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SUMMARY

Recently there has been an increasing interest in applying elliptical distri-
butions to risk management. Under weak conditions, Hult and Lindskog (2002)
showed that a random vector with an elliptical distribution is in the domain of
attraction of a multivariate extreme value distribution. In this chapter we study
two estimators for the tail dependence function, which are based on extreme value
theory and the structure of an elliptical distribution, respectively. After deriving
second order regular variation estimates and proving asymptotic normality for
both estimators, we show that the estimator based on the structure of an el-
liptical distribution is better than that based on extreme value theory in terms
of both asymptotic variance and optimal asymptotic mean squared error. Our

theoretical results are confirmed by a simulation study.
Keywords: asymptotic normality, elliptical distribution, regular variation, tail copula,

tail dependence function.

1 Introduction

Let (X,Y),(X1,Y1),(Xs,Y3), - be independent random vectors with common
distribution function F' and continuous marginals Fy and Fy. Define the tail

copula

1
Mz,y) == lim=-P (1 - Fx(X) <tz,1-F(Y) <ty)

t—0 t



for z,y > 0. Then A\(1,1) is called the upper tail dependence coefficient, see e.g.
Joe (1997) and, by Huang (1992), [(z,y) := x + y — A(x,y) is called the tail
dependence function. Assuming that (X,Y’) is in the domain of attraction of a
bivariate extreme value distribution, there exist several estimators for estimating
the tail dependence function I(z,y), see Huang (1992), Einmahl, de Haan and
Huang (1993) and de Haan and Resnick (1993). The optimal rate of convergence
for estimating [(x,y) is given by Drees and Huang (1998). An alternative method
for estimating [(x, y) is via estimating the spectral measure, see Einmahl, de Haan
and Sinha (1997) and Einmahl, de Haan and Piterbarg (2001). For modeling
dependence of extremes parametrically, we refer to Tawn (1988) and Ledford and
Tawn (1997).

Triggered by financial risk management problems we observe an increasing
interest in elliptical distributions as natural extensions of the normal family al-
lowing for the modeling of heavy tails and extreme dependence. The vector (X, Y)

is elliptically distributed, if
(X, V)T = pu+GAUY, (1.1)

where g = (ux,py)", G > 0 is a random variable, called generating variable,

A € R?*2 ig a deterministic matrix with

o pov
AAT = % = ( ) >

pov v

and rank(X) =2, U ) is a 2-dimensional random vector uniformly distributed on
the unit hyper-sphere S := {z € R? : ||z]| = 1}, and U® is independent of G.

Note that p is termed as the linear correlation coefficient of ¥. Under certain
conditions, Hult and Lindskog (2002) showed that regular variation of 1 — G with
index a > 0, i.e., lim; (1 — G(tx))/(1 — G(t)) = 2=« for all x > 0, (notation:
1 -G € R_,) is equivalent to regular variation of (X,Y’) with the same index
a > 0 (see Resnick (1987) for the definition of multivariate regular variation).
Moreover, if 1 — G € R_,, then

/2 /2
A1,1) = (/(/2_ | )/2(cosq§)°‘d¢)/</0 (cos<b)°‘d¢). (12)

Here we are interested in estimating the dependence function A(z,y) by as-
suming that 1 — G € RV_, for some o > 0. Since 1 — G € RV_, implies that



(X,Y) is in the domain of attraction of an extreme value distribution, a naive
estimator is to apply Huang’s estimator by ignoring the structure of the elliptical
distribution, i.e.,

n

“Hu 1
A () = > I(Xi > Xum ok m)s Yi = Yo ki) o(13)

k
Hu," kHu —
1=

where X ,) <+ < Xy and Y{y ) < -+ < Y ) denote the order statistics of
X1,..., X, and Y1,...,Y,, respectively, kg, = kmu(n) —> oo and kg, /n —> 0.
The same estimator has been analysed by Schmidt and Stadtmiiller (2005); see
their equation (4.14). The aim of this chapter is two-fold. Firstly, we suggest a
new estimator, which exploits the structure of an elliptical distribution similar
o (1.2). Secondly, we aim at determining the optimal number of order statistics
to be used in both estimators. The choice will be based on the asymptotic mean
squared error of the estimators.

Our chapter is organized as follows. We first derive an expression for \(x,y),
which generalizes equation (1.2), and then construct a new estimator for A(z,y)
via this expression; see section 2 for details. After deriving the second order be-
havior for elliptical distributions and the limiting distributions of both estimators
in section 2, we show that the new estimator is better than the naive empirical
estimator from Huang in terms of both asymptotic variance and optimal asymp-
totic mean squared error in section 3. More importantly, the optimal choice of
the sample fraction for the new estimator is the same as that for Hill’s estimator
(Hill (1975)). That is, all data-driven methods for choosing the optimal sample
fraction for Hill’s estimator can be applied to our new estimator directly. A simu-

lation study is provided in section 3 as well. All proofs are summarized in section

4.

2 Methodology and Main Results

The following theorem gives an expression for A(z,y), which will be employed to

construct an estimator.

Theorem 2.1. Suppose (X,Y) defined in (1.1) holds with o > 0, v >0, |p| < 1
and 1 — G € R_,, for some a > 0. Further, define

g(t) := arctan ((t —p)/\/1— p2> € [—arcsinp, /2], teR.



Then

w/2 -1 /2
Mzy) = ( / | leos) dd)) ( / iy T8

g((@/y)/)
- / y (sin(¢ + arcsin p))* d¢> '

— arcsin p

O

Hu

In order to derive the asymptotic normality of /):kHu,n

(z,y), it is known that
a second order condition is needed. Here we seek the relation of the second or-
der behavior among the tail copula A(z,y), VX2 +Y? and G; see the next two
theorems for details.
In the setting of (1.1) assume that there exists A(t) — 0 such that for all
x > 0 and some 3 <0
lim P(G>tx)/P(G>1t)—a® _ I_Q:UB — 17 2.1)
e A(r) 7

where § < 0 is called a second order reqular variation parameter, see de Haan
and Stadtmiiller (1996). Additionally, we assume

tli,I?OtQA@) =: a € [—00,00]. (2.2)

Since A € R, a =0 for f < —2 and |a| = oo for 5 € (—2,0].

The following two theorems derive the corresponding second order condition
for v/ X2+ Y? and the tail copula A(z,y).

Theorem 2.2. Assume that the conditions of Theorem 2.1, (2.1) and (2.2) hold.
Further, define

di(¢) = o°cos® ¢+ v*sin®(¢ + arcsin p),
do(¢p) = pxocosd+ pyvsin(¢p+ arcsinp).
Then, for all x > 0,

L PIVETEY? > 10} PAVET RV 2 1) 0
= 2 1 [AQD)

_ e (/_’;<dl<¢))a/z d¢)_1 {1 J:L|a| xﬁﬁ—l </_:(d1(¢))<am/2 dd))
et o) [ @) x

x [a(da(6))? + i (@) (1 + )] do} . (2.3)
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Also, for allx >0 and V(z) :=inf{y : P(WVX2+Y?2>y) <z'},

. V(tz)/V(t) -t/
t=o0 (Fy (1 — 1)) 72 4+ |A(Fy (1 — t71))]

i @) de) T
_ xl/a . a/2 s '
- (/ﬂ_(d (¢)) d¢) (UCX foﬂ(sm ¢)a d(b) X

a afe—1 ([ (o) /2
A e (@)

s @) / (@ (9)

1+ |a]2
x [a(da(9))® + di (D) (15 + 13)] Ao} = @'/ Bpyg)(x). (2.4)

+

Especially, when px = py =0, we have for all z > 0

VRV — e et (/ﬁ(dl(@)w/2 d¢>) '

SR AR (1) v
T & dl a/2d B/a
(o) ()
— xl/a8(2_5)(a:), (25)

O

Theorem 2.3. Assume that the conditions of Theorem 2.1 and (2.1) hold. Fur-
ther, define

Sy = {zeR*:2>0and ||z| =1} and

Bs)(@) = —w”“’_ﬁ/;_l ( / W(sind))“dqb)_l ( / W(sin¢)“‘ﬁd¢)(2-6)




Then,

" P (Fx(X)>1—tx, Fy(Y)>1—ty) — Nax,y)
20 A(Fr(1—1)

/2
— B E —B/a a—B__ a
v {ﬁ /g((x/y)l/a)[m (cos ¢) (cos ¢)*] d¢

9((z/y)"*)
Y
5 — arcsin p

/2
Bag(@) [ (cosordd
9((z/y)V/ =)
g((z/y)'/*)

By | (sin( + arcsin p))* dg

— arcsin p

[y~ (sin(¢+arcsin p))* - (sin(¢p-+arcsin p))*] do

/2 /2 -1
A@y)= [ (eos) ((cosg) — 1) d¢} ( / <cos¢>ad¢)

ﬁ —7/2 —m/2

=: B (z,y)
(2.7)

holds for all x,y > 0 and uniformly on S, . U

Now we are ready to define our new estimator. Put Z; = /X? +Y;? for
t=1,...,nand let Z,) < -+ < Z, ) denote their order statistics. First we
estimate the index « by Hill’s estimator, which is defined as

1 kg1 -1
~H
Qg = km Z 108 Z(n—it1.n) =108 Z(n—kpy,n) ,
=1

where kg = kgi(n) — oo and kg1 /n — 0 as n — oo. Now let (X,Y) and (X,Y)
be iid with elliptical distribution. Then, it follows from Hult and Lindskog (2002)
that 7 = (2/7) arcsin p, where 7 is called Kendall’s tau and defined by

ro= P((X—)?) (Y-?)>0)-P((X—)?) (Y—f/><o).

As usual, we estimate Kendall’s tau by

7= L Z sign((Xi—Xj)(Yi_Y}»a

n(n —1) e



which results in estimating p by
—~ . <W,\>
. =sin (=7, ) .
P 2

Hence, we can estimate A(z,y) by replacing p and « in Theorem 2.1 by p,, and

@EEW, respectively. Let us denote this estimator by
Nogyn (2,9 (2.8)
We remark that Xfém(l, 1) was mentioned by Schmidt (2003), but without further

study. The following theorem shows the asymptotic normalities of XI,;I;un(x, y) and
N\EL

kEl’n(x, y), which allows us to compare these two estimators theoretically.

Theorem 2.4. Assume that the conditions of Theorem 2.1 and (2.1) hold. Sup-

pose ki = kpa(n) —= 00, kpu/n —> 0 and

v /{ZHUA(F;(l — /{ZHU/TL>) ml ’CHu;

for |Kuu| < 0o. Then, as n — oo,

sup ‘M <XEH“un(x7y) — )x(x,y)> — KuuBar(z,y) — B(I,y()@)

0<z,y<T

= op(1),

for any T > 0, where Bary(x,y) is defined in Theorem 2.3,

Bey) = W) - (1= 252 ) wio) - (1-250 ) wiy),

and W (x,y) is a Wiener process with zero mean and covariance structure

E<W($1;y1)W($2,y2))
= 1 ATy + 1 Ay2 — ANz1 Az, y1) — Mar Ao, y2) — AMz1, 01 A ya)
= A2, 1 Ay2) + Mo, y2) + A2, y1) + M@y A w2, 91 Aya).

Therefore, for any fived x,y > 0,

V kHu <:\\E;u,n(x7 y) - )‘(xa y)) i) N (’CHuB(Z.7) (l’, y)> 012{11)

as n — 0o, where
0 ? 0 ?
2 _
Oy = & (%A(:fs,y)) +y (ayk(af, y)) + 2X(z, y) X (2.10)

- G - a%-W’y) - a%x(x,y) n (m(a:;, y>> (aAgZ y))) |
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~/ ey
((%)\(x,y) = (/_ﬂ;(cosgb)adgb) /92 (cosp)*de and2.11)

((z/y)1/*)
o /2 -1
—Nz,y) = / (cos ¢)* do X (2.12)
ay —7/2
gl(z/y)t*)
X / (sin(¢ + arcsin p))* de.
— arcsin p 0

Theorem 2.5. Assume that the conditions of Theorem 2.1 and (2.1) hold. Fur-
ther assume (2.2) holds when p # 0. Suppose kg = kgi(n, p) "= 00, kg /n —> 0

and

Vi (B (1= ke /m) 7 + A (L= ka/n))| ) "= Ko, w#0,

AV k’ElA(F{/_(l — k‘El/’I’L)) rﬂ)o: ICEl, Hn = 0,

for |Kgi| < 0o Then, as n — oo,

sup [V (M, () = A(@,9)) = Beasy(@,9)Z0| = 0,(1)(213)

0<z,y<T

where Zy ~ N (—Q2KE18(2_14)7 042) with

Jo Bew(1/s)ds, p#0,
By = 01 (2.14)
Jo Besy(1/s)ds, p=0,
Bo.ay(s) and Ba5)(s) are defined in Theorem 2.2 and

/2
Baas)(x,y) = {/(( i) z(cos ¢)* In(cos ¢) d¢

g((@/y)V/*)
+ / y(sin(¢ + arcsin p))® In(sin(¢ + arcsin p)) d¢

— arcsin p

-1

/2 /2
— Mz, y) (/ /2(COS ¢)* In(cos @) dgb)} (/ /2(COS ®)°* dgzﬁ) (2.15)

Therefore, for any fixed x,y > 0,
V kgl <X%n(% y) — Az, y))
- N <—a2’CElB(2.14)B(2.15) (ffay% o’ (8(2_15)(x,y))2> .



The next corollary gives the optimal choice of sample fraction for both es-

timators. As criterion we use the asymptotic mean squared error of )\I,j; , and
)\Eél .., denoted by amsepy (kny) and amseg (kg), respectively.

Corollary 2.6. Assume that the conditions of Theorems 2.4 and 2.5 hold. Fur-
ther, suppose that

APy (1—1)) ~ bt P/,
(Fy (1—=10) 2+ |A(Fy (1 —1))] ~ bt@NoD/a
for some b07 bl > O as t — O and deﬁne

byt N =B))/ p#0,
bgt_ﬁ/a, p=0.

byt~ P2/

Then
amseny (ki) = oZukit + (b(kia/n) " *Bom(,y))”
and
amsepi(ke) = (Baas)(z,y))? <@2k£11 + (a2b2(’fEl/n)fﬁQ/aB(ZM))Q) -

Let kilofif and k:%ft denote the optimal sample fraction in the sense of minimizing

amsey, and amseg;, respectively. Then

2 /(a—2p)
popt ( —Qof, ) 28/
Hu - ,
2808 (B (2,9))°
o 2 —a/(a—282) - _
6 = (~26:083 (Basa)”) -2l
amse?ﬁf ‘= amseqy (kzﬁﬁ’f) = n2/3/(0¢—25)b(2)a/(a—26) (1 _ %) %
—f/a 2a/(a—20)
X <(0-12{u> o 5(2.7)(:17,y)\/Tﬁ/a> and
amsep; = amseg (kpy') = n2/32/(a—252)b§a/(a—252) <1 B % ) »
2

2a/(a—202)
x & (Ba.1s)( (\/ —2a3:B(2.14 > :



Remark 2.7. Note that kg is independent of z and y, but kff: depends on x
and y. In case of p = 0, both amse{r and amsej" depend on n, o, 3, p, v, x, y
and by, amseg" additionally depends on ¢, but the ratio amsefr. /amseg" is inde-
pendent of n and by. Since the optimal k%ﬁ)t is the same as that for Hill’s estimator,

when p = 0, all data-driven methods for choosing the optimal sample fraction

El
kg1,

for Hill’s estimator can be applied to P\ (z,y) directly. Note that p is the me-
dian of (X,Y) and the mean of (X,Y) when o > 1. Hence, we could estimate p
by the sample median, say g = (fix, jly ). Therefore, consider the new estimator
Xgéln(x,y) with Z; = \/X? + Y2 replaced by \/(XZ — fix)* + (Y — fiy)?. Simi-

lar to the proofs in Ling and Peng (2004), we can show that Theorem 2.5 and

Corollary 2.6 hold with g = 0 for this new estimator. 0J

3 Comparisons and Simulation Study

First we compare 03,05 given in Theorem 2.4 and 2.5. Note that both only
depend on «, p, z and y. In Figure 1, we plot the ratio o (a)/03,(a) for z =
y = 1 as a function of «, and each curve therein corresponds to a different
correlation p € {0.1,...,0.9}. From Figure 1, we conclude that XEln is always
better in terms of asymptotic variance.

Second, we compare the two estimators in terms of optimal asymptotic mean
squared errors. Since the ratio of the optimal asymptotic mean squared error
depends on «, 3, X, u, x, y, we consider elliptical distributions with o = v =1,
ux = py = 0. In Figure 2, we consider G ~ Fréchet(a), ie. P(G > ) =
exp(—z~%), x > 0, hence (2.1) is satisfied with = —«. In Figure 3, we consider
G ~ Pareto(a), i.e. P(G > x) = (1 4+ 2)~* for > 0, therefore, (2.1) is satisfied
with # = —1. Under the above setup, the ratio of optimal asymptotic mean
squared errors only depends on «, p, z,y. Similar to Figure 1, we plot the ratio
amser'(a) /amsefr (o) for 2 = y = 1 as a function of « for different p’s in Figures
2 and 3. We conclude from both Figures that Xgln always performs better than
//\\E‘;L in terms of optimal asymptotic mean squared errors as well.

Third, we examine the influence of x and y to the ratio of asymptotic mean
squared error. We plot the ratio amseg' (a)/amsefr: (a) for ||(z,y)|| = v/2 and
G ~ Pareto(a) in Figure 4, where each curve corresponds to a different pair of
(e, p) € {(20,0.9),(10,0.6), (5,0.3),(1,0.1)}. This figure further confirms that

/)\\E}n always has a smaller optimal asymptotic mean squared error than X?‘;L

10



Finally, we study the finite sample behavior of the two estimators :\\E}n(x, Y)
and /)\\E‘;L(:B, y). As above, we consider two elliptical distributions with ¢ = v =1,
ux = py = 0, G ~ Fréchet(a) in Figure 5 and G ~ Pareto(«) in Figure 6.
We generate 1000 random samples of size n = 1000 from these elliptical dis-
tributions with (o, p) € {(20,0.9),(10,0.6), (5,0.3),(1,0.1)}, and plot Xg}n(l, 1)
and /):I,;hrll(l, 1) against k = 1,...,300 for different pairs («, p) in Figures 5 and
6, where the solid line corresponds to Xgln(l, 1) and the dashed line to XE;(L 1).
This simulation study also confirms the better performance of Xgln

11
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Figure 1: Ratio o0, (a)/0%, () for different correlations p.
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Figure 2: Ratio amsept: (a)/amseg" (a) for different correlations p and 3 = —a.
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Figure 5: Mean of estimators XE‘;L(L 1) and Xg}n(l, 1) for 1000 samples of length n =
1000 and different k£ with 0 =v =1, p =0, G ~ Fréchet(a), and different (a, p).
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Figure 6: Mean of estimators X?"fl(l, 1) and Xg}n(l, 1) for 1000 samples of length n =
1000 and different k£ with 0 =v =1, up =0, G ~ Pareto(«) and different («, p).
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4 Proofs

Proof of Theorem 2.1: Without loss of generality, we assume p = 0. Let
® ~ unif(—m,7) be independent of G and F; (z) denote the inverse of Fj(x),
i = 1,2. Then, by Hult and Lindskog (2002),

Fy (u) = 2Fy (u), for 0 <u <1,
limy oo (1 — Fi(tx))/(1 — Fi(t)) = 2=, forx >0 and i =1,2,
(X,Y) 4 (0G cos @, vG sin (arcsin p + P@)) .
(4.16)
Therefore,

P (Fx(X) > 1—tx, Fy(Y) >1—ty)

= t7'P(Geos® > Fy (1 —tx) /v, G sin(arcsin p + @) > Fy (1 — ty) /v)

/2 — . — .
27t v COS ¢ vsin(arcsin p + @)

— arcsin p

(4.17)
Note that

t=P(X>Fr(1—1)=P(Geos® > F(1—1)/v)
_ ”/QP(G>M) do.

o - U COS ¢

Further, 1 > P (G > 2/cos¢) /P (G > x) 3 (cos ¢)®. Hence, in the following

formula we can apply the dominated convergence theorem and obtain

1 1
= =P (G > Fy(1—-1)/v
Biaas(t) 27t (G = By ( )/v)

t—0 /2 B 1
- </ (cosgb)o‘dgb) =: . (4.18)

—n/2 B4.18)

Next, we obtain for ¢ € (— arcsin p, 7/2)

Fy(1—tx) - Fy(1—ty) Fy(1—ty) - sin(arcsin p + ¢)
veos¢  — wsin(arcsinp + ¢) Fo(1—tx) — cos ¢ '

15



Note that sin(arcsinp + ¢)/ cos ¢ is strictly increasing, hence its inverse exists

and equals arctan (( —p)/\/1— p2>. Therefore,

By (-te) K-ty
veos¢  wsin(arcsin p + @)

Fy (1 —ty)/Fy (1 — tx) — p)

& ¢ > arctan [ —%
1—p?

=g <H) =: h(z,y,t). (4.19)

Since 1 — Fy € R_,, by Proposition 1.7(9) of Geluk and de Haan (1987) Fy (1 —

tr)/Fy (1 —1t) 28 pVe e,
By, t) = g ((o/n)?) (4.20)
It follows from (4.17) and (4.19) that

P (Fx(X) > 1—ta, Fy(Y) >1—ty)

Fy(1—t) Fy (1 —tx)
1 /”/2 P(G_ Zcosgzﬁ ];;7(1—15))
h

B () PG> ()

(w,y,t)

Fo(1—t Fy (1—t
h(z,y.t) PlG>—X ( : ) r )
Y vsin(arcsinp + ¢) Fy (1 —t) dé

1
_l’_ - @
Bias) (1) /—arcsmp P(G>Fy(1—t)/v)

(4.21)

Hence, the theorem follows from (4.18), (4.20) and Potter’s inequality, e.g. see
(1.20) in Geluk and de Haan (1987). O

Proof of Theorem 2.2: Since
(X,Y) 4 (ux+0G cos @, py +vG sin(P+arcsin p)) ,

we have X2 + V2 £ G2, (®) + 2Gdy(®) + p% + p2. Define

(o d) = i (o) + B0~ (o) (& + 18— %) ).

16



Since P(X?+Y?% > t) = P (G > d3(t,®)) holds for large ¢, we obtain

P(X?+Y? > t?2?%)
P(X2+Y2>2)

_ ( / P (GP(zGdittsc), %), ¢) ( / P (i (zG d;(; 9), ¢>‘1 e

- {2 () o

™ _P(G > dy(t
+/ﬂ[_x PG>t

—Q

— X

~—|

Since |p| < 1, it is straightforward to check that
Jim t7"dy(t, ¢) = (du ()2,

0< sup di(¢) < oo, and

—r<p<m

sup |d2(¢)] < oo. (4.22)

—r<p<n

Hence, similarly to the proof of Theorem 2.1,

. (G = d3 a/2
tlggo e t ) 4p = do. (4.23)

s

Similar to the proof of Lemma 5.2 of Draisma et al. (1999), for any ¢ > 0, there
exists tg > 0 such that for all ¢ > ¢y, ds(tx, @) > to

P (G = ds(tz, 9))

—a B
) —Gdg(m,qa)) ) Gdg(m’d)))_a Gdg(m,@) —1‘

A(t) B ‘

< ¢ <1+ Gdg(m, ¢)) T Gdg(m, ¢)) e {g In (%dg(tx, ¢)> ’}) |
4

(4.24)
17




Using (4.22), for any fixed z > 0, we can choose ty large enough such that
ds(tz,¢) > to uniformly for ¢ € [—m, 7). That is, for any fixed z > 0, (4.24)
holds uniformly for ¢ € [—m,x]. Therefore, by dominated convergence theorem
and (4.23), for = > 0,

i G = o [ (@) - @) ) do andaz)
i 5 =~ [ (@) - o)) b, @)
It follows from (4.22) and a Taylor expansion, for z > 0, that
FO) = (a7 = 1) [ @@ d()ds + o)

+ o (7= 1) [ (@(0) [alda(0)? + du()(u + 4] do.
(4.27)
Note that sin(¢ + arcsin p) = /1 — p?sin ¢ + p cos ¢. Then, splitting the integral

into [—m, —7/2), [-7/2,0), [0,7/2), [7/2, 7] and using the symmetry of sin and

cos, we obtain

/7r (i ()@ V2 dy(¢)dp = 0. (4.28)

—T

Hence (2.3) follows from (4.25), (4.26), (4.27) and (4.28). Note that

™

tim P (VXZT V2 > 1) [P(C > 1) = / (di(6))°2 dg

—
t—o0 -

and, since Y 4 ty + vGsin @ with ® ~ unif(—m, 7) holds,

lim P(Y > t)/P(G > t) =v* /ﬂ(sin @) de.
t—00 0

Therefore, we have
V(t) ~ inf {y PG >y) <t /7r (dy())/? dqﬁ} and

Fr(1—t1) ~ inf {y :P(G>y) <t/ (va /Oﬂ(sin $)* d¢> } :

18



Hence,

Ve () ds e
e Fy (1=t 1) \ oo [[(smo)dy |
ie., since 2|A(t)] == oo for —2 < <0,

. V(1) + |A(V(1))]
t=o0 (Fy (1 —t=1)) 72 4+ |A(Fy (1 — 1))

. . —@nIg)/a
S (di(9))/? dg

v foﬂ (sin @)> do '
Note that, by Taylor expansion,

(Vv<<tf>)) - (Vv(ff))ﬂf““‘)+0<1/V<t>+|A<V<t>>|>.

(4.29)

(4.30)

Therefore, replacing ¢ and z in (2.3) by V(t) and V (tx)/V (t), respectively, and
using (4.29) and (4.30), we obtain (2.4). Let ux = uy = 0, then J3(t) = 0 and
we obtain (2.5). O

Proof of Theorem 2.3: In order to prove Theorem 2.3, we can assume py =
py = 0 since A(z,y) is independent of margins. We also set v = 1 and give the
correction at the end of the proof. Using an upper-triangle decomposition of X
yields Y < Gsin ®, where ® ~ unif(—m, 7) and is independent of G. Then, write

P(Y > tx) o Jo P(G >tx/sing)de e

PY>t) T [TP(G>t/sng)de

- ([ "5ty d¢)_1{ [[rezeme (- )]

P(G>1) sin ¢
P (G > t/sin¢) 1\
P(G>t) (sin¢) d¢}'

— x_a

Then, by (2.1), we have for z > 0

. P(Y > tx) Cu
i (g o) 0

— g “‘ﬁﬁ_ ! (/Oﬂ(sin )° d¢) B (/Oﬂ(sin O d¢) .
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Replacing ¢t and z in the latter equation by Fy (1 —s) and Fy (1 —sy)/Fy (1—s),

respectively, we obtain, for y > 0,

lim ((M) o y) JA(Fy (1—s)) = Bag(y).  (4.31)

S\ =y
Denote f(t) := Fy (1 —t). Then, by (4.21), we can write

P (Fx(X) > 1—ta, Fy(Y)>1—ty)

1 /‘T‘-/2 |:P (GZ cos @ f(t)
8(4.18) (t) h(z,y,t) P (G > f(t))

™/2 f(t.%) @ N h(z,y,0) .
+ /h(w’t) [ (W) — x(cos )] dg + /h(wjt) x(cos ¢)* d¢

f(®) [(ty)
h(z,y,t) P (G 2 sin(arcsin p+¢) f(gl)>

*/;mw[ PG> (D)

f(ty) o
N (f(t) sin (arcsin p + qg)) ] do
h(z.yt) flty) —a . | )
+ / arcsin p ( SlIl (arcsin p+ ¢)> -y (Slfl (al"csm p+ ¢>> ] do

+

h(z,y, t) /2
/ (sin (arcsinp + ¢))* do + / z(cos ¢)* do
h

(z,9,0) h(z,y,0)

h( :chO)
+ / (sin (arcsin p 4+ ¢))* do

— arcsin p

= —() (Z\Z +j7+«78)-

Ba.as)(t
(4.32)

Note that 1/|cos¢| > 1 and v is given, using Potter’s bound and similar argu-
ments as in the proof of Lemma 5.2 of Draisma et al. (1999), for any ¢ > 0,
there exists some small ¢y > 0 such that for all f(t) > f(to), f(tz) > f(ty) and
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¢ S [_77-/27 7T/2]

P(a>L2) /PG 1) - (i)

A(f(1))
tx A
_( f(tz) )‘“ <f({)(00)8¢> -l
f(t)cos ¢ &)
) N flt) U] f(t)
- €<1+(f(t)cos¢) (Tihes) e e }>
(4.33)
and for all £ <ty and tz < g,
(1 —¢e)z~Yexp(—¢|logz|) < ff(Zc)) < (1+ €)Y exp(e|logz).
(4.34)

Since f(t) > to and t < to imply that f(tx) > to and tx < t; for all 0 <z < 1,
respectively, by (4.33), (4.34), (4.20) and dominated convergence, we have

lim Ji(t) S
=0 A(f (1)) B

w/2
/ [x_ﬁ/a(cos ¢)* 7 — (cos )] dop (4.35)
h(z,y,0)

holds for all z, > 0 and uniformly on S;". Similarly,

lim Jit) = 7 e
=0 A(f (1))

3 [y~ (sin(¢ + arcsin p))*~* (4.36)
—arcsin p

—(sin(¢+arcsin p))*] de

holds for all z,y > 0 and uniformly on S;".
Using (4.31) and a way similar to the proof of Lemma 5.2 of Draisma et al.
(1999), for any € > 0, there exists ¢y > 0 such that for all ¢t < ¢y and tz < ¢

(Fy (A —ta)/Fy(1—t)" —a
A eal
< ¢ (Cl—l—ng—l—ngl_ﬁ/" exp(e|Inzl)), (4.37)
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where the constants C; > 0,Cy > 0,(C3 > 0 are independent of x and ¢. Hence,
it follows from (4.20) and (4.37) that

. ‘-72 (t) _ m/2 o

1:1% AE -1 Bi2.6)(x) /h(w’y’o)(cos $)*d¢o and (4.38)
h(z,y,0)

11—{% A (F}‘ZE)((lt)— t)) N 8(2.6) (y) /—arcsinp(Sin(¢ aresin p))a d¢ <439)

holds for all z,y > 0 and uniformly on S .

Note that

t—0 )
— ;B(Q.G) (y) — 55(2.6) ().

Similar to the proof of Lemma 5.2 of Draisma et al. (1999), for any € > 0, there
exists o > 0 such that for all t < tg,tx < tg, ty <ty

1 f(ty) - Yy l Y .
A(f(#)) (( f(m)) x) —Bias)(y) + 5B (@)

(Cl + ng + ngl—ﬁ/aea\logm)

(Q) (C1+ Coz + C32 78/ exp(e] log z]))

T

—i—; (%) exp(e|log(y/x)]) (Cl + Chx + Csat~P/% exp(e| log m\)) ,(4.40)
where constants Cy > 0,Cy > 0,C3 > 0 are independent of ¢, z,y. Using (4.40),

limsup, _, |g'(27/%)2%?| < o0
limsup, .. |¢/(=~"/*)] < o0

lim sup,_, .. [sin(g(2~%) + arcsin p)]*z < oo
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and applying a Taylor expansion to g(z~'/®), we can show that

A 1 a((z/y)/) .
A1) _lg%fﬂfﬁﬁeéuamuu@)x®0&m d¢
2 fon (o ()] o (o) (Bl Bl (oY
(4.41)

and

. jG(t) L 1 g(f(ty)/ f(tx)) ' ' N
E%AU@»_E%AU@»émww@ y(sin(¢ + arcsin p))* dg

07

3 o (1) w5 () o
y <B@6ﬂy)__5@60@> (E)Ua (4.42)

) Z Y

holds for all z,y > 0 and uniformly on S, . Since

x [cos (g ((x/y)l/a))]a =y [Sin (g ((x/y)l/a) + arcsinp)r (4.43)

we obtain lim;_o(J5(t) + Js(t))/A(f(t)) = 0.

By Theorem 2.1, A(z,y) = (J7 + jS)/B(4.18), hence

lim —— ( ! ($+%%%@w)

=0 A(f(t)) \ Bais)(t)

o L (M) _

-lﬁAua»< By () (Ba1®) B“mﬂ

_ 1 " a —h_ 7r/2cos “ )
= Mwy)g ( /  feos9)" ((cos ) 1) d¢> ( / feosd) d¢> !

(4.44)

which obviously holds uniformly on S, since sup st Az, y) < co. Note that

AF;(1=1) JA(F5(1—1) =308, (4.45)
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Hence the theorem follows from (4.35), (4.36), (4.38), (4.39), (4.41), (4.42), (4.44)
and (4.45). O

Proof of Theorem 2.4: Similar to Huang (1992) or Einmahl, de Haan and Li

(2004), we have, as n — 00,

O<SUP<T ‘ V kHu {x—i_y_/)‘\g}:i,n(xu y>—l(.7), y)} - ’CHuB(2.7)<x7 y) - B(ZE, y)‘
ST,Y>

= 0p(1),

where

By = W) - (1= 20w - (1- 2520wy

and W (z,y) is a Wiener process with zero mean and covariance structure

E (W (z1,y1)W(z2,y2)) = Uz Azo, y1)l(z1 A 22, y2) — Lz1, y1 A ya)

+ U@, y1 Ayo) — U, y2) — Uz, 1) — Lz A 2o, y1 A o).

Hence (2.9) follows from A(z,y) = x + y — l(z,y). It is straightforward to check
that (2.10), (2.11) and (2.12) hold. Note that the result can also be obtained from
Schmidt and Stadtmiiller (2005) by taking the bias into account. O

Proof of Theorem 2.5: The result follows directly from

Ve (61, —a) -5 N (—0*KpBa., o?)
(see de Haan and Peng (1998)), 7,, — 7 = o, (kgﬂ”) and the delta method for

the expression of A\(x,y) given in Theorem 2.1.
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