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Statistical Inference in a Simple Linear Model

Under Microaggregation

Matthias Schmid, Hans Schneeweiss and Helmut Küchenhoff

Department of Statistics, University of Munich
Ludwigstr. 33, 80539 München, Germany

Abstract

A problem statistical offices are increasingly faced with is guaranteeing confidentiality when

releasing microdata sets. One method to provide safe microdata is to reduce the informa-

tion content of a data set by means of masking procedures. A widely discussed masking

procedure is microaggregation, a technique where observations are grouped and replaced

with their corresponding group means. However, while reducing the disclosure risk of a data

file, microaggregation also affects the results of statistical analyses. We focus on the effect

of microaggregation on a simple linear model. In a previous paper we have shown how to

correct for the aggregation bias of the naive least-squares estimator that occurs when the

dependent variable is used to group the data. The present paper deals with the asymptotic

variance of the corrected least-squares estimator and with the asymptotic variance of the

naive least-squares estimator when either the dependent variable or the regressor is used to

group the data. We derive asymptotic confidence intervals for the slope parameter. Further-

more, we show how to test for the significance of the slope parameter by analyzing the effect

of microaggregation on the asymptotic power function of the naive t-test.

Keywords: Microaggregation, simple linear model, asymptotic variance, t-test,

disclosure control
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1 Introduction

The development of empirical research as well as the growing capacity of modern

computer systems have led to an increasing demand on microdata over the last

decades. Statistical offices and other data providers are therefore faced with the

problem of providing sufficient information to scientists while at the same time

having to maintain confidentiality required by data protection laws. One method

to handle this trade-off (which is commonly referred to as the statistical disclosure

control problem) is the dissemination of factually anonymized data sets, also called

scientific-use files. The idea behind the creation of scientific-use files is the reduction

of the information content of a data set by means of masking procedures. However,

while reducing the disclosure risk of a data file, masking procedures also affect the

results of statistical analyses.

One of the most promising masking techniques is microaggregation, a procedure

for continuous data which has been widely discussed over the last years (Anwar

(1993), Defays and Nanopoulos (1993), Defays and Anwar (1998), Domingo-Ferrer

and Mateo-Sanz (2002), Lechner and Pohlmeier (2003), Rosemann (2004)). The main

idea of microaggregation is to group the observations in a data set and replace the

original data values with their corresponding group means. In the literature, many

suggestions have been made on how to form the groups (see, e.g., Domingo-Ferrer and

Mateo-Sanz (2002)). To reduce the information loss imposed by microaggregation,

it is considered advisable to group only those data values which are similar in terms

of a similarity criterion.
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In Schmid, Schneeweiss and Küchenhoff (2005) we have studied a microaggregation

technique that uses a so-called ”leading variable” to form the groups (Paass and

Wauschkuhn (1985), Mateo-Sanz and Domingo-Ferrer (1998)). This procedure sub-

divides the data set into groups having similar values for the leading variable. We

have analyzed the effects of this kind of microaggregation on the estimation of a sim-

ple linear regression model. Interestingly, the properties of the resulting linear model

estimates depend on the choice of the leading variable: If the regressor X serves as

the leading variable, estimates are unbiased although having greater variance (see

also Feige and Watts (1972) or Lechner and Pohlmeier (2003)). If the dependent

variable Y serves as the leading variable, estimates are biased. However, the bias

can be removed and consistent estimators for the slope parameter, the intercept and

the residual error variance of the model can be constructed.

This paper is a continuation of Schmid et al. (2005). Again, we consider the estima-

tion of a simple linear regression model with microaggregated data. The focus now

is on testing and the construction of confidence intervals for the slope parameter β.

By means of the delta method, formulas for the variances of the naive least squares

estimators and the corrected least squares estimator of β are derived. Thus, an as-

ymptotic confidence interval for the slope parameter can be constructed. Moreover,

to assess whether β is significantly different from zero, we construct a t-test which

asymptotically has the same power function as the t-test based on the original data.

In addition to the theoretical results, we carry out a systematic simulation study to

examine the small sample properties of our proposed procedures.

In section 2, we briefly summarize the results presented in Schmid et al. (2005).
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Section 3 deals with the asymptotic variances of the naive and the corrected least

squares estimators of the slope parameter β. In section 4 we show how to carry out

t-tests with microaggregated data. In section 5, a systematic simulation study on

the results derived in sections 3 and 4 is carried out. Section 6 contains a concluding

summary. Proofs are relegated to the appendix.

2 Consistent Estimation of a Simple Linear Model with
Microaggregated Data

In this section, the results of Schmid et al. (2005) are briefly summarized. We con-

sider the simple linear model

Y = α + βX + ε . (1)

Y denotes the continuous response (or endogenous variable) while X denotes the

continuous covariate (or exogenous variable). γ := (α, β)′ is the corresponding pa-

rameter vector. The random error ε is independent of X. Moreover, ε is assumed to

have zero mean and constant variance σ2
ε .

Suppose we have an i.i.d. sample of size n and two vectors y := (y1, ...yn)′,

x := (x1, ..., xn)′ containing the data values. Denote by e := (ε1, . . . , εn)′ the er-

ror vector having independent and identically normally distributed components. In

the following, we use a fixed group size (also called aggregation level) A. As stated

in the introduction, the data can either be aggregated with respect to the leading

variable X or with respect to the leading variable Y . In both cases, microaggregation

works as follows: First, the data vectors x and y have to be sorted with respect to
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the leading variable. The sorted data set is then subdivided into n/A groups, each

consisting of A adjacent data values. For simplicity, we assume that n is a multiple

of A. In each group, the data are averaged and the averages are assigned to the items

of the group.

Denote by ỹx and x̃x the vectors containing the data that have been aggregated

with respect X. Similarly, denote by ỹy and x̃y the data vectors if microaggregation

with respect to Y has been performed. Further, denote the empirical variance of

x̃x and x̃y computed from the microaggregated data by S2
x̃x

= 1
n

∑n
i=1(x̃x,i − ¯̃xx)2

and S2
x̃y

= 1
n

∑n
i=1(x̃y,i − ¯̃xy)2, respectively. The variances of ỹx and ỹy and the

covariances of x̃x and ỹx and of x̃y and ỹy are denoted in a similar way, e.g.

Sx̃xỹx = 1
n

∑n
i=1(x̃x,i − ¯̃xx)(ỹx,i − ¯̃yx).

Now, if the data are microaggregated with respect to X and the slope parameter β

is estimated by ordinary least squares, i.e.

β̃x =
Sx̃xỹx

S2
x̃x

, (2)

then β̃x is an unbiased and consistent estimator of β. (The same can be said of the

naive least squares estimator α̃x).

If Y is used as the leading variable, we need the additional assumption that X

follows a normal distribution with mean µx and variance σ2
x. Assuming X and ε

to be independent, it follows that Y is normally distributed as well with mean

µy := α + βµx and variance σ2
y := β2σ2

x + σ2
ε . The OLS estimator β̃y =

Sx̃yỹy

S2
x̃y

then
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converges in probability to f(ρ)β, where

f(ρ) :=
1

1
A +

(
1− 1

A

)
ρ2

(3)

and ρ is the correlation of X and Y .

With the help of (3), it is possible to derive a consistent estimator of β̃y: Denote by

ρ̃y the empirical correlation coefficient between x̃y and ỹy. A consistent estimate of

ρ can be obtained from

ρ̃2
y,c :=

ρ̃2
y

A− (A− 1)ρ̃2
y

. (4)

The corrected estimator of β̃y then becomes

β̃y,c =
β̃y

A− (A− 1)ρ̃2
y

. (5)

While consistent estimation of the parameters in model (1) is crucial, it is equally im-

portant to derive variance formulas of the estimators in order to calculate confidence

intervals. This will be the subject of the next section.

3 Variances of β̃x, β̃y, and β̃y,c

In the following, we derive the asymptotic variances of β̃x, β̃y, and β̃y,c. To achieve

this, some additional notation is required first:

• Two random sequences an and bn are said to be asymptotically equivalent if

plimn→∞
√

n(an − bn) = 0. We write an ∼ bn.



7

• They are said to be asymptotically equal if plimn→∞(an − bn) = 0. We write

an ≈ bn. Thus an ∼ bn is the same as
√

nan ≈
√

nbn.

Moreover, we say for short ”the asymptotic variance of a random sequence an is

equal to σ2
a/n” if plimn→∞an =: α exists and if

√
n(an − α) converges in distri-

bution to N(0, σ2
a) as n → ∞. The asymptotic variance of an is then denoted by

var(an) = σ2
a/n.

3.1 Asymptotic Properties of the Naive Variance Estimates

In the sequel, we will make use of the following fundamental lemma, which compares

the empirical variances and covariances of the aggregated variables to those of the

original, non-aggregated variables X and Y . We formulate the lemma in terms of

aggregation with respect to Y . By interchanging the role of X and Y , a corresponding

lemma can be stated in terms of aggregation with respect to X.

We will assume throughout that X and Y are jointly normally distributed with

parameters µx, µy, σ2
x, σ2

y , and σxy := ρσxσy. In addition, we will make use of the

regression model

X = α∗ + β∗Y + δ , (6)

where β∗ is equal to σxy/σ2
y . The error variable δ has mean zero and variance

σ2
δ := (1 − ρ2)σ2

x. Moreover, as X and Y are jointly normally distributed, Y and

δ are independent. Denote by S2
δ the empirical variance of the (unobserved) val-

ues δ1, . . . , δn and denote by S2
δ̃y

the empirical variance of the aggregated values

(δ̃y,1, . . . , δ̃y,n)′ =: δ̃y.
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Lemma 1.

a) Denote by S2
y the empirical variance of y. Then

√
n(S2

ỹy
− S2

y) converges in

probability to 0.

b) Denote by Syδ the empirical covariance of Y and δ in model (6). Analogously,

denote by Sỹy δ̃y
the empirical covariance of ỹy and δ̃y Then,

√
n(Sỹy δ̃y

− Syδ)

converges in probability to 0.

c) Denote by Sxy the empirical covariance of x and y. Then
√

n(Sx̃y ỹy − Sxy)

converges in probability to 0.

d) Denote by S2
x the empirical variance of x. Then S2

x̃y
− S2

x is asymptotically

equivalent to S2
δ̃y
− S2

δ .

e) For n →∞,
√

n(S2
δ̃y
− 1

AS2
δ ) converges to a normal distribution with zero mean

and variance 2A−1
A2 σ4

δ = 2A−1
A2 σ4

x(1− ρ2)2.

f) Consider the equation

Xi = β̂∗Yi + δ̂i , i = 1, . . . , n , (7)

where β̂∗ is the least squares estimate based on the non-aggregated data and

δ̂i := Xi− β̂∗Yi is the corresponding residual term. Then, S2
δ is asymptotically

equivalent to the empirical variance S2
δ̂

of δ̂1, . . . , δ̂n.

Proof: See appendix.

3.2 Variance of β̃x

To derive the asymptotic variance of β̃x, we make use of the following theorem:
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Theorem 1. β̃x is asymptotically equivalent to β̂, where β̂ is the least squares

estimate of β computed from the original (non-aggregated) data. Consequently,
√

n(β̃x − β) d→ N(0, v2), where v2 := σ2
ε /σ2

x.

Proof: By definition of β̃x and β̂, we have

√
n(β̃x − β̂) =

√
n
(Sx̃xỹx

S2
x̃x

− Sxy

S2
x

)

=
1

S2
x̃x

√
n(Sx̃xỹx − Sxy)− Sxy

S2
xS2

x̃x

√
n(S2

x̃x
− S2

x) . (8)

By Lemma 1, with the roles of x and y interchanged, (8) goes to zero as n →∞.

Thus, we have

var(β̃x) =
v2

n
. (9)

Note that this is the same asymptotic variance as the one for β̂. β̃x and β̂ are

asymptotically equally efficient. Define S2
ẽx

:= S2
ỹx
− β̃2

xS2
x̃x

. In Schmid et al. (2005),

we have shown that A · S2
ẽx

/S2
x̃x

is a consistent estimator of v2. An asymptotic

confidence interval for β is thus given by

[
β̃x − z1−α/2

√
AS2

ẽx

nS2
x̃x

, β̃x + z1−α/2

√
AS2

ẽx

nS2
x̃x

]
, (10)

where z1−α/2 is the (1− α/2)-quantile of the standard normal distribution.
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3.3 Variance of β̃y

As explained above, Sx̃y ỹy denotes the empirical covariance of x̃y and ỹy. To derive

the asymptotic variance of β̃y, we express β̃y as a function of S̃ := (S2
x̃y

, S2
ỹy

, Sx̃y ỹy)′:

β̃y =
Sx̃y ỹy

S2
x̃y

=: F (S̃) . (11)

Note that F does not depend on S2
ỹy

. However, S2
ỹy

will be needed later to derive

the asymptotic variance of β̃y,c.

Now, if a formula for the asymptotic covariance matrix cov(S̃) of (S̃ − plimS̃) is

found, we can obtain the asymptotic variance of β̃y by applying the delta method.

In Schmid et al. (2005) we proved that

plim S̃ =




σ2
x/f(ρ)
σ2

y

σxy


 =: S̄ . (12)

Denote by ρ̂ the empirical correlation coefficient based on the non-aggregated data.

Then, (S̃−plimS̃) can be reduced to expressions in S2
x, S2

y , and Sxy = ρ̂
√

S2
xS2

y plus

an independent term of known variance. To achieve this, we again make use of the

regression model (6).

From Lemma 1, we can derive the following result:

Lemma 2. S2
x̃y

is asymptotically equivalent to S2
x

f(ρ) +(1− 1
A)σ2

x(ρ̂2−ρ2)+(S2
δ̃y
− 1

AS2
δ ).

Proof: See appendix.
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From Lemma 2 it follows that

S2
x̃y
− σ2

x

f(ρ)
∼ 1

f(ρ)
(S2

x − σ2
x)

+ (1− 1
A

)σ2
x (ρ̂2 − ρ2)

+ S2
δ̃
− 1

A
S2

δ . (13)

Similarly, from Lemma 1, (S2
ỹy
− σ2

y) ∼ (S2
y − σ2

y) and (Sx̃y ỹy − σxy) ∼ (Sxy − σxy).

Therefore, we have

S̃ − S̄ ∼




1
f(ρ)(S

2
x − σ2

x) + (1− 1
A)σ2

x(ρ̂2 − ρ2)

S2
y − σ2

y

ρ̂
√

S2
xS2

y − σxy


 +




S2
δ̃
− 1

AS2
δ

0

0




=: G




S2
x

S2
y

ρ̂


 +




S2
δ̃
− 1

AS2
δ

0
0


 . (14)

As the product moments E
(
S2

x · (S2
δ̃
− 1

AS2
δ )

)
, E

(
S2

y · (S2
δ̃
− 1

AS2
δ )

)
, and E

(
Sxy ·

(S2
δ̃
− 1

AS2
δ )

)
are all equal to zero (compare equations (60) and (61) in the appen-

dix), it can be shown that S1 := (S2
x, S2

y , ρ̂)′ and S2 :=
(
(S2

δ̃
− 1

AS2
δ ), 0, 0

)′ are

asymptotically independent. Thus,

cov(S̃) = cov(S̃ − S̄) = cov(G(S1)) + cov(S2) . (15)

Using (15), we can compute the asymptotic covariance of S̃ in the following way:
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1. cov(G(S1)) can be evaluated by means of the delta method. Using the formulas

derived in Kendall and Stuart (1977), we have

Σ1 := cov(S1) =
1
n




2σ4
x 2ρ2σ2

xσ2
y σ2

xρ(1− ρ2)

2ρ2σ2
xσ2

y 2σ4
y σ2

yρ(1− ρ2)

σ2
xρ(1− ρ2) σ2

yρ(1− ρ2) (1− ρ2)2


 (16)

and

D1 :=
(

∂G
∂S2

x

∂G
∂S2

y

∂G
∂ρ̂

)∣∣∣
(σ2

x,σ2
y ,ρ)

=




1
f(ρ) 0 2(1− 1

A)σ2
xρ

0 1 0
1
2

σy

σx
ρ 1

2
σx
σy

ρ σxσy


 . (17)

Therefore, cov(G(S1)) = D1Σ1D
′
1.

2. As var(S2
δ̃
− 1

AS2
δ ) = 2

n
A−1
A2 σ4

x(1− ρ2)2, see Lemma 1e), it follows that

Σ2 := cov(S2) =
1
n




2A−1
A2 σ4

x(1− ρ2)2 0 0
0 0 0
0 0 0


 . (18)

We thus obtain

cov(S̃) = D1Σ1D
′
1 + Σ2 . (19)

Finally, with the help of (11) and (19), we can derive the asymptotic variance of β̃y:

Theorem 2. Define

d :=
∂F

∂S̃

∣∣∣∣
(σ2

x,σ2
y,ρ)

=



−σy

σ3
x
ρf(ρ)2

0
f(ρ)/σ2

x


 . (20)

Then, var(β̃y) = d′(D1Σ1D
′
1 + Σ2)d.
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Proof: By using the delta method, we obtain

var(β̃y) = var(F (S̃)) = d′cov(S̃)d = d′(D1Σ1D
′
1 + Σ2)d . (21)

3.4 Variance of β̃y,c

The asymptotic variance of the corrected estimator β̃y,c can be obtained in the same

way as the asymptotic variance of the naive least squares estimator β̃. First of all,

β̃y,c (see (5)) can be written as a function of S̃:

β̃y,c =
Sx̃y ỹy /S2

x̃y

A− (A− 1)S2
x̃y ỹy

/(S2
x̃y

S2
ỹy

)

=
Sx̃y ỹyS

2
ỹy

AS2
x̃y

S2
ỹy
− (A− 1)S2

x̃y ỹy

=: Fc(S̃) . (22)

Defining

Ñ :=
(

A

f(ρ)
− (A− 1)ρ2

)2

, (23)

we obtain

dc :=
∂Fc

∂S̃

∣∣∣∣
(σ2

x,σ2
y,ρ)

=
1
Ñ




−Aρσy

σ3
x

− (A−1)ρ3

σxσy

A+(A−1)f(ρ)ρ2

f(ρ)σ2
x


 . (24)

With the help of (15) and (24), we can derive var(β̃y,c):

Theorem 3. The asymptotic variance of β̃y,c is equal to d′c(D1Σ1D
′
1 + Σ2)dc.
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Proof: By applying the delta method, we obtain

var(β̃y,c) = d′ccov(S̃)dc = d′c(D1Σ1D
′
1 + Σ2)dc . (25)

In the special case where β = ρ = 0, it is easily seen that var(β̃y,c) = v2/n, implying

that β̃y,c and the estimator β̂ based on the non-aggregated data are asymptotically

equally efficient. Similarly, with some algebra, it can be shown that if |β| → ∞,

var(β̃y,c) → v2/n.

Substituting ρ̃y,c for ρ, S2
ỹy

for σ2
y , and f(ρ̃y,c)S2

x̃y
for σ2

x, (25) can be consistently

estimated. An asymptotic confidence interval for β is thus given by

[
β̃y,c − z1−α/2

√
σ̃2

β̃y,c
, β̃y,c + z1−α/2

√
σ̃2

β̃y,c

]
, (26)

where σ̃2
β̃y,c

denotes the consistent estimate of var(β̃y,c).

4 T-Tests with Microaggregated Data

4.1 Microaggregation with Respect to X

In this section, the consequences of testing the null hypothesis ”H0 : β = 0” versus

the alternative hypothesis ”H1 : β 6= 0” with microaggregated data are analyzed.

Let us first consider the case where the data are aggregated with respect to X. An

obvious approach is to assess the significance of the unbiased parameter estimate β̃x

by means of a standard t-test based on the aggregated data. To study the effects of

such a test (denoted by Tx in the following), we compare its asymptotic power func-
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tion to the asymptotic power function of the t-test T based on the non-aggregated

data.

First note that the test statistic of T is

t :=
β̂√

σ̂2
ε /S2

x

√
n , (27)

where σ̂2
ε is the estimate of σ2

ε based on the non-aggregated data. It is known that if

β 6= 0, the power function of T converges to 1 as n →∞. Therefore, in order to com-

pare the asymptotic power functions of Tx and T , we do this for ”local alternatives”

β = β0/
√

n. As σ̂2
ε → σ2

ε and S2
x → σ2

x, it follows that

t ≈ β̂

v

√
n =

β̂ − β0√
n

v

√
n +

β0

v
. (28)

Thus, if β0/
√

n is the true slope parameter,

t → N
(β0

v
, 1

)
. (29)

Now consider the t-test Tx based on the n/A distinguishable data values that are

aggregated with respect to X. The test statistic of Tx becomes

tx :=
β̃x√

σ̃2
ε,x/S2

x̃x

√
n

A
, (30)
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where σ̃2
ε,x is the naive estimator of σ2

ε based on the aggregated data. As σ̃2
ε,x →

(1/A)σ2
ε and S2

x̃x
→ σ2

x, (see Schmid et al. (2005)), tx is asymptotically equal to

tx ≈ β̃x√
σ2

ε /(Aσ2
x)

√
n

A
=

β̃x

v

√
n =

√
n(β̃x − β0√

n
)

v
+

β0

v
. (31)

With the help of (31), we can obtain the asymptotic distribution of tx:

Theorem 4. Under the local alternative β = β0/
√

n, tx is asymptotically normally

distributed with mean β0/v and variance one.

Proof: As
√

n(β̃x− β̂) → 0 (see Theorem 1),
√

n(β̃x− β0√
n
) is asymptotically normally

distributed with mean 0 and variance v2. Therefore, by (31),

tx
d→ N

(β0

v
, 1

)
. (32)

Comparing (29) to (32), we see that T and Tx asymptotically have the same power

functions. Note that this is only true if the n/A distinguishable data values are used

for testing. On the other hand, it follows from (31) and (32) that the null hypothesis

”H0 : β = 0” would be rejected too often if all n data values were used for the t-test.

The test would not meet the nominal significance level.

4.2 Microaggregation with Respect to Y

Now consider the case where the data have been microaggregated with respect to the

dependent variable Y . Similarly to the previous section, we compare the asymptotic

power function of the naive t-test Ty based on the n/A distinguishable aggregated

data values to the asymptotic power function of T .
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First note that the test statistic of Ty is

ty :=
β̃y√

σ̃2
ε,y/S2

x̃y

√
n

A
, (33)

where σ̃2
ε,y is the naive estimate of σ2

ε based on the aggregated data. As σ̃2
ε,y →

(1/A)f(ρ)σ2
ε and S2

x̃y
→ σ2

x/f(ρ), see Schmid et al. (2005), ty is asymptotically

equal to

ty ≈ β̃y√
σ2

ε f(ρ)2/(Aσ2
x)

√
n

A
=

β̃y

vf(ρ)
√

n =
β̃y − β0√

n
f(ρ)

vf(ρ)
√

n +
β0

v
. (34)

To obtain the distribution of
β̃y− β0√

n
f(ρ)

vf(ρ)

√
n, we make use of the following lemma:

Lemma 3.
(
β̃y − βf(ρ)

)
is asymptotically equivalent to f(ρ)

(
β̂ − β + βK

)
, where

K :=
f(ρ)
σ2

x

(( 1
A

S2
δ − S2

δ̃y

)− (
1− 1

A

)
σ2

x

(
ρ̂2 − ρ2

))
(35)

and
√

nK
d→ N(0, σ2

K).

Proof: See appendix.

With the help of Lemma 3, we can obtain the asymptotic distribution of ty:

Theorem 5. Under the local alternative β = β0/
√

n, ty is asymptotically normally

distributed with mean β0/v and variance one.

Proof: Denote by σ2
K the variance of K and by σβ̂K the covariance of β̂ and K.

Assuming β0/
√

n to be the true slope parameter, (34) together with Lemma 3 yields
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ty ≈
√

n
(
β̃y − β0√

n
f(ρ)

)

vf(ρ)
+

β0

v

≈
√

n
(
β̂ − β0√

n
+ β0√

n
K

)

v
+

β0

v

d→ N
( β0

v
,
(
1 +

β2
0

v2n
σ2

K + 2
β0

v
√

n
σβ̂K

))

d→ N
(β0

v
, 1

)
. (36)

Comparing (36) to (29), we see that Ty and T have the same power functions asymp-

totically. Therefore, just as in the case where the data are aggregated with respect

to X, we obtain an unbiased t-test by applying the standard t-test to the n/A dis-

tinguishable data values. Again it may be noted that if all n aggregated data values

were used, the resulting standard t-test would not meet the nominal significance

level.

Note that in order to test the hypothesis ”H0 : β = 0”, we do not need to correct for

the bias of β̃y. As shown above, it is sufficient to compute β̃, σ̃2
ε,y and S2

x̃y
to obtain

an (asymptotically) unbiased t-test.

5 Simulations

5.1 Finite Sample Variances of β̃x, β̃y, and β̃y,c

In this section, we check to which extent the asymptotic results of section 3 hold in

realistic data situations. For this purpose, we computed the variances of β̃x, β̃y, and

β̃y,c for various n and various values of β. The residual standard deviation σε was
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set to three, A was set to three as well. α was set to one and X ∼ N(0, 22). Fig. 1

shows the variance of
√

nβ̃x, based on 1000 replications. In addition, Fig. 1 includes

the mean of the estimated asymptotic variance based on (9). We see that if n is

small, the estimated asymptotic variance of
√

nβ̃x is smaller than its true value. As

n increases, the approximation of the variance of β̃x works as it should: var(
√

nβ̃x)

is almost identical to the true variance and to the variance of
√

nβ̂. Furthermore, as

expected, var(
√

nβ̃x) does not depend on β.
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Figure 1: Variance curves of
√

nβ̃x (solid line = true variance, dashed line = esti-
mated asymptotic variance, dotted line = v2)
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In the same way, we computed the variance of
√

nβ̃y for various n. Fig. 2 shows the

variance of
√

nβ̃y, based on 1000 replications. In addition, Fig. 2 includes the mean

of the estimated asymptotic variance based on (21). We see that if n is small, the

estimated asymptotic variance of
√

nβ̃y differs from its true value. As n increases,

the approximation of the variance of
√

nβ̃y works as it should: var(
√

nβ̃y) is almost

identical to the true variance. We also see that, contrary to microaggregation with

respect to X, var(
√

nβ̃y), does depend on β. It has its extreme value at β = 0 and

flattens as |β| → ∞.
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Figure 2: Variance curves of
√

nβ̃y (solid line = true variance, dashed line = esti-
mated asymptotic variance)
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Figure 3: Variance curves of
√

nβ̃y,c (solid line = true variance, dashed line = esti-
mated asymptotic variance)

Fig. 3 shows the variance of the corrected least squares estimator
√

nβ̃y,c, together

with the mean of the estimated asymptotic variance based on (25). Obviously, if n

is small, the asymptotic variance of
√

nβ̃y,c is smaller than its true variance. As n

increases, the approximation of the variance of
√

nβ̃y,c works as it should: The mean

of var(
√

nβ̃y,c) is almost identical to the true variance. We also see that, contrary

to the variance of β̃y, var(
√

nβ̃y,c) is smallest and equal to v2, the variance of
√

nβ̂,

when β = 0. As |β| → ∞, var(
√

nβ̃y,c) flattens again.
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5.2 Confidence Intervals for β

In this section, we study the behavior of the asymptotic confidence intervals (10)

and (26) for various n and various values of β. To achieve this, we carried out a

simulation study based on 1000 replications. The residual standard deviation σε was

set to three, A was set to three as well.

First, we performed microaggregation with respect to X. For each replication, a 95%

confidence interval for β based on the non-aggregated data was computed. Moreover,

we computed the corresponding asymptotic 95% confidence interval based on (10).

The results are shown in Table 1. The third column of Table 1 shows the mean

width of the 1000 confidence intervals based on the original data. The mean width

of the 1000 asymptotic confidence intervals based on (10) is presented in column

five of Table 1. We see that, as suggested by (10), the width of the asymptotic

confidence intervals does not depend on β. Moreover, if n is small, the asymptotic

confidence intervals are smaller than the confidence intervals based on the non-

aggregated data, which is somewhat surprising. As Fig. 1 suggests, this effect is due

to the underestimation of var(β̃x) for small n. If n is large, the confidence intervals

based on the original data and the confidence intervals based on the aggregated data

have almost equal length. Columns four and six in Table 1 show the coverage rates

of the confidence intervals based on 1000 replications. Apparently, for any n, the

coverage rates of the confidence intervals based on the aggregated data are lower

than the coverage rates of the asymptotic confidence intervals based on the non-

aggregated data. If n is small, the coverage rates of the asymptotic intervals are

considerably smaller than the degree of confidence (which is 95%). For large n the
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Original data Aggregated data
n β Width of CI Cov. rate Width of CI Cov. rate
50 0 0.845 0.940 0.800 0.904

1 0.836 0.952 0.793 0.936
2 0.846 0.965 0.780 0.939
5 0.846 0.934 0.801 0.915

150 0 0.484 0.961 0.475 0.955
1 0.484 0.939 0.476 0.934
2 0.486 0.936 0.478 0.917
5 0.483 0.964 0.474 0.958

300 0 0.340 0.951 0.336 0.951
1 0.340 0.951 0.336 0.949
2 0.341 0.936 0.338 0.930
5 0.341 0.946 0.339 0.942

600 0 0.240 0.949 0.240 0.943
1 0.240 0.955 0.239 0.951
2 0.241 0.947 0.239 0.945
5 0.240 0.941 0.239 0.939

1200 0 0.170 0.952 0.170 0.952
1 0.170 0.954 0.169 0.949
2 0.170 0.956 0.169 0.952
5 0.170 0.940 0.170 0.937

Table 1: Confidence intervals for β (Microaggregation with respect to X)

difference is negligible.

Next, we performed microaggregation with respect to Y . For each replication, a

95% confidence interval for β based on the non-aggregated data was computed.

Moreover, we computed an asymptotic 95% confidence interval based on (5) and

(26). The results are shown in Table 2. The third column of Table 2 shows the mean

width of the 1000 confidence intervals based on the original data. The mean width

of the 1000 asymptotic confidence intervals based on (26) is presented in column five

of Table 2.
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Original data Aggregated data
n β Width of CI Cov. rate Width of CI Cov. rate
50 0 0.836 0.943 0.909 0.952

1 0.834 0.933 1.122 0.904
2 0.839 0.939 1.010 0.906
5 0.839 0.935 0.894 0.885

150 0 0.483 0.948 0.497 0.945
1 0.484 0.945 0.655 0.945
2 0.483 0.959 0.656 0.930
5 0.483 0.948 0.541 0.939

300 0 0.340 0.951 0.345 0.954
1 0.340 0.952 0.462 0.951
2 0.340 0.950 0.467 0.946
5 0.342 0.956 0.387 0.937

600 0 0.240 0.942 0.242 0.943
1 0.240 0.949 0.327 0.948
2 0.240 0.951 0.331 0.939
5 0.240 0.943 0.273 0.941

1200 0 0.170 0.949 0.171 0.948
1 0.170 0.949 0.231 0.952
2 0.170 0.947 0.235 0.944
5 0.170 0.949 0.193 0.955

Table 2: Confidence intervals for β (Microaggregation with respect to Y )

We see that, contrary to microaggregation with respect to X, the width of the

asymptotic confidence intervals depends on β. As suggested by Fig. 3, the asymptotic

confidence intervals are smallest when β = 0. As β increases, they become larger.

For very large values of β (here, β = 5) the asymptotic confidence intervals become

smaller again. Table 2 also shows that, for any n, the confidence intervals based on

the non-aggregated data are smaller than the asymptotic confidence intervals based

on the aggregated data. However, if β = 0 and n is large, this difference almost

disappears. Concerning the coverage rates, we see that if n is small, the asymptotic

intervals do not keep the degree of confidence (which is 95%) except for β = 0.
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5.3 T-Tests

In this section, we check whether the results of section 4 hold in realistic data

situations. First, we performed microaggregation with respect to X. To estimate the

power function of Tx, we carried out a simulation study based on 500 replications.

As before, we set α = 1, σε = 3, and A = 3. For each replication, we carried out a

t-test based on the n/A distinguishable aggregated data. Moreover, we carried out

t-tests based on all n aggregated data and on the non-aggregated data. Next, in

order to estimate the power functions of these tests, we computed the proportion

of tests that rejected the null hypothesis ”H0 : β = 0”. The significance level was

chosen to be α = 0.05.

Fig. 4 shows the estimated power functions for four values of n (n = 50, n = 150,

n = 300, and n = 600). We see that even for small sample sizes, the power function

of Tx is a very good approximation of the power function of T . As expected, the test

based on all n aggregated data does not meet the nominal significance level: H0 is

rejected in more than 5% of all cases.

Next, we performed microaggregation with respect to Y . Again, for each replication,

we carried out a t-test based on the n/A distinguishable aggregated data. Moreover,

we carried out t-tests based on all n aggregated data and on the non-aggregated data.

As before, in order to estimate the power functions of these tests, we computed the

proportion of tests that rejected the null hypothesis ”H0 : β = 0”. The significance

level was chosen to be α = 0.05.
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Figure 4: Power of the standard t-test (data aggregated with respect to X)

Fig. 5 shows the estimated power functions for four values of n (n = 50, n = 150,

n = 300, and n = 600). The results are basically the same as when microaggregation

with respect to X is performed: Even for small sample sizes, the power function of

Tx is a very good approximation of the power function of T . Again, the test based

on all n aggregated data does not meet the nominal significance level: H0 is rejected

in more than 5% of all cases.
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Figure 5: Power of the standard t-test (data aggregated with respect to Y )
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6 Conclusion

Microaggregation clearly has an effect on both the disclosure risk of a data file

and its analytical validity. Over the last years, scientific research has mainly been

concerned with the former issue. In contrast, there has not been much work to date

that describes the analytic properties of a masked data set. However, it is vitally

important to know in which way statistical analysis is affected by anonymization

techniques. In this paper, we focused on the effects of microaggregation on the

estimation of a linear model, one of the most frequently used statistical methods.

The main results are:

1. Concerning microaggregation with respect to X, it is possible to derive an

asymptotic variance formula for the naive estimate β̃x. This formula is equal

to the asymptotic variance of the least squares estimate β̂ based on the non-

aggregated data. In particular, it is independent of β.

2. Concerning microaggregation with respect to Y , asymptotic variance formulas

for the naive least squares estimate β̃y and for the corrected least squares

estimate β̃y,c can be derived by means of the delta method.

3. With the help of the asymptotic variance formulas var(β̃x) and var(β̃y,c), as-

ymptotic confidence intervals for β can be constructed. If the data are ag-

gregated with respect to X, the width of these intervals does not depend on

β.

4. The simulation study in section 5 shows that for n ≥ 150, the asymptotic
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variance formulas are a good approximation of the true variances of β̃x, β̃y,

and β̃y,c. The simulations also indicate that var(β̃y) and var(β̃y,c) depend on

the value of β.

5. The asymptotic confidence intervals derived in section 3 show satisfactory

coverage rates for n ≥ 150. Moreover, if the data are microaggregated with

respect to X, the width of the asymptotic intervals is almost equal to the width

of the intervals based on the non-aggregated data, at least for large n. If the

data are aggregated with respect to Y , the width of the asymptotic confidence

intervals depends on β. In addition, for β 6= 0, the intervals are larger than

the intervals based on the non-aggregated data.

6. The power function of the t-test for the slope parameter β based on the non-

aggregated data can asymptotically be preserved by carrying out a naive t-test

based on the n/A distinguishable aggregated data values. This result holds for

both microaggregation with respect to X and microaggregation with respect

to Y . In contrast, the naive t-test with all n aggregated data values does not

meet the nominal significance level.

7. The simulation study in section 5 shows that even for small n, the asymptotic

power functions derived in section 4 are very good approximations of the power

function of the t-test based on the non-aggregated data.

Together with the results presented in Schmid et al. (2005), we have developed an

asymptotic theory for estimating a simple linear model based on microaggregated

data. Of course, this theory relies on the assumption that a leading variable is used
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for grouping the data.

Future research topics include

• multiple regression: We have developed our theory for a simple linear model

with one covariate. Clearly, this model can be extended to a set of more than

one covariate. It is therefore necessary to investigate the effects of microaggre-

gation on multiple linear regression.

• the inclusion of discrete covariates: Microaggregation is primarily used for

masking continuous variables. Nevertheless, if a linear model includes (non-

anonymized) discrete covariates, it is highly likely that the parameter esti-

mates of these discrete covariates are affected by microaggregation of the con-

tinuous covariates. Therefore, methods for quantifying a possible bias of the

least squares estimates have to be developed.

• a sensitivity analysis: The theory we have developed is based on the assumption

that the covariate X is normally distributed (at least if the data are microag-

gregated with respect to Y ). In practice, however, this assumption might not

always be justified. It is therefore necessary to analyze the sensitivity of the

bias and variance formulas to deviations from normality.
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Appendix - Proofs

Lemma 1.

a) Denote by S2
y the empirical variance of y. Then

√
n(S2

ỹy
− S2

y) converges in

probability to 0.

b) Denote by Syδ the empirical covariance of Y and δ in model (6). Analogously,

denote by Sỹy δ̃y
the empirical covariance of ỹy and δ̃y Then,

√
n(Sỹy δ̃y

− Syδ)

converges in probability to 0.

c) Denote by Sxy the empirical covariance of x and y. Then
√

n(Sx̃y ỹy − Sxy)

converges in probability to 0.

d) Denote by S2
x the empirical variance of x. Then S2

x̃y
− S2

x is asymptotically

equivalent to S2
δ̃y
− S2

δ .

e) For n →∞,
√

n(S2
δ̃y
− 1

AS2
δ ) converges to a normal distribution with zero mean

and variance 2A−1
A2 σ4

δ = 2A−1
A2 σ4

x(1− ρ2)2.

f) Consider the equation

Xi = β̂∗Yi + δ̂i , i = 1, . . . , n , (37)

where β̂∗ is the least squares estimate based on the non-aggregated data and

δ̂i := Xi− β̂∗Yi is the corresponding residual term. Then, S2
δ is asymptotically

equivalent to the empirical variance S2
δ̂

of δ̂1, . . . , δ̂n.

Proof of a): We prove a) for A = 2. For A > 2, the proof is analogous. Without

loss of generality, we set µy = 0 and σ2
y = 1. Denote by S2

y,W and S2
y,B the within-
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groups variance and the between-groups variance of Y respectively. By definition,

S2
y,B = S2

ỹy
. Moreover, denote by Yi:n the i-th order statistic of the sample variables

Y1, . . . , Yn.

Now, as

√
n (S2

y − S2
ỹy

) =
√

nS2
y,W ≤ 1√

n

1
2

n∑

i=2

(Yi:n − Y(i−1):n)2 , (38)

it is sufficient to show that 1/
√

n
∑n

i=2(Yi:n − Y(i−1):n)2 converges in probability

to 0. Define bn := n1/8 and Mn := max{|Y1|, . . . , |Yn|}.

Next, for any ε > 0, we consider the events

A :=

{
1√
n

n∑

i=2

(Yi:n − Y(i−1):n)2 > ε

}
, (39)

B :=
{
Mn ≤ bn

}
. (40)

We have to show that P(A) → 0. Clearly, the following inequality holds:

P(A) = P(A ∩B) + P(A ∩ B̄)

≤ P(A ∩B) + P(B̄) . (41)

Now, by showing that the probabilities P(A ∩B) and P(B̄) both converge to 0, we

can prove part a) of Lemma 1.

Let us first consider the event A ∩B in equation (41): Under this event, we have
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ε <
1√
n

n∑

i=2

(Yi:n − Y(i−1):n)2

=
1√
n

∑

i:|Yi:n−Y(i−1):n|≤1

(Yi:n − Y(i−1):n)2

+
1√
n

∑

i:|Yi:n−Y(i−1):n|>1

(Yi:n − Y(i−1):n)2

≤ 1√
n

(
max

i
{Yi} −min

i
{Yi}

)
+ 2bn · 1√

n
(2bn)2

≤ 1√
n

2bn +
1√
n

8b3
n . (42)

It follows that

P(A ∩B) ≤ P
( 1√

n
2bn +

1√
n

8b3
n > ε

)
= P

(
2n−3/8 + 8n−1/8 > ε

)
. (43)

Therefore, P(A ∩B) → 0.

Next, we consider the event B̄ in equation (41). As Y is normally distributed, we

have

P(B̄) = P
(
min

i
{Yi} < −bn ∪max

i
{Yi} > bn

)

≤ P
(
min

i
{Yi} < −bn

)
+ P

(
max

i
{Yi} > bn

)

= 2
(
1− Φ(bn)n

)
, (44)

where Φ(·) denotes the normal cumulative probability function. Now, if n is large,

Φ(bn) can be approximated by

Φ(bn) ≈ 1− (2π)−1/2 1
bn

exp(−b2
n/2)

= 1− (2π)−1/2 n−1/8 exp(−n1/4/2) =: Rn , (45)
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in the sense that 1−Φ(bn)
1−Rn

→ 1 (see Johnson et al. (1994)). Therefore, as

Rn
n =

(
1− (2π)−1/2n7/8 exp(−n1/4/2)

n

)n
→ exp(0) = 1 , (46)

the right side of (44) converges to 0.

Proof of b): We prove b) for A = 2. For A > 2, the proof is analogous.

Without loss of generality, we set µy = 0 and σ2
y = 1. Denote by δ[i] the error

variable associated with Yi:n.

First of all, as

Syδ−Sỹy δ̃y
=

1
2n

(
(Y2:n−Y1:n)(δ[2]− δ[1]) + . . . + (Yn:n−Y(n−1):n)(δ[n]− δ[n−1])

)
,

(47)

it is sufficient to show that 1/
√

n
∑

i=2,4,...,n (Yi:n−Y(i−1):n) |δ[i]− δ[i−1]| → 0. Define

ui := δ[i] − δ[i−1], i = 2, 4, . . . , n. It follows that the ui are independent normally

distributed random variables having mean 0. Without loss of generality, we assume

them to be standard normal.

Moreover, we define bn = cn := n1/8, My,n := max{|Y1|, . . . , |Yn|}, and Mu,n :=

max{|u2|, . . . , |un|}.
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Next, for any ε > 0, consider the events

A := { 1√
n

∑

i=2,4,...,n

(Yi:n − Y(i−1):n) |ui| > ε} ,

B := {My,n ≤ bn} ,

C := {Mu,n ≤ cn} . (48)

We have to show that P(A) → 0. Clearly, the following inequality holds:

P(A) = P(A ∩B ∩ C) + P(A ∩B ∩ C̄)

+P(A ∩ B̄ ∩ C̄) + P(A ∩ B̄ ∩ C)

≤ P(A ∩B ∩ C) + P(C̄)

+P(C̄) + P(B̄) . (49)

Now, by showing that each of the probabilities P(A ∩ B ∩ C), P(B̄), and P(C̄)

converges to 0, we are able to prove part b) of Lemma 1.

Let us first consider the event A ∩B ∩ C. Under this event, we have

ε <
1√
n

∑

i=2,4,...,n

(Yi:n − Y(i−1):n) |ui|

≤ 1√
n

cn

(
max

i
{Yi} −min

i
{Yi}

)

≤ 1√
n

2 bncn . (50)
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It follows that

P(A ∩B ∩ C) ≤ P
( 1√

n
2bncn > ε

)
= P(2n−1/4 > ε) . (51)

Therefore P(A ∩B ∩ C) → 0.

Next, we consider P(B̄) and P(C̄). From (44) we obtain

P(B̄) ≤ 2
(
1− Φ(bn)n/2

)
, (52)

P(C̄) ≤ 2
(
1− Φ(cn)n/2

)
= 2

(
1− Φ(bn)n/2

)
. (53)

As (45) can again be used to approximate Φ(bn), it follows that both P(B̄) and P(C̄)

converge to 0.

Proof of c): As

Sxy = β∗2S2
y + Syδ , (54)

Sx̃y ỹy = β∗2S2
ỹy

+ Sỹy δ̃y
, (55)

we obtain

√
n (Sx̃y ỹy − Sxy) =

√
n

(
β∗2(S2

ỹy
− S2

y) + Sỹy δ̃y
− Syδ

)
. (56)

Because of a) and b), (56) converges in probability to 0.
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Proof of d): As

S2
x = β∗2S2

y + 2β∗Syδ + S2
δ , (57)

Sx̃y = β∗2S2
ỹy

+ 2β∗Sỹy δ̃y
+ S2

δ̃y
, (58)

we obtain

√
n (S2

x − S2
x̃y

) =
√

n
(
β∗2(S2

y − S2
ỹy

) + 2β∗(Syδ − Sỹy δ̃y
) + S2

δ − S2
δ̃y

)
. (59)

Hence d) follows from a) and b).

Proof of e): First of all, S2
δ̃y
− 1

AS2
δ can be written as

S2
δ̃y
− 1

A
S2

δ =
A

n

(( 1
A

A∑

i=1

δ[i]

)2 +
( 1
A

2A∑

i=A+1

δ[i]

)2 + . . .
)

− 1
nA

(
δ2
[1] + · · ·+ δ2

[n]

)

=
2

A2

A

n

n/A∑

k=1

Sk , (60)

where

Sk :=
∑
i<j

i,j∈{(k−1)A+1,...,kA}

δ[i]δ[j] . (61)

Define S̄s := A
n

∑n/A
k=1 Sk. Now, as δ[1], . . . , δ[n] are independent identically distrib-

uted with zero mean and variance σ2
δ , and therefore S1, . . . , Sn/A are also iid with zero
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mean and variance A(A−1)
2 σ4

δ , we have

√
n
(
S2

δ̃y
− 1

A
S2

δ

)
=

2
A3/2

√
n

A
S̄s → N

(
0,

4
A3

A(A− 1)
2

σ4
δ

)

= N
(
0, 2

A− 1
A2

σ4
δ

)
. (62)

Proof of f): As δ̂i− δi = (β∗− β̂∗)Yi, it follows that δi = δ̂i− (β∗− β̂∗)Yi. Therefore,

S2
δ = S2

δ̂
+ (β∗ − β̂∗)2S2

y . (63)

Clearly,
√

n(β∗ − β̂∗)2S2
y converges to 0.

Therefore,

√
n(S2

δ − S2
δ̂
) → 0 . (64)

Note in addition that S2
δ̂

is equal to S2
x(1− ρ̂2).

Lemma 2. S2
x̃y

is asymptotically equivalent to S2
x

f(ρ) +(1− 1
A)σ2

x(ρ̂2−ρ2)+(S2
δ̃y
− 1

AS2
δ ).

Proof: By using parts d) and f) of Lemma 1, we obtain
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S2
x

f(ρ)
− S2

x̃y
= S2

x

( 1
A

+
(
1− 1

A

)
ρ2

)
− S2

x̃y

= S2
x − S2

x̃y
− S2

x

(
1− 1

A

)(
1− ρ2

)

∼ S2
δ − S2

δ̃y
− S2

x

(
1− 1

A

)(
1− ρ2

)

=
1
A

S2
δ − S2

δ̃y
− (

1− 1
A

)(
S2

x(1− ρ2)− S2
δ

)

∼ 1
A

S2
δ − S2

δ̃y
− (

1− 1
A

)(
S2

x(1− ρ2)− S2
δ̂

)

=
1
A

S2
δ − S2

δ̃y
− (

1− 1
A

)
S2

x

(
ρ̂2 − ρ2

)
. (65)

Lemma 3. (β̃y − βf(ρ)) is asymptotically equivalent to f(ρ)(β̂ − β + βK), where

K :=
f(ρ)
σ2

x

(( 1
A

S2
δ − S2

δ̃y

)− (
1− 1

A

)
σ2

x

(
ρ̂2 − ρ2

))
(66)

and
√

nK
d→ N(0, σ2

K).

Proof: First of all,
√

n(β̃ − βf(ρ)) can be written in the following way:

√
n (β̃ − βf(ρ)) =

√
n

(Sx̃y ỹy

S2
x̃y

− βf(ρ)
)

=
√

n
Sx̃y ỹy − Sxy

S2
x̃y

+
√

n
(Sxy

S2
x

S2
x

S2
x̃y

− βf(ρ)
)

=
√

n
Sx̃y ỹy − Sxy

S2
x̃y

+
√

n
(
β̂ − β + β̂

( S2
x

f(ρ)
− S2

x̃y

) 1
S2

x̃y

)
f(ρ)

≈ √
n

(
β̂ − β + β̂

( S2
x

f(ρ)
− S2

x̃y

) 1
S2

x̃y

)
f(ρ) (67)
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by part c) of Lemma 1. Since the distribution of
√

n(β̂−β)f(ρ) is known from linear

model theory, we only consider
√

n( S2
x

f(ρ) − S2
x̃y

). Using Lemma 2, we obtain

√
n

( S2
x

f(ρ)
− S2

x̃y

)
≈ √

n
( 1

A
S2

δ − S2
δ̃y
− (

1− 1
A

)
S2

x

(
ρ̂2 − ρ2

))

=
√

n
σ2

x

f(ρ)
K . (68)

As β̂ → β and S2
x̃y
→ σ2

x/f(ρ),

√
n (β̃ − βf(ρ)) ≈ √

n (β̂ − β + βK)f(ρ) . (69)
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