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Abstract

Emerging patterns represent a class of interaction structures which

has been recently proposed as a tool in data mining. In this paper, a

new and more general definition refering to underlying probabilities

is proposed. The defined interaction patterns carry information about

the relevance of combinations of variables for distinguishing between

classes. Since they are formally quite similar to the leaves of a classi-

fication tree, we propose a fast and simple method which is based on

the CART algorithm to find the corresponding empirical patterns in

data sets. In simulations, it can be shown that the method is quite ef-

fective in identifying patterns. In addition, the detected patterns can

be used to define new variables for classification. Thus, we propose

a simple scheme to use the patterns to improve the performance of
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classification procedures. The method may also be seen as a scheme

to improve the performance of CARTs concerning the identification

of interaction patterns as well as the accuracy of prediction.
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1 INTRODUCTION

In classification interaction structures among predictors may be used explic-

itly or implicitly. In linear discriminant analysis or logistic regression a famil-

iar way to exploit interactions is the incorporation of interaction terms xixj

into the linear predictor. Nonparametric classifiers like nearest neighbour-

hood classifiers do not specify the interaction structure explicitly but rely on

its implicit use. Tree based methods like CARTs (classification and regression

trees) as suggested by Breiman et al. (1984) make interaction structures the

central issue. The same holds for early versions of trees, where the detection

of interaction structures gave the algorithm its name, i.e. AID for automatic

interaction detection (Morgan and Sonquist, 1963). More recently, specific in-

teraction structures called emerging patterns have been introduced by Dong

and Li (1999) and applied to high-dimensional gene expression analysis in

Li and Wong (2003). An alternative concept which is related to interactions

is the search for boxes in the feature space in which the response variable

has a particular distribution. Bump hunting as suggested by Friedman and

Fisher (1999) is a method to seek boxes in which the response is as high as

possible. A short overview on bump hunting is given in Hastie et al. (2001).

In the following we will consider simple interaction structures of the emerging

pattern type which have the form

{x1 > θ1} ∩ {x2 ≤ θ2} ∩ · · · ∩ {xd > θd}

where x1, . . . , xd are covariates and θ1, . . . , θd are thresholds to be estimated.

An interaction structure of this type will be called an interaction pattern. For

simplicity, it will be abbreviated by P . Emerging patterns as considered by

Dong and Li (1999) are interaction patterns which discriminate between two

classes in a specific sense. Let xT = (x1, . . . , xp) denote the random vector of

covariates and Y the class indicator which can take the values 1 and 2. Let

nP,j denote the number of observations from class j in P . According to the
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definition of Dong and Li (1999), a pattern P is a ρ-emerging pattern from

class i to class j if the growth rate from i to j GRij is larger than ρ, where

GRij is defined as

GRij(P ) =
nP,j/nj

nP,i/ni

.

The definition is based on a heuristic rather than a statistical criterion. The

focus in (Dong and Li, 1999) is on data mining and therefore on algorithms

that find all the ρ-emerging patterns without regard to relevance. The prob-

lem of overfitting is neglected. By investigating a large number of possible

patterns, it is always possible to find a large growth rate in the training data,

but in an independent test data set, growth rates are usually much lower. An-

other drawback of Dong and Li’s patterns is that the definition is restricted

to the case K = 2.

In this paper, we suggest a more general definition of interaction patterns

which is based on the underlying probability and allows for more than two

classes. In addition, a CART-based method is proposed to identify statisti-

cally relevant interactions in cases where many variables are potential can-

didates. In gene expression data where the expression levels of thousands of

genes are measured simultaneously the challenge is the number of predictors.

The objectives of our approach are identification of interaction patterns as

well as their use in classification. In the microarray framework, the detection

of interactions aims at the analysis of gene expression profiles to uncover how

combinations of genes are linked to specific diseases. The classification part

aims at the improvement of classification rules.

While Dong and Li (1999) focus on an enumeration based algorithm to find all

patterns with large empirical growth rates, here a fast CART-based method

is proposed. The method allows to identify candidate patterns and only those

which satisfy a statistical criterion are selected as interaction patterns. In ad-

dition, a pruning criterion is used to prevent too long and irrelevant IPs. A

simpler version of the algorithm which is restricted to the case of two classes
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is given in Boulesteix et al. (2003).

The rest of the paper is organized as follows. In Section 2, we define interac-

tion patterns. In Section 3, we present the discovering method and algorithm

to find interaction patterns in data. Section 4 presents the results of the

method for simulated data. In section 5, we show how interaction patterns

can be used for classification and show the results obtained for very large

data sets.

2 DEFINITION OF INTERACTION PAT-

TERNS

2.1 Interaction Patterns for two classes

In this section, we first consider the binary case. For simplicity, the variables

x1, . . . , xp are assumed to be metric, although the method is easily generalized

to categorical variables. A pattern may be characterized as a collection of

restrictions on a subset of variables xj1 , . . . , xjd
. The restrictions have the

simple form xj ≤ θj or xj > θj. Let Ij denote an interval of this type, then

the restrictions are collected in

xj1 ∈ I1, . . . , xjd
∈ Id.

More formally, the restrictions may be represented as a subset of the obser-

vation space Rp or in terms of the underlying event. As subset of Rp they are

given by

{x|xj1 ∈ I1} ∩ · · · ∩ {x|xjd
∈ Id}.

For random variables x1, . . . , xp the underlying event for pattern P is given

by

P = Aj1 ∩ · · · ∩ Ajd
,
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where As = {ω|xs(ω) ∈ Is}. The pattern P may be simply identified by

the sequence of variables and corresponding intervals {(js, Is), s = 1, . . . , d}
where d is the order of the pattern. In addition, let P\j denote the pattern

where the restriction for variable j is omitted, i.e.

P\j = ∩i∈{j1,...,jd}\{j}Ai.

The original pattern is easily obtained by P = P\j ∩ Aj.

Definition 1 Interaction pattern for two classes

For η > 1, P is called a η- Interaction Pattern IP for class k0 if

p(P |Y = k0)

p(P |Y 6= k0)
> η, (2.1)

and for all j ∈ {j1, . . . , jd} the condition

p(P\j|Y = k0)

p(P\j|Y 6= k0)
<

p(P |Y = k0)

p(P |Y 6= k0)
(2.2)

holds.

In simple words, an interaction pattern is a condition on a collection of co-

variates for which the probability of occurrence is larger in one of the classes

(equation (2.1)) and such that every involved covariate actually contributes

to the ratio between the probabilities of occurrence within classes (equation

(2.2)). The probabilities involved in the definition are unknown. Therefore,

given a candidate pattern P , the data are used to decide if it is an interaction

pattern fulfilling equations (2.1) and (2.2). One option is to base the deci-

sion on a statistical test. For fixed k0, condition (2.1) may be investigated by

testing the hypothesis

H
(1)
0 : p(P |Y = k0) ≤ p(P |Y 6= k0)

For simplicity η = 1 is used. Then testing of H
(1)
0 is equivalent to one-sided

independence testing in the following (2 × 2) contingency table with rows
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given by presence or non-presence of pattern P and columns defined by the

classes.

Y = k0 Y 6= k0

P nP,k0 nP,k0
nP

P nP ,k0
nP ,k0

nP

In the contingency table P stands for presence of a specific pattern P and

P = Rp \P denotes the non-presence of P . One can use for instance Fisher’s

exact test, which allows one-sided testing and is also valid for small numbers

of observations. An overview on independence testing in contingency tables

is given in (Agresti, 2002). The hypothesis H
(1)
0 is rejected by the chosen

independence test (for instance Fisher’s test) to the significance level α1 if

p(1) < α1, where p(1) denotes the p-value obtained by testing of H
(1)
0 . P is

selected as an interaction pattern only if p(1) < α1 holds. For the investigation

of condition (2.2) it is useful to reformulate the condition. Since

p(P\j|Y = k0)

p(P\j|Y 6= k0)
<

p(P |Y = k0)

p(P |Y 6= k0)

is equivalent to

p(P\j ∩ Aj|Y = k0)

p(P\j ∩ Aj|Y 6= k0)
<

p(P |Y = k0)

p(P |Y 6= k0)
(2.3)

condition (2.2) may be investigated by one-sided independence testing in the

following contingency table:

Y = k0 Y 6= k0

P = P\j ∩ Aj n
(j)
A,k0

n
(j)

A,k0
nP

P\j ∩ Aj n
(j)

A,k0
n

(j)

A,k0
nP\j

− nP

Let γ(j) denote the associated odd ratio

γ(j) =
p(P ∩ {Y = k0})/p(P ∩ {Y 6= k0})

p(P\j ∩ Aj ∩ {Y = k0})/p(P\j ∩ Aj ∩ {Y 6= k0})
.
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Then, condition (2.3) can be reformulated as γ(j) > 1. To investigate condi-

tion (2.3), one has to test for all j the hypothesis

H
(2,j)
0 : γ(j) = 1 vs. H

(2,j)
1 : γ(j) > 1.

An option is to use Fisher’s one-sided independence test again. The hypothe-

sis H
(2,j)
0 is rejected by the chosen independence test to the significance level

α2 if p(2,j) < α2, where p(2,j) denotes the p-value obtained by testing of H
(2,j)
0 .

P is selected as an interaction pattern only if maxj p(2,j) < α2 holds, i.e. for

all j ∈ {j1, . . . , jd}, H
(2,j)
0 has to be rejected.

The number of involved variables represents the order of the interaction pat-

tern and is denoted by d. Patterns of order 1 are explicitly allowed. In the

following, empirical interaction patterns are simply denoted as IPs. The con-

nection to emerging patterns is easily derived. In the emerging pattern lit-

erature which uses terminology from data mining the support is defined

by suppk(P ) = nP,k/nk. This is an unbiased estimate of the probability

p(P |Y = k). The crucial difference between the present approach and the

emerging pattern approach in data mining is that in the latter approach

growth rates are simple descriptive tools and only condition (2.1) is investi-

gated.

2.2 Generalization to multicategorical response

In practice, categorical variables often have more than two possible classes.

In this section, we address the problem of multicategorical responses (K > 2)

and propose a generalization of the definition of IPs.

Definition 2 Interaction pattern for more than two classes

For η > 1, P is called a η-Interaction Pattern (IP) for the class k0 if

p(P |Y = k0)

p(P |Y = k)
> η (2.4)
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holds for all k and for all j from {j1, . . . , jd} one has

p(P\j|Y = k0)

p(P\j|Y 6= k0)
<

p(P |Y = k0)

p(P |Y 6= k0).
(2.5)

For fixed k0, condition (2.4) may be investigated by testing the hypotheses

H
(1,k)
0 : p(P |Y = k0) ≤ p(P |Y = k)

for all k 6= k0. The hypothesis H
(1,k)
0 is rejected by the chosen independence

test (for instance Fisher’s test) to the significance level α1 if p(1,k) < α1,

where p(1,k) denotes the p-value obtained by testing of H
(1,k)
0 . For fixed α1,

P is selected as an interaction pattern if maxk 6=k0 p(1,k) < α1 holds.

Condition (2.5) can be investigated using the same procedure as for IPs for

two classes.

3 DISCOVERING INTERACTION PAT-

TERNS WITH TREES

Interaction patterns and single leaves of classification trees have similar struc-

tures and properties. Thus, we propose to use the well-known and fast CART-

algorithm proposed in (Breiman et al., 1984) to discover interaction patterns.

3.1 Tree methodology

Classification trees are an efficient exploratory tool to detect structures

in data (Breiman et al., 1984). They are based on recursive partitioning

whereby the measurement space Rp is successively split into subsets. Let

xT = (x1, . . . , xp) ∈ Rp denote the vector of covariates. If C is a subset of Rp

(corresponding to the partitioning of Rp into C and C = Rp \ C), the split

of C based on variable xj divides C into

C1(j, θ) = {x ∈ C|xj ≤ θ},
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C2(j, θ) = {x ∈ C|xj > θ}.

Thus the subset C is split by use of one variable, xj, with the split simply

depending on a threshold θ from the range of xj. By starting with C = Rp

and performing successive splittings one obtains a tree. After d splittings,

one obtains subsets of Rp of the form

{x|xi1 ≤ θ1} ∩ {x|xi2 > θ2} ∩ · · · ∩ {x|xid ≤ θd}.

A subset is identical to a pattern P given by the sequence {(js, Is), s =

1 . . . , d} where js identifies the variable and Is specifies the interval which in

the simple case of binary splits has the form Is = (−∞, θs] or Is = (θs, +∞).

The relationship between decision trees and patterns is simple: a pattern is

equivalent to a leaf.

3.1.1 Splitting criterion

Given a pattern P of order d, an additional split in variable j at θ yields a

(d + 1)-dimensional pattern. Let

P ∩ A = P ∩ {ω|xj(ω) ∈ Ij}

denote the new pattern where Ij = (−∞, θj] or Ij = (θj, +∞). Thus start-

ing from P one obtains for the transition from P to P ∩ A the transition

contingency table

Y = 1 . . . Y = K

P ∩ A nPA,1 . . . nPA,K

P ∩ A nPA,1 . . . nPA,K

nP,1 . . . nP,k

The margins nP,k for k from {1, . . . , K} represent the number of observations

from class k in pattern P .

The new split is chosen to minimize a splitting criterion. One of the most
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common criteria is the deviance, also called cross-entropy, see (Hastie et al.,

2001). The deviance of a pattern P corresponds to the fit of the model

p(P |Y = 1) = · · · = p(P |Y = K).

Let n denote the total number of observations and nk the number of obser-

vations from class k. The deviance has the form

D(P ) = 2
∑K

k=1{nP,k log
nP,k/nk

nP /n
+ nP ,k log

nP,k/nk

nP /n
}

= 2
∑K

k=1{nP,k log p̂(P |k)
p̂(P )

+ nP ,k log p̂(P |k)

p̂(P )
}

= 2
∑K

k=1 nkKL(p̂(P |k), p̂(P ))

where nP =
∑K

k=1 nP,k, p̂(P |k) =
nP,k

nk
, p̂(P ) = nP

n
, and KL stands for the

Kullback-Leibler distance

KL(p, q) = p log
p

q
+ (q − p) log

1− p

1− q
.

The new split which characterizes A is chosen to minimize the conditional

deviance D(P ∩ A|P ) given by

D(P ∩ A|P ) = D(P ∩ A)−D(P )

and tests the hypothesis

p(P ∩ A|Y = 1) = · · · = p(P ∩ A|Y = K)

given p(P |Y = 1) = · · · = p(P |Y = K). The conditional deviance can also

be written as

D(P ∩ A|P ) = 2
K∑

k=1

nP,kKL(p̂(P ∩ A|k), p̂(P ∩ A)).

Various other splitting criteria have been used to grow trees, for instance the

Gini-Index or the misclassification error, see (Hastie et al., 2001).
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3.1.2 Stopping Criterion

The splitting criterion characterizes the way the tree is grown. In addition a

stopping-criterion has to be chosen. In the tree literature, various stopping

criteria have been proposed, for instance by Breiman et al. (1984). Let us

consider a leaf P . One can decide not to split this leaf if its order exceeds

a fixed number, if it contains less than a fixed number of observations or if

the best split would yield at least one leaf with less than a fixed number of

observations. Many other more sophisticated stopping criterions such as cost-

complexity pruning described in (Hastie et al., 2001) have been investigated.

3.2 Discovering Algorithm

When using trees for the detection of interaction patterns the main problem

is that trees are constructed by recursive partitioning. What is an advantage

in terms of computation time and structuring turns into a disadvantage since

the leaves share splits in the same variables. In particular, all leaves share

the same root splitting. Patterns that do not involve the root splitting vari-

able will never be found by a single tree. Therefore the proposed algorithm

is based on the growing of several trees which use different sets of variables

from which the splitting starts.

The first stage is designed to find candidate patterns. Here candidate patterns

are generated which are investigated in the following steps. The selection is

directly based on classification trees. The iterative algorithm grows a tree

on the available set of variables and then removes the variable that gener-

ates the first split from the available set of variables. Thus patterns result

which include different sets of variables. In applications we use the CART-

algorithm tree implemented in the tree library in R with the deviance as

splitting criterion. As stopping criterion, we fix mincut (minimal number of

observations to include in either child node) at 5, minsize (minimal allowed
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node size) at 10 and mindev (minimal ratio between within-node deviance

and the root node deviance for the node to be split) at 0.01. These settings

are the default values of the R program.

In a second stage, conditions (2.1) and (2.2) resp. (2.4) and (2.5) are tested

for the selected candidates patterns. The significance levels for the tests (α1

and α2) as well as the test T to be used (e.g. Fisher’s exact test) have to be

specified as input. The whole procedure can be summarized by the following

algorithm.

Stage 1: Candidate patterns

Grow a classification tree. Store the obtained leaves and eliminate the vari-

able defining the first splitting of the tree from the set of input variables .

Repeat this procedure until there is no more variable in the input set. Define

S as the set of all obtained leaves.

Stage 2: Relevance of candidate patterns

For each leaf from S, define k0 as the class that maximizes p̂(P |k).

1. For each leaf, for all k 6= k0, test H
(1,k)
0 with test T to the significance

level α1. Eliminate from S all the leaves for which maxk 6=k0 p(1,k) > α1.

This step corresponds to the testing of condition (2.1) resp. (2.4).

2. For all the remaining leaves from S, test H
(2,j)
0 for all j in {j1, . . . , jd}

with test T to the significance level α2. If maxj p(2,j) > α2, eliminate

the variable for which p(2,j) is maximal from the interaction pattern.

Repeat this procedure as long as variables are eliminated. This step

corresponds to the testing of condition (2.2) resp. (2.5).

3. Repeat step 1 for all the leaves that have be shortened in step 3. This

step is necessary to ascertain that the shortened patterns still fulfill

condition (2.1) resp. (2.4).

4. Eliminate from S all the duplicated patterns.
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The algorithm yields empirical interaction patterns which are based on tests

with significance levels α1 and α2. Since many tests are performed the ques-

tion of the overall significance level arises. This might be controlled for the

given set of candidate patterns. It is however hard to control for the total

procedure. Approaches to control the level for trees by maximally selected

rank statistics are found in (Lausen and Schumacher, 1992). Here, we follow

an alternative approach by defining receiver operating curves which capture

the performance of the algorithms for varying significance levels. This topic

is addressed in the following section, where it is shown that the algorithm

can detect ’ideal’ theoretical interaction patterns with quite good accuracy.

3.3 Receiver Operating Characteristic

A popular method for summarizing the accuracy of a classification rule are

receiver operating characteristic (ROC) curves. A ROC curve is a plot of the

true-positive rates against the false-positive rates. In classification, curves

result from the consideration of varying thresholds on the diagnostic scale.

Let a disease be diagnosed if the diagnostic scale is larger than threshold γ.

Then the true-positive and false-positive rates are functions of the threshold.

The resulting ROC curve is convex under quite natural assumptions. A large

body of literature deals with the concept and estimation of ROC curves.

An early reference is Swets and Pickett (1982), more recent approaches

to estimation are proposed in (Lloyd, 2000) and (Venkatraman, 2000).

A version of the ROC curve is suggested here to illustrate the power of

the method for detecting relevant interactions. The empirical ROC curve

shows the estimated hit rate (HR) against the estimated false alarm rate

(FAR), where HR and FAR depend on the parameters α1 and α2 and

on the order of the interaction patterns. Let, for example, the order of

the interaction patterns be fixed at d = 2, i.e. only pairs of variables

are investigated. If p is the total number of variables, the total number
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of possible pairs of variables is p(p − 1)/2. For each possible pair of

variables, two binary variables are defined: r, which equals 1 if the pair

forms a real IP of order 2 and 0 else, and d, which equals 1 if the pair is

detected as an IP of order 2 by our method and 0 else. For each parameter

setting (α1 and α2), we are interested in the following contingency table.

d d Σ

r nr,d nr,d nIP

r nr,d nr,d p(p− 1)/2− nIP

The hit rate (HR) is defined as the proportion of discovered IPs among the

nIP real IPs, i.e.

HR =
nr,d

nIP

.

Similarly, the false alarm rate (FAR) is defined as the proportion of patterns

which were detected as IPs among the non-IP patterns of the same order,

i.e.

FAR =
nr,d

p(p− 1)/2− nIP

.

3.4 Simulation study

3.4.1 Study Design

In a simulation study it is investigated if the algorithm is able to detect sim-

ulated patterns. To make the problem more simple and reduce the number of

parameters in the study, we consider only the case of two classes. Simulated

data are obtained by following procedure. The number of variables contained

in the data set is fixed at p = 50 and the number of observations is varied

(n = 50, 80). These sample sizes correspond roughly to the typical values

found in real gene expression data sets. From the 50 variables, 20 variables

form interaction patterns. The two threshold values defining each pattern

are drawn randomly from the uniform distribution in [0.25, 0.75]. The type

of inequality defining the pattern (≤ or >) are also chosen randomly. In the
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subsets defined by the pattern and in its complement, the distribution is uni-

form. The rest of the 50 variables are generated randomly and independently

of the class, following the uniform distribution in [0, 1].

The simulation study is designed as follows. We generate 100 random data

matrices following the procedure described above. Then the discovering al-

gorithm is run on each data matrix with different values of α1 and α2. HR

and FAR are estimated for each parameter setting from the contingency ta-

bles obtained for the 100 random data matrices. Finally the means across

simulations are built.

3.4.2 Simulation results

Figure 1 displays the estimated ROCs for two values of n (n = 50 and

n = 80): the estimated hit rate is represented against the estimated false

alarm rate for different values of α1 (ranging from 10−20 to 10−2) and α2

(ranging from 10−14 to 10−4).It is seen that for decreasing significance levels

the ROCs rather soon become horizontal, signaling a stable level of detection

rate with the level depending on sample size. Within this stable level the

increase of significance levels only increases the false alarm rate.

4 CLASSIFICATION BASED ON INTER-

ACTION PATTERNS

4.1 Method

As can be seen from their definition, IPs might be useful to define predictors

for classification. An inconvenience of the CART approach for data sets with

many variables and few observations is that the tree often consists of few

splittings. If one stops growing the tree too late, then some splittings might

be statistically irrelevant. And if the growing is stopped too early, the decision
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rule depends on very few variables, and does not use most of the potentially

interesting variables from the data set. By using IPs instead of tree leaves

as a basis for the decision rule, one avoids these two problems: the statistical

relevance is investigated by a testing procedure, and the decision rule uses

much more information from the data set than a single tree does. In the

following, a simple method to use IPs for classification is proposed. It is

particularly suited for data sets with many (metric or categorical) variables

and few observations. It can also be used for data sets with fewer variables,

however without spectacular gain in accuracy.

From now on, we suppose that we have a learning data set L and a test data

set T . To predict the class of the observations from T , we proceed as follows:

First, IPs are found by applying the discovering algorithm on the training set

L. Second, m new binary covariates Z1, . . . , Zm are defined, where m denotes

the number of found IPs. The variables

Zj =

 1 for the j-th IP

0 otherwise

indicate if the considered observation fulfills the conditions defining the

considered IP. One obtains a transformed learning data set and a transformed

test data set. Then virtually any supervised learning method can be applied

to these data matrices, for instance linear discriminant analysis (with Bayes

or Maximum-Likelihood rule), k-nearest-neighbors, logistic regression (if m

is not too large), etc.

4.2 Study Design

Fifty random partitions into a learning data set L (containing n− 10 obser-

vations) and a test data set T (containing 10 observations) are generated.

For each partition, we proceed as follows. If the number of variables is high,

a prescreening step is necessary. It is done by selecting the p̃ variables with
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lowest p-value for Wilcoxon’s test testing the equality of the median in two

classes, using only L, as described in (Dettling and Bühlmann, 2003). If the

number of classes K is greater than 2, the procedure is repeated K times: for

the K classes successively, one tests the equality of the medians in the con-

sidered class and in all the other classes together. Then K groups of variables

are selected. A prescreening is performed for three of the four investigated

data sets: the leukemia, the colon and the SRBCT data sets, which are de-

scribed in the following subsection. For each data set, the number of selected

variables is fixed successively at p̃ = 50, p̃ = 100, p̃ = 200 and p̃ = 300.

These values have been chosen, because for greater values of p̃, the discov-

ering algorithm is computationally very intensive and for lower values of p̃,

the number of found IPs is too low (or even zero for some of the partitions).

We run the discovering algorithm to find IPs, with different values for the

parameter α1 and p̃. To reduce the number of parameters, α2 was fixed at

10−4. α1 is chosen on a heuristic basis. It is chosen so that the number of

found IPs is non zero and smaller than, say 200 for all the partitions. For the

tree topology parameters, the default values of the R program as described

in section 3 are used.

Once the IPs are found, the new covariates are determined for all obser-

vations from L and T . Then classification is carried out, either with k-NN

(with k = 5) or linear discriminant analysis. Since the results were much bet-

ter with k-NN, the results with linear discriminant analysis are not shown.

For the k-NN analysis, the Euclidean distance was used.

Mean error rates over the 50 partitions: For each parameter combi-

nation, the mean error rate over the 50 random partitions (i.e. the mean

proportion of observations from the test set that were misclassified) is com-

puted. The results are summarized in a table. For comparison, we also show

the mean error rate obtained with classical CART, using the same R program

as in the discovering algorithm.
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Observation-wise error rate: For each parameter combination and for

each single observation, the proportion of times it was misclassified (out of

the runs in which it was in the test set) is recorded. We summarize the re-

sults by means of survival plots as described in (Dudoit et al., 2000): the

proportion of observations classified correctly in at least V % of the runs is

represented against V . The results are shown only for the best parameter

combination for each data set.

Variables involved in IPs: An interesting issue is whether the variables

involved in the IPs also perform good individually. To answer this question,

we first rank the variables according to the Wilcoxon-statistic using all the

observations. Then we represent the proportion of runs in which the variables

were selected against their rank. This topic is examined only for the colon and

leukemia data sets, since the iris data set contains only 4 variables and the

SRBCT data set has 4 classes, thus making the ordering of variables much

more complicated. The results are shown only for p̃ = 300 and pG = 10−6

(for colon) and pG = 10−10 (for leukemia).

Number of IPs: The number of found IPs depends highly on the parame-

ters. Typically, it increases with p̃ and α1. The number of found IPs of each

order is stored each time the discovering algorithm is run. The results are

summarized by plotting the mean number of found IPs of each order over

the 50 random partitions, for each data set and for different values of α1. For

the 3 gene expression data sets (leukemia, colon, SRBCT), we show only the

results for p̃ = 300. For smaller values of p̃ the plots show similar patterns,

but the absolute numbers of IPs are lower.

4.3 Data sets

Leukemia Data: This data set was introduced in (Golub et al., 1999) and

contains the expression levels of 7129 genes for 47 ALL-leukemia patients

and 25 AML-leukemia patients. It is included in the R library golubEsets.
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After data preprocessing following the procedure described in (Dudoit

et al., 2002), only 3571 variables remain. It is easy to achieve excellent

classification accuracy on this data set, even with quite trivial methods as

described in the original paper (Golub et al., 1999). Indeed, we found out

that it is possible to find many IPs even if α1 is very low. Thus, we set α1

to α1 = 10−10, α1 = 10−12 and α1 = 10−14 successively in our study.

Colon microarray data: The colon data set is a publicly available

’benchmark’ gene expression data set which is extensively described

in (Alon et al., 1999). It can be downloaded from the web page

http://microarray.princeton.edu/oncology/affydata/. The data

set contains the expression levels of p = 2000 genes for n = 62 patients

from two classes. 22 patients are healthy patients and 40 have colon cancer.

This data set is not as ’easy’ as the leukemia data set. The classification

accuracy is usually much lower, for instance using Support Vector Machines

as described in the introducing paper (Alon et al., 1999). It is also more

difficult to find good IPs: α1 was set heuristically to α1 = 10−6, α1 = 10−8

and α1 = 10−10. Note that it is also possible to run the algorithm with

α1 = 10−12 and α1 = 10−14 as for the leukemia data set, but with such

values for α1, no IP would be found.

SRBCT microarray data: This gene expression data set is

presented in (Kahn et al., 2001). It can be downloaded from

http://www.thep.lu.se/pub/Preprints/01/lu tp 01 06 supp.html.

It contains the expression levels of 2308 genes for 83 Small Round Blue Cells

Tumor (SRBCT) patients belonging to one of the 4 tumor classes: Ewing

family of tumors (EWS), non-Hodgkin lymphoma (BL), neuroblastoma (NB)

and rhabdomyosarcoma (RMS). For this data set, α1 was set to α1 = 10−3,

α1 = 10−4, α1 = 10−5 and α1 = 10−6. These values are considerably higher

than for the leukemia and colon data sets. One the possible explanations

is that to be selected as an IP of type k (k ∈ {1, 2, 3, 4}), a pattern must
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have higher frequency in class k than in all three other classes, which is a

stronger requirement than for the two-classes case.

Iris data: The famous (Fisher’s and Anderson’s) iris data set is included

in the R library MASS. It gives 4 different measurements (sepal length and

width, petal length and width) for 150 flowers from each of the three

species (class labels) setosa, versicolor, virginica. α1 was set successively to

α1 = 10−4, α1 = 10−8 and α1 = 10−12.

4.4 Results

Mean error rate: The mean error rates for different values of the param-

eters are shown in Table 1 for the four data sets. For all four data sets, the

new method performs much better than CART. For the SRBCT and the

leukemia data sets, the improvement is rather dramatic. Surprisingly, the

number of variables as well as the significance level α1 do not seem to have

strong influence on the results, provided IPs are found.

Observation-wise error rate: As can be seen from the survival plot de-

picted in Figure 2, a large part of the error rate is due to observations that are

misclassified each time they are included in the test data set. Indeed, even for

small V , the proportion of observations classified correctly in at least V % of

the runs is not 1, and it decreases slowly for large V . We found out that most

of the ’problematic’ observations are also misclassified by other classification

methods (data not shown).

Number of IPs: As can be seen from Figure 3, the most frequent IPs are

IPs of order 2. We did not found any IP of order 4, and few IPs of order 3.

If the data sets contained more observations, it would certainly be possible

to find more IPs of order 3 and 4 (or more). IPs of order 1 are quite frequent

and correspond to variables that can separate the classes well. Unsurpris-

ingly, the number of found IPs increases with α1. An important fact which

can not be seen in the figure is the high variability of the numbers of IPs over
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the random partitions: like CART, our learning method is not very robust,

which can be seen as a drawback from the statistical point of view.

Variables involved in IPs: As can be seen from Figure 4 (for the colon and

the leukemia data sets), most of the ’best’ variables appear in at least one IP

in most runs. But some ’less relevant’ variables are involved in IPs in many

runs as well, thus showing that variables that perform poorly individually

might be interesting in association with others. On the whole, there seems

to be a weak linear dependence between the variable rank and the frequency

of selection. Separate analysis for IPs of order 1,2,3 would probably show

stronger dependence for IPs of order 1 than for IPs of order 2 and 3.

5 DISCUSSION

CART is one of the most popular classification methods in many application

fields of statistics, for instance medicine. The main advantages that make

it so popular are its simplicity and its interpretability. Moreover, scientists

are often interested in the interaction structures implied by the CART deci-

sion rules. However, when the number of variables is high and the number of

observations small, like in microarray data, CART usually performs poorly,

because it uses only a very small part of the available information. Among

the huge number of variables, it is often possible to find a few that separate

the classes very good or even perfectly in the learning set. Thus, the obtained

trees have very short branches and often perform poorly on new data sets.

Modern methods based on aggregation of trees do improve the results a little

as argued in (Dudoit et al., 2002), but do not seem to overcome the problem

completely. Instead of partitioning the input space like in CART, our method

defines a wide collection of leaves with non-empty intersection, thus allowing

more robust classification.

Another advantage of our classification method is its interpretability in terms
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of interaction structures. This is a very important issue for applied scientists,

especially those working on gene expression data. Indeed, although it is al-

most certain that genes somehow interact, the challenging question of mod-

elling these interactions remains partly unanswered. The proposed method

can detect quite successfully interaction patterns in simulated ’perfect’ data.

The proposed approach differs significantly from Dong and Li’s approach in

several aspects. First, we use a statistical criterion to define the patterns in-

stead of the heuristic growth rate. Second, while Dong and Li find patterns

of high order, we argue that short pattern involving only relevant variables

are preferable, in order to avoid overfitting of the learning data. Therefore

condition (2.2) was added in the definition. Third, the method to detect the

patterns is completely different: while Dong and Li perform a dramatic vari-

able selection and enumerate all the possible patterns built with the selected

variables, we propose a CART-based algorithm which accelerates the search

considerably and do not necessitate such a dramatic variable selection. The

approach described in (Boulesteix et al., 2003) may be seen as a simplifi-

cation of the method for binary responses. The search algorithm is similar,

but the testing of condition (2.2) is replaced by a pruning step while build-

ing the trees. Thus, only the variables involved in the subsequent splittings

can be eliminated from a pattern. This approach is appropriate for binary

responses, since the successive splittings of the trees are chosen to minimize

the deviance. However, it is too restrictive for multicategorical responses.

The proposed definition and search algorithm overcome this inconvenience

and generalize the framework developed in Boulesteix et al. (2003).
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Colon data α1 = 10−6 α1 = 10−8 α1 = 10−10 tree

50variables 0.16 0.17∗ 0.19∗ 0.30

100variables 0.14 0.14 0.16∗ 0.30

200variables 0.15 0.15 0.15∗ 0.29

300variables 0.15 0.15 0.15 0.29

Leukemia data α1 = 10−10 α1 = 10−12 α1 = 10−14 tree

50variables 0.042 0.042 0.042 0.15

100variables 0.025 0.025 0.025 0.15

200variables 0.016 0.016 0.016 0.15

300variables 0.016 0.016 0.016 0.15

SRBCT data α1 = 10−4 α1 = 10−5 α1 = 10−6 tree

20variables 0.0077 0.0077 0.0080∗ 0.25

50variables 0.0046 0.0046 0.0048∗ 0.25

Iris data α1 = 10−4 α1 = 10−8 α1 = 10−12 tree

0.035 0.035 0.035 0.059

Table 1: Mean error rate over 50 random partitions
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Figure 1: ROC curve for n = 50 and n = 80
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Figure 2: Survival plot for leukemia (solid), colon (dashed), SRBCT (long-

dash) and iris (dotted).
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Figure 3: Number of IPs of each order. Leukemia: p̃ = 300 and α1 = 10−10

(solid), α1 = 10−12 (dashed),α1 = 10−14 (dotted). Colon: p̃ = 300 and α1 =

10−6 (solid), α1 = 10−8 (dashed),α1 = 10−10 (dotted). SRBCT: p̃ = 50 and

α1 = 10−4 (solid), α1 = 10−5 (dashed),α1 = 10−6 (dotted). Iris: α1 = 10−4

(solid), α1 = 10−8 (dashed),α1 = 10−12 (dotted).
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Figure 4: Proportion of runs in which the variable is involved in at least one

IP
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