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1 Introduction

The problem of identifying an auction design that maximizes the auctioneers expected revenue

(optimal auction) is in general difficult (see for example Ronen and Saberi (2002)). An obvious

difficulty is the fact that there are a multiplicity of parameters to play with. For example, should

payment depend on the bidders identity? Should one employ a reserve price? Should one subsidize

some bidders? Does it pay to screen bidders before hand? There are a multitude of design param-

eters to set. It is not clear how one searches through all these parameters to find the setting that

best achieves them.

Under the assumption of independent private values, the revelation principle of Myerson (1981)

allows one, without loss of generality, to restrict attention to direct revelation mechanisms. When

the types of agents were continuous and one-dimensional Myerson used the revelation principle to

determine the optimal auction. Myerson’s (1981) approach has become a staple in the auction

design literature. However, the approach cannot be easily extended to deal with multi-dimensional

types (see the review by Rochet and Stole (2003)).

Most efforts for solving the optimal auction problem with multi-dimensional types have assumed

a continuous type space. In this paper we study auctions with multi-dimensional types that are

discrete. This has the advantage of transparency of analysis, and it also allows us to approach the

problem from an intuitive network perspective. We interpret optimal auction payments as being

determined by shortest paths on a network representing bidders types. This approach highlights

the connections between optimal mechanism design and the problem of finding a shortest path in

a lattice, as well as linear programming. It clarifies the nature of the difficulties inherent in the

multi-dimensional optimal auction design problem, and makes clear which cases are solvable and

which are not.

This paper offers a comparison between the optimal auction problem with continuous types and

with discrete types. We will examine the optimal auction problem in one and multi-dimensional

settings, providing a network interpretation of existing results, such as Myerson’s (1981) one-

dimensional optimal auction design problem, and Wilson’s (1993) problem of a monopolist facing

consumers with two-dimensional types. Our approach also provides a new result for a particular

case when types are two-dimensional.

The paper is organized as follows. The next section provides a general setup and describes a

motivating example. Section 3 is devoted to the case of one-dimensional types and its connection

to Myerson (1981). In this section we give a new perspective on the ironing procedure. A general
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analysis of multi-dimensional optimal auctions is provided in Section 4. Analyses of particular

solvable cases are performed in Sections 5 and 6. Section 7 concludes.

2 Setup and Motivating Example

Following Myserson we invoke the revelation principle. The model and notation used are described

below.

1. Agents and auctioneer are risk neutral.

2. F is the set of feasible allocations of the resources amongst the agents and the auctioneer.

3. T = {t1, t2, . . . , tm} is a finite set of an agent’s types (possibly multi-dimensional). A collection
of types one for each (of n agents) will be called a profile t. Let Tn be the set of all profiles.

A profile involving only n− 1 agents will be denoted tn−1.

4. If a ∈ F and a bidder has type ti she assigns monetary value v(a|ti) to the allocation a ∈ F .

5. Uncertainty about how the valuations of the bidders is captured assuming that types are

independent draws from a common distribution that is commonly known. This is the common

prior assumption. Let fi be the probability that a bidder has type ti.

6. The probability of a profile tn−1 ∈ Tn−1 being realized is π(tn−1).

One could easily include costs for the seller into the setup, but it changes nothing essential

in the arguments and clutters the notation. In a departure from the auction theory literature we

assume a discrete type space.

By the revelation principle we can restrict attention to direct revelation mechanisms. Each

agent is asked to announce her type. The auctioneer, as a function of the announcements, decides

what element of F to pick and what payments each agent will make.

Let Pi be the expected payment that an agent who announces type ti must make. An allocation

rule assigns to each member of Tn an element of F .1 If a is an allocation rule, write ai(t) to denote
the the allocation to a type ti under profile t. The expected utility of an agent with type ti under

1Strictly speaking one should allow an allocation rule to be randomized. Given risk neutrality, we omit this

possibility. To account for it requires introducing additional notation that is subsequently not used.
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this rule will be (under the assumption that agents announce truthfully)

Etn−1 [v(ai[ti, t
n−1]|ti)] =

X
tn−1∈Tn−1

v(ai[ti, t
n−1]|ti)π(tn−1).

The expected utility of agent with type ti announcing tj ( 6= ti) under allocation rule A is

Etn−1 [v(aj [tj , t
n−1]|ti)] =

X
tn−1∈Tn−1

v(aj [tj , t
n−1]|ti)π(tn−1).

To ensure that an agent will report truthfully we impose (Bayesian) incentive compatibility

(IC): for each agent with type ti:

Etn−1 [v(ai[ti, t
n−1]|ti)]− Pi ≥ Etn−1 [v(aj [tj , t

n−1]|ti)]− Pj ∀ti, tj ∈ T.

To ensure that each agent has the incentive to participate we impose the individual rationality

(IR) constraint:

Etn−1 [v(ai[ti, t
n−1]|ti)]− Pi ≥ 0 ∀ti ∈ T.

If we add a dummy type, t0 which assigns utility 0 to all allocations, and set P0 = 0, we can fold

the IR constraint into the IC constraint.2 So, from now on T contains the dummy type t0.

The auctioneer’s problem is to maximize expected revenue subject to IC. Expected revenue

(normalized for population) is
Pm

i=0 fiPi. Fix an allocation rule a and let

R(a) = max
Pi

mX
i=0

fiPi

s.t. Etn−1 [v(ai[ti, t
n−1]|ti)]− Pi ≥ Etn−1 [v(aj [tj , t

n−1]|ti)]− Pj ∀ti, tj ∈ T.

Call this program LPa. If LPa is infeasible set R(a) = −∞. Thus the auctioneers problem is to

find the allocation rule a that maximizes R(a).

One way to solve this optimization problem is to fix the allocation rule a. Then we can rewrite

the IC constraint as follows:

Pi − Pj ≤ Etn−1 [v(ai[ti, t
n−1]|ti)]−Etn−1 [v(aj [tj , t

n−1]|ti)] ∀i 6= j.

If there is a feasible solution to this system of inequalities then we can find payments that implement

a in an incentive compatible way.

2It is sometimes common to require that the actual payoff be non-negative rather than the expected payoff as we

have done here. This stronger condition is called ex-post individual rationality.
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To understand this inequality system it helps to flip to its dual. The dual is a network flow

problem that can be described in the following way. Introduce one node for each type (the node

corresponding to the dummy type will be the source) and to each directed edge (j, i), assign a length

of Etn−1 [v(ai[ti, t
n−1]|ti)]−Etn−1 [v(aj [tj , t

n−1]|ti)]. Each Pi corresponds to the length of the shortest
path from the source to vertex i. For fixed a, the optimization problem reduces to determining the

shortest path tree in this network (union of all shortest paths from source to all nodes).3

2.1 Motivating Example

Consider the allocation of one good among two agents with types {0, 1, 2}, here 0 is the dummy
type. Let f1 = f2 = 1/2 and π(1) = π(2) = 1/2 be the probabilities. Choose as the allocation

rule the following: assign the object to the agent with highest type, in case of ties randomize the

allocation ‘50-50’. The possible allocations are: agent 1 wins, agent 2 wins, agent 1 and 2 get 1/2 of

the item, seller keeps it. For the valuations we have: an agent of type ti who wins the item values

it at ti; if he tied with his competitor and gets only a half he derives value ti/2 if finally he loses

or the seller keeps it, he gets value 0. Now to the computation of expected utility when honest. If

t1 = 1 then

Etn−1 [v(α[ti, t
n−1]|ti)] =

X
t1∈{0,1,2}

v(α[ti, t
1]|ti)π(t1) =

1

4
,

and is equal to 3
2 if ti = 2.

Similarly we obtain for Etn−1 [v(α[t, t
n−1]|ti) :

ti \ tj 0 1 2

0 0 0 0

1 0 1
4

3
4

2 0 1
2

3
2

So we obtain for the optimization problem

max 1
2P2 +

1
2P2

s.t. P1 − P0 ≤ 1
4 , P0 − P1 ≤ 0, P0 − P2 ≤ 0,

P2 − P0 ≤ 3
2 , P2 − P1 ≤ 1, P1 − P2 ≤ −12 ,

P0 = 0.

3The reader unfamiliar with Network Flows may consult Ahuja, Maganati and Orlin (1993).
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The resulting shortest path problem is depicted dashed in figure 1. Reading off the shortest

path distances to t1, t2 yields P1 = 1/4 and P2 = 5/4. So the auctioneer can realize revenue of 3/4

with this allocation rule.
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Figure 1

If the network has a negative cycle, the dual problem is unbounded, which means the original

primal problem is infeasible. Thus, there is no set of payments to make the allocation a incentive

compatible. To summarize, given an allocation rule we have a way of checking whether it can be

implemented in an incentive compatible way.

Naively, one could fix an allocation rule a, then solve the inequality system and repeat. The

problem is that the set of allocation rules need not be finite or even countable! Thus, unless one is

prepared to make additional assumptions about the structure of the problem, the optimal auction

will be difficult to identify. The rest of the paper is dedicated to solving the optimal auction

problem in one and multi-dimensional settings from the point of view that auction payments are

determined by shortest paths through a network representing agents’ types.

3 The One Good (Multi-Unit) Case

We consider first the case of a seller with K units of an indivisible good who is selling it to n buyers

with constant marginal valuations. The marginal valuations are private information.4

If a is an allocation rule, write Ai to be the (expected) quantity of the good that an agent with

type ti receives. The approach taken is to identify inequalities that the Ai’s must satisfy. This

will yield a relaxation of the underlying optimization problem with the Ai’s as decision variables.

Subsequently we identify an allocation rule that will generate the expected allocations identified in

the solution to the relaxation.

4This case is dicussed in Rochet and Stole (2003).
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IC implies:

v(Ai|i)− Pi ≥ v(Aj |i)− Pj .

We associate a network with this collection of IC constraints. Introduce a vertex i for each type

i. Between every ordered pair of vertices (j, i) a directed edge of length v(Ai|i) − v(Aj |i). The
allocation rule will be incentive compatible iff. this network has no negative length cycle. if this

network has no negative length cycles we can choose the Pi’s to be the length of the path from an

arbitrarily chosen root vertex, r, to vertex i in the shortest path tree rooted at r. If in addition we

want the IR constraint to hold, we would choose the root, r to be the vertex corresponding to the

dummy type t0.

Assuming a is incentive compatible, the cycle i → j → i must have non-negative length. This

observation gives us our first result.

Theorem 1 An allocation rule that is incentive compatible must be monotonic. That is if r ≤ s

then Ar ≤ As.

Proof. Suppose r ≤ s but Ar > As. Then, incentive compatibility implies that

v(Ar|r)− v(As|r) ≥ Pr − Ps.

Increasing differences implies that

v(Ar|r)− v(As|r) ≤ v(Ar|s)− v(As|s).

Hence

v(Ar|s)− v(As|s) ≥ Pr − Ps,

i.e. v(Ar|s)− Pr ≥ v(As|s)− Ps, violating incentive compatibility.

If i ≥ j we refer to

v(Ai|i)− Pi ≥ v(Aj |i)− Pj

as a downward IC constraint. If i < j it is called an upward IC constraint. Next we show that

‘adjacent’ IC constraints suffice. This also follows from the absence of negative cycles. If the

network has no negative length cycles, then the length of the edge from i to i+ 2 must be at least

as large as the length of (i, i+ 1) plus the length of (i+ 1, i+ 2).

7



Theorem 2 Suppose that v satisfies increasing differences. All IC constraints are implied by the

following:

v(Ai|i)− Pi ≥ v(Ai−1|i)− Pi−1 ∀i = 1, . . . ,m (ICd
i )

v(Ai|i)− Pi ≥ v(Ai+1|i)− Pi+1 ∀i = 1, . . . ,m− 1 (ICu
i )

Proof. To show why only the adjacent downward IC constraints are sufficient, we show that the

following pair of inequalities:

v(Ai|i)− Pi ≥ v(Ai−1|i)− Pi−1

v(Ai−1|i− 1)− Pi−1 ≥ v(Ai−2|i− 1)− Pi−2

imply v(Ai|i)− Pi ≥ v(Ai−2|i)− Pi−2. The rest will follow by induction.

Adding the given pair of inequalities yields:

v(Ai|i)− Pi + v(Ai−1|i− 1) ≥ v(Ai−1|i) + v(Ai−2|i− 1)− Pi−2.

Rearranging this:

v(Ai|i)− Pi ≥ [v(Ai−1|i)− v(Ai−2|i)]− [v(Ai−1|i− 1)− v(Ai−2|i− 1)] + v(Ai−2|i)− Pi−2.

By increasing differences and monotonicity of the allocation rule:

[v(Ai−1|i)− v(Ai−2|i)]− [v(Ai−1|i− 1)− v(Ai−2|i− 1)] ≥ 0,

and this yields

v(Ai|i)− Pi ≥ v(Ai−2|i)− Pi−2.

Almost identical argument show that only the adjacent upward IC constraints are sufficient.

This follows from the fact that the following pair of inequalities:

v(Ai+1|i)− v(Ai|i) ≤ Pi+1 − Pi

v(Ai+2|i+ 1)− v(Ai+1|i+ 1) ≤ Pi+2 − Pi+1

when added together imply that

v(Ai+2|i)− v(Ai|i) + [v(Ai+2|i+ 1)− v(Ai+1|i+ 1)]− [v(Ai+2|i)− v(Ai+1|i)] ≤ Pi+2 − Pi,

and hence by increasing differences and monotonicity of the allocation rule:

v(Ai+2|i)− v(Ai|i) ≤ Pi+2 − Pi

8



The rest follows by induction.

In view of the above, our network can be depicted as shown in figure 2.
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Figure 2

Notice that this network has no negative length cycles if and only if all the cycles on adjacent

pairs of vertices are non-negative. Specifically,

v(Ai|i)− v(Ai−1|i) + v(Ai−1|i− 1)− v(Ai|i− 1) ≥ 0

implies that

v(Ai|i)− v(Aj |i) ≥ v(Ai|i− 1)− v(Ai−1|i− 1).

By increasing differences, this last inequality can hold only if Ai ≥ Ai−1. That is, the allocation rule

must be monotonic. We thus conclude that a is incentive compatible if and only if a is monotonic.

Suppose now that a is incentive compatible. We know that the our network of figure 2 has no

negative length cycles. It is easy to see that the shortest path tree rooted at dummy vertex ‘0’

must be 0 → 1 → 2 → . . . → m. Algebraically, we have set A0 = 0, and P0 = 0 for the dummy

type and

Pi =
iX

r=1

[v(Ar|r)− v(Ar−1|r)]. (1)

Notice that Pi − Pi−1 = v(Ai|i) − v(Ai−1|i) for the above expected payment schedule, hence all
downward IC constraints are satisfied and bind, i.e.

v(Ai|i)− Pi = v(Ai−1|i)− Pi−1 ∀i = 1, . . . ,m.

It is easy to see that the upward IC constraints all hold, but for completeness we provide the

argument.

Lemma 1 If either the downward constraint (ICdi ) or the upward constraint (IC
u
i−1) binds, then

the other one is satisfied.
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Proof. If the downward adjacent ICd
i constraint binds, then

v(Ai|i)− v(Ai−1|i) = Pi − Pi−1.

Then by increasing differences and monotonicity of the allocation rule:

v(Ai|i− 1)− v(Ai−1|i− 1) ≤ Pi − Pi−1,

which means that the corresponding upward constraint ICu
i−1 is satisfied.

If the upward adjacent ICui−1 constraint binds, then

v(Ai|i− 1)− v(Ai−1|i− 1) = Pi − Pi−1.

Then by increasing differences and monotonicity of the allocation rule:

v(Ai|i)− v(Ai−1|i) ≥ Pi − Pi−1,

which means that the corresponding downward constraint ICd
i is satisfied.

We now summarize our conclusions.

Theorem 3 For any monotonic allocation rule a there exists an expected payment schedule {Pi}mi=0,
such that all the adjacent IC constraints are satisfied.

Proof. Set Ar = 0, and P0 = 0 for the dummy type. Then set

Pi =
iX

r=1

[v(Ar|r)− v(Ar−1|r)].

Notice that Pi − Pi−1 = v(Ai|i) − v(Ai−1|i) for the above expected payment schedule {Pi}mi=0,
hence all (ICd) are satisfied and bind, i.e.

v(Ai|i)− Pi = v(Ai−1|i)− Pi−1 ∀i = 1, . . . ,m.

Hence Lemma 1 gives us that all (ICu) are satisfied, and thus by Theorem 2 the allocation rule a

is incentive compatible.

3.1 A Formulation

If a is the allocation rule and t a profile of types denote by ai(t) the allocation to a type ti. Then

Ai =
X

tn−1∈Tn−1
ai[ti, t

n−1]π(tn−1).
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Let ni(t) be the number of agents with type ti. The problem of finding the optimal auction can be

formulated as:

Z1 = max
{a}

mX
i=0

nfiPi (OPT1)

s.t. v(Ai|i)− Pi ≥ v(Ai−1|i)− Pi−1 ∀i = 1, . . . ,m (ICd
i )

v(Ai|i)− Pi ≥ v(Ai+1|i)− Pi+1 ∀i = 1, . . . ,m− 1 (ICu
i )

0 ≤ A1 ≤ . . .Ai ≤ · · · ≤ Am (M)

Ai =
X

tn−1∈Tn−1
ai[ti, t

n−1]π(tn−1) (A)

X
i

ni(t)ai[ti, t
n−1] ≤ K ∀t ∈ Tn (C)

An upper bound on each Pi is the length of the shortest path from the dummy node ‘0’ to

vertex i in the network of figure 2. This is proved formally below.

Lemma 2 All downward constraints (ICdi ) bind in a solution to the [OPT1] problem.

Proof. First, notice that at an optimal solution of the [OPT1] problem either (ICd
i ) or (IC

u
i−1)

must bind for ∀i, since otherwise we can either increase payments, or reduce allocations, thus
achieving more revenue. If (ICdi ) binds, it gives

P d
i = v(Ai|i)− v(Ai−1|i) + Pi−1. (P d)

Binding (ICu
i−1) gives

Pu
i = v(Ai|i− 1)− v(Ai−1|i− 1) + Pi−1. (Pu)

then increasing differences and monotonicity of the allocation rule imply P d
i ≥ Pu

i , i.e. that higher

revenue is achieved with (ICd
i ) constraints binding.

The essence of the previous result is that once the allocation rule is chosen, equation (1) pins

down the payments necessary to ensure incentive compatibility. Our problem reduces to finding

the optimal allocation rule.

Given equation (1), Z1 =
Pm

i=1 nfi
Pi

r=1[v(Ar|r) − v(Ar−1|r)]. Write F (i) =
Pi

r=1 fr then

F (m) = 1. Then

Z1 =
mX
i=1

n{fiv(Ai|i) + (1− F (i))[v(Ai|i)− v(Ai|i+ 1)]}.

We interpret v(Ai|m+ 1) to be zero.
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Let

µ(Ai) = v(Ai|i)−
1− F (i)

fi
[v(Ai|i+ 1)− v(Ai|i)].

The function µ is what Myerson calls the virtual valuation.

Problem [OPT1] becomes

Z1 = max
{a}

mX
i=1

nfiµ(Ai)

s.t. 0 ≤ A1 ≤ . . .Ai ≤ · · · ≤ Am

Ai =
X

tn−1∈Tn−1
ai[ti, t

n−1]π(tn−1)

X
i

ni(t)ai[ti, t
n−1] ≤ K ∀t ∈ Tn

3.2 The Myerson Case

Myerson (1981) makes the following additional assumptions:

1. v(q|i) = iq, and

2. 1−F (i)fi
is non-decreasing in i.

This second assumption is the monotone hazard condition. With these additional assumptions

µ(Ai) = Ai

³
i− 1−F (i)

fi

´
. Then

Z1 = max
{a}

mX
i=1

fiAi

µ
i− 1− F (i)

fi

¶
s.t. 0 ≤ A1 ≤ . . .Ai ≤ · · · ≤ Am

Ai =
X

tn−1∈Tn−1
ai[ti, t

n−1]π(tn−1)

X
i

ni(t)ai[ti, t
n−1] ≤ K ∀t ∈ Tn

We can rewrite this program to read:

max
{a}

X
i

X
tn−1∈Tn−1

nfiai[ti, t
n−1]

µ
i+

1− F (i)

fi

¶
π(tn−1)

s.t. 0 ≤
X

tn−1∈Tn−1
a1[t1, t

n−1]π(tn−1) ≤ . . . ≤
X

tn−1∈Tn−1
am[tm, t

n−1]π(tn−1) ≤ K

X
i

ni(t)ai[ti, t
n−1] ≤ K ∀t ∈ Tn
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If we ignore the monotonicity constraints, this problem can be decomposed into |Tn| subproblems
one for each profile of types:

max
{a}

X
i

ni(t)

µ
i− 1− F (i)

fi

¶
ai(t)

s.t.
X
i

ni(t)ai(t) ≤ K

This is an instance of a continuous knapsack problem. Its solution well known. Select any index

r ∈ argmaxi:ni(t)>0{
ni(t)(i− 1−F (i))

fi
)

ni(t)
} and set ar(t) = K/nr(t). The monotone hazard condition

ensures that the largest index is always chosen. Thus the solution to the program is monotonic, i.e.

ai+1(t) ≥ ai(t) for all i and profiles t. It follows from this that the ignored monotonicity constraints
on expected allocations are satisfied.

The above analysis naturally yields the revenue equivalence result of auction theory.

Theorem 4 All incentive compatible allocation rules that result in the same equilibrium expected

allocation schedule {Ai}mi=0 generate the same expected revenue for the seller.

Proof. Recall that the expected payment Pi is determined through the length of the shortest

path from the dummy node ‘0’ to vertex i in the network, and is given by (1) as

Pi =
iX

r=1

[rAr − rAr−1].

Notice that the length of the shortest path and hence the expected payment is uniquely defined by

the equilibrium expected allocations {Ai}mi=0. Therefore we conclude that all incentive compatible
allocation rules that result in the same equilibrium expected allocation schedule {Ai}mi=0 generate
the same expected payments {Pi}mi=1, and hence the same expected revenue for the seller.

The monotonicity constraints are useful because they allow us to restrict the space of possible

allocation rules. However, their presence prevents us from decomposing the optimization problem

into separate problems over profiles. The hazard rate condition is one sufficient condition for such

a decomposition to be possible.

3.3 Ironing

Here we discuss how to solve problem when the monotone hazard condition does not hold. Recall

that our problem is

Z = max
{a}

X
i

X
tn−1∈Tn−1

nfiai[ti, t
n−1]

µ
i+

1− F (i)

fi

¶
π(tn−1)
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s.t.
X

tn−1∈Tn−1
ai[ti, t

n−1]π(tn−1)−
X

tn−1∈Tn−1
ai+1[ti+1, t

n−1]π(tn−1) ≤ 0 ∀ i = 0, . . . ,m− 1

X
i

ni(t)ai[ti, t
n−1] ≤ K ∀t ∈ Tn

Here we interpret a0[t0, t
n−1] to be zero for all tn−1.

We will examine a Lagrangian relaxation associated with relaxing constraints of the form:X
tn−1∈Tn−1

ai[ti, t
n−1]π(tn−1)−

X
tn−1∈Tn−1

ai+1[ti+1, t
n−1]π(tn−1) ≤ 0 ∀ i = 0, . . . ,m− 1.

Let λi be the multiplier associated with the i
th such constraint. The Lagrangian dual will be

Z(λ) = max
{a}

X
i

X
tn−1∈Tn−1

nfiai[ti, t
n−1]

µ
i+

1− F (i)

fi

¶
π(tn−1)−

−
mX
i=0

λi

⎡⎣ X
tn−1∈Tn−1

ai[ti, t
n−1]π(tn−1)−

X
tn−1∈Tn−1

ai+1[ti+1, t
n−1]π(tn−1)

⎤⎦
s.t.

X
i

ni(t)ai[ti, t
n−1] ≤ K ∀t ∈ Tn

To make the indices line up we take λm = 0.

A rearrangement yields

Z(λ) = max
{a}

mX
i=1

X
tn−1∈Tn−1

nfiai[ti, t
n−1]

µ
i+

1− F (i)

fi
− λi

fi
+

λi−1
fi

¶
π(tn−1)

s.t.
X
i

ni(t)ai[ti, t
n−1] ≤ K ∀t ∈ Tn

This problem is decomposable into one subproblem for each profile t ∈ Tn as follows:

g(t, λ) = max
{a}

X
i

ni(t)

µ
i− 1− F (i)

fi
− λi

fi
+

λi−1
fi

¶
ai(t)

s.t.
X
i

ni(t)ai(t) ≤ K

This is also a continuous knapsack problem and it is easy to see that

g(t, λ) = max

½
0,K max

i:ni(t)>0

µ
i− 1− F (i)

fi
− λi

fi
+

λi−1
fi

¶¾
.

Further Z(λ) =
P

t∈Tn g(t, λ)π(t). Now Z = minλ≥0 Z(λ). We can formulate minλ≥0 Z(λ) as a

linear program as follows:

min
λ0,...,λm

X
t∈Tn

π(t)Wt (IP )
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s.t. Wt ≥
µ
i− 1− F (i)

fi
− λi

fi
+

λi−1
fi

¶
∀t ∈ Tn ,∀ni(t) > 0

Wt ≥ 0 ∀t ∈ Tn

λi ≥ 0 i = 1, . . . ,m

λm = 0

Let λ∗ be the optimal solution to the above (IP ) problem. We refer to

i− 1− F (i)

fi
− λ∗i

fi
+

λ∗i−1
fi

as type i’s ironed virtual valuation.

Theorem 5 There exists an optimal solution to (IP ) where the ironed virtual valuations are mono-

tonic.

Proof. Call the support of a profile t the set of i ∈ {1, . . . ,m} such that ni(t) > 0. If two profiles
t and t0 have the same support then it is easy to see that that there is an optimal solution to (IP )

such that Wt = Wt0 . This observation allows us to reformulate (IP ) using different variables. For

any S ⊆ {1, . . . ,m} let φ(S) denote the probability of a profile with support S. Then (IP ) can be
rewritten as

min
λ0,...,λm

X
S

φ(S)H(S) (IP 0)

s.t. H(S) ≥ i− 1− F (i)

fi
− λi

fi
+

λi−1
fi

∀S, ∀i ∈ S (2)

H(S) ≥ 0 ∀S

λi ≥ 0 i = 1, . . . ,m

λm = 0

Denote h∗i = i− 1−F (i)
fi
− λ∗i

fi
+

λ∗i−1
fi

for all i where λ∗ is an optimal solution to the (IP 0) problem

above.

Suppose for a contradiction that there is no optimal solution λ∗ to (IP 0) where {h∗i }mi=0 are
monotonic. Denote the discrepancy of an optimal solution λ∗ to (IP 0) by

P
imax{h∗i−1 − h∗i , 0}.

Amongst all optimal solutions to (IP 0) pick the one that has the smallest discrepancy. If the

discrepancy is zero, we are done. So, suppose not. Therefore there exits at least one j, such that

h∗j−1 > h∗j . If there exist more than one j such that h
∗
j−1 > h∗j , choose the largest j, for which

h∗j−1 > h∗j .

15



First, consider the case when there exists at least one l ≥ j, such that h∗j < h∗l+1. If there exist

more than one such l, choose the smallest l, for which h∗j < h∗l+1.
5

We construct a contradiction by considering a new set of {λ0i}mi=0, such that

λ0j−1 = λ∗j−1 + ε,

λ0i = λ∗i − ε ∀i ∈ [j, l],

λ0i = λ∗i ∀i ∈ [1, j − 2] ∪ [l + 1,m].

Denote h0i = i− 1−F (i)
fi
− λ0i

fi
+

λ0i−1
fi

for all i. This change results in the following changes to the

values of {h∗i }mi=0:

h0j−1 = h∗j−1 −
ε

fj−1
,

h0j = h∗j + 2
ε

fj
,

h0l+1 = h∗l+1 −
ε

fl+1
,

h0i = h∗i ∀i 6∈ {j − 1, j, l + 1}.

Denote the change in the (IP 0) problem objective function from changing λ∗ to λ0 by ∆Z.

Consider the sets S, for which H(S) are affected by this change (recall that H(S) reflects the

highest value of the right hand side in (2)).

For ε > 0 sufficiently small, decreasing h∗j−1 by
ε

fj−1
affects H(S) only if j−1 ∈ S and h∗k < h∗j−1

for all k ∈ S \{j−1}. Similarly the decrease of h∗l+1 by ε
fl+1

affects H(S) if l+1 ∈ S and h∗k < h∗l+1

for all k ∈ S \ {l + 1}. So the corresponding affected sets S are of the form:

{j − 1 ∈ S and h∗k < h∗j−1 for all k ∈ S \ {j − 1}},

{l + 1 ∈ S and h∗k < h∗l+1 for all k ∈ S \ {l + 1}}.

For ε > 0 sufficiently small, increasing h∗j by 2
ε
fj
affects H(S) only if j ∈ S and hk ≤ hj for all

k ∈ S \ {j}. So the sets S affected by the upward change in h∗j are of the form:

{j ∈ S and h∗k ≤ h∗j for all k ∈ S \ {j}}.

Let

P ∗j = Pr(S : j ∈ S, h∗k ≤ h∗j ∀k ∈ S \ {j}),

P ∗j−1 = Pr(S : j − 1 ∈ S, h∗k < h∗j−1 ∀k ∈ S \ {j − 1}),

P ∗l+1 = Pr(S : l + 1 ∈ S, h∗k < h∗l+1 ∀k ∈ S \ {l + 1}}).
5It is possible that l = j.

16



Then

P ∗j = fj Pr(n− 1 draws from {1, . . . ,m} and all have h∗k ≤ h∗j ),

P ∗j−1 = fj−1 Pr(n− 1 draws from {1, . . . ,m} and all have h∗k < h∗j−1),

P ∗l+1 = fl+1 Pr(n− 1 draws from {1, . . . ,m} and all have h∗k < h∗l+1).

Let

Pr(h∗j ) = Pr(n− 1 draws from {1, . . . ,m} and all have h∗k ≤ h∗j ),

Pr(h∗j−1) = Pr(n− 1 draws from {1, . . . ,m} and all have h∗k < h∗j−1),

Pr(h∗l+1) = Pr(n− 1 draws from {1, . . . ,m} and all have h∗k < h∗l+1).

From the choice of j and l we have that h∗j < h∗j−1, and h∗j < h∗l+1. Hence we deduce that

Pr(h∗j ) ≤ Pr(h∗j−1),

Pr(h∗j ) ≤ Pr(h∗l+1).

The change in the objective function ∆Z is:

∆Z ≤ 2εPr(h∗j )− εPr(h∗j−1)− εPr(h∗l+1).

Hence ∆Z ≤ 0, and we conclude that λ0 is also an optimal solution to (IP 0). Computing the
change in discrepancy from λ∗ to λ0 we observe that max{hj−2 − hj−1, 0} can increase by at most
ε/fj−1, the term max{hj−1 − hj , 0} goes down by ε/fj−1 + 2ε/fj , the term max{hj − hj+1, 0}
goes up by 2ε/fj , and the term term max{hl − hl+1, 0} goes down by ε/fl+1. The contribution

to discrepancy from other terms is unchanged.6 Notice that the discrepancy changes by ε/fj−1 −
(ε/fj−1 + 2ε/fj) + 2ε/fj − ε/fl+1 < 0, contradicting our choice of λ

∗ as the one with the smallest

discrepancy.

Now consider the case when there is no l ≥ j, such that h∗j < h∗l+1. This implies that h
∗
j =

h∗j+1 = ... = h∗m.
7

We construct a contradiction by considering a new set of {λ0i}mi=0, such that

λ0i = λ∗i + ε ∀i ∈ [j − 1,m− 1],

λ0i = λ∗i ∀i 6∈ [j − 1,m− 1].
6Notice that in the case when l = j, the term max{hj − hj+1, 0} is also unchanged for a small enough ε > 0.
7It is possible that j = m.
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Denote h0i = i− 1−F (i)
fi
− λ0i

fi
+

λ0i−1
fi

for all i. This change results in the following changes to the

values of {h∗i }mi=0:

h0j−1 = h∗j−1 −
ε

fj−1
,

h0m = h∗m +
ε

fm
,

h0i = h∗i ∀i 6∈ {j − 1,m}.

Denote the change in the (IP 0) problem objective function from changing λ∗ to λ0 by ∆Z.

Consider the sets S for which H(S) are affected by this change (recall that H(S) reflects the

highest value of the right hand side in (2)).

For ε > 0 sufficiently small, decreasing h∗j−1 by
ε

fj−1
affects H(S) only if j−1 ∈ S and h∗k < h∗j−1

for all k ∈ S \ {j − 1}. So the sets S affected by the downward change in h∗j−1 are of the form:

{j − 1 ∈ S and h∗k < h∗j−1 for all k ∈ S \ {j − 1}}.

For ε > 0 sufficiently small, increasing h∗m by ε
fm
affects H(S) only if m ∈ S and h∗k ≤ h∗m for

all k ∈ S \ {m}. So the sets S affected by the upward change in h∗m are of the form:

{m ∈ S and h∗k ≤ h∗m for all k ∈ S \ {m}}.

Let

P ∗j−1 = Pr(S : j − 1 ∈ S, h∗k < h∗j−1 ∀k ∈ S \ {j − 1}),

P ∗m = Pr(S : m ∈ S, h∗k ≤ h∗m ∀k ∈ S \ {m}).

Then

P ∗j−1 = fj−1 Pr(n− 1 draws from {1, . . . ,m} and all have h∗k < h∗j−1),

P ∗m = fm Pr(n− 1 draws from {1, . . . ,m} and all have h∗k ≤ h∗m).

Let

Pr(h∗j−1) = Pr(n− 1 draws from {1, . . . ,m} and all have h∗k < h∗j−1),

Pr(h∗m) = Pr(n− 1 draws from {1, . . . ,m} and all have h∗k ≤ h∗m).

Since h∗j < h∗j−1 and h∗j = h∗m we deduce that

Pr(h∗m) ≤ Pr(h∗j−1).
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The change in the objective function ∆Z is:

∆Z ≤ εPr(h∗m)− εPr(h∗j−1) ≤ 0.

This contradicts the optimality of λ∗ if ∆Z < 0, or implies that λ0 is also an optimal solution

to (IP 0) if ∆Z = 0. In the latter case, we compute the change in discrepancy from λ∗ to λ0. Notice

that max{hj−2 − hj−1, 0} can increase by at most ε/fj−1, and the term max{hj−1 − hj , 0} goes
down by ε/fj−1 + ε/fj . The contribution to discrepancy from other terms is unchanged. Hence

the discrepancy changes by ε/fj−1 − (ε/fj−1 + ε/fj) = −ε/fj < 0, contradicting our choice of λ∗

as the optimal solution with the smallest discrepancy.

As we see, both possibilities for a choice of an optimal solution λ∗ the (IP 0) problem with the

smallest positive discrepancy lead to contradictions with the optimality of λ∗. Therefore, there

exists an optimal solution to (IP ) with the monotonic ironed virtual valuations {h∗i }mi=0.
We can now repeat the analysis of Section 3.2 with the virtual valuations replaced by the ironed

virtual valuations.

3.4 Comparison with Continuous Approach

Consider Myerson’s (1981) approach in the case of a seller with K units of a divisible good who

is selling it to n buyers with independent private valuations v(q|i) = iq, where buyers’ types i are

distributed on a continuous interval [i, ı̄] according to the pdf function f(i). The central idea of

Myerson’s (1981) approach is the use of the indirect buyers utility function U(i) = iAi − Pi. We

can then rewrite IC constraints using the indirect utility function as

U(i) ≥ iAi0 − Pi0 ∀i, i0, (3)

U(i0) ≥ i0Ai − Pi ∀i, i0. (4)

Combining (3) and (4) gives

(i− i0)Ai0 ≤ U(i)− U(i0) ≤ (i− i0)Ai, (5)

which implies that Ai and U(i) are non-decreasing. The monotonicity of Ai implies that it is a.e.

continuous. Thus, rewriting (5) as

Ai0 ≤
U(i)− U(i0)

i− i0
≤ Ai,
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and taking limits as i0 → i at points where Ai is continuous, we conclude that U
0(i) = Ai a.e.,

which in turn immediately gives absolute continuity of U(i), and hence

U(i) = U(i) +

Z i

i
Avdv,

and

Pi = iAi −
Z i

i
Avdv − U(i). (6)

The expression (6) is a continuous analog of the discrete expression (1), and can be interpreted

as if the payment Pi was set by following a continuous path from the outside option, that is given

by the indirect utility for the lowest type i, to type i through a continuous set (or graph) [i, ı̄].

It is important to observe that this path represents the shortest path consistent with binding IC

constraints along the way (in the continuous case, we can interpret that IC constraints for a buyer

of type i do bind in an infinitesimal neighborhood of i). Fortunately, there is only one possible

direction for the shortest path between the lowest possible type, and type i in one dimension, i.e.

the path that goes through all intermediate types between the lowest possible type, and type i,

and there is absolutely no conceptual difference between continuous and discrete approaches. In

the multi-dimensional case there are significant differences between the continuous and discrete

approaches.

Ironing in the model of discrete types is conceptually similar, but computationally easier than

in the continuous type model. The continuous type case requires the solution of a Hamiltonian

problem, in the discrete case a linear program.

4 Multi-Dimensional Types

4.1 Continuous Approach Overview

Consider the case when buyers have multi-dimensional types i = {i1, ..., iD}, which are distributed
on Ω, a convex compact subset of RD

+ , with a density function f(t) being continuous on Ω with

supp(f) = Ω. Buyers’ private valuations given by v(a|i) = i · a =
PD

j=1 ijaj , where allocations

a = {a1, ..., aD} belong to RD. Denoting the expected allocations and payment for the buyer of

type i in a direct mechanism as Ai = {A1, ...,AD} and Pi respectively, we can write down the

indirect utility function as U(i) = i · Ai − Pi. As with one-dimensional types, we can rewrite the
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IC constraints using the indirect utility function as

U(i) ≥ iAi0 − Pi0 ∀i, i0, (7)

U(i0) ≥ i0Ai − Pi ∀i, i0. (8)

Combining (7) and (8) gives

(i− i0)Ai0 ≤ U(i)− U(i0) ≤ (i− i0)Ai,

Ai0 ≤
U(i)− U(i0)

i− i0
≤ Ai. (9)

If U(i) were differentiable a.e., then taking limits in (9) as ∆(i0 − i)d → 0 in each dimension d,

immediately yields that ∇U(i) = Ai, and

U(i) = U(i) +

Z
l
Avdv, (10)

Pi = iAi −
Z
l
Avdv − U(i). (11)

for any path l in Ω connecting any two types i and i. Hence the choice of the path to type i

through Ω in order to determine the payment Pi does not matter if in the case of multi-dimensional

continuous types, if the indirect utility function U(i) is differentiable.

Notice that we do not need differentiability of U(i) to obtain partial derivatives a.e., and to

form the gradient. Indeed, taking limits in (9) as (i0− i)d → 0 in each dimension d, yields ∇U(i) =
Ai. Unfortunately, even the existence of partial derivatives, does not guarantee differentiability

of U(i) in the multi-dimensional case,8 hence the expression (11) can not be viewed as a multi-

dimensional analog of (6). A general representation of rationalizable preferences in terms of the

indirect utility function was provided by Rochet (1987), and reformulated in terms of incentive-

compatible allocations for the study of optimal mechanisms in Rochet and Choné (1998) as follows:

There exist expected allocation and price schedules such that the IC constrains are satisfied for

a.e. i if and only if

1. Ai = ∇U(i) for a.e. i in Ω,
2. U is convex and continuous on Ω.

Notice that Ai = ∇U(i) does not imply differentiability of U(i), hence the only analog for
expression (10) is

Pi = i ·∇U(i)− U(i). (12)

8See Example 1 in Krishna and Perry (2000) for a nondifferentiable indirect utility function.
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The closest analog to the expression (6) in the multi-dimension context is given in Krishna

and Perry (2000) as a payoff equivalence result that states that an IC mechanism’s indirect utility

function U(i) is determined by Ai up to an additive constant, i.e.

U(i) = U(i) +

Z 1

0
Ari+(1−r)i(i− i)dr. (13)

The above expression gives

Pi = iAi −
Z 1

0
Ari+(1−r)i(i− i)dr − U(i). (14)

The expression (14) is a multi-dimensional analog of the discrete expression (6), and can be

interpreted as if the payment Pi was set by following a straight path from a type i, where IR

constraint binds to type i through Ω. Unfortunately, there is no direct analog to the above approach

in the discrete multi-dimensional case. The reason for that lies in the fact that although the payment

Pi for a particular allocation scheme is given by the shortest path
9 towards the vertex i, there is no

analog to the gradient of the indirect utility function in the multi-dimensional discrete case. Indeed,

the incremental indirect utility ∆U(i) at the vertex i is determined by the edge (i0, i) originating

in one of adjacent vertices i0, along which the IC constraint binds. This binding IC constraint also

gives the direction of the increase in the indirect utility, but this direction can not be averaged out

to form an average direction of the indirect utility increase (i.e. the indirect utility gradient) due

to the discrete nature of this direction.

This logic shows that the indirect utility approach does not work in the discrete multi-dimensional

case, and that we have to rely on an enumeration of all the binding IC constraints and the cor-

responding shortest paths through the multi-dimensional lattice in order to find a solution to the

optimal auction problem.10 The general discrete approach naturally leads to the revenue equiv-

alence result, since participants’ payments are given by shortest paths lengths, hence the seller’s

expected revenue in any incentive compatible mechanism is uniquely given by the allocation sched-

ule. Notice that the revenue equivalence result is not obvious in the multi-dimensional continuous

case.

9Notice that the IC constraints bind along the shortest path, which can be interpreted as having the shortest path

at each vertex follows the direction of the IC constraint that binds at that vertex.
10It is interesting to note similarities of the most general approach to incentive compatible allocation rules in the

discrete and continuous multidimensional cases. Both our analysis in the discrete case, and Rochet (1987) in the

continuous case characterize incentive compatible allocation rules through the absence of a negative cycle in the

network.
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Solving for an optimal mechanism in a multi-dimensional environment is a hard problem in

either the discrete or continuous case. Not surprisingly, many results in which there is an explicit

solution to a multi-dimensional optimal mechanism rely on some properties of the problem that can

either reduce it to a one-dimensional case (Wilson (1993)), or help with reducing the set of available

options in (Maskin (2002)). In Sections 5 and 6 we examine specific cases when it is possible to

reduce available options, and simplify the multi-dimensional analysis in the discrete framework.

4.2 Discrete Approach

The problem of finding an optimal auction when types are multi-dimensional is considered to be

hard problem in the sense that no ‘closed form’ solution of the types found in the one-dimensional

case are possible. In this section we highlight the main difficulty is in extending previous results to

the multi-dimensional case. It turns out that the difficulties present themselves in two dimensions.

We concentrate on that case.

Denote a bidders type as (i, j), where i ∈ {1, . . . , I}, and j ∈ {1, . . . , J} without the loss of
generality. Let fij be the probability that an agent has type (i, j). These bidders may obtain various

quantities of a homogeneous good. Each agent has a utility v(q|i, j) from getting q units of the

good. Also assume that v(q|i, j) satisfies increasing differences. That is, if q0 ≥ q and (i0, j0) ≥ (i, j)
then

v(q0|i0, j0)− v(q|i0, j0) ≥ v(q0|i, j)− v(q|i, j).

Denote by Aij the expected amount assigned to an agent who reports (i, j). Then the following

is true:

Theorem 6 Any incentive compatible allocation rule must be monotonic. That is for all (i, j) ≥
(i0, j0) we have Aij ≥ Ai0j0.

Proof. Similar to the proof of Theorem 1. First show monotonicity for (i, j) vs. (i, j0) then for

(i, j0) vs. (i0, j0).

We have 6 types of IC constraints that are displayed for (i, j) < (i0, j0) in figure 3 below:
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Figure 3

1. Horizontal Upward IC (HUIC)

Type (i, j) reporting (i0, j) where i0 > i:

v(Ai,j |i, j)− Pi,j ≥ v(Ai0,j |i, j)− Pi0,j .

2. Horizontal Downward IC (HDIC)

Type (i, j) reporting (i0, j) where i0 < i :

v(Ai,j |i, j)− Pi,j ≥ v(Ai0,j |i, j)− Pi0,j .

3. Vertical Upward IC (VUIC)

Type (i, j) reporting (i, j0) where j0 > j:

v(Ai,j |i, j)− Pi,j ≥ v(Ai,j0 |i, j)− Pi,j0 .

4. Vertical Downward IC (VDIC)

Type (i, j) reporting (i, j0) where i0 < i:

v(Ai,j |i, j)− Pi,j ≥ v(Ai,j0 |i, j)− Pi,j0 .

5. Diagonal Upward IC (DDIC)

Type (i, j) reporting (i0, j0) where i0 > i and j0 < j:

v(Ai,j |i, j)− Pi,j ≥ v(Ai0,j0 |i, j)− Pi0,j0 .

6. Diagonal Downward IC (DUIC)

Type (i, j) reporting (i0, j0) where i0 < i and j0 > j:

v(Ai,j |i, j)− Pi,j ≥ v(Ai0,j0 |i, j)− Pi0,j0 .
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The new wrinkle that multi-dimensionality adds are the diagonal IC constraints. The reader

will notice the omission of diagonal IC constraints relating type (i, j) with type (i0, j0) ≥ (i, j). This
is because they are implied by a combination of the horizontal and vertical IC constraints. This is

shown below. Consider the following diagonal IC constraints

v(Ai+1,j+1|i+ 1, j + 1)− Pi+1,j+1 ≥ v(Ai,j |i+ 1, j + 1)− Pi,j . (15)

To see that the above ‘diagonal’ downward IC constraint is implied by the horizontal and vertical

adjacent downward IC constraints consider:

v(Ai+1,j+1|i+ 1, j + 1)− Pi+1,j+1 ≥ v(Ai,j+1|i+ 1, j + 1)− Pi,j+1

and

v(Ai,j+1|i, j + 1)− Pi,j+1 ≥ v(Ai,j |i, j + 1)− Pi,j .

Adding these two inequalities together yields:

v(Ai+1,j+1|i+1, j+1)−Pi+1,j+1+ v(Ai,j+1|i, j+1) ≥ v(Ai,j+1|i+1, j+1)+ v(Ai,j |i, j+1)−Pi,j .

Rearranging:

v(Ai+1,j+1|i+ 1, j + 1)− v(Ai,j |i+ 1, j + 1)− [Pi+1,j+1 − Pi,j ] ≥

≥ [v(Ai,j+1|i+ 1, j + 1)− v(Ai,j |i+ 1, j + 1)]− [v(Ai,j+1|i, j + 1)− v(Ai,j |i, j + 1)] .

The increasing differences property and the monotonicity of the allocation imply that

[v(Ai,j+1|i+ 1, j + 1)− v(Ai,j |i+ 1, j + 1)]− [v(Ai,j+1|i, j + 1)− v(Ai,j |i, j + 1)] ≥ 0,

and hence we have that

v(Ai+1,j+1|i+ 1, j + 1)− v(Ai,j |i+ 1, j + 1) ≥ Pi+1,j+1 − Pi,j

which is equivalent to (15), and thus proves the the adjacent diagonal downward constraint follows

the horizontal and vertical adjacent in 1D downward constraints. The rest, i.e. all possible non-

adjacent downward constraints, follow from a simple induction. Notice that the argument did not

rely on a specific functional form of v.

A similar argument applies to the diagonal IC constraint:

v(Ai,j |i, j)− Pi,j ≥ v(Ai+1,j+1|i, j)− Pi+1,j+1. (16)
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The above diagonal IC constraint is implied by the following horizontal and vertical adjacent upward

IC constraints:

v(Ai+1,j |i+ 1, j)− Pi+1,j ≥ v(Ai+1,j+1|i+ 1, j)− Pi+1,j+1

and

v(Ai,j |i, j)− Pij ≥ v(Ai+1,j |i, j)− Pi+1,j .

Adding these two inequalities together yields:

v(Ai,j |i, j)− v(Ai+1,j+1|i+ 1, j) + v(Ai+1,j |i+ 1, j)− v(Ai+1,j |i, j) ≥ Pij − Pi+1,j+1.

Rearranging:

v(Ai,j |i, j)− v(Ai+1,j+1|i, j)− [Pij − Pi+1,j+1] ≥

≥ [v(Ai+1,j+1|i+ 1, j)− v(Ai+1,j |i+ 1, j)]− [v(Ai+1,j+1|i, j)− v(Ai+1,j |i, j)] .

The increasing differences property and the monotonicity of the allocation imply that

[v(Ai+1,j+1|i+ 1, j)− v(Ai+1,j |i+ 1, j)]− [v(Ai+1,j+1|i, j)− v(Ai+1,j |i, j)] ≥ 0,

and hence we have that

v(Ai,j |i, j)− v(Ai+1,j+1|i, j) ≥ Pij − Pi+1,j+1

which is equivalent to (16).

As in the one-dimensional case we have:

Theorem 7 Only the adjacent downward constraints w.r.t. (i+ 1, j) and (i, j) and w.r.t (i, j + 1)

and (i, j) matter out of all horizontal and vertical downward constraints. Only the adjacent upward

constraints w.r.t. (i, j) and (i + 1, j), w.r.t. (i, j) and (i, j + 1) matter out of all horizontal and

vertical upward constraints.

The theorem does not hold for the DDIC and DUIC constraints.

Theorem 8 If an adjacent HDIC or VDIC constraint binds, the corresponding adjacent upward

IC constraint is redundant.

Proof. Given that the corresponding downward adjacent IC constraint binds, i.e. then upward IC

constraints are redundant. Indeed, if

v(Ai+1,j |i+ 1, j)− v(Ai,j |i+ 1, j) = Pi+1,j − Pi,j ,

26



then by increasing differences and monotonicity of the allocation rule:

v(Ai+1,j |i, j)− v(Ai,j |i, j) ≤ Pi+1,j − Pi,j ,

which is the corresponding upward constraint v(Ai,j |i, j) − Pi,j ≥ v(Ai+1,j |i, j) − Pi+1,j . So the

corresponding adjacent upward IC constraint is redundant. The argument is exactly the same in

w.r.t. the j dimension.

Notice that when an adjacent HDIC constraint does not bind, the corresponding adjacent HUIC

constraint is not automatically satisfied, and may have a bite. Also notice that some of the adjacent

downward IC constraints would be slack since not all edges would likely to be used in optimal (i.e

shortest) paths to all vertices.

4.3 Non-redundancy of Diagonal IC’s

The difficulty that multi-dimensional types introduces is in the diagonal IC’s. Their presence makes

it difficult to pin down the path in the underlying network that determines Pij for each (i, j). One

might hope that they are redundant. They are not. This can be seen by examining the adjacent

DUIC constraint:

v(Ai+1,j |i+ 1, j)− Pi+1,j ≥ v(Ai,j+1|i+ 1, j)− Pi,j+1.

It can be rewritten as

v(Ai+1,j |i+ 1, j)− v(Ai,j+1|i+ 1, j) ≥ Pi+1,j − Pi,j+1.

Perhaps it can be replicated by following the path (i+1, j)→ (i, j)→ (i, j+1), i.e. by adding the

following:

v(Ai+1,j |i+ 1, j)− Pi+1,j ≥ v(Ai,j |i+ 1, j)− Pi,j ,

v(Ai,j |i, j)− Pij ≥ v(Ai,j+1|i, j)− Pi,j+1.

This yields:

v(Ai+1,j |i+ 1, j)− v(Ai,j |i+ 1, j) + v(Ai,j |i, j)− v(Ai,j+1|i, j) ≥ Pi+1,j − Pi,j+1.

Rearranging:

v(Ai+1,j |i+ 1, j)− v(Ai,j+1|i+ 1, j)− [Pi+1,j − Pi,j+1] ≥

≥ [v(Ai,j+1|i, j)− v(Ai,j |i, j)]− [v(Ai,j+1|i+ 1, j)− v(Ai,j |i+ 1, j)] .
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>From monotonicity and increasing differences applied to the last term:

[v(Ai,j+1|i, j)− v(Ai,j |i, j)]− [v(Ai,j+1|i+ 1, j)− v(Ai,j |i+ 1, j)] ≤ 0. (17)

If we could show that the left hand side of (17) was identically equal to 0, then the DUIC constraint

would be redundant.

Another attempt could made by following the path (i + 1, j) → (i + 1, j + 1) → (i, j + 1), i.e.

by adding the following:

v(Ai+1,j |i+ 1, j)− Pi+1,j ≥ v(Ai+1,j+1|i+ 1, j)− Pi+1,j+1,

v(Ai+1,j+1|i+ 1, j + 1)− Pi+1,j+1 ≥ v(Ai,j+1|i+ 1, j + 1)− Pi,j+1.

This gives

v(Ai+1,j |i+1, j)−v(Ai+1,j+1|i+1, j)+v(Ai+1,j+1|i+1, j+1)−v(Ai,j+1|i+1, j+1) ≥ Pi+1,j−Pi,j+1.

Rearrangement produces

v(Ai+1,j |i+ 1, j)− v(Ai,j+1|i+ 1, j)− [Pi+1,j − Pi,j+1] ≥

≥ [v(Ai+1,j+1|i+ 1, j)− v(Ai,j+1|i+ 1, j)]− [v(Ai+1,j+1|i+ 1, j + 1)− v(Ai,j+1|i+ 1, j + 1)] .

Again, by monotonicity and increasing differences

[v(Ai+1,j+1|i+ 1, j)− v(Ai,j+1|i+ 1, j)]− [v(Ai+1,j+1|i+ 1, j + 1)− v(Ai,j+1|i+ 1, j + 1)] ≤ 0.
(18)

If we could show that the left hand side of (18) was identically equal to 0, then the DUIC constraint

would be redundant.

A similar analysis holds for the DDIC constraints.

5 Capacitated Bidders

We now examine the problem of finding the revenue maximizing auction when bidders have con-

stant marginal valuations as well as capacity constraints. Both the marginal values and capacity

constraints are private information to the bidders.

A bidders type consists of two numbers a and b. The first is the maximum amount they are

willing to pay for each unit. The second, b, called her capacity, is the largest number of units she
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seeks. Units beyond the bth are worthless. If such an agent is assigned q units, she derives a utility

of a(q, b)−. The seller has Q units to sell.

Let the range of a be R = {1, 2, ..., r} and the range of b be K = {1, ..., k}. Let fij be the
probability that an agent has type (i, j). The value that an agent of type (i, j) assigns to q units

will be written v(q|i, j) = i(q, j)−. Observe that v(q|i, j) satisfies increasing differences. That is, if
q0 ≥ q and (i0, j0) ≥ (i, j) then

v(q0|i0, j0)− v(q|i0, j0) ≥ v(q0|i, j)− v(q|i, j).

Without loss of generality we can assume that the amount assigned to an agent who reports

type (i, j) will be at most j. If Aij is the expected amount assigned to an agent who reports (i, j)

then because this agent receives at most j in any allocation, her expected payoff is iAij .

The crucial assumption we make is that no bidder can inflate his capacity but can shade it

down. In other words the auctioneer can verify, partially, the claims made by a bidder. This raises

two questions. The first, is this plausible? Second, does it make the problem trivial.

In the selling context, which is what we have assumed, the assumption is odd. However, in a

procurement setting it may not be. Consider a procurement auction where the auctioneer wishes

to procure Q units from bidders with constant marginal costs and limited capacity. Both the

marginal cost and capacity is the private information of the bidder. However, no bidder will inflate

her capacity when bidding because of the huge penalties associated with not being able to fulfill

the order. Equivalently, we may suppose that that the designer can verify that claims that exceed

capacity are false.

Does limiting bidders to underreporting their capacities make the problem trivial? No. Con-

sider the standard uniform price auction. This popular auction form is vulnerable to bidders

underreporting their capacities. So, it is by no means obvious how to design an auction to cure

this.

Let Aij denote the expected allocation that an agent who reports type (i, j) will receive in some

direct mechanism and Pij her expected payment.

5.1 The No-Inflation Assumption

In the discrete case, solving the optimal auction problem in 2-D requires finding binding IC con-

straints and identifying shortest paths through a two-dimensional lattice for all possible set of al-

locations. Potentially we may have to enumerate all possible collections of binding IC constraints.
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Below we show that the no-inflation assumption allows us to simplify the analysis by removing

some of the diagonal IC constraints, thus making the 2-D problem solvable by allowing us to pin

down shortest paths through the 2-D lattice.

Recall that we can ignore diagonal IC constraints of the form:

v(Akk|k, k)− Pkk ≥ v(Ajj |k, k)− Pjj .

We now invoke the assumption that no bidder is permitted to inflate their capacity. With this

assumption we can ignore IC constraints of the form:

v(Aij |i, j)− Pij ≥ v(Ai0,j0 |i, j)− Pi0,j0

where j0 > j.

To see why consider the following IC constraint:

v(Ai,j+k|i, j + k)− Pi,j+k ≥ v(Ai+r,j |i, j + k)− Pi+r,j .

When we substitute in our expression for v we obtain:

iAi,j+k − Pi,j+k ≥ iAi+r,j − Pi+r,j . (19)

We show that it is implied by the addition of the following vertical and horizontal IC constraints:

v(Ai,j+k|i, j + k)− Pi,j+k ≥ v(Ai,j |i, j + k)− Pij , (20)

v(Ai,j |i, j)− Pij ≥ v(Ai+r,j |i, j)− Pi+r,j . (21)

Adding (20) and (21) yields:

v(Ai,j+k|i, j + k)− Pi,j+k + v(Ai,j |i, j) ≥ v(Ai,j |i, j + k) + v(Ai+r,j |i, j)− Pi+r,j . (22)

Substitute in our expression for v:

iAi,j+k − Pi,j+k + iAi,j ≥ iAi,j + iAi+r,j − Pi+r,j .

Cancelling common terms yields (19). There is no similar argument for eliminating a diagonal IC

associated with bidders allowed to exaggerate their capacities. This is because in the inequalities

we manipulate have a term of the form v(Aij |i, j − k). Since Aij could exceed j − k it is not true

that v(Aij |i, j − k) = iAij . Summarizing, the only IC constraints that matter are the adjacent

HUIC, HDIC and DDIC.
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5.2 A Formulation

Let t denote an n agent profile of types and tn−1 an n− 1 agent profile of types. Denote by aij [t]
the actual allocation that a type (i, j) will receive under allocation rule A when the announced

profile is t. In the case when type (i, j) does not appear in the profile t we take aij [t] = 0. We will

have cause to study how the allocation for an agent with a given type, (i, j) say, will change when

the types of the other n− 1 agents change. In these cases we will write aij(t) and aij [(i, j), tn−1].
Then Aij =

P
tn−1 π(t

n−1)aij(tn−1) where π(tn−1) is the probability of profile tn−1 being realized

and the sum is over all possible profiles. Let nij(t) denote the fraction of bidders in the profile t

with type (i, j).

We can now formulate the problem of finding the revenue maximizing allocation as a linear

program in the following way. We drop all diagonal IC constraints as well as all the upward vertical

and horizontal IC constraints. The HUIC constraints are the only ones we have not shown to

redundant. However, Theorem 8 ensures that HUIC will be satisfied. The problem we study is

[OPT3] is:

Z3 = max
Pij

X
i∈R

X
j∈K

fijPij

s.t. v(Aij |i, j)− Pij ≥ v(Ai−1,j |i, j)− Pi−1,j

v(Aij |i, j)− Pij ≥ v(Ai,j−1|i, j)− Pi,j−1

Aij ≥ Ai0j0 ∀(i, j) ≥ (i0, j0)

Aij =
X
tn−1

π(tn−1)aij [(i, j), t
n−1] ∀(i, j)

X
i∈R

X
j∈K

nnij(t)aij [t] ≤ Q ∀t

aij [t] ≤ j ∀i, j ∀t

Now we describe a network representation of this linear program. Fix the Aij ’s. For each type

(i, j) introduce a vertex including the dummy type (0, 0). For each pair (i, j), (i+1, j) introduce a

directed edge from (i, j) to (i+1, j) with length v(Ai+1,j |i+1, j)− v(Aij |i+1, j) = (i+1)Ai+1,j −
(i+ 1)Aij . Similarly a directed edge from (i, j) to (i, j + 1) of length iAi,j+1 − iAij . Then Pij will

be the length of the shortest path from the dummy type (0, 0) to (i, j). We show that the shortest

path from (1, 1) to (i, j) is (1, 1)→ (1, 2)→ (1, 3) . . .→ (1, j)→ (2, j) . . .→ (i, j).
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Theorem 9

Pij = v(Aij |i, j)−
i−1X
r=1

[v(Arj |r + 1, j)− v(Arj |r, j)] =
iX

r=1

r(Arj −Ar−1,j)−A11 + P11.

Proof. It suffices to show that the shortest path from (1, 1) to (i, j) is straight up and across. The

proof is by induction. It is clearly true for vertices (1, 2) and (2, 1). Consider the vertex (2, 2). The

length of (1, 1)→ (2, 1)→ (2, 2) is

2A22 − 2A21 + 2A21 − 2A11 + P11 = 2A22 − 2A11 + P11.

The length of the path (1, 1)→ (1, 2)→ (2, 2) is

2A22 − 2A1,2 +A1,2 −A11 + P11 = 2A22 −A12 −A11 + P11.

The difference in length between the first and the second path is

(2A22 − 2A11)− (2A22 −A12 −A11) = A12 −A11 ≥ 0,

where the last inequality follows by monotonicity of the A’s.
Now suppose the claim is true for all vertices (i, j) where i, j ≤ n− 1. The shortest path from

(1, 1) to (1, n) is clearly up the top. A similar argument to the previous one shows that the shortest

path from (1, 1) to (2, n) is also up the top and across. Consider now vertex (3, n). There are two

candidates for a shortest path from (1, 1) to (3, n). One is (1, 1)→ (1, n− 1)→ (3, n− 1)→ (3, n).

This path has length

3A3n−3A3,n−1+3A3,n−1−3A2,n−1+2A2,n−1−2A1,n−1+P1,n−1 = 3A3n−A2,n−1−2A1,n−1+P1,n−1.

The other path, (1, 1)→ (1, n)→ (3, n) has length

3A3n − 3A2n + 2A2n − 2A1,n +A1,n −A1,n−1 + P1,n−1 = 3A3n −A2n −A1,n −A1,n−1 + P1,n−1.

The difference in length between the first and second path is

A2n +A1n +A1,n−1 −A2,n−1 − 2A1,n−1 = A2n +A1n −A2,n−1 −A1,n−1 ≥ 0.

Again the last inequality follows by monotonicity of the a’s.

Proceeding inductively in this way we can establish the claim for vertices of the form (i, n)

where i ≤ n−1 and for (n, j) where j ≤ n−1. It remains then to prove the claim for vertex (n, n).

One path is (1, n− 1)→ (n, n− 1)→ (n, n) and has length

nAnn − nAn,n−1 + nAn,n−1 − nAn−1,n−1 + (n− 1)An−1,n−1 − (n− 1)An−2,n−1 + . . .+ P1,n−1
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= nAnn −An−1,n−1 −An−2,n−1 − . . .+ P1,n−1.

The length of the other path, (1, 1)→ (1, n)→ (n, n) is

nAnn − nAn−1,n + (n− 1)An−1,n − (n− 1)An−2,n + . . .+A1n −A1,n−1 + P1,n−1.

Again, by the monotonicity of the A’s the second path is shorter than the first.
Let Fj(r) =

Pr
t=1 ftj . Then for each j we have

nX
i=1

{fijv(Aij |i, j) + (1− Fj(i))[v(Aij |i, j)− v(Aij |i+ 1, j)]} =
nX
i=1

fijµ(Aij)

where

µ(Aij) = v(Aij |i, j) +
1− Fj(i)

fij
[v(Aij |i, j)− v(Aij |i+ 1, j)].

Following Myerson, we can think of this as the virtual valuation conditional on wanting to consume

at most j units. The particular functional form of v allows us to write:

µ(Aij) = Aij

µ
i− 1− Fj(i)

fij

¶
.

Our optimization problem becomes:

Z3 = max
{a}

X
i

X
j

fijAij

µ
i− 1− Fj(i)

fij

¶
s.t. Aij ≥ Ai0j0 ∀(i, j) ≥ (i0, j0)

Aij =
X
tn−1

π(tn−1)aij [(i, j), t
n−1] ∀(i, j)

X
i∈R

X
j∈K

nnij(t)aij [t] ≤ Q ∀t

aij [t] ≤ j ∀i, j ∀t

Substituting out the Aij variables yields:

Z3 = max
{a}

X
i

X
j

fij
X
tn−1

π(tn−1)aij [(i, j), t
n−1]

µ
i− 1− Fj(i)

fij

¶

s.t.
X
tn−1

π(tn−1)aij [(i, j), t
n−1] ≥

X
tn−1

π(tn−1)ai0j0 [(i
0, j0), tn−1] ∀(i, j) ≥ (i0, j0)

X
i∈R

X
j∈K

nnij(t)aij [(i, j), t
n−1] ≤ Q ∀t

aij [t] ≤ j ∀i, j ∀t
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If we ignore the monotonicity condition
P

tn−1 Pr(t
n−1)aij [(i, j), tn−1] ≥

P
tn−1 Pr(t

n−1)ai0j0 [(i
0, j0), tn−1],

the optimization problem reduces to a collection of optimization problems one for each profile t:

Z3(t) = nmax
{a}

X
i

X
j

nij(t)aij [t]

µ
i− 1− Fj(i)

fij

¶

s.t.
X
i∈R

X
j∈K

nnij(t)aij [t] ≤ Q

aij [t] ≤ j ∀i, j

This is an instance of a continuous knapsack problem with upper bound constraints on the variables

which is easy to solve. Basically, select the pair (i, j) which maximizes i− 1−Fj(i)
fij

and increase aij

units it reaches its upper bound or the supply is exhausted, whichever comes first. If the supply is

not exhausted repeat.

If we assume a monotone hazard condition of the form:

i− 1− Fj(i)

fij
≥ i0 − 1− Fj0(i

0)

fi0j0
∀ (i, j) ≥ (i0, j0).

The resulting solution would satisfy the omitted monotonicity constraint.

6 Wilson’s Case

One case where it is possible to find the optimal paths is in a discrete 2D analog of a continuous

model first solved by Wilson (1993, Chapter 13). In Wilson’s model customers are uniformly

distributed on Ω = {t ∈ R2+, t1 + t2 ≤ 1}, with utility v(q|t) = q · t, and the seller has the cost
C(q) = kqk2

2 . The objective is to maximize the seller’s profit in a direct mechanism,

max
q,P

Z
Ω
P (t)− C(q(t))dt (OPT-W)

s.t. v(q(t)|t)− P (t) ≤ v(q(s)|t)− P (s) ∀t, s ∈ Ω (IC)

The solution to Wilson’s problem is given by

q∗(t) =
1

2
max

µ
0, 3− 1

ktk2
¶
t. (23)
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6.1 Discrete Approach to the Problem

Let’s solve the [OPT-W] problem in discrete polar coordinates using the network representation.

Consider a discrete grid in polar coordinates (r, ϕ), i.e.

t1 = r cosϕ,

t2 = r sinϕ.

where r ∈ {r1, ..., rn}, where ri =
i
n and ϕ ∈ {0, π

2k ,
2π
2k , ...,

π
2}. Consider the direct mechanism

approach with the allocation schedule given by

q1(r, ϕ) = R(r, ϕ) cos θ(r, ϕ),

q2(r, ϕ) = R(r, ϕ) sin θ(r, ϕ).

The IC constraints then are

R(r, ϕ) cos θ(r, ϕ)r cosϕ+R(r, ϕ) sin θ(r, ϕ)r sinϕ− P (r, ϕ) ≥

≥ R(r0, ϕ0) cos θ(r0, ϕ0)r cosϕ+R(r0, ϕ0) sin θ(r0, ϕ0)r sinϕ− P (r0, ϕ0).

The cost function is given by

C(q) =
R(r, ϕ)2

2
.

Our approach will be to conjecture that the optimal paths must be radial and then compute an

optimal allocation for such a conjecture. This amounts to relaxing some of the IC constraints. We

complete the argument by showing that the solution found satisfies the IC constraints that were

relaxed.

Lemma 3 If a payment P (ri, ϕ) is determined by a radial path (0, ϕ) −→ (r1, ϕ) −→ ... −→ (ri, ϕ),

then then optimal allocations are given by

q1(ri, ϕ) = R(ri, ϕ) cosϕ,

q2(ri, ϕ) = R(ri, ϕ) sinϕ,

and the profit-maximizing payment P (ri, ϕ) is given by

P (ri, ϕ) =
iX

j=1

[rjR(rj , ϕ)− rjR(rj−1, ϕ)] . (24)
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Proof. The proof is done by induction in ri ∈ {r1, ..., rn+1}.
First, consider the case of i = 1, and ϕj ∈ {0, π

2k ,
2π
2k , ...,

π
2 }.

If the payment is set through a radial path, i.e. (0, ϕj) −→ (r1, ϕj), then

P (r1, ϕj) = R(r1, ϕj) cos θ(r1, ϕj)
¡
r1 cosϕj

¢
+R(r1, ϕj) sin θ(r1, ϕj)

¡
r1 sinϕj

¢
,

and the profit is

Πj = R(r1, ϕj) cos θ(r1, ϕj)
¡
r1 cosϕj

¢
+R(r1, ϕj) sin θ(r1, ϕj)

¡
r1 sinϕj

¢
− 1
2
R2(r1, ϕj).

Notice that the above profit along the path is maximized in θ when θ(r, ϕj) = ϕj (indeed, it does

not affect the cost, while maximizing the revenue), hence

q1(r1, ϕj) = R(r1, ϕj) cosϕj ,

q2(r1, ϕj) = R(r1, ϕj) sinϕj ,

Πj = r1R(r1, ϕj)−
1

2
R2(r1, ϕj),

and

P (r1, ϕj) = r1R(r1, ϕj).

Now let’s do the transition from i to i+ 1. Assuming that

q1(ri, ϕj) = R(ri, ϕj) cosϕj ,

q2(ri, ϕj) = R(ri, ϕj) sinϕj ,

P (ri, ϕ) =
iX

j=1

rjR(rj , ϕ)− rjR(rj−1, ϕ),

and that P (ri+1, ϕj) is determined by the path (0, ϕj) −→ ... −→ (ri, ϕj) −→ (ri+1, ϕj), we

conclude

P (ri+1, ϕj) = R(ri+1, ϕj) cos θ(ri+1, ϕj)
¡
ri+1 cosϕj

¢
+R(ri+1, ϕj) sin θ(ri+1, ϕj)

¡
ri+1 sinϕj

¢
−

−ri+1R(ri, ϕj) + P (ri, ϕj),

and the profit along the path is

Πj = R(ri+1, ϕj) cos θ(ri+1, ϕj)
¡
ri+1 cosϕj

¢
+R(ri+1, ϕj) sin θ(ri+1, ϕj)

¡
ri+1 sinϕj

¢
−

−ri+1R(ri, ϕj) + P (ri, ϕj)−
1

2
R2(ri+1, ϕj)+
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+
iX

l=0

∙
P (rl, ϕj)−

1

2
R2(rl, ϕj)

¸
By the same argument as in the case of r1, we conclude that the above profit is maximized when

θ(ri+1, ϕj) = ϕj , hence

q1(ri+1, ϕj) = R(ri+1, ϕj) cosϕj ,

q2(ri+1, ϕj) = R(ri+1, ϕj) sinϕj ,

and

P (ri+1, ϕ) =
i+1X
j=1

rjR(rj , ϕ)− rjR(rj−1, ϕ).

Lemma 4 If all profit-maximizing payments P (ri, ϕ) are determined by radial paths

(0, ϕ) −→ (r1, ϕ) −→ ... −→ (ri, ϕ), then optimal allocations are given by

q1(ri, ϕ) = R(ri) cosϕ, (25)

q2(ri, ϕ) = R(ri) sinϕ, (26)

and payments P (ri, ϕ) do not depend on ϕ, i.e.

P (ri, ϕ) = P (ri) =
iX

j=1

[rjR(rj)− rjR(rj−1)] . (27)

Proof. The proof is done by induction in ri ∈ {r1, ..., rn+1}.
First, consider the case of i = 1, and ϕ ∈ {0, π

2k ,
2π
2k , ...,

π
2 }.

If the payments are set through radial paths, i.e. (0, ϕ) −→ (r1, ϕ), then Lemma 3 gives

q1(ri, ϕ) = R(ri, ϕ) cosϕ,

q2(ri, ϕ) = R(ri, ϕ) sinϕ,

P (r1, ϕ) = r1R(r1, ϕ),

and the profit is

Π =
kX

j=0

r1R(r1, ϕj)−
1

2

kX
j=0

R2(r1, ϕj).

Notice that the above profit is maximized in R(r1, ϕ) when

R(r1, ϕj) = R(r1) =
1

k + 1

kX
j=1

R(r1, ϕj), (28)
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since the allocation rule determined by (28) does not affect the revenue, while minimizing the

cost..Hence

q1(r1, ϕj) = R(r1) cosϕj ,

q2(r1, ϕj) = R(r1) sinϕj ,

Π =
kX

j=0

r1R(r1)−
1

2

kX
j=0

R2(r1),

and

P (r1, ϕ) = r1R(r1).

Now let’s do the transition from i to i+ 1. By the assumption of induction we have that

q1(ri, ϕj) = R(ri) cosϕj ,

q2(ri, ϕj) = R(ri) sinϕj ,

P (ri, ϕ) =
iX

j=1

rjR(rj)− rjR(rj−1).

The assumption that P (ri+1, ϕ) is determined by the path (0, ϕ) −→ ... −→ (ri, ϕ) −→ (ri+1, ϕ),

along with Lemma 3 give

q1(ri+1, ϕ) = R(ri+1, ϕ) cosϕ,

q2(ri+1, ϕ) = R(ri+1, ϕ) sinϕ,

P (ri+1, ϕi) = ri+1R(ri+1, ϕi)− ri+1R(ri) + P (ri),

and the profit is

Π =
iX

l=0

⎡⎣ kX
j=0

P (rl, ϕ)−
1

2

kX
j=0

R2(rl, ϕj)

⎤⎦+
+

kX
j=0

£
ri+1R(ri+1, ϕj)− ri+1R(ri, ϕj) + P (ri, ϕj)

¤
− 1
2

kX
j=0

R2(ri+1, ϕj).

By the same argument as in the case of r1, we conclude that the above profit is maximized when

R(ri+1, ϕj) = R(ri+1) =
1

k + 1

kX
j=1

R(ri+1, ϕj),
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hence

q1(ri+1, ϕj) = R(ri+1) cosϕj ,

q2(ri+1, ϕj) = R(ri+1) sinϕj ,

and

P (ri, ϕ) = P (ri) =
iX

j=1

[rjR(rj)− rjR(rj−1)] .

Lemma 5 All profit-maximizing payments P (ri, ϕ) are determined by radial paths

(0, ϕ) −→ (r1, ϕ) −→ ... −→ (ri, ϕ).

Proof. The proof is done by induction in rn.

First, consider the case of i = 1, and ϕ ∈ {0, π
2k ,

2π
2k , ...,

π
2}. Denote payments that are determined

by radial paths (0, ϕ) −→ (r1, ϕ) as Pr(r1, ϕ), and .payments that are determined by nonradial paths

(0, ϕ0) −→ (r1, ϕ
0) −→ (r1, ϕ) as Pnr(r1, ϕ). Then

Pr(r1, ϕ) = R(r1, ϕ) cos θ(r1, ϕ) (r1 cosϕ) +R(r1, ϕ) sin θ(r1, ϕ) (r1 sinϕ) , (29)

and

Pnr(r1, ϕ) = R(r1, ϕ) cos θ(r1, ϕ) (r1 cosϕ) +R(r1, ϕ) sin θ(r1, ϕ) (r1 sinϕ)−

−R(r1, ϕ0) cos θ(r1, ϕ0) (r1 cosϕ)−R(r1, ϕ
0) sin θ(r1, ϕ

0) (r1 sinϕ) + Pr(r1, ϕ
0).

Lemma 3 gives that Pr(r1, ϕ
0) = r1R(r1, ϕ

0), hence

Pnr(r1, ϕ) = R(r1, ϕ) cos θ(r1, ϕ) (r1 cosϕ) +R(r1, ϕ) sin θ(r1, ϕ) (r1 sinϕ)−

−R(r1, ϕ0) cos θ(r1, ϕ0) (r1 cosϕ)−R(r1, ϕ
0) sin θ(r1, ϕ

0) (r1 sinϕ) + r1R(r1, ϕ
0). (30)

Combining (29) and (30) we obtain

Pnr(r1, ϕ) = Pr(r1, ϕ) + r1R(r1, ϕ
0)
¡
1− cos θ(r1, ϕ0) cosϕ− sin θ(r1, ϕ0) sinϕ

¢
.

Finally, since cos θ cosϕ+ sin θ sinϕ < 1 for ∀θ 6= ϕ, we conclude that

Pnr(r1, ϕ) ≥ Pr(r1, ϕ),

which proves that the radial path is the shorter one, and since payments are determined by shortest

paths, profit-maximizing payments P (r1, ϕ) are determined by radial paths.
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Now let’s do the transition from i to i + 1. Assuming that P (ri, ϕ) are determined by radial

paths by Lemma 4 we have

q1(ri, ϕj) = R(ri) cosϕj , (31)

q2(ri, ϕj) = R(ri) sinϕj , (32)

P (ri, ϕ) = P (ri) =
iX

j=1

[rjR(rj)− rjR(rj−1)] . (33)

We now need to show that the payment Pr(ri+1, ϕ), determined by the radial path (ri, ϕ) −→
(ri+1, ϕ) is smaller than paymentsPnr1(ri+1, ϕ) and Pnr2(ri+1, ϕ), that are determined by paths

(ri, ϕ
0) −→ (ri+1, ϕ

0) −→ (ri+1, ϕ) and (ri, ϕ
0) −→ (ri+1, ϕ) respectively. Then using (31), (32),

and (33), and without assuming anything about allocations at (ri+1, ϕ), we get

Pr(ri+1, ϕ) = R(ri+1, ϕ) cos θ(ri+1, ϕ) (ri+1 cosϕ) +R(ri+1, ϕ) sin θ(ri+1, ϕ) (ri+1 sinϕ)

−ri+1R(ri) + Pr(ri). (34)

For the Pnr1(ri+1, ϕ) we have

Pnr1(ri+1, ϕ) = R(ri+1, ϕ) cos θ(ri+1, ϕ) (ri+1 cosϕ) +R(ri+1, ϕ) sin θ(ri+1, ϕ) (ri+1 sinϕ)−

−R(ri+1, ϕ0) cos θ(ri+1, ϕ0) (ri+1 cosϕ)−R(ri+1, ϕ
0) sin θ(ri+1, ϕ

0) (ri+1 sinϕ) + Pr(ri+1, ϕ
0). (35)

Now notice that for the Pnr1(ri+1, ϕ) to be determined by the shortest path, Pr(ri+1, ϕ
0) must be

determined by the radial path, hence by Lemma 3

Pr(ri+1, ϕ
0) = ri+1R(ri+1, ϕ

0)− ri+1R(ri) + Pr(ri). (36)

Combining (35) and (36) we obtain

Pnr1(ri+1, ϕ) = R(ri+1, ϕ) cos θ(ri+1, ϕ) (ri+1 cosϕ) +R(ri+1, ϕ) sin θ(ri+1, ϕ) (ri+1 sinϕ)−

−R(ri+1, ϕ0) cos θ(ri+1, ϕ0) (ri+1 cosϕ)−R(ri+1, ϕ
0) sin θ(ri+1, ϕ

0) (ri+1 sinϕ)+ (37)

+ri+1R(ri+1, ϕ
0)− ri+1R(ri) + Pr(ri).

Finally, (34) and (37) give

Pnr1(ri+1, ϕ) = Pr(ri+1, ϕ) + ri+1R(ri+1, ϕ
0)
¡
1− cos θ(ri+1, ϕ0) cosϕ− sin θ(ri+1, ϕ0) sinϕ

¢
,
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and since cos θ cosϕ+ sin θ sinϕ < 1 for ∀θ 6= ϕ, we conclude that

Pnr1(ri+1, ϕ) ≥ Pr(ri+1, ϕ). (38)

For the Pnr2(ri+1, ϕ) we have

Pnr1(ri+1, ϕ) = R(ri+1, ϕ) cos θ(ri+1, ϕ) (ri+1 cosϕ) +R(ri+1, ϕ) sin θ(ri+1, ϕ) (ri+1 sinϕ)−

−R(ri, ϕ0) cos θ(ri, ϕ0) (ri+1 cosϕ)−R(ri, ϕ
0) sin θ(ri, ϕ

0) (ri+1 sinϕ) + Pr(ri, ϕ
0). (39)

Then using (31), (32), and (33), and without assuming anything about allocations at (ri+1, ϕ), we

get

Pnr1(ri+1, ϕ) = R(ri+1, ϕ) cos θ(ri+1, ϕ) (ri+1 cosϕ) +R(ri+1, ϕ) sin θ(ri+1, ϕ) (ri+1 sinϕ)−

−ri+1R(ri) + Pr(ri). (40)

Finally, (34) and (40) give

Pnr1(ri+1, ϕ) = Pnr1(ri+1, ϕ). (41)

This inequality (38) and equality (40) prove that the radial path is the shortest one, and since pay-

ments are determined by shortest paths, all profit-maximizing payments P (ri+1, ϕ) are determined

by radial paths.

Theorem 10 Optimal allocations are given by

q1(ri, ϕ) = R(ri) cosϕ,

q2(ri, ϕ) = R(ri) sinϕ,

and payments P (ri, ϕ) do not depend on ϕ, i.e.

P (ri, ϕ) = P (ri) =
iX

j=1

[rjR(rj)− rjR(rj−1)] .

Proof. Follows from Lemmas 4 and 5.

Theorem 10 allows us to successfully solve Wilson’s optimization problem in polar coordinates.

The uniform probability density function changes from f(t1, t2) =
4
π to f(r, ϕ) = 2r in continu-

ous case, and to f(i) = 2i
n(n+1) and F (i) = i(i+1)

n(n+1) in discrete case after the switch to the polar

coordinates.
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The problem [OPT-W] is now reduced to a standard one-dimensional profit maximization prob-

lem, which can be successfully solve by following Myerson’s (1981) approach in a discrete case.

Recall the general expression for the virtual valuation:

µ(Ai) = v(Ai|i)−
1− F (i)

fi
[v(Ai|i+ 1)− v(Ai|i)],

which in our case looks like

µ(R(i)) = R(i)
i

n
− 1− F (i)

f(i)

∙
R(i)

i+ 1

n
−R(i)

i

n

¸
,

µ(R(i)) = R(i)

µ
i

n
− 1− F (i)

nf(i)

¶
.

Hence the profit maximizing problem could be written as

Π = max
{R(i)}ni=1

nX
i=1

f(i)

∙
R(i)

µ
i

n
− 1− F (i)

nf(i)

¶
− C(R(i))

¸
,

and can be solved type by type in the following formulation:

max
R(i)

R(i)

µ
i

n
− 1− F (i)

nf(i)

¶
− C(R(i)),

max
R(i)

R(i)

⎛⎝ i

n
−
1− i(i+1)

n(n+1)

2i
(n+1)

⎞⎠− R2(i)

2
. (OPT-W0)

Solving [OPT-W0] we obtain the expression for the optimal choice of R(i):

R(i) = max

µ
0,
2i2 + i(i+ 1)− n(n+ 1)

2in

¶
,

R(i) =
n+ 1

2i
max

µ
0,

2i

n+ 1
ri +

i+ 1

n+ 1
ri − 1

¶
. (42)

The expression (42) is the exact discrete analog of Wilson’s continuous solution to [OPT-W]

given by (23).

7 Conclusion

In this paper we study auctions in a multi-dimensional type space with discrete types. This has

the advantage of transparency of analysis, and it also allows one to approach the problem from an

intuitive graph theoretic perspective. This approach highlights the connections between optimal
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mechanism design and the problem of finding a shortest path in a lattice, as well as linear program-

ming. It clarifies the nature of the difficulties inherent in the multi-dimensional optimal auction

design, and makes clear which cases are solvable and which are not.

We offer a graph theoretic perspective on existing results, such as Myerson’s (1981) one-

dimensional optimal auction design problem along with the ironing procedure, and Wilson’s (1993)

problem for a monopolist to design optimal quantity/allocation schedules for two-dimensional con-

sumer types. Our approach also provides new results for two-dimensional auctions with capacitated

bidders under the no-inflation assumption.
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