assume that all finite-lived
bonds are zero coupon bonds. (This assumpti. n does not affect any results concerning stock
investments since any other bond of similar m turity is equivalent to a sum of zero-coupon
bonds.) A bond of maturity k delivers one ur. of the consumption good k periods in the
future. If at time t an agent owns a bond of m turity k and holds this bond into the next
period, it turns into a bond of maturity k — 1. ‘Agents do not have any initial endowment
of the bonds. All bonds are thus in zero net supply.

For a more detailed description of the model -.nd a definition of financial market equi-
librium see Judd et al. (2003). Two results in Jud: et al. (2003) are crucial for our analysis
here. First. equilibrium is Markovian: individual cc asumption and asset prices depend only
on the current state. Second, and more surprising, after one initial round of trading, each
individual's portfolio is constant across states and t me whenever all elements of the tran-
sition matrix are positive. The intuition is clear a1 i follows directly from linear algebra
and market completeness. Suppose the current divid. 1d summarizes all information about
future dividends: in that case, the dividend process 1 Markovian and we can identify the
current state with the current dividend. Suppose that there are S states and S long-lived
securities where each security's payoff depends solely c.: the current dividend. If utility 1s
separable over time with constant discount rate (a com 10n set of assumptions) then each
agent’s optimal consumption policy is a function of th- state and is a vector of S num-
bers. If markets are dynamically complete then the state -contingent dividends from the S
long-lived assets are S independent vectors. Therefore, aiy state-contingent consumption
plan equals the returns generated by some unique fized ar. constant combination of the S
assets. If this target portfolio is not the agent’s asset endos ment, then he can obtain that
portfolio through trading in the initial period. Therefore, any consumption plan can be
implemented by some trade-once-and-hold-forever trading s: ‘ategy. By concavity, there is
a unique optimal consumption plan; hence, the trade-once-a :d-hold-forever strategy that
implements the optimal consumption process must be the uni< ue optimal trading strategy.
This is true for each agent and for any price process. Therefore. it must hold in equilibrium.
Judd et al. (2003) shows that this intuition generalizes to a mix: ire of long- and short-lived
assets, finding that the holding of assets of any specific matur."v is constant after initial
trading when markets are dynamically complete.

These results allow us to express equilibrium in a simple ma: ner. We do not need to

express equilibrium values of all variables in the model as a functl. n of time t. Instead. we



let n> denote consumption of agent A in state y. In addition. Qc denotes the price of bond
k in state v, and the price of the consol is Gy Similarly. py, denotes the price of stock 7 in
state yv. The holdings of household h consist of 8 bonds of maturity k or " consols, and
e,:w units of stock 7. If all bonds are of finite maturity then an agent’s budget constraint is

»
Mi% Lo -+ S O - ). (1)
k=2

If the economy has a consol but no short-lived bonds then the budget constraint after time

01is

Cass and Stiglitz (1970) show that two-fund separation in economies with a riskless
asset requires restrictions on investors’ utility functions. In our dynamic general equilibrium
model these restrictions amount to the assumption of equi-cautious HARA utility functions
for all agents. We examine three special cases of the HARA utility functions: power utility,
guadratic utility, and constant absolute risk aversion. We use the following notation for the

utility function of household A.

A e AT A >0y # L o> AP

113 T +7 . — H’J N !
power utility functions: uplc) =
F?I\»Jq y=1. - ¢ > A"
quadratic utility functions: up(c) = Iwﬁw} —c)*
. . __h
CARA utility functions: upl(c) = —demae

For ease of reference we summarize the notation for the most important parameters and

variables in the model.

d} | dividend of stock j in state y

v" | agent h's holding of stock j

g | agent h’s holding of maturity k bond

gh | agent h's holding of the consol

m, | price of stock j in state y

Qu price of maturity k bond in state y

gy | price of the consol in state y

2.1 Linear Sharing Rules

The easiest way to describe equilibrium is to focus on the sharing rules that represent equi-
librium consumption. This connection between equilibrium consumption sharing rules (as
exposited in Wilson, 1968) and asset market equilibrium was made in Rubinstein (1974).
We follow the same approach in our dynamic economy. We say that equilibrium consump-

tjon for household h in state y, n> follows a linear sharing rule if there exists real numbers



mh ¥ so that

mwﬂsxmclfvr vheH. ye V.

If investors have equi-cautious HARA utility, then this is true for all agents h € H. and
MMHH mh =1 and M%uw b* = 0 in equilibrium.

By the first and second theorem of welfare economics any efficient equilibrium maximizes
some weighted sum of utilities. Let A" be the Negishi weight of agent h: we normalize Al =1
Judd et al. (2003) describe a Negishi approach to calculate equilibrium consumptions for
our model. Appendix A contains a brief summary of the method. Using this approach and
straightforward algebra we can calculate the linear sharing rules for the three families of
utility functions under consideration.

For power utility functions the linear sharing rule is

(") (")
Gy |t | (A T LA e )
MsmIA\/JJ MuamIA\/JJ 1€H

Note that for CRRA utility functions. Ah = 0 for all h € H, the sharing rule has zero

intercept, b = 0. and household h consumes a constant fraction

1
mh = (AM)=
2en(A)”
of the total endowment. For quadratic utility functions, we obtain
ﬂ\/vvlw A\/r.VIH
h . . h t
C. = €y —_— - m - = m - Abv
Y Y Msmif\/ilw Msmih\/&lw TmMi

For CARA utility functions the linear sharing rules are

h h

h T , h h T i i

Cr =€y = T ﬂEAyvlllAmﬂ_iyv . (
Y Y Msmi.\‘ Msmi\l ieH

(@3]
—

where 7% = 1/a” is the constant absolute risk tolerance of agent h.

3 Two-Fund Separation with a Consol

In this section we review agents portfolios in economies with a consol. Classical two-fund
monetary separation (see, for example, Cass and Stiglitz (1970), Ingersoll (1987). Huang
and Litzenberger (1988)) states that investors who must allocate their wealth between a
number of risky assets and a riskless security should all hold the same mutual fund of risky
assets. An investor’s risk aversion only affects the proportions of wealth that (s)he invests
in the risky mutual fund and the riskless security. But the allocation of wealth across
the different risky assets does not depend on the investor's preferences. For our dynamic
general equilibrium model with several heterogeneous agents this property states that the

proportions of wealth invested in any two stocks are the same for all agents in the economy.
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Definition 1 We say that portfolios exhibil two-fund monetary separation if

vl py erw‘ Py

4 :}\ .
vl vy Py
for all stocks j.j" and all agents h. W ¢ H in all states y € V.

All stocks are in unit net supply and so market clearing and the requirement from the
definition immediately imply that all agents’ portfolios exhibit two-fund separation if and
only if each agent has a constant share of each stock in the economy, that is. @w = fy for all
stocks j,j and all agents h € H. This constant share typically varies across agents. In the
remainder of this paper we identifyv two-fund monetary separation with this constant-share
property. Note that the ratio of wealth invested in any two stocks j,j equals the ratio
l\?@\ of their prices and thus depends on the state y € V.

A consol is a bond paying one unit of consumption in each period indefinitely. Notice
that this is not the same as a constant interest rate since the value of a consol may vary over
time as may the interest rate. Under the assumption that agents can only trade stocks and
a consol we recover the classical two-fund monetary separation result of Cass and Stiglitz
(1970) in our dynamic equilibrium context. The consol is the truly riskless asset in an

infinite-horizon dynamic economy.

Theorem 1 (Two-Fund Separation Theorem) Consider an economy unth J <Y =1
stocks and a consol. If all agents have equi-cautious HA RA wtilities then their portfolios

ezhibil two-fund monetary separation in an efficient equilibrium.

Proof: The statement of the theorem follows directly from the budget constraint (2).
Agents’ sharing rules are linear. nw = mhey + bh for all h € H, y € V- and so the budget

constraints immediately vield g = b" and c,w —mhforallj=1,....J. C

Note that due to linear sharing rules a market with stocks and a consol implements the
complete-market equilibrium even though it does not have a complete set of assets. The
agents’ portfolios are unique since J +1 = Y and the vectors d° and d’.j e J. are linearly
independent. f the number of states ¥ 1s smaller than the total number of assets, J + 1.
then the dividend vectors and consol payoff are Jinearly dependent and there 1s a continuum
of portfolios supporting the agents’ linear sharing rules.

The theorem implies that we can read off agents’ portfolios from their linear sharing
rules. Observe that in the special case of CRRA utility functions, 4h =@ forall h € H.
and so the agents do not trade the consol. This is a corollary to the theorem: Whenever
the intercept terms of the sharing rules are zero then agents do not trade the consol and
the stock markets are dvnamically complete without a bond market. However, Schmedders
(2005) shows under the additional condition S heH AP = 0 that sharing rules have a nonzero

intercept for a generic set of agents’ initial stock portfolios. That is. with the exception of a
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set of initial portfolios that has measure zero and is closed, sharing rules will have nonzero
intercepts.

This fact that sharing rules have generically nonzero intercepts immediately implies that
a one-period bond cannot serve as the riskless asset in the economy and so portfolios cannot
exhibit monetary separation. The economic intuition for this fact follows directly from the

budget equation for an economy with J + 1 states. J stocks and a one-period bond,
Sr.mc;f%u::,mu_\mwﬁiag for all h € H. (6)

Contrary to the budget equations for an economy with a consol the bond price & now
appears. The agents have to reestablish their position in the short-lived bond in every
period. As a result they face reinvestment risk due to fluctuating equilibrium interest rates
of the short-term bond. Schmedders (2005) shows that, generically. fluctuations in the
price of the one-period bond prohibit a solution to equations (6). The reinvestment risk
affects agents’ bond and thus stock portfolios and leads to a change of the portfolio weights
that implement equilibrium consumption. (On the contrary, in an econory with a consol,
the agent establishes a position in the consol at time 0 once and forever. Fluctuations in
the price of the consol therefore do no affect the agent just like he is unaffected by stock
price fluctuations. This fact allows him to hold a portfolio exhibiting two-fund monetary
separation.)

Obviously the agents’ portfolios do satisfy a generalized separation property. Consump-
tion follows a linear sharing rule and so an agent's portfolio effectively consists of one fund
generating the safe payoff stream of a consol and the second fund generating a payoff iden-
tical to aggregate dividends. Both funds have non-zero positions of stocks and of the bond.
Agent h holds b" units of the first fund and m™ units of the second fund. However. when
many people talk about two-fund separation thev don't have this generalized notion in
mind but instead the monetary separation between a market portfolio and a safe payoff.
see for example Canner et al. (1997) and Elton and Gruber (2000). In this paper we focus

exclusively on monetary separation.

Real-world investors do not have access to a consol. (With the exception of some rare
tvpes of consols issued in previous centuries, infinite-horizon bonds do not exist and are
no longer issued.) Bond markets instead enable trade in many bonds with varying finite
maturity. Thus, we are naturally led to the question whether it is possible for agents to
synthesize a consol by trading finite-maturity bonds. A related question is then whether the
nonexistence of the consol and its substitution through portfolios of finite-maturity bonds
has quantitatively significant effects on agents’ overall portfolios. To answer these questions

we next examine equilibrium portfolios for economies with several finite-maturity bonds.



4 Equilibrium Portfolios with Finite-Maturity Bonds

We begin with a very simple example to show how we can easily compute equilibria for our
model. Subsequently we examine larger models. The insights from these fairly extensive

examples provide useful guidance for our further analysis.

4.1 Introductory Example

Consider an economy with H = 3 agents who have CARA utilitv functions with coefhicients
of absolute risk aversion of 1. 2. and 3. respectively. The agents’ discount factor is 3 = 0.95.
There are two independent stocks with identical ‘high™ and ‘low’ dividends of 1.02 and 0.98.
respectively. The dividends of the first stock have a persistence probability of 0.8. that is, if
the current dividend level is high (low). then the probability of having a high (low) dividend
in the next period is 0.8. The corresponding probability of the second stock equals 0.6. As
a result of this dividend structure the economy has S = 4 ex0ogenous states of nature. The

dividend vectors are
d' = (1.02,1.02.0.98,0.98) and 4 = (1.02.0.98,1.02,0.98).
The Markov transition matrix for the exogenous dividend process is

0.48 0.32 012 0.08
0.32 0.48 0.08 0.12

Il =
012 0.08 048 0.32
0.08 0.12 0.32 0.48
The economy starts in state Yo = 1. The agents initial holdings of the two stocks are
identical, so e;w;o = w for h=1.2,3. =12
Using the formulas of Judd et al. (2003) (see Appendix A) we compute consumption
allocations.
& = (0.688.0.666.0.666,0.644).
& = (0.678.0.667.0.667.0.656),
& = (0.674.0.667.0.667.0.660).

Note that the fluctuations of agents’ consumption allocations across the four states is fairly
small. The reason for this small variance is the small dividend variance of the two stocks.

The state-contingent stock prices are

i

P (19.43,19.01.18.98,18.58).
Pt = (19.40.18.98.19.01,18.60}.

Now suppose that the third asset in this economy 1s a consol. Note that markets are

complete despite the Jack of a fourth asset. The price vector of the consol 18

¢ = (19.40.18.99.19.01,18.61).
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The economy satisfies the conditions of Theorem 1 and so agents’ portfolios exhibit two-fund

monetary separation.

; 6 6
(W, w3.0;) = Am.mﬂo.ﬁg.

2 2 2 W W
2 w2 02) = (—,-—. 0.121).
(1,7, 67) (3711 )

2 2
'3 3 n3 < )
s to,% = —_— T 0.304).
AEH Yo nv AHH 11 v

Now suppose markets are completed with two finite-maturity bonds. First we compute

bond prices for bonds of various maturity.

(0.963,0.946,0.954.0.938)

g> = (0.918,0.899,0.906,0.887)
(0.790.0.773,0.775,0.758)
(0.612,0.599,0.599, 0.586)

¢® = (0.284,0.277.0.277,0.271)
¢° = (0.079.0.077,0.077,0.075)

The agents’ equilibrium portfolios now depend on which two of these bonds are chosen to
complete the market. The most natural choice is an economy with a one- and two-period
bond but in the literature (see. for example, Campbell and Viceira, 2001) sometimes other
combinations are chosen. For several choices of bonds we report equilibrium portfolios in

Table I and the corresponding end-of-period wealth in the four assets in Table IL

bonds Agent 1 . Agent 2 % Agent 3 ]
o a e e o w & e o« v B G
1 2|0467 0.191 -1.029 1249 | 0.295 0374 0.294 —0.357 10238  0.435 0.735 Io‘m@q
1 510603 1.878 0.835 —45.582]0.256 0107 —0.238 1297710.141 —0.771 -0.598 32.605
1 10l0519 0395 -0.647 —6.830|0.280 0.316 0.184 1945|0201 0290 0.463 4.885
1 250518 0.381 —0.660 —13.739]0.281 0.319  0.188  3.91210201 0299 0472 9.827
1 5010518 0.381 -0.660 —49.528|0.281 0.319 0.188 14.101]0201 0299  0.472 35.427

Table I: Equilibrium Portfolios with Two Bonds

Agents’ portfolios never exhibit two-fund monetary separation. The equilibrium port-
folios depend on the set of bonds available to the investors. Any arbitrary choice of bond
maturities in the model will greatly affect equilibrium outcomes. We believe the most natu-
ral choice of bonds is a family of bonds of consecutive maturities. Otherwise an agent would
be artificially forced to sell bonds whenever a bond changed its remaining maturity to a
level that is not permitted by the model. (For example, an agent bought a k-period bond

that then in the next period has a remaining maturity of k — 1 periods. 1f the model doesn’t
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Table II: End-of-period Wealth across Assets in State 1

allow for bonds of this maturity the agent would have to close that position.) Therefore.
in the remainder of this paper. we will only consider economies with the property that if a
bond of maturity k is present. then also bonds of maturity k—1,k=2,....1 will be available

to investors.

4.2 Equilibrium Portfolios with Many States and Bonds

The small example in the previous section showed that equilibrium portfolios in economies
with a consol are very different from those in econormies with finite-maturity bonds. We saw
that stock portfolios varied greatly from stock portfolios prescribed by two-fund separation.
In addition. the bond portfolios did not just serve to svnthesize the consol but also bad to
account for the variations in the stock portfolios. The bond portfolios appeared somewhat
unintuitive since they required rather large trades on the bond market.

Now we analvze these issues further by examining economies with much larger number
of states. In order to complete markets agents nOW have access to larger families of bonds
with different maturities. The purpose of these examples Is to learn more details about the
structure of equilibrium portfolios that then will guide our theoretical analysis in subsequent

sections.

We consider economies with H = 2 agents with power utility functions. Setting Al =

_ 42 — p results in the linear sharing rules! ¢! = ml-e+b-1y and ¢ = (1-m')-e—b-1y.

We normalize stock dividends so that the expected aggregate endowment equals 1. Then

we set m! = ww — b so that both agents consume On average half of the endowment. For the

-

subsequent examples we use b=02y=>5and 3= 0.95. The agents sharing rules are
then
=03 e+02-1y and 2 =07 ¢-02 1y

e

1To simplify the analysis we do not compute lincar sharing rules for some given initial portfolios but
instead take sharing rules as given and assume that the initial endowment is consistent with the sharing
rules. There is a many-10-0ne relationship between endowments and consumption allocations. and it 1s mMore

convenient to fix consumption rules.



We consider economies with J € {3.4.5,6,7} independent stocks. Each stock j € J in the
economy has only two dividend states, a “high” and a “low” state, resulting in a total of
2/ possible states in the economy. We define the persistence parameters & for each stock

j and denote the dividend's 2 x 2 transition matrix by

with & € (0.1). The Markov transition matrix II = ®%HH = for the entire economy is a
Kronecker product of the individual transition matrices, see Appendix B.2. Table Ill reports

the parameter values for our examples. These parameter values cover a reasonable range of

ﬁmao%Hmwbumﬁ

high d |1.02 1.23 1.05 1.2 1.09 114 L1
low d |098 077 095 08 091 086 09

£ 0.1 062 0.22 048 0.32 04 0.36
1(1+¢)055 081 061 074 0.66 0.7 0.68

Table III: Stock Characteristics

persistence and variance in stock dividends. The varying dividend values and persistence
probabilities are chosen so that the examples display generic behavior. (We calculated
hundreds of examples showing qualitatively similar behavior.) To keep the expected social
endowment at 1 we always normalize the dividend vectors. For this reason we multiply the
dividend vectors by 1/J for the economy with J stocks. However, as we show below this
normalization is not really necessary.

The economy has J stocks and 9J states of nature. Therefore we need 27 _ J bonds to
complete the market. We now ask how much portfolios in such an economy deviate from
two-fund separation. Table IV reports equilibrium portfolios of agent 1.

We make several observations about the agents’ portfolios. The larger the number of
stocks J and so the larger the number of states 97 and number of bonds 27 —J. the closer the
agents' stock portfolios get to the slope m" of the linear sharing rules. For J € {4.5,6.7}
the first 6 digits of stock holdings and slopes are already identical (to keep the table small we
report fewer than 6 digits.). For J = 4 the agents’ holdings of the bonds of maturity 1 and
9 match b for the first 6 digits. For J =5 there is a corresponding match already for the
first 12 bonds. The longer the maturity of the bonds the greater the deviations of holdings
from " (with the exception of just the holdings of bonds with very long maturities). In

addition, once holdings deviate significantly from b"* they alternate in sign?. In summary,

2The nature of these bond holdings, namely the very large positions of alternating signs. may remind
some readers of the unrelated literature on the optimal maturity structure of noncontingent government
debt. see. for example, Angeletos (2002) and Buera and Nicolini (2004). Buera and Nicolini report very
high debt positions from numerical calculations of their model with four bonds. The reason for their highly

sensitive large debt positions is the close correlation of bond prices.
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market contained a bond of maturity T for all T (a condition equivalent to a consol) then
two fund separation would have an individual hold the same number bh of bonds of all
maturities and lead to no trading in bonds.

Table V reports deviations in stock holdings and the first five bonds, and Table VI
reports deviations in bond positions for some selected longer maturity bonds. The results
are clear. First, the equilibrium stock portfolios are close to classic two-fund separation
and are practically the same when there are several stocks and many states and bonds.
Second, the deviations in the bond portfolios from two-fund separation are negligible for
short-maturity bonds but then explode as we increase the number of stocks and bonds.
In particular, the bonds with very long maturities differ significantly from the two-fund

separation predictions.

J K AS Al A2 A3 At X
4 12145 (-9 3(—9) 35(—8) 20(-6) Ll(=4) 37(=3)

5 2735 (=33) @i 34) 83(-31) 8.3(-28) 46(-25) 1.6(-22)
6 58|06 (—88) |42(-85) 31(-8l) L1(=77) 21(-T4 30(-T
7 191|2.0 (—222) | 49 (~214) 18 (-209) 3.0 (=205) 3.2(-201) 24 (-197)

Table V: Deviations in Stock Holdings and First Five Bonds from Two-Fund Separation

6 3.5 (—20)|3.0(—68)| 14 (-193)
7 153 (-18) | 2.4 (-65) 6.3 (=190}
10} 3.0 (—12) 1 2.9 (=57) | 2.0 (~179)
111 1.5(-10)] 9.9 (=55) | 4.5 (~176)
121 5.4 (=9) | 2.9 (-52) |89 (-173)
20| 5.37 | 7.5(-35)|3.5(-148)
25| 53556 | 1.1(=25)]3.9(-134)
26| 4234 |53 (-24)|20(-131)
27| 145.8 |24 (=22)19.1 TSE
40 — 3.7 (=5) | 1.0 (—96)
50 - 1179.3 | 4.3 (=75)
56 - 10178 | 3.0 (—63)
57 - 4627.2 | 2.3 (—61)
58 - 998.2 1.7 (=59)

Table VI: Deviations in Bond Holdings from Two-Fund Separation

Remark: Computing the results in Tables Vv and VI requires us to solve the agents’

budget equations (1). Although these equations are linear, solving them numerically is very
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difficult. The prices of bonds with very long maturity k are nearly perfectly correlated.
This fact makes the equilibrium equations nearly singular and thus difficult to solve. One
cannot solve them using a regular linear equation solver on a computer using 16 decimal
digits of precision. To handle this difficulty, we used Mathematica with up to 1024 decimal

digits of precision.

We tried many different examples and always had the same results: with many bonds.
t+he stock portfolios are extremely close to satisfving two-fund separation. The holdings of
bonds with short maturity are close to the value of the safe portion of the consumption
stream. DBut the equilibrium holdings of long bonds are highly volatile. implying that
investors are making dramatically large trades in long bonds in each period. Our results
are surprisingly invariant to the size of the stock dividends and the utility parameter 7.
And again, despite the crazy structure of the bond portfolios, we observe the recurring
theme that the agents use the finite-maturity bonds to gencrate the safe portion of their
consumption stream.

We can learn some details by closely examining the underlying budget equations, which

Jead to these portfolios. Recall that agent h's budget constraint in an economy with finite-

maturity bonds is

J K
=S uhdl + 61(1 - ay) + S ekg T - g (7)
j=1 k=2

Suppose the agent's consumption allocation follows the linear sharing rule ¢t = m" e+ by
and that there are enough bonds so that markets lead to an efficient equilibrium implement-
ing this consumption rule. 1f the agent’s portfolio also exhibits two-fund separation. then
there must exist stock welghts ew =nh forall 7€ 7 such that the budget constraint can
be written as

K
mh e+ b1y = n e+ mff, — g )+ anﬁxl ~q¢"). (8
k=2
Rearranging (8) vields
K1 )
(mh -ty -e s ("= 81) 1y S 6k - e + ot =0 ()
k=1

As we have seen in our numerical examples, once the number of states and bonds ¢ i
sufficiently large, for all practical purposes mh = n" and b= ﬁﬂ. For example, in  2°
economy with J = 5 stocks and K = 27 bonds the two deviations are AS < 1073 ad
Al < 10~%. Thus. equations (9) lead to

K-1

S - e+ ghg® = 0. 10)
k=1
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We show in Appendix A that the price of a bond of maturity k is

e 8EmR, P 0 Mw.né;ﬁm
%y W (c}) w)(c}) .

where P = (u](cy)) yey S the vector of prices u{ (¢, ) for consumption in state y. mCUmSEScm
these expressions into equations (10) and denoting the vector of relative prices No\:?m% by

R we obtain
K-1

ST (6 ~ 8 (BIDF + 85 (A" J R=0 (11)

k=1
This approximate equation must hold for all agents h € H. A sufficient conditions for this
approximate equation to hold is that the matrix sum (in the large brackets) is approximately

Z€T0,
K-1

S8 B BIDF + O (BT = 0. (12)
k=1

In our example with J =5 and K" =27 the largest element in the matrix on the left-hand
side is smaller than 1073! and many elements are zero. This matrix equation solely depends
on the transition matrix II (and the discount factor 3). A consequence of this observation
is that the asset prices matter very little for the portfolio decisions. The stock prices do
not appear in the budget equations since agents do not trade the stocks after the initial
period. And the state price ratios. the elements of R. also have no first-order effects on
the bond portfolios. The agent’s utility functions really only matter for determining the
linear sharing rules in equilibrium. In the end, the bond positions mm, k=1....,K, must
(approximately) satisfy a system of equations that only depends on the transition matrix II
and the discount factor 3. And the portfolios that have this property have positions in bonds

of short maturity that get extremely close to portfolios exhibiting two-fund separation.
Our examples show an approximate separation between the stock market and the bond
market once the number of states and bonds becomes sufficiently large. In addition, the
stock portfolio becomes extremely close to the portfolio prescribed by two-fund separation
{a portion of the market portfolio). These observations lead us to the analysis of conditions
under which (i) exact separation between the stock and bond market holds, (ii) stock
sortfolios display exactly the (static) nature of constant holdings across all stocks, and {iii)
portfolio of finite-maturity bonds exactly spans the consol. We examine these 1ssues In

‘1e next section.

Multiple Finite-Maturity Bonds Span the Consol

} st we motivate the necessity of special conditions and argue that two-fund separation is
g-nerically impossible if we have too few bonds. Recall equation (9). the rearranged budget

sq1ation for agent h given his linear sharing rule,

K-1
(mh ) e+ (0 = 80) 1y + D (6F — Ofs1)a" + Oha” =0 (13)
k=1



Equation (13) states that the &' +2 vectors €. ly and¢!,....¢" in R?Y are linearly dependent
‘0 this fashion. If the number of states Y exceeds K + 2 then this condition cannot be
satisfied for general economies. For example. if the total number of stocks and bonds J + K
equals the number of states ' (so markets are generically dynamically complete). and there
are J > 3 stocks then the system (9) has more equations than unknowns. Using a genericity
argument along the lines of those in Schmedders (2005) we can show equations (9) have no
solutions unless parameters lie in soIne measure zero space.

Although agents’ portfolios tvpically do not exhibit two-fund separation in economies
with only finite-maturity bonds we may ask whether there are special (non-generic) but
economically reasonable conditions that do lead to two-fund separation in such economies.
We next develop such sufficient conditions and begin with economies having i.1.d. dividends.

We then generalize the insights from this simple class of economies to broader ones.

5.1 Equilibrium Portfolios with IID Dividends

We examine a simple case in which equations (9) do have a solution and portfolios exhibit

two-fund separation even if there are only two bonds.

Proposition 1 Consider an economy with J stocks, a one-period and a two-period bond
and Y > J + 2 dividend states. Suppose further that the Markov transition probabilities are
state-independent. so all rows of the transition matrir 11 are identical. If all agents have
equi-cautious HARA utility functions then agents’ portfolios satisfy monetary separation in

an efficient equilibrium.

Proof: Under the assumption that all states are i.1.d. the Euler equations (23. 24) imply
that the price of the two-period bond satisfies ¢° = 3¢, that is. the prices of the two bonds

are perfectly correlated. Then condition (9) of agent h becomes

(m" — "y e+ (" — mf 1y + (8 - 0)g' + 65 3q" = 0.
which is equivalent to

(m" =t e+ (6" = 64 - 1y + (8} = (1= 3)83)g" = 0.
These equations have the unique solution

qh=mh e = 6=

Under the condition of Proposition 1 the system (9) has a very special solution since
the two price vectors ) and gz are linearly dependent. The key fact is that for i.i.d.
dividend transition probabilities the two bonds are sufficient to span the consol. The interest
rate fluctuation does not prohibit the agents from holding portfolios exhibiting two-fund

separation.




Note that under the assumptions of Proposition 1 agents have a position of mw = H@WM. in
the risky two-period bond. The more risk-averse agent h is, the larger the intercept term
b% of his linear sharing rule becomes, see the example in Section 4. So more risk-averse
agents hold more risky bonds relative to stocks than less risk-averse agents. This fact does
not violate two-fund separation. The holding of the two (risky) bonds yields exactly the
constant part of the linear sharing rule.

This last point is a recurring theme in the remainder of our paper and deserves further
elaboration. Even though the short-lived bonds are risky the agents’ positions in these bonds
serve the purpose of creating the safe portion of their respective consumption streams. And
so among equally wealthy agents the more risk-averse ones with a larger safe portion bh
must hold larger bond positions. In this model. therefore, bonds should not be viewed as
part of the risky portfolio. but as part of a portfolio generating a safe payoff stream. In
light of this observation the asset allocation “puzzle” of Canner et al. (1997) disappears.

More risk-averse agents should indeed invest a larger portion of their wealth in bonds.

5.2 Spanning the Consol

The discussion of economies with i.i.d. dividends revealed that a sufficient condition for
agents’ portfolios to satisfy two-fund separation is that the finite-maturity bonds span the
consol. In that case the payoff of the bond portfolio delivers the safe part bh of an agent’s
consumption stream. Then a stock portfolio exhibiting two-fund separation, namely hold-
ings of size m™ of all stocks, delivers the risky part m'e of the agent’s consumption stream.
This observation leads us naturally to the question whether we can generalize this insight
to more general Markov chains of dividends. For the presentation of such a generalization
we need the following technical lemma. Its proof doesn’t provide any economic intuition

and we relegate it to Appendix B.1.

Lemma 1 Suppose the Y x Y transition matriz I >> 0 governing the Markov chain
of ezogenous states in the economy has only real eigenvalues. Further assume that I is
diagonalizable and has L (< Y') distinct eigenvalues. Then the following statements are

true.

(1) If all eigenvalues are nonzero then the matriz equation Iy + anH ar IF =0 has a

unique solution (a},...,a}). Moreover, anp a; = —1.

(2) If zero is an eigenvalue of Il then the matriz equation M,\mnH ay 11F = 0 has a nontrvial

solution. Moreover. any solution (a}.....a}) satisfies MWHH ay =0.

Theorem 2 Suppose the Y x Y transition matriz 1 >> 0 governing the Markov chain
of erogenous states in the economy has only real eigenvalues. Further assume that 1 s
diagonalizable and has L (< Y) distinct ergenvalues. Then the consol is spanned by bonds

of maturities k = 1,2, .. .. L.

2
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Proof: If L bonds of maturity k =1.2.....Lspanthe consol then there must be a portfolio
(6y..... 6. of these bonds such that

L
Iy = 6y — ¢') = > Bklg" "~ a): (14)

This svstem of equations iz equivalent to

L—1

(1= f) Dy = S (6 — Brrr)g" = 618" =0 (15)
k=1

o

Recall that the price of a bond of maturity k 18

p_ B P P T (WP

uy(c) uj(cy)

where P = (1} ?WVV £y is the vector of prices u} Anw\v for consumption in state y. wcvwagﬁ.ﬁm

these expressions into equations (15) and denoting the vector of relative prices P/u} ﬁng by

R we obtaln
L-1

(1= )Ty = S (6 — B (BT + 6T ) R=0. (16)
k=1

where Iy denotes the Y X'}’ identity matrix. A sufficient condition for these equations to
have a solution is that the matrix equation
L-1
(1- 6+ > Aa» _ %T,:m‘qv 0k« (6,34t =0 7
k=1
has a solution. If I1 has only nonzero eigenvalues. then that fact follows from part (1) of
Lemma 1. If T1 has a zero eigenvalue. then that fact follows from part (2) of Lemma 1. In

this case 6 = 1. D

The proof of Theorem 2 makes the intuitive and approximate reasoning at the end of
Section 4.2 precise for economies with the special transition matrices satisfying the theo-
rermn's assumptions. The proof depicts why a small number of finite-maturity bonds spans
the consol when II 1s diagonalizable. The spanning 1ssues reduce to properties of Il in-
dependent of the actual prices P. the initial endowments. and the dynamic evolution of
the distribution of wealth. While this may appear strange. it follows from the fact that
investors’ Euler equations tell us that the relative prices of zero coupon bonds are deter-
mined by I, not marginal utility. This fact reduces the spanning issue (equation 14) to the
algebraic properties of Il (equation 17): in particular. the issue 1s how many pOWETs of II
do vou need in order to span J = 1. In the case where I is diagonalizable (our examples
below show that to be a reasonable assumption), Lemma 1 ensures that the number of
distinct eigenvalues is the minimal number to accomplish that span.

The following corollary to Theorem 2 characterizes equilibrium portfolios.

[
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Corollary 1 [Corollary to Theorem 2/ Suppose the economy s transition matriz [1 satisfies
the assumptions of Theorem 2. Suppose further that all agents have equi-cautious HARA
utilities. If there are bonds of maturities k = 1,2,...,L in the economy then there 15 an

efficient equulibrium in which agents’ portfolios satisfy monetary separation. Moreover, the

bond portfolios in this equiltbrium satisfy the following properiies.

(a) If the transition matriz I has only nonzero eigenvalues, then agent h’s holdings of the

bonds of maturity j = 1, 2,...,L are

T
ho_ MU Lk x
b, = M, Twm f

where M, = 8% + MJ\mnp BEk—kar and A@M,mmi.;@wv is the unique solution to the

matriz equation Iy + Sk ek * =0

(b) If the transition matriz 1 has a zero eigenvalue, then agent h holds gh = b* and has
holdings of the bonds of maturity J = 1.2.....L of

L

@:
%r — thk@;
7T M, M k
k=j
where My = Mmi gl=kq; and (a},a3,...,ap) 15 @ nontrivial solution to the matriz

equation Sk ak * = 0.

Appendix B.1 contains the proof of this corollary. A close examination of the statements

of Corollary 1 leads us to a number of observations.

1. Proposition 11s a simple consequence of Corollary 1, Part (b). With i.i.d. beliefs the
Markov transition matrix I1 has only L = 2 distinct eigenvalues, namely 1 and 0. Case
(b) then states that 2 bonds are sufficient to span the consol. Moreover, since I = I
the pair a* = (a},a3) = (—1,1) is a solution to the matrix equation of Lemma 1. Part

(2) leading to My = 1 — 3 and so to portfolio holdings of 6r = bh and 6 = %l\:u

9. Another extreme case Is a transition matrix I1 with the maximal number of L =Y
distinct eigenvalues. In that case the sufficient condition of Theorem 2 and Corollary 1
states that the number of bonds needed to span the consol is exactly the number of
states Y . Of course, then the economy with J stocks would have a total of J +Y
assets, which exceeds the number of states Y. As a result optimal portfolios will be
indeterminate. The portfolio exhibiting two-fund separation is then just one point in

the manifold of equilibrium portfolios.

3.As 3 — 11t follows that M, — 0 and M, — 0. It can also be easily seen that
AMJLmnh thxmmv 4 0 for all j. Thus. |6;] — oo for all j in case (a) and all 7 = 2 in
case (b). That is, as the discount factor tends to 1 the bond holdings spanning the

consol become unboundedly large.



o

4. Observe that an agent’s bond holdings are proportional to the constant portion of the
agent’s consumption stream. So. if for two agents b? > b > 0 then the second agent

o=l

will have larger positions (in absolute value) of all bonds in the economy.

Next we examine some economically motivated applications of the results from this

section.

5.3 Identical Persistence Across Stocks and States

Consider an economy with J stocks that have independent dividend processes. Each stock
j € J in the economy has the same number D of dividend states. Since the individual div-
idend processes are independent there is a total of ¥ = DY possible states in this economy.
The dividends may vary across stocks, but the stocks’ D x D dividend transition matrices.
= are identical.3 We assume that = has only real nonzero eigenvalues. is diagonalizable,
and has [ distinct eigenvalues. The Markov transition matrix II for the economy is then
the J-fold Kronecker product (see Appendix B.2) of the individual transition matrix for the

dividend states of an individual stock. 1=ZQ=Z® Q== ®%HH =

Theorem 3 Consider an economy (as just described) with J independent stocks that each
have D (stock-dependent) dividend states with identical diagonalizable transition matrices
= having only real nonzero eigenvalues. The matriz = has | distinct eigenvalues. Then
bonds of maturities k= 1.2..... L span the consol, where L = ANHMJ In the presence of
these L bonds, and if all agents have equi-cautious HARA utilities, there exists an efficient

equilibrium wn which agents” portfolios satisfy two-fund scparation.

Proof: Lemma 2 in Appendix B.2 states that the matrix I = mw.u\uH = has only real nonzero
eigenvalues, L = A\M_Lv of which are distinct. and is diagonalizable. Theorem 2 and Corol-

larv 1 then imply the statements of the theorem. O

We illustrate Theorem 3 with an example. Each stock j € J in the economy has only
two dividend states. a “high” and a “low” state. The high and the low dividends may vary
across stocks, but the dividend processes have a common transition matrix. We denote the

dividend’s 2 x 2 transition matrix by

(1+¢&n) 301 -¢€n)
(1-¢&) 3(1+¢€L)

(1
Il

roh— Bl

with €. &2 € (0.1). This matrix = has D = 2 distinct eigenvalues. 1 and § = (y + £1)/2<
1. The Markov transition matrix I1 = ®%uu = for the entire economy has only real nonzero
eigenvalues, J + 1 of which are distinct. The eigenvalues are 1.6.6% ... ¢/, (See Ap-

pendix B.2.)

3 Actually, it would be sufficient for all the indjvidual transition matrices to have the same eigenvalues.

The matrices do not have 1o be identical.

o
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In this economy J + 1 bonds span the consol. We now examine the weights of the
bonds in the portfolio that spans the consol. The formulas of Corollary 1. Part (a). yield
closed-form solutions for the individual bond holdings, but they are difficult to assess. (For
completeness, we display the closed-form solution for (al.....a%_ ;) for small values of J
in Appendix B.2.) Therefore, we calculate their numerical values for a few selected values.
Tables VII and VIII display the portfolios of finite-maturity bonds that span one unit of
the consol for 3 = 0.95 and 8 = 0.99, respectively.

¢ 0.2 0.5
J1 o2 3 4 5 2 3 4 5

6| 1.18 1.00 1.00 100 635 028 105 100
By —4.57 122 0998 1.00| ~-33.10 1167 -044  1.09
651 2567 —4.80 1.23 1.00| 49.96 -44.29 1520 -0.92
64 2586 —4.85 1.23 56.69 —50.67  17.22
65 25.90 —4.86 60.27 —54.06
86 25.91 62.11

Table VII: Bond Portfolio Spanning one Unit of the Consol. 3 = 0.95

¢ 0.2 0.5
J1 2 3 4 5 2 3 4 5

6] 201 099  1.00 1.00| 3292  -3.51 1.30 0.99
f- 1 —29.55 226  0.99  1.00| ~192.76 6479  —8.01 1.59
§5 | 12983 -30.82 231 099 26315 -257.14  86.02 —~11.01
44 130.87 -31.08  2.32 300.31 —-293.91  98.15
b 131.07 —31.13 320.12 ~313.51
86 131.12 330.34 |

Table VIII: Bond Portfolio Spanning one Unit of the Consol. 3 = 0.99

The portfolios look similar to our computed results in the previous section. The holdings
of bonds with short maturity are close to 1, the spanned position of the consol. But holdings
of bonds with higher maturity are much larger and some bonds are even held in a short
position. Moreover. as the eigenvalue stemming from the persistence parameters grows.
these positions become even larger. The same is true when the discount factor increases.
The reason for the (weird) form of the portfolio is that the bond price vectors ¢* become
more and more collinear as k grows. The spanning condition then requires increasingly
larger (in absolute value) weights on these vectors that also have to alternate in sign.

We observe that the weight for the one-period bond converges quickly to 1, as the

number of stocks. J, (and bonds, J + 1) grows. The same is true, albeit at a slower pace.



for the other bond weights. The weights are given by the formula of Corollary 1. Part (a).

J=1 J+1 plJ+1)—k 4+
H n,‘\uf:|k * MXHQ Q ) D*
%u ” MQ Q;AH\ —J+1 A )
N&a »Hu u,TL+ Mux _H uLiT

ko
Oy

Note that for 7 = 1 the denominator exceeds the numerator by 39+ and so. as J grows.
the ratio tends to 1. For j =2 the difference is 377! + 37 a3 which tends to zero and so the
ratio f also tends to 1. We can make similar arguments for the other bond positions. For
a better understanding of the portfolio structure we examine what happens when we let 3
tend to 1. As we observed before, M, tends to 0 and the portfolio must explode. But we

can compute the ratios of the bond weights.

Proposition 2 The ratio of bond weights wn the portfolio of finite-maturity bonds spanning
the consol as 3 tends to 115 as follows (for J € {2,3.4.5}).

Table IX: Weight Ratios as g—1

Proof: The ratios are given by limz— MJ where f;. J € J is given by Corollarv 1. [

The numbers in Table IX point at the cause for the changing sign pattern in the bond
portfolios of Tables VII and VIII. The weights have alternating signs and are Very large.
This leads to the (large) ratios of alternating signs. These ratios appear. only mitigated by
+he discount factor 3, in the portfolio formulas and so cause the economically weird looking

portfolios patterns for bonds of longer maturity in Tables VII and VIIL

6 Approximately Optimal Portfolios with Bond Ladders

The previous section argued that models with many bonds will imply that each investor
will hold a fraction of the market portfolio of stocks. an approximately constant holding
of short-maturity bonds. but the holdings of long bonds will differ substantially from a

constant portfolio and involve large amounts of trading. The implications for long bonds

[\
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are not intuitive. Also, if there were small transaction costs these large trades in bonds
would be substantially reduced. In this section. we examine whether simple strategies can

come very close to implementing equilibrium utility.

6.1 Bond Ladders and Asymptotic Two-fund Separation

For general economies, a small number of finite-maturity bonds will be insufficient to obtain
two-fund separation. Real-world bond markets offer bonds across many maturities. If there
are enough bonds then equilibrium will be Pareto efficient but equilibrium portfolios may
deviate from the simple ones recommended by mutual fund separation. If there are many
bonds then some assets will be redundant and there will be many portfolios that implement
equilibrium consumption allocations. The question is how close can such a market come to
producing classic separation results for the equilibrium portfolios. The next theorem states
that a portfolio with constant stock holdings and constant bond holdings (consistent with
the linear sharing rules) yields the equilibrium consumption allocation in the limit as the
number of bonds tends to infinity. This portfolio is an example of the laddering strategy
since the bond portfolio is reestablished at each state no matter what the bond prices (and

interest rates) are.

Theorem 4 Assume that there are Y states, J stocks and that the investors have equi-
cautious HARA utility functions. Suppose that the economy P has B finite-maturity bonds.

h

and that consumption in an efficient equalibrium follows the hinear sharing rules ch=mhe+

bh .1y, h € H. Define the portfolios

Then in the limit as B increases

J B
lim M&&+%:I&:M&“ETl% = ch.
k=2

B—x
=1

Remark: As B increases the number of assets J+ B will exceed the fixed number of states,
¥, and so the bond price vectors will be linearly dependent. As a result optimal portfo-
lios will be indeterminate. Note that the theorem only examines one particular portfolio,
namely one satisfying two-fund separation and bond laddering. (To avoid indeterminate
optimal portfolios we could increase the number of states in the limit process in order to

keep the number of states and assets identical.)
Proof: Asset prices for bonds and stocks will not depend on B since we are assuming that

B is large enough so that the equilibrium in £8 implements the consumption sharing rules

ch = mhe + b - 1y for all B. The budget constraint (1) yields the consumption allocation

28



that is implied by a portfolio with e\‘.w =mhtvj=1,... . J 8 =bt"vk=1.... B. namely

o>

o= Mg{fs:zf Musq g5~ gf)

k=2
B

= MB:& + =g+ > bk~ )
ru”_

—)
=4

= mle, + " - g

The price @% of bond B is given by the formula (25), see Appendix A. Because 5 < 1.

Qcm — 0 as B — o since 3% — (. Thus, mw — SJQ + b and the statement of the theorem

follows. O

Theorem 4 states that if we have a large number of finite-maturity bonds then the clas-
sic portfolio from static separation theorv will come arbitrarily close to implementing the
equilibrium sharing rule. This result leads us to the conjecture that a portfolio satisfying
two-fund separation and a constant portfolio of a large finite number B of bonds of matu-
rities 1.2..... B is approximately optimal once B becomes sufhciently large. To check this
approximation we calculate the changes in agents’ welfare from using such a portfolio as

opposed to using the optimal portfolio

6.2 Welfare Measure for Portfolios

h

Define a utilitv vector v/ by e} = ‘:ﬁni for a consumption vector c". where ou is the

consumption of agent h in state y € ). Next define

o
PRy =Y 8t = (1 - amT !
t=0
to be the vector of (total) utility values. If the economy starts in state yg then an agent’s
objective function value over the infinite horizon equals dcf ). Now we can define Qwa..
be the consumption equivalent of agent h's equilibrium consumption, which is defined by

M% Qﬂ_.vl\&sm,%:waﬂﬁwmuss-w A: ‘ Sé,\sﬁiy.fv.
Similarly. we define a consumption equivalent ﬁ.s, for the consumption process that agent
h can achieve by holding a portfolio that satisfies two-fund separation and uses a bond
laddering strategy for bonds of maturity 1.2,..., B. The agent determines this portfolio by
solving the maximization problem

Bmu;jﬂzmuqo wm.ﬁ. Q\WIQELAE\%Q:% @Hi)m m:v Ho<
{m.b} Yo

The agent is restricted 1o a two-fund strategv and a bond ladder but is allowed to choose

an optimal stock weight /" and bond holdings b" subject to satisfying the infinite-horizon
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budget constraint (see equation (19) in Appendix A). The prices in the budget constraint are
given by the equilibrium prices. We denote the consumption equivalent from this portfolio,
which is optimal given the restrictions imposed on the agent. by

ClB = ()™ (1= AVhRte+ 5" 1v)))

For the welfare comparison of the portfolio with a bond ladder to an agent’s equilibrium
portfolio we compute the welfare gain of each of these two portfolios relative to the welfare
of the agent’s initial endowment of stocks. For this purpose we also define a consumption
equivalent wao_o for the consumption vector that would result from constant initial stock
holdings vw° = @wro for all j € 7. Since in our examples we tock sharing rules as given we
need to calculate supporting injtial stock endowments w"? by solving the budget equations.
?m _BI"HP @ ((mhe+ b - 1y) - eimi =0 h=1,... . H
Yo
Again the prices in the budget equation are the equilibrium prices. We denote the con-

sumption equivalent from this initial portfolio by

Yo Yo

Cho = ()™t (1= B)V(wh0e))

The welfare loss of the portfolio with constant bond holdings b" relative to the optimal

portfolio is then given by

J.m r,o .» ?m
DQ: =1 - Qco — “Yo QS B Qwo
yo ﬁtr.. hO Qr,« Q:.o :
‘Yo T “Yo Yo ~ “Wo

6.3 Portfolios with Bond Ladders

We calculate welfare losses for approximately optimal portfolios. In order to connect our
results to our previous examples we choose some of the same model specifications as before.

We use the power utility functions from Section 4.2 with the resulting linear sharing rules

1 o 1
ol = ~-b)-e+b 1y and ¢ = m.,q@ e —b-ly.

As before, we normalize stock dividends so that the expected aggregate endowment equals
1 and both agents consume on average half of the endowment. The dividend vectors of the

J = 4 independent stocks are as follows,

stock 1 2 3 4
high d | 1.05 1.08 1.12 1.15
Tosg 0.95 0.92 0.88 0.85

We let the economy start in state yo = 7 (since ¢} = ¢2 = 0.5). The transition probabilities

for all four stocks are those of Section 5.3, that is, all four stocks have identical 2 x 2
transition matrices. Our analvsis in Section 5.3 then implies that markets are complete
with J+1 = 5 bonds. The equilibrium portfolios for this economy then follow directly from
Theorem 3 and Tables VII and VIIL
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For our first set of examples we set £ = 0.2 and so have a persi: =nce probability for a
stock’s dividend state of 0.6 (see Section 5.3). The discount factor 1« 3 = 0.95. We vary
the utility parameters b and . Tables X reports the maximal welfa ¢ ioss (always rounded
upwards) across agents. AC = max,e () 2} ACH. from holding a tv ~fund portfolio with a
bond ladder of length B. (We performed these welfare calculatior  with standard double

precision. Numbers that are too close to computer machine precis 11 to be meaningful are

not reported and instead replaced by “~ 0".)

¥ 1 3 5 10 _W
B\b| 0.05 0.3 0.0 0.3 0.05 (3 0.05 0.3 |
1| 1.4 (—4) 14(-4) |14(-3) 1.4(-3)|72(=3) 7.2 —3) 143 (~2) 48 (-2)
2 | 5.0(=6) 5.0(=6) |3.0(=3) 3.0(=3)|1.3(=2) 1.3 -2) | 6.7 (~2) 7.5(~2)
5 124 (-10) 2.4 (-10)]3.2(=3) 32(=3)11.4(=2) 1.4 -2)[7.1(=2) 8.1 (~2)
10 |83 (=13) 1.1(=13)!26(=3) 2.6 (=3)]1.2(~2) 1.2 (-2)|67(-2) 7.5(-2)
30 | ~0  6.3(=13)|7.7(=4) T.7(—4)|51(=3) 5 (-3)]4.2(=2) 47 (-2)
50| =0 ~0 [1.6(—4) 16(=4)]1.4(-3) 1. (-3)]1.7(-2) 1.9 (~2)
100 =0 =0 [1.2(=6) 12(=6)[1.3(=5) 1 ~5)|2.7 (-4} 2.8 (-4)

As expected the relative welfare losses decrease to zero as © .- number B of bonds in-
creases. However, the losses do not decrease monotonically to € . Recall that the equilib-
rium portfolios exhibit holdings close to b for the one-period b 2 »ut already very different
holdings for bonds of other short maturity. A trivial bond I I - of length 1 prescribes a
bond holding that is not too far off from the equilibrium he 1 : of approximately . On
the contrary, a bond ladder of length 5. for example, forces : 1 rifolio upon an agent that
is very different from the equilibrium portfolio in the holdin: : of these bonds. At the same
time the length of the bond ladder is still too short for the | miting behavior of Theorem 4
to set in. These facts result in the increased welfare losse = for v > 3. Once the ladder
gets long enough the welfare losses decrease monotonicalls t+ zero. Observe that welfare
losses continue to decrease even after sufficiently many bor i¢ are present to ensure market
completeness. With J = 4 stocks and ¥ = 16 states only 12 bonds are needed to complete
the markets. The addition of more long-term bonds im roves the performance of bond
ladder strategies even though the new bonds do not impre ve the span of the traded assets.
The longer the time to maturity of the longest bond the maller are both its prices across
states and the standard deviation of these prices. The de r-asing reinvestment risk results

in smaller welfare losses of the bond ladder.

Table XI reports the restricted portfolio weights (riv ,¢°) for agent 1. The last row in

the table shows the coefficients of the linear sharing i e which correspond to the hold-

!

ings of stocks and the consol in an economy with a ce s. The agent’s holdings deviate
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~ 1 : 3 5 10

B\b 0.05 03 005 0.3 0.0 0.3 0.05 0.3

T | (497, 062) (482,.370; 499, .021) (.496..129) | (.500..013) (.500,.077) ] (.501..006) (.507..036)
5 | (495..052) (.470,.311 | 198, .019) (492..111) | (:500,.012) (.498,.067) | (-501,.005) (.505..031)
5 | (489..050) (.433..300)| 96,.020) (476..118)] (.498,.012) (.488..073) | (.500,.006) (.501..034)
10 | (480,.050) (.380..300) | .91,.023) (.447..137) [ (495,.015) (.469..088) | (.498,.007) (491,.042)
30 | (461,.030) (265..300) | 173..035) (.336..210) | (.479,.027) (.376..161) | (488, 016) (.432..095)
50 | (454,.050) (.223,.300) | ( 160,.043) (.260,.260) | (465..038) (.290..220) | (.474..029) (.346,.172)
100 | (.450,.050) (.202,.300) | ( 451,.049) (.205,.297) 22 049} (.209,.293) | (.453,.047) (.218..284)
(ml.b)](d5..05) (2 .3 ) (:5.05) (2 .3 )| (45 ,05) (2 .3 ) (45 .05 ) (2 .3 )|

Table XI: (ral,b!) for Table X

considerably from these -oefficients even when the welfare loss is already very small. For
example, if y = 5, b =( i and B = 30, the holdings are ?,:ﬁmmv = (.376..161) instead of
(m!.b) = (.2,.3) even tkugh the welfare loss is only just above 0.5%. This deviation is
caused by the reinvestr:e' - risk in the longest bond. So, even though a ladder of. for examn-
ple. 30 bonds comes very ose to implementing the equilibrium allocation it uses portfolio
weights different from the tock and consol weights to do so.

We recalculated all nu nbers in Tables X and XI for various sets of parameters. For
completion we report in A pendix C results for a larger level of the persistence parameter
(€ = 0.5). The results de r. 1t change qualitatively. Similarly, changing the discount factor
does not result in qualita:iv-ly different results.

In summary, holding : 1 srtfolio of a bond ladder together with a mutual fund of risky
assets gives investors almzst “he same welfare as the equilibrium investment strategy. The
portfolio weights between ti - mutual fund and the bond ladder differ from the weights
between the mutual fund and a consol because of the risk in bond prices even when the time
to maturity of the longest bc -d is similar to that observed in actual markets. We observe
an important role for reduna .at bonds since adding more long-term bonds improves the
performance of bond ladder strategies even though the new bonds do not improve the span
of the traded assets. And althoigh we did not explicitly model transaction costs we motivate
the construction of bond ladder as a sensible investment approach in the face of transaction
costs. As we have seen. equilit um investment strategies imply enormous trading volume
in the bond markets which wouli! be very costly in the presence of transaction costs. On the
contrary. bond ladders minimize sransaction costs since the only transaction costs are those
borne at the time the bonds cre issued. Therefore. asset redundancy is desirable since it
improves the performance of bon: ladder strategies which in turn help investors economize

on transaction costs.



7 Conclusion

We have reexamined the classical two-fund separation theory in a dynamic general equilib-
rium model and found that the static results fail to generalize to a dynamic world unless a
consol is present. either explicitly or implicitly through dyvnamic trading of finite-maturity
bonds. 1f a consol does not exist then economies with families of finite-maturity bonds
tvpically exhibit an approximate separation of equity and bond markets but equilibrium
portfolios that imply unrealistically large trading volurnes in bonds.

We then analyzed the welfare properties of portfolios with bond ladders. a popular
investment strategy for fixed-income investments. Welfare losses from A:os-mp::&lcav
portfolios exhibiting classic asset allocations (with bond ladders mimicking a consol) ap-
proach zero as the length of the bond ladder increases. In light of these results. we argue
that transaction cost considerations make portfolios using two-fund separation and bond

laddering nearly optimal investment strategies in dynamic markets.

Appendix

A Equilibrium in Dynamically Complete Markets

We use the Negishi approach (Negishi (1960)) of Judd et al. (2003) to characterize effi-
cient equilibria in our model. Efficient equilibria exhibit time-homogeneous consumption
processes and asset prices. that is. consumption allocations and asset prices only depend
1,
.cvvtmun
for consumption across states y € Y. We denote the S x S identity matrix by Is. Negishi

on the last shock y. Define the vector P = ?m? € %ﬁnfr to be the vector of prices
weights by Mo h=2.....H. and use & to denote element-wise multiplication of vectors.
If the economy starts in the state yo € Y at period t = 0. then the Negishi weights and

consumption vectors must satisfv the following equations.

wi(cl) = Arupley) = 0. h=2. H. oye)d (18)
J
s - MNP (" - ST urta) = 0. h=2....H. (19)
7=l Yyo
H
anlme = 0, yel. (20)
h=1

Once we have computed the consumption vectors we can give closed-form solutions for

asset prices and portfolio holdings. The price vector of a stock j is given by
¢ & P=ils— 37 AP & &) (21)
Similarly. the price of a consol is given by

o & P =g ST SIP. (22)
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We calculate the price of finite-maturity bonds in a recursive fashion. First, the price of

the one-period bond in state y is

I )
VT T ()

where I, denotes row y of the matrix II. Then the price of the bond of maturity & is

B (Pedt) B3I TP

; 24
CAEY (el i
Repeated substitution yields the bond price formula
o O, P AR YL (%), P 25)
W= 7rdy Tl : (2
ui(cy) u)(cy)

B Technical Detalils

B.1 Additional Proofs

ﬁﬂOOmOmHmBBNH“hmﬁyHN\JNN\/%UmQmmwmm:«&:mmo:rmEp?wki.m.Eom E
is a transition matrix A; = 1. Since I is diagonalizable and nonsingular, II = CAC™! where
C is invertible and A is diagonal containing only. but all of, the eigenvalues A,. Furthermore.
C-MIKC = Ak for any k = 1,2.... (see, for example, Simon and Blume (1994, Theorem
23.7)).

Statement (1). Multiplying the statement’s matrix equation by ¢! from the left and

by C from the right leads to the equivalent system.,

L

MEA >x = in..

k=1

A is diagonal and has only L distinct entries. As a result this last system is equivalent to

the L-dimensional linear system

11 1]
A2 (Ao)? (Ao)E
M= (W) (Az)*
ﬁ Ar () o OpE ]
where we assume w.l.o.g. that Ay =1, Ae. ..., A are the L distinct eigenvalues of II. Column

k contains the corresponding (distinct) eigenvalues of [1¥. The matrix M has full rank L

since all eigenvalues are nonzero. Thus, the original matrix equation has a unique solution.
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Note that the first equation requires M,\mnu ar = —1.

Statement (2). Multiplying the statement’s matrix equation by C7} from the left and

by C from the right implies,
L

MDW >x = 0.

k=1
The diagonal matrix A has only L — 1 distinct nonzero entries. As a result this last system

is equivalent to the (L — 1)-dimensional linear system

\&\.T:i...niﬂﬂo.

where )
1 1 . 1
N (et (e)f
M= N ()P (Aa)*
| AL (p-)? 0 (et
where we assume w.1.0.g. that A1 = 1, Ao, -, A are the L—1 distinct nonzero eigenvalues

of T1. The matrix M' has full row rank L — 1. Thus. the original matrix equation must have
a nontrivial solution. (In fact, the system has a one-dimensional linear solution manifold.)

Note that the first equation requires MMHH ap=0. 0

Proof of Corollary 1: In an economy with bonds of maturities k = 1.2..... L. budget
constraint (&) becomes

L
mh e+ b1y = e+ %C% —g¢)+ M%ETH - ¢5). (26)
k=

Lol

‘Pmcmmowm:»oo:&ao:woa two-fund separation 1s mt = n" for all agents h € H. (This

condition is only sufficient but not necessary since there could be other stock weights my =
m".) For this condition to hold agent h's bond portfolio must satisfy

L
b1y = 1y — ')+ Y BR(dT =) (27)

k=

L]

that is, the L bonds must span the consol. That fact follows from Theorem 2.
In the proof of Theorem 2 we showed that a sufficient condition for the previous system

of equations to have a solution is that the matrix eguation

L-1
(b — B0y + S (6) — 6L (BT + oy (3t = 0. (28)
k=1
has a solution. Note that the coefhcients satisfv (b" — oh) + me (oh - mntv +6h = b

Case (a). Suppose the transition matrix I1 has only nonzero eigenvalues. Multiply equa-

tions Iy + Y K., Gk I1F = 0 (Lemma 1. Part (1)) by 3% to obtain Gy +YF 3L—kar (30)F =

3

ot



0 and define the sum of the (new) coefficients to be M, = 3t + M\)mnﬂ QthDM. Then multi-

A . .
plying through by ¢» yields the expression

b, L
e .N |
A??u 1y 47%

3t *kay) (BID)F =0, (29)

>

@F
1o

where the sum of the coefficients m,m ah+M)\mHH BL*a;) equals b, Matching the coefficients
in equations (28) and (29) gives the expressions of the corollary.

Case (b). Suppose the transition matrix II has a zero eigenvalue. Multiply equations
S°L g II* = 0 (Lemma 1, Part (2)) by 3" to obtain Sk 3Lekar (3M)% =0 and define
the sum of the (new) coeficients to be My = MUNHH #L=*a;. Then multiplying through by
G?

A vields the expression

L

b ,
(58 ak) (3m* =0, (30)
k=1~

. h
where the sum of the coefficients MUMU_ Wﬂ

BE=ka; equals b". Matching the coefficients in

equations (28) and (30) yields 9" = b" and the other expressions of the corollary. T

B.2 Kronecker Products

Let A be an n x p matrix and B be an m x ¢ matrix. Then the Kronecker or direct product

A® B is defined as the nm x pg matrix

] D.:m Q\;m e ng g
DBW Dmmm Dwmm
AR B = : : .
D:Hm Dﬁwm U Dﬁmm

Langville and Stewart (2004) list many useful properties of the Kronecker product. For our

purposes we need the following properties.

1 If A and B are stochastic (Markov matrices) then A B is stochastic.
2. rank(A & B) = rank(A)rank(B).

3 Let A and B be two square matrices. Let A (i) be an eigenvalue of A (Byand 4 (zB)
be the corresponding eigenvector. Then Au is an eigenvalue of A® B and 24 Q5
is the corresponding eigenvector. Every eigenvalue of A B arises as a product of

eigenvalues of A and B.
4. If A and B are diagonalizable then A B is diagonalizable.

5. (PDP~1)® (PDP~') = (PQP)(D®D) (P QP
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In Sections 4.2 and 5.3 we defined economies with special transition matrices that are J-
fold Kronecker products of D x D transition matrices Zooll=2QRQzQ Q== ®%HH =
Property 1 of Kronecker products implies that II is a stochastic matrix (Markov transition
matrix). The following properties of TI follow from the characteristics of = and the listed

properties of Kronecker products.

Lemma 2 Let the transition matrir I1 be a J-fold Kronecker product of the matriz =, which
has only real nonzero eigenvalues, 1 diagonalizable, and has | distinct eigenvalues. Then 11

has the following properties.
1. rank(Il) = (rank(Z))’.
9 The matriz [1 has DY real nonzero ergenvalues, A.\MWJLV of which are distinct.

9 The matriz 11 is diagonalizable. that is, the eigenvector matriz C of 11 has full rank
D7,

In Sections 4.2 and 5.3 we encountered the special case of the 2 x 2 transition matrix by

(1—-¢n)

(1+¢&L)

(1=+¢&x)
(1-¢&1)

with €5.€ € (0,1). This matrix = has D = 2 distinct eigenvalues. 1 and § = (g + &) /2 <

il
rah— Rl
rah— Bl

1. For the computation of bond portfolios we need to find (a}.ab.....a%, ;) where
(a}.a5,. ... ay) =Ml
and )
11 1 g
m m,w m.\.,?u
M= & & gAY
ﬁ. m.\ MN.\ L m.:LJ.v:

We give the solution for J = 2.3. 4.5 and leave all other cases to the reader and Mathemat-

ica. For J = 2 the unique weights a” = (al. a5.ay) are as follows.
3 146462 1+6+€ 1
tUTe e e

And for J = 3 the unique weights a* = (a].a5.aj, ay) are

1+ E |H+m+w%+m@+mb 1rgs€P4E
mw ’ Mm ’ mo .mo

For J = 4 the unique weights a* = (a}.a5.a3, a3, aj) are

a =

1-6+et+e3+¢8 1464262226826t -5+ 6f
¢ . £ .
1rerozaogdragt 18+ ¢ R e e

Mc ’ mHo

|~

UaaY
—
j=)

w
~i



RS o el SRR B

Finally. for J =

1A @@t 1464288526 43¢t 4 o6

5 the unique weights a™ = (a].a3. a3, a}. ai, ag) are

7+ 2

3€ 4+ 365 + 366 4+ 267

mw

+ &8

MU
1+ €4262 4363+
- mHu
1+ &4+ 262 4263 1+ 3¢d

Mﬁu+0n.m +Mﬂ+Mw

+ &9

1+6+8+8 ¢+ 68

m:

C Additional Results for Section 6.2

For the examples in Section 6.

mwm

2. Tables XII and XII report the analog results for Tables X

and XI when the persistence parameter is £ = 0.5. This parameter change does not resuls in

any qualitatively different results. (Again numbers that are too close to computer machine

precision to be meaningful are not reported and instead replaced by *=~ 0".)

- 1 3 i “ 10

Bb| 0.5 0.3 0.05 0.3 0.05 0.3 0.05 0.3

1 | 7.8(—4) 7.9(—4) |53(=6) 53(=6)[9.0(—4) 9.0 (=4)]1.2(-2) 13 (-2

2 | 19(=4) 19(—4) |86 (—4) 86 (—4)|56(-3) 5.6 (=3)|3.6(=2) 39(-2)

5 [ 22(=6) 23(=6) |28(-3) 28(=3)[1.3(-2) 1.3(=2)|66(-2) 7.4(-2)

10 | 1.3(=9) 14(=9) {26 (=3) 26(=3)|12(-2) 12(=2)|67(=2) 7.5 (=2)

30 | 12(=11) 88 (—14) | 7.7 (=4) 7.7(—4)|51(=3) 51 (=3)]42(=2) 47 (=2)

50 ~0 =0 | 16(—4) 16(—4)|14(=3) 14(=3)[1.7(=2) 1.9 (-2)

00| =0 ~0  |12(-6) 12(=6)| 13 (=5 13(-5)|27(-4) 2.8(-4)]

Table XII: Welfare Loss from Bond Ladder (£ = 0.5)
- 1 I 3 10
B\b 0.05 0.3 0.05 0.3 0.05 0.3 0.05 0.3
1 | (496..095) (.472,.570) | (.499,034) (.492,.203) ! (.500,.205) (.498..123)! (.501..010) (.506..060)
2| (.494,.064) (.463..387) | (.498,.024) (.489..141) | (.499,.014) (.496,.086) | (.501..007) (.505..041)
5 |(.489,.051) (.431..307) | (496..020) (.475,121)  (.498..012) (.487,.075) | (.500..006) (.500..035)
10 | .480,.050) (.380,.300) | (.491..023) (.447,.137) | (.495,.015) (.469..088)  (.498,.007) (.491,.042)
30 | .461..050) (.265,.300) | (.473..035) (.336,.210) | (479,.027) (.376..161) | (.488,.016) (.431..095)
50 | (.454..050) Emw :300) | (.460,.043) (.260,.260) | (.465,.038) (.290,.229) | (.474..029) (.345..172)
100 | (.450,.050) (.202,.300) A.ar.o@ (.205,.297) | (.451. o@v (.209..293) | (.453..047) (.218..284)
[m' b [(45 05 ) (2 3 )[(45 .05) (2 .3 )[(45.05) (2 .3 J 145 105 ) (2.3 )

Table XIII: (11
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b') for Table XII
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