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Asymptotic Variance Estimation for the

Misclassification SIMEX

Helmut Küchenhoff∗, Wolfgang Lederer∗, Emmanuel Lesaffre†

February 21, 2006

Abstract

Most epidemiological studies suffer from misclassification in the re-
sponse and/or the covariates. Since ignoring misclassification induces bias
on the parameter estimates, correction for such errors is important. For
measurement error, the continuous analog to misclassification, a general
approach for bias correction is the SIMEX (simulation extrapolation) orig-
inally suggested by Cook and Stefanski (1994). This approach has been
recently extended to regression models with a possibly misclassified cat-
egorical response and/or the covariates by Küchenhoff et al. (2005), and
is called the MC-SIMEX approach. To assess the importance of a re-
gressor not only its (corrected) estimate is needed, but also its standard
error. For the original SIMEX approach. Carroll et al. (1996) developed
a method for estimating the asymptotic variance. Here we derive the
asymptotic variance estimators for the MC-SIMEX approach, extending
the methodology of Carroll et al. (1996). We also include the case where
the misclassification probabilities are estimated by a validation study. An
extensive simulation study shows the good performance of our approach.
The approach is illustrated using an example in caries research including
a logistic regression model, where the response and a binary covariate are
possibly misclassified.

Keywords: misclassification, SIMEX approach, variance estimation

1 Introduction

It is well known that in linear regression analysis the regression coefficients can
be severely biased when there is measurement error in continuous regressors
or categorical regressors are subject to misclassification. Further, in nonlinear
regression models, such as logistic regression, possibly misclassified categorical
regressors as well as a possibly misclassified response can lead to severely biased
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estimated regression coefficients. There is a rich literature on how to correct for
this misclassification bias, see e.g. Gustafson (2004).

In this paper we consider the method recently introduced by Küchenhoff
et al. (2005), hereafter denoted by KML. The method is based on the simulation
and extrapolation (SIMEX) approach of Cook and Stefanski (1994) for regres-
sion models with measurement error in a continuous regressor. The SIMEX
idea is to exploit the relationship between the bias in parameter estimation
and the amount of measurement error. The adaptation to the misclassification
situation is called the MisClassification SIMEX (MC-SIMEX) approach. The
MC-SIMEX approach is a computer intensive method that can take into ac-
count misclassification of a categorical response or of a categorical regressor or
of both. The amount of misclassification is characterized by an exponent of the
misclassification matrix. In the first step of the (MC)-SIMEX algorithm, data
with a higher amount of measurement error (misclassification) are produced by
simulation. In a second step an approximately unbiased estimator is achieved by
extrapolating back to the case of no measurement error (no misclassification).

The MC-SIMEX approach delivers estimates of the model parameters for
a general class of models (corrected for misclassification). But it is also im-
portant to know the standard errors of the corrected estimates. In KML two
approaches were applied: (a) the approach of Stefanski and Cook (1995) and
(b) a general bootstrap approach. The first approach was applied without any
theoretical justification, but the simulation results revealed that the method has
good sampling properties. The bootstrap approach, on the other hand, finds
its justification from general principles but is time consuming. The bootstrap
approach enjoys the advantage that it can easily take into account the uncer-
tainty with which the misclassification probabilities have been estimated, in
contrast to the approach of Stefanski and Cook (1995). Thus there is a need for
a method which is theoretically justified and can calculate the standard errors in
a less computer intensive manner allowing for the uncertainty of the estimated
misclassification probabilities. The asymptotic variance estimation has been de-
veloped for the original SIMEX by Carroll et al. (1996). Here we transfer this
strategy to the case of the MC-SIMEX approach. It turns out that most of the
SIMEX theory can be used for the MC-SIMEX approach in a straightforward
manner. However, there are some difficulties due to the differences between the
characterization of additive measurement error by a simple variance and mis-
classification by a matrix with at least two parameters. Especially when the
misclassification matrix must be estimated from a validation study, requires a
careful inspection.

The paper is organized as follows. In Section 2 we give a short review
of the MC-SIMEX method. In Section 3 we develop the asymptotic variance
estimation method with a focus on the case of an estimated misclassification
matrix. In Section 4 we analyze the behavior of our method by simulation. In
Section 5 we give an application to data from an oral health study. Concluding
remarks are found in Section 6.
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2 Review of the MC-SIMEX method

2.1 The MC-SIMEX method

Suppose a general regression model with a response Y and a discrete regressor
X. The MC-SIMEX approach can be applied to misclassification of the response
as well as to misclassification of the regressors or misclassification in both. Let
us denote the possibly corrupted variable by X∗ or Y ∗, for the corresponding
correctly measured (gold standard) variable X and Y , respectively. We also
assume that the model contains correctly specified regressors Z.

Suppose now that only X is subject to misclassification. The case where
(only or also) the response is prone to misclassification is treated similarly. The
misclassification process is described by the misclassification matrix Π, which is
defined by its components

πij = P (X∗ = i|X = j).

Π is a k×k matrix, where k is the number of possible outcomes forX. We denote
the parameter of interest by β. If misclassification is ignored then the estimator
is classically called the naive estimator. Let us denote the limit (when the sample
size goes to infinity) by β∗(Π), since it depends on the misclassification matrix.
Further it is assumed that β∗(Ik×k) = β, i. e. that the estimator is consistent
when there is no misclassification (represented by identity matrix Ik×k). When
X is a binary covariate β∗(Π) depends on the sensitivity π11 = P (X∗ = 1|X = 1)
and the specificity π00 = P (X∗ = 0|X = 0), i. e. on

Π =
(

π00 1− π11

1− π00 π11

)
.

The MC-SIMEX employs the function (λ ≥ 0)

λ −→ β∗(Πλ), (1)

whereby Πλ := EΛλE−1, Λ is the diagonal matrix of eigenvalues and E the
corresponding matrix of eigenvectors. For λ = n, an integer, Π1+n = Πn ∗ Π
and when n = 0, Π0 = Ik×k. The central idea of the MC-SIMEX method is
to add extra misclassification to the possibly corrupted X∗. Namely, if X∗ has
misclassification Π in relation to matrix X and X∗∗ is related to X∗ by the
misclassification matrix Πλ then X∗∗ is related to X by the misclassification
matrix Π1+λ, when the two misclassification mechanisms are independent.

The MC-SIMEX procedure consists of a simulation and an extrapolation
step. Given data (Yi, X

∗
i , Zi)n

i=1 the naive estimator is denoted by β̂na[(Yi, X
∗
i , Zi)n

i=1].
Simulation step
For a fixed grid of values λ1, . . . , λm, (≥ 0) B new pseudo data sets are

simulated by

X∗
b,i(λk) := MC[Πλk ](X∗

i ), i = 1, . . . , n; b = 1, . . . B; k = 1, . . . ,m.

3



where the misclassification operation MC[M ](X∗
i ) denotes the simulation of a

variable given X∗
i with misclassification matrix M . Further, for λ0 = 0, with

β̂λ0 = β̂na [(Yi, X
∗
i , Zi)n

i=1] the estimate of β without further measurement error
is obtained and

β̂λk
:= B−1

B∑
b=1

β̂na

[
(Yi, X

∗
b,i(λk), Zi)n

i=1

]
, k = 1, . . .m. (2)

Note that β̂λk
is an average over naive estimators corresponding to data with

misclassification matrix Π1+λk . Thus, β̂λk
= ̂β∗(Π1+λk).

Extrapolation step
We use a parametric approximation β∗(Πλ) ≈ G(λ,Γ). Therefore we esti-

mate the parameter Γ by least squares on [1+λk, β̂λk
]mk=0, yielding an estimator

Γ̂. The MC-SIMEX estimator is then given by

β̂SIMEX := G(0, Γ̂). (3)

If β is a vector, the MC-SIMEX estimator can be applied on each component
of β separately.

2.2 The extrapolation function

The estimator β̂SIMEX is consistent when the extrapolation function is correctly
specified, i. e. β∗(Πλ) = G(λ,Γ), for some parameter vector Γ. When G(λ,Γ) is
a good approximation of β∗(Πλ) then approximate consistency will hold. KML
looked at the relationship between β∗ and the misclassification parameter λ
for some special cases, also including the case when Y is prone to misclassi-
fication. This exercise indicated possibly suitable candidates for the function
G(λ,Γ). The conclusion was that the extrapolation function was monotonic in
all parameters and that it has a curvature which was well approximated by
the quadratic extrapolation function. In some simple cases the function was
exponential in λ, which was also approximately true in more complicated cases.
Therefore, KML recommend to use a quadratic and a log linear extrapolation
function given by GQ(λ,Γ) := γ0 + γ1λ + γ2λ

2 and GLOG(λ) := exp(γ0 + γ1λ),
respectively.

2.3 Simulation properties

The simulation results indicated that the MC-SIMEX method leads to sub-
stantial reduction of bias compared to the naive estimator. The addition of
a confounder implied more attenuation than the case without a confounder,
and consequently a poorer correction than in the case with no confounder. Fi-
nally, even in the complicated situation where both the response and the binary
covariate were subject to misclassification and with an additional continuous
confounder, the MC-SIMEX correction gave improved estimates even with high
misclassification probabilities.
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3 Asymptotic variance estimation

The asymptotic distribution theory for the original SIMEX approach has been
developed by Carroll et al. (1996), hereafter denoted by CKLS. The idea is
to view regression estimation as solving unbiased estimating equations, see e.g.
Godambe (1991) for a basic reference on estimating equations. Using asymptotic
expansion results, variance estimates are obtained in each step of the SIMEX
procedure. These results can be combined by noting that extrapolation can be
seen as a differentiable operator on the results from the Simulation step. At first
we show how the results of CKLS can be transferred to the MC-SIMEX with
known misclassification matrix Π. We show the derivation only for a possibly
misclassified X, but the results also apply to the case of a possibly misclassified
Y . Let the true value of the unknown parameter vector β be β0. Estimating
β0 by maximum likelihood can be viewed as solving the estimating equation∑n

i=1 ψ(Yi, Xi, Zi, β) = 0, if based on the true data. The calculation of the
naive estimator with misclassification matrix Π implies solving the estimating
equation

n∑
i=1

ψ(Yi, X
∗
i , Zi, β) = 0.

The limit of the naive estimator in the presence of misclassification Π for n→∞
is the solution of E[ψ(Y,X∗, Z, β)] = 0 and is denoted by β∗(Π), as before. In
the simulation step we calculate β̂b,λk

by solving
∑n

i=1 ψ(Yi, X
∗
b,i(λk), Zi, β) = 0.

Following CKLS we get an asymptotic expansion
√
n
[
β̂b,λk

− β∗
(
Π1+λk

)]
= −A−1

[
Π, λk, β

∗ (Π1+λk
)]

(4)

× 1√
n

n∑
i=1

ψ
[
Yi, X

∗
b,i(λk), Zi, β

∗ (Π1+λk
)]

(5)

with

A [Π, λk, β] := E

[
∂

∂β
ψ
(
Y,MC

[
Π1+λk

]
(X), Z, β

)]
.

Expansion (5) can be transferred to the mean β̂λk
in each simulation step and

combining the simulation steps gives an asymptotic multivariate normal distri-
bution for vec

[
β̂λk

; k = 1, . . .m
]

with mean vec
[
β∗(Πλk+1); k = 1, . . .m

]
and

covariance matrix Σ, which is given by

Σ = A−1
11 C11

(
A−1

11

)T
, (6)

A11 = diag
[
A
[
Π, λk, β

∗ (Π1+λk
)]
, k = 1, . . . ,m

]
, (7)

C11 = cov
[
Ψ1

(
Π,λ, β∗

(
Π1+λk

))]
, (8)

Ψi(Π,λ, β) := vec

[
B−1

B∑
b=1

ψ
[
Yi, X

∗
b,i(λk), Zi, β

]
, k = 1, . . . ,m

]
, (9)

where λ = (λ1, . . . , λm)T .
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Each of the above matrices can be estimated by their empirical counterparts.
For the extrapolation step the parameter vector Γ of the extrapolation func-

tion is estimated by least squares using the values β̂λk
. The resulting estimate

Γ̂ is again asymptotically normal with covariance matrix

Σ(Γ̂) = D(Γ)−1s(Γ)Σs(Γ)TD(Γ)−1, (10)

with

s(Γ) =
∂

∂Γ
vec [G(λ1,Γ), . . . ,G(λm,Γ)] , (11)

D(Γ) = s(Γ)s(Γ)T , (12)

where Γ is replaced by Γ̂ in the above expression to calculate the covariance
matrix in practice. The asymptotic variance of the SIMEX estimator β̂SIMEX =
G(0, Γ̂) is derived by the delta method:

Vasy(β̂SIMEX) =
∂

∂Γ
G(0,Γ)Σ(Γ)

∂

∂Γ
G(0,Γ)T .

For more details when B = ∞ or when the mean is replaced by the median,
we refer to CKLS.

3.1 Estimated misclassification matrix

In most applications the misclassification matrix Π has to be estimated from
validation data. We assume here that the validation data are entirely indepen-
dent from the main study. For a possibly misclassified X a data set is available
where for each subject the true value Xk and the possibly corrupted value X∗

k

(k = 1, . . . , nV ) are recorded. The misclassification probabilities are estimated
by

π̂ij =
∑

k I(Xk = j and X∗
k = i)∑

k I(Xk = j)
, (13)

where I(a) = 1 if a is true and 0 otherwise. Let the vector of free parameters
of the misclassification matrix be denoted by ΠV . For two categories, ΠV =
(π00, π11), i. e. the sensitivity and the specificity. The vector of estimates Π̂V

is also the solution of a system of estimating equations related to binomial
experiments for each value ofX. Combining these estimating equations with the
estimating equations for vec

[
β̂λk

; k = 1, . . .m
]

yields an asymptotic variance

for the joint distribution of the vector
[
vec
[
β̂λk

; k = 1, . . .m
]
, Π̂V

]
:

Σ =
1
n

(
A11 A12

0 A22

)−1(C11 C12

CT
12 C22

)((
A11 A12

0 A22

)−1
)T

. (14)
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Here A11 and C11 are given by (7) and (8), respectively. C12 = 0, since the
validation and the main data are independent. Further,

A12 = n−1
n∑

i=1

[
E

(
∂

∂ΠV
Ψi

(
Π,λ, β∗

(
Π1+λk

)))]
, (15)

A22 = −n−1diag (nV,j ; j = 1, . . . ,dim(ΠV )) ,

C22 = n−1cov
[
vec(Π̂V,j nV,j , j = 1, . . . ,dim(ΠV )

]
, (16)

where nV,j is the sample size for estimating the j-th component of ΠV in the val-
idation study. The matrix C22 depends on how the validation study was set up.
Examples are given in the appendix. The main practical difficulty is the han-
dling of expression (15). Since the simulation process is a discrete process we use
the caseB →∞, i. e. we approximateB−1

∑B
b=1 ψ

[
Yi, X

∗
b,i(λk), Zi, β

∗ (Π1+λk
)]

by its expected value with respect to the simulation operation induced by Πλk .
Since this is a discrete process we get a finite sum for fixed i, which is differen-
tiable. Then we are able to estimate the matrix A22 from our data. Note that
the value of B can be chosen large enough, so the approximation performs well.
The technical aspects including differentiation of Πλ is given in the appendix,
where we give detailed formulae for the case of logistic regression.

After estimating the matrix Σ we proceed with equation (10) using the
corresponding submatrix for estimating the variance of the parameters.

4 Simulation study

4.1 Simulation study setup

The variance estimation for the MC-SIMEX procedure is validated by a simu-
lation study. We focused on three different simulation setups:

A Logistic regression with a possibly misclassified binary response Y ∗ and a
correctly measured binary or continuous covariate X.

B Logistic regression with a correctly measured binary response Y and a
possibly misclassified binary covariate X∗, with and without a correctly
measured continuous confounder Z.

C Logistic regression with a possibly misclassified binary response Y ∗ and a
possibly misclassified binary covariate X∗, with and without a correctly
measured confounder Z

We created the true binary covariate from a Bernoulli distribution with P (X =
0) = P (X = 1) = 0.5. The confounder was generated from a normal distribution
with variance σ2 = 1 and mean 0.5 for X = 0 and −0.5 for X = 1. For
case A the continuous covariate is drawn from a standard normal distribution.
The true response is generated as a random variable drawn from a Bernoulli
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distribution with P (Y = 1) = 1/(1 + exp (−β0 − βXX)) for case A, B and C. If
a confounder was present we used P (Y = 1) = 1/(1+exp (−β0 − βXX − βZZ))
instead. The true coefficients are β0 = 0 and βX = βZ = 1. The sample size
for all simulations is 1000, which is justified by the fact that measurement error
correction is usually done for large epidemiological studies.

We applied a misclassification operator on Y and X to obtain the misclas-
sified variables Y ∗ and X∗ respectively. We assumed rather high misclassifi-
cation rates. Either the misclassification is symmetric with π00 = π11 = 0.8
or asymmetric with π00 = 0.9, π11 = 0.7. The misclassification matrix is es-
timated from a validation study with the sample sizes nV,1 = nV,2 = 50 and
nV,1 = nV,2 = 100 respectively. The case of a known misclassification matrix is
denoted by nV,1 = nV,2 = ∞.

The MC-SIMEX estimator is calculated for the quadratic and the log-linear
extrapolation functions. The true estimator is calculated using the correctly
measured data and the naive estimator using the possibly corrupted variables.
The MC-SIMEX procedure was performed with B = 100, i. e. for each of the
1000 simulated data, B = 100 repetitions result in an extrapolated estimate.
The variance was calculated with three different methods. The Cook and Ste-
fanski jackknife method (SEJ) and our asymptotic methods without correction
for the estimation of the misclassification matrix, hence the naive approach
(SEAN ) and with correction (SEA).

4.2 Results

For the performance of the variance estimation we have to compare the simula-
tion standard deviation (SE) of each estimator: (a) under no misclassification
(true model), (b) when misclassification is ignored (naive model) and (c) when
corrected for misclassification (using two SIMEX models). We have denoted
this standard error by SES for all three cases. We compared this standard error
to the square root of the mean of the corresponding estimated variances (SEAN ,
SEA and SEJ). For case A (see Tables 1 and 2) the variance estimation (SEAN ,
SEA) works extremely well and is far superior to the jackknife estimator (SEJ),
which is independent of the extrapolation function. Note that the variance esti-
mation is biased downwards if the variability in the estimation in the validation
study is not taken into account (SEAN versus SEA). For case B (see Tables 3
and 4) the corrected asymptotic variance estimation works very well but has
a small tendency to produce outliers for the log–linear extrapolation function.
The asymptotic variance estimate is always better than the jackknife estimate
and therefore to be preferred. The variance estimates for a correctly measured
covariate are nearly identical for all three methods of variance estimation. In
the case of misclassification in both, the regressor and the response (case C),
the asymptotic variance estimation works rather well, but suffers from the small
tendency to produce outliers for the log-linear extrapolation function, but is in
general much better than the jackknife variance estimation. For an additional
confounder Z (Table 5) the variance estimation is not as good, but still far
more accurate than the jackknife estimator. Although the misclassification in
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Table 1: Simulation results (Case A): Logistic regression of a misclassified re-
sponse Y ∗ on a binary covariate X. SES is the simulation standard error of the
parameter estimates. SEAN is the square root of the simulation mean of the
asymptotic variance estimator without taking the validation study variance into
account, SEA the square root of the simulation mean of the asymptotic variance
estimator taking the validation study variance into account. SEJ is the square
root of the mean of the Cook and Stefanski Jackknife variance estimator.

(π00, π11) = (0.9, 0.7), (π00, π11) = (0.8, 0.8),�
nV,1, nV,2

�
= (50, 50)

�
nV,1, nV,2

�
= (50, 50)

Mean SES SEAN SEA SEJ Mean SES SEAN SEA SEJ

True Model 0.996 0.136 0.996 0.136
Naive Model 0.563 0.131 0.570 0.132
MC-SIMEX(Q) 0.848 0.212 0.197 0.211 0.179 0.899 0.227 0.208 0.225 0.186
MC-SIMEX(LOG) 0.888 0.241 0.206 0.243 0.179 0.971 0.271 0.226 0.272 0.186

(π00, π11) = (0.9, 0.7), (π00, π11) = (0.8, 0.8),�
nV,1, nV,2

�
= (100, 100)

�
nV,1, nV,2

�
= (100, 100)

MC-SIMEX(Q) 0.851 0.208 0.197 0.204 0.179 0.900 0.223 0.208 0.217 0.187
MC-SIMEX(LOG) 0.887 0.222 0.205 0.222 0.179 0.968 0.249 0.223 0.244 0.187

(π00, π11) = (0.9, 0.7), (π00, π11) = (0.8, 0.8),�
nV,1, nV,2

�
= (∞,∞)

�
nV,1, nV,2

�
= (∞,∞)

MC-SIMEX(Q) 0.849 0.200 0.197 0.180 0.901 0.210 0.208 0.186
MC-SIMEX(LOG) 0.886 0.207 0.203 0.180 0.962 0.226 0.221 0.186

the data was quite high, the correction of the parameter estimates is in all cases
substantial and not to be ignored.

5 Application

5.1 The Signal-Tandmobielr study

The Signal-Tandmobielr study is a 6 year longitudinal oral health study con-
ducted in Flanders (Belgium) and involving 4468 children. The children were
examined annually for a period of six years (1996-2001). In this paper we look
at the data of the first year of the study, hence the data of seven-year old chil-
dren. Due to the practical organization of the sampling, the age of the children
actually varied from 6.12 years to 8.09 years. Dental data was collected on
e.g. tooth decay, presence of restorations, etc. together with data obtained from
questionnaires filled in by the parents of the children on oral hygiene and dietary
behavior. For a more detailed description of the Signal-Tandmobielr study we

9



Table 2: Simulation results (Case A): Logistic regression of a misclassified re-
sponse Y ∗ on a continuous covariate X. SES is the simulation standard error of
the parameter estimates. SEAN is the square root of the simulation mean of the
asymptotic variance estimator without taking the validation study variance into
account, SEA the square root of the simulation mean of the asymptotic variance
estimator taking the validation study variance into account. SEJ is the square
root of the mean of the Cook and Stefanski Jackknife variance estimator.

(π00, π11) = (0.9, 0.7), (π00, π11) = (0.8, 0.8),�
nV,1, nV,2

�
= (50, 50)

�
nV,1, nV,2

�
= (50, 50)

Mean SES SEAN SEA SEJ Mean SES SEAN SEA SEJ

True Model 1.005 0.085 1.007 0.081
Naive Model 0.555 0.074 0.531 0.071
MC-SIMEX(Q) 0.852 0.146 0.119 0.143 0.104 0.854 0.145 0.122 0.144 0.104
MC-SIMEX(LOG) 0.899 0.184 0.125 0.184 0.104 0.925 0.194 0.132 0.196 0.104

(π00, π11) = (0.9, 0.7), (π00, π11) = (0.8, 0.8),�
nV,1, nV,2

�
= (100, 100)

�
nV,1, nV,2

�
= (100, 100)

MC-SIMEX(Q) 0.853 0.132 0.119 0.132 0.104 0.852 0.132 0.121 0.133 0.104
MC-SIMEX(LOG) 0.898 0.152 0.124 0.154 0.104 0.915 0.158 0.130 0.160 0.104

(π00, π11) = (0.9, 0.7), (π00, π11) = (0.8, 0.8),�
nV,1, nV,2

�
= (∞,∞)

�
nV,1, nV,2

�
= (∞,∞)

MC-SIMEX(Q) 0.852 0.123 0.119 0.104 0.854 0.121 0.121 0.104
MC-SIMEX(LOG) 0.893 0.127 0.123 0.104 0.911 0.128 0.128 0.104
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Table 3: Simulation results (Case B): Logistic regression of a correctly measured
response Y on a misclassified binary covariate X∗. SES is the simulation stan-
dard error of the parameter estimates. SEAN is the square root of the simulation
mean of the asymptotic variance estimator without taking the validation study
variance into account, SEA the square root of the simulation mean of the as-
ymptotic variance estimator taking the validation study variance into account.
SEJ is the square root of the mean of the Cook and Stefanski Jackknife variance
estimator.

(π00, π11) = (0.9, 0.7), (π00, π11) = (0.8, 0.8),�
nV,1, nV,2

�
= (50, 50)

�
nV,1, nV,2

�
= (50, 50)

Mean SES SEAN SEA SEJ Mean SES SEAN SEA SEJ

True Model 0.996 0.136 1.000 0.140
Naive Model 0.620 0.137 0.569 0.130
MC-SIMEX(Q) 0.918 0.219 0.209 0.227 0.191 0.898 0.227 0.209 0.225 0.186
MC-SIMEX(LOG) 0.975 0.254 0.222 0.292∗ 0.191 0.973 0.270 0.225 0.272 0.186

(π00, π11) = (0.9, 0.7), (π00, π11) = (0.8, 0.8),�
nV,1, nV,2

�
= (100, 100)

�
nV,1, nV,2

�
= (100, 100)

MC-SIMEX(Q) 0.917 0.215 0.208 0.218 0.191 0.898 0.219 0.208 0.217 0.186
MC-SIMEX(LOG) 0.975 0.236 0.220 0.264∗ 0.191 0.964 0.247 0.223 0.245 0.186

(π00, π11) = (0.9, 0.7), (π00, π11) = (0.8, 0.8),�
nV,1, nV,2

�
= (∞,∞)

�
nV,1, nV,2

�
= (∞,∞)

MC-SIMEX(Q) 0.920 0.206 0.208 0.191 0.896 0.209 0.208 0.187
MC-SIMEX(LOG) 0.972 0.218 0.219 0.191 0.961 0.222 0.221 0.187

∗ due to outliers, the median is used instead of the mean.
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Table 4: Simulation results (Case B): Logistic regression of a correctly measured
response Y on a misclassified binary covariate X∗ and a continuous confounder
Z. SES is the simulation standard error of the parameter estimates. SEAN is the
square root of the simulation mean of the asymptotic variance estimator without
taking the validation study variance into account, SEA the square root of the
simulation mean of the asymptotic variance estimator taking the validation
study variance into account. SEJ is the square root of the mean of the Cook
and Stefanski Jackknife variance estimator.

βX , (π00, π11) = (0.9, 0.7), βX , (π00, π11) = (0.8, 0.8),�
nV,1, nV,2

�
= (50, 50)

�
nV,1, nV,2) = (50, 50

�

Mean SES SEAN SEA SEJ Mean SES SEAN SEA SEJ

True Model 1.007 0.162 1.007 0.162
Naive Model 0.535 0.146 0.520 0.148
MC-SIMEX(Q) 0.833 0.245 0.243 0.258 0.215 0.849 0.264 0.250 0.267 0.217
MC-SIMEX(LOG) 0.879 0.281 0.257 0.308∗ 0.215 0.920 0.313 0.273 0.299∗ 0.217

βX , (π00, π11) = (0.9, 0.7), βX , (π00, π11) = (0.8, 0.8),�
nV,1, nV,2

�
= (100, 100)

�
nV,1, nV,2

�
= (100, 100)

MC-SIMEX(Q) 0.826 0.240 0.241 0.248 0.215 0.844 0.254 0.249 0.257 0.217
MC-SIMEX(LOG) 0.866 0.262 0.251 0.280∗ 0.215 0.904 0.281 0.266 0.283∗ 0.217

βX , (π00, π11) = (0.9, 0.7), βX , (π00, π11) = (0.8, 0.8),�
nV,1, nV,2

�
= (∞,∞)

�
nV,1, nV,2

�
= (∞,∞)

MC-SIMEX(Q) 0.827 0.232 0.241 0.215 0.846 0.248 0.249 0.218
MC-SIMEX(LOG) 0.867 0.242 0.250 0.215 0.902 0.263 0.264 0.218

βZ , (π00, π11) = (0.9, 0.7), βZ , (π00, π11) = (0.8, 0.8),�
nV,1, nV,2

�
= (50, 50)

�
nV,1, nV,2

�
= (50, 50)

True Model 1.002 0.084 1.002 0.084
Naive Model 0.842 0.075 0.841 0.076
MC-SIMEX(Q) 0.919 0.089 0.089 0.092 0.082 0.921 0.092 0.090 0.094 0.082
MC-SIMEX(LOG) 0.867 0.079 0.079 0.079 0.082 0.866 0.080 0.080 0.080 0.082

βZ , (π00, π11) = (0.9, 0.7), βZ , (π00, π11) = (0.8, 0.8),�
nV,1, nV,2

�
= (100, 100)

�
nV,1, nV,2

�
= (100, 100)

MC-SIMEX(Q) 0.919 0.089 0.089 0.091 0.082 0.920 0.092 0.090 0.092 0.083
MC-SIMEX(LOG) 0.868 0.079 0.079 0.080 0.082 0.866 0.080 0.080 0.080 0.083

βZ , (π00, π11) = (0.9, 0.7), βZ , (π00, π11) = (0.8, 0.8),�
nV,1, nV,2

�
= (∞,∞)

�
nV,1, nV,2

�
= (∞,∞)

MC-SIMEX(Q) 0.919 0.088 0.089 0.082 0.921 0.091 0.090 0.083
MC-SIMEX(LOG) 0.868 0.079 0.080 0.082 0.866 0.080 0.080 0.083

∗ due to outliers, the median is used instead of the mean.
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Table 5: Simulation results (Case C): Logistic regression of a misclassified re-
sponse Y ∗ on a misclassified binary covariate X∗. SES is the simulation stan-
dard error of the parameter estimates. SEAN is the square root of the simulation
mean of the asymptotic variance estimator without taking the validation study
variance into account, SEA the square root of the simulation mean of the as-
ymptotic variance estimator taking the validation study variance into account.
SEJ is the square root of the mean of the Cook and Stefanski Jackknife variance
estimator.

(π00, π11) = (0.9, 0.7), (π00, π11) = (0.8, 0.8),�
nV,1, nV,2

�
= (50, 50)

�
nV,1, nV,2

�
= (50, 50)

Mean SES SEAN SEA SEJ Mean SES SEAN SEA SEJ

True Model 1.006 0.134 1.003 0.140
Naive Model 0.348 0.126 0.342 0.130
MC-SIMEX(Q) 0.674 0.257 0.256 0.259 0.205 0.697 0.270 0.265 0.267 0.206
MC-SIMEX(LOG) 0.886 0.395 0.336 0.387∗ 0.205 0.971 0.437 0.375 0.454∗ 0.206

(π00, π11) = (0.9, 0.7), (π00, π11) = (0.8, 0.8),�
nV,1, nV,2

�
= (100, 100)

�
nV,1, nV,2

�
= (100, 100)

MC-SIMEX(Q) 0.675 0.249 0.255 0.256 0.206 0.702 0.272 0.266 0.267 0.207
MC-SIMEX(LOG) 0.873 0.348 0.327 0.349∗ 0.206 0.983 0.413 0.374 0.405∗ 0.207

(π00, π11) = (0.9, 0.7), (π00, π11) = (0.8, 0.8),�
nV,1, nV,2

�
= (∞,∞)

�
nV,1, nV,2

�
= (∞,∞)

MC-SIMEX(Q) 0.676 0.246 0.255 0.205 0.699 0.269 0.266 0.207
MC-SIMEX(LOG) 0.865 0.322 0.322 0.205 0.962 0.373 0.363 0.207

∗ due to outliers, the median is used instead of the mean.
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Table 6: Simulation results (Case C): Logistic regression of a misclassified re-
sponse Y ∗ on a misclassified binary covariate X∗ and a continuous confounder
Z. SES is the simulation standard error of the parameter estimates. SEAN is
the square root of the simulation mean of the asymptotic variance estimator
without taking the validation study variance into account, SEA the square root
of the simulation mean of the asymptotic variance estimator taking the valida-
tion study variance into account. SEJ is the square root of the mean of the
Cook and Stefanski Jackknife variance estimator.

βX , (π00, π11) = (0.9, 0.7), βX , (π00, π11) = (0.8, 0.8),�
nV,1, nV,2

�
= (50, 50)

�
nV,1, nV,2) = (50, 50

�

Mean SES SEAN SEA SEJ Mean SES SEAN SEA SEJ

True Model 0.996 0.170 0.997 0.170
Naive Model 0.276 0.138 0.271 0.132
MC-SIMEX(Q) 0.553 0.280 0.284 0.285 0.223 0.570 0.284 0.292 0.293 0.222
MC-SIMEX(LOG) 0.738 0.421 0.371 0.420∗ 0.223 0.816 0.478 0.416 0.467∗ 0.222

βX , (π00, π11) = (0.9, 0.7), βX , (π00, π11) = (0.8, 0.8),�
nV,1, nV,2

�
= (100, 100)

�
nV,1, nV,2

�
= (100, 100)

MC-SIMEX(Q) 0.553 0.284 0.284 0.284 0.223 0.570 0.284 0.293 0.293 0.222
MC-SIMEX(LOG) 0.743 0.406 0.368 0.403 0.223 0.821 0.445 0.414 0.450 0.222

βX , (π00, π11) = (0.9, 0.7), βX , (π00, π11) = (0.8, 0.8),�
nV,1, nV,2

�
= (∞,∞)

�
nV,1, nV,2

�
= (∞,∞)

MC-SIMEX(Q) 0.555 0.281 0.284 0.225 0.573 0.284 0.293 0.224
MC-SIMEX(LOG) 0.733 0.375 0.361 0.225 0.817 0.416 0.408 0.224

βZ , (π00, π11) = (0.9, 0.7), βZ , (π00, π11) = (0.8, 0.8),�
nV,1, nV,2

�
= (50, 50)

�
nV,1, nV,2

�
= (50, 50)

True Model 1.005 0.081 1.005 0.081
Naive Model 0.441 0.065 0.443 0.064
MC-SIMEX(Q) 0.707 0.122 0.110 0.111 0.093 0.740 0.129 0.115 0.116 0.096
MC-SIMEX(LOG) 0.739 0.156 0.115 0.123 0.093 0.799 0.177 0.126 0.137 0.096

βZ , (π00, π11) = (0.9, 0.7), βZ , (π00, π11) = (0.8, 0.8),�
nV,1, nV,2

�
= (100, 100)

�
nV,1, nV,2

�
= (100, 100)

MC-SIMEX(Q) 0.707 0.120 0.110 0.111 0.093 0.740 0.122 0.115 0.115 0.096
MC-SIMEX(LOG) 0.736 0.137 0.114 0.117 0.093 0.794 0.149 0.124 0.129 0.096

βZ , (π00, π11) = (0.9, 0.7), βZ , (π00, π11) = (0.8, 0.8),�
nV,1, nV,2

�
= (∞,∞)

�
nV,1, nV,2

�
= (∞,∞)

MC-SIMEX(Q) 0.707 0.110 0.110 0.094 0.740 0.113 0.115 0.097
MC-SIMEX(LOG) 0.732 0.113 0.113 0.094 0.790 0.120 0.123 0.097

∗ due to outliers, the median is used instead of the mean.
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refer to Vanobbergen et al. (2000).
In this application the response of interest is caries experience on tooth level,

a binary variable equal to 1 if the tooth is decayed, missing due to caries or filled,
and 0 otherwise and on subject level, i. e. whether there was caries in the seven-
year old child or not. More specifically, we will look at two research questions.
In the first research question we examine the relation between caries experience
on subject level with the various dietary and brushing behavior variables. In the
second research question we examine the relationship between caries experience
on a permanent molar and caries experience on an adjacent deciduous molar.
In the first research question we assume that only the response is subject to
misclassification, i. e. we assume that the brushing and dietary variables were
correctly reported. For the second research question, both the response as well
as the caries regressor were subject to misclassification.

During the study period three calibration exercises involving 92, 32 and 24
children, respectively were devoted to the scoring of caries experience. At the
end of each of the three calibration exercises the sensitivity and specificity of
sixteen dental examiners vis-a-vis a gold standard (Dominique Declerck) was
determined. For the first research question we based the misclassification prob-
abilities on the first calibration exercise. Further, we lumped together the mis-
classification matrices of the sixteen dental examiners. Finally, we ignored the
fact that some children were examined by two or more dental examiners. For
the second research question we based the misclassification table for the de-
ciduous molar on the first calibration exercise, while the data from the second
calibration exercise was used for the permanent molar.

5.2 Research Question 1

The first research question evaluates the impact of dietary and brushing behavior
on caries experience in the mouth. More specifically, as regressors we considered:
age (years), gender (girl = 1), age at start of brushing (years), use of systematic
fluoride supplements (regular use = 1), daily consumption of sugar containing
drinks between meals (yes = 1), intake of in-between-meals (= 1 if greater
than 2, 0 otherwise), and frequency of brushing (= 1 if less than twice a day,
0 otherwise). Because a reasonable portion of the parents did not fill in the
questionnaires the analysis below is based on only 3303 children.

Table 8 shows the naive regression estimates of the logistic regression model,
i. e. without taking into account the misclassification of the response. Further,
the overall misclassification matrix of the examiners vis-a-vis the gold standard
at the first calibration exercise is given in Table 7. As can be seen it is based
on 142 evaluations.

Using the MC-SIMEX approach we corrected for possible misclassification of
the response. The result of the correction mechanism is also shown in Table 8.
Therein, we give two standard errors, the first based on the approach suggested
above. The second is based on the adaptation of the approach of Stefanski and
Cook (1995) to misclassification as explained in Küchenhoff et al. (2005).

Except for gender and brushing frequency all regressors are significant (at
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Table 7: Research question 1: Table of misclassified teeth (and misclassification
probabilities in percentage) for caries experience at subject level, column= gold
standard, row= (pool of) dental examiner(s)

Y
Y ∗ 0 1
0 44 (89.8%) 5 ( 5.4%)
1 5 (11.2%) 88 (94.6%)

Table 8: Research question 1: Maximum likelihood estimates of the regressors
of the naive and MC-SIMEX corrected (for misclassification of the response)
logistic regression model. The log-linear extrapolation function is used. For the
corrected model two standard errors are given: SEJ is based on the approach
of Stefanski and Cook (1995), SEA is based on the approach suggested above.

Naive Estimates MC-SIMEX Corrected Estimates
Parameter Estimate(SE) Estimate SEA SEJ

Intercept −0.355 (0.118) −0.474 0.135 0.140
Gender (girl) 0.026 (0.072) 0.037 0.083 0.085
Age (years) 0.302 (0.087) 0.361 0.108 0.103
Brushing frequency (< 2) 0.196 (0.107) 0.243 0.128 0.135
Age start brushing (years) 0.180 (0.034) 0.214 0.043 0.041
Fluoride supplement (yes) −0.448 (0.072) −0.496 0.081 0.087
Sugary drinks (yes) 0.318 (0.074) 0.385 0.091 0.086
Between meals (> 2) 0.238 (0.078) 0.293 0.095 0.088
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α = 0.05), without or with correction. All MC-SIMEX corrected estimates
of the regression coefficients are larger in absolute size than their uncorrected
version. As can be seen in Table 8, the two variance estimation methods give
roughly the same results. Of course, in practice, it could be of importance
sometimes which method is used, certainly if significance is interpreted strictly.

5.3 Research Question 2

In the second research question we look at the impact of the caries status of the
deciduous molar 55 in the first year of the Signal-Tandmobielr study on the
caries status of the adjacent permanent molar 16 in the last year of the study,
taking into account that for both teeth the caries status is possibly misclassified.
Note that we used the European notation for the position of the teeth in the
mouth. The deciduous teeth in the upper right (for the child) position are
denoted by ’5x’. The incisors in this quadrant are denoted by ’51’ and ’52’,
the single canine by ’53’. The two deciduous molars are denoted by ’54’ and
’55’ and are also called the deciduous first and second molar, respectively. The
permanent teeth in the same quadrant and occupying the same positions as the
deciduous teeth described above are denoted by ’11’, ’12’, ’13’, ’14’ and ’15’.
The molar ’16’ is called the six-year (permanent) molar, because it starts to
emerge at the age of six. This molar is located next to deciduous molar ’55’.
Hence, caries problems on the deciduous molar ’55’ can and probably will have
an effect on caries problems on the neighboring permanent molar. To establish
this effect, we used a logistic regression model with regressors the caries status
of the deciduous molar 55 and additionally age (years), gender (girl = 1). We
did not include any brushing or dietary behavior variables because they could
partially mask the relationship between the two caries experiences. Related
analyses on this relationship, but without taking into account misclassification
error, can be found in Leroy et al. (2005) and Komárek and Lesaffre (2006).

Now there are two misclassification matrices: one for the response (from
the last calibration exercise based on 148 evaluations) and one for the caries
regressor (from the first calibration exercise based on 134 evaluations), these
are shown in Table 9.

Table 10 shows the naive regression estimates of the logistic regression model.
Further, we applied three MC-SIMEX corrections to the model. The first cor-
recting for misclassification of the caries regressor, the second for misclassifica-
tion of the response and the third for misclassification of both the regressor and
the response.

Again the MC-SIMEX corrected estimate of the regression coefficients are
larger in absolute value than the uncorrected estimates. Gender is again not
significant. The regression coefficient of the binary variable ’deciduous molar
55’ (caries=1, no caries=0) is positive and significant. This implies that caries
on the deciduous tooth increases the likelihood of caries at the neighboring
permanent tooth. The interaction term between the binary tooth regressor
and age was not significant in any of the analyses (uncorrected or corrected)
and hence was not considered any further. Note that the estimated standard
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Table 9: Research question 2: Table of misclassified teeth (and misclassification
probabilities in percentage) on caries regressor (left) and on response (right),
column= gold standard, row= (pool of) dental examiner(s)

X regressor Y response
X∗ 0 1 0 1
0 92 (98.9%) 5 (12.2%) 118 (96.7%) 4 (15.4%)
1 1 ( 1.1%) 36 (87.8%) 4 ( 3.3%) 22 (84.6%)

Table 10: Research question 2: Maximum likelihood estimates of the regressors
of the naive and MC-SIMEX corrected (for misclassification of the response, re-
gressor and both) logistic regression model. The log-linear extrapolation func-
tion is used. For the corrected model two standard errors are given: SEJ is
based on the approach of Stefanski and Cook (1995), SEA is based on the
approach suggested above.

Naive Estimates MC-SIMEX Corrected Estimates
Corrected for response

Parameter Estimate(SE) Estimate SEA SEJ

Intercept 1.178 (0.723) 2.111 0.890 0.863
Gender (girl) 0.123 (0.078) 0.152 0.093 0.094
Age (years) −0.366 (0.101) −0.424 0.115 0.122
Deciduous molar 55 1.203 (0.080) 1.419 0.130 0.095

Corrected for regressor
Parameter Estimate(SE) Estimate SEA SEJ

Intercept 1.178 (0.723) 1.085 0.732 0.741
Gender (girl) 0.123 (0.078) 0.134 0.078 0.080
Age (years) −0.366 (0.101) −0.367 0.104 0.104
Deciduous molar 55 1.203 (0.080) 1.378 0.130 0.093

Corrected for both
Parameter Estimate(SE) Estimate SEA SEJ

Intercept 1.178 (0.723) 1.610 0.877 0.913
Gender (girl) 0.123 (0.078) 0.165 0.092 0.096
Age (years) −0.366 (0.101) −0.407 0.115 0.128
Deciduous molar 55 1.203 (0.080) 1.643 0.113 0.108
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errors SEA are higher than SEJ for the effect of the ’deciduous molar 55’ in all
models. This makes sense, since SEJ does not take the variability induced by
the validation study into account. The negative and significant coefficient of age
seems at first sight surprising, but age is recorded at the first visit. Thus, when
the deciduous molar is examined at older age the time at risk for the permanent
tooth is on average lower than when examined at younger age. Remember that
the age at the first visit varies from 6 to 8 years.

For the three different kinds of correction it is easily seen, that for sole cor-
rection of the misclassification of the response (part 1 of Table 10) the correction
is visible for all variables, whereas the correction for the misclassification of the
regressor (part 2 of Table 10) changes the parameter estimate for the regressor
quite strongly and lets the other parameter estimates stay nearly unchanged.
The correction for both, response and regressor (part 3 of Table 10), is more or
less the addition of the sole corrections.

6 Discussion

The asymptotic approach suggested here has a better theoretical foundation
than the method of Stefanski and Cook (1995) and has shown good results in the
simulation study. Further, it can be used when the misclassification probabilities
are estimated from a validation study, which will be the case in many practical
situations. Furthermore, the method can be applied to all regression models
where the estimation is done by estimating equations, at least in principle,
but the approach necessitates the calculation of derivatives which can become
complicated or not feasible. In our example and in the simulation study we have
used the rather complicated case of misclassification in the regressor and in the
response simultaneously. For these kinds of studies other methods as maximum
likelihood or the matrix method are not feasible.

We have developed an package for the statistical computing environment R
developed by the R Development Core Team (2005), which features an imple-
mentation of the SIMEX method by Cook and Stefanski (1994) and MC-SIMEX
method by Küchenhoff et al. (2005) including naive asymptotic and jackknife
variance estimation, downloadable from
http://cran.r-project.org/src/contrib/Descriptions/simex.html
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A Detailed formulae for logistic regression

For logistic regression, the estimation equation ψ has the form

ψ(Yi, Xi, β) =
{
Yi −H

(
β0 + βT

XXi

)}( 1
Xi

)
,

with H() being the logistic function. Using H ′(·) = (1 − H)H, the derivation
has the form:(

∂

∂βT

)
ψi (Yi, Xi, β) = − (1−H(β0 + βT

XXi))H(β0 + βT
XXi)

(
1
Xi

)
(1, Xi)

which is needed to estimate A11 from equation (7).
The matrix s(Γ) from equation (12) has for quadratic extrapolation the form

s(Γ) =



 −1 0 · · · 0
−λ1 0 · · · 0
−λ2

1 0 · · · 0

 · · ·

 −1 0 · · · 0
−λm 0 · · · 0
−λ2

m 0 · · · 0


...

. . .
...0 · · · 0 −1

0 · · · 0 −λ1

0 · · · 0 −λ2
1

 · · ·

0 · · · 0 −1
0 · · · 0 −λm

0 · · · 0 −λ2
m




and for log-linear extrapolation

s(Γ) =



(
− exp(γ01 + γ11λ1) 0 · · · 0
− exp(γ01 + γ11λ1)λ1 0 · · · 0

)
· · ·

(
− exp(γ01 + γ11λm) 0 · · · 0
− exp(γ01 + γ11λm)λm 0 · · · 0

)
...

. . .
...(

0 · · · 0 − exp(γ0p + γ1pλ1)
0 · · · 0 − exp(γ0p + γ1pλ1)λ1

)
· · ·

(
0 · · · 0 − exp(γ0p + γ1pλm)
0 · · · 0 − exp(γ0p + γ1pλm)λm

)
 .

where p is the number of parameters.
The derivative of the function G(0,Γ), which is needed for the application of

the ∆–method, has for the quadratic extrapolation function the following form.

∂

∂Γ
GQ(0,Γ) =



1 0 · · · 0
−1 0 · · · 0
1 0 · · · 0
...

. . . . . .
...

0 · · · 0 1
0 · · · 0 −1
0 · · · 0 1


For log-linear extrapolation it looks like

∂

∂Γ
GLOG(0,Γ) =


exp (γ01 − γ11) 0 · · · 0
− exp (γ01 − γ11) 0 · · · 0

...
. . . . . .

...
0 · · · 0 exp (γ0p − γ1p)
0 · · · 0 − exp (γ0p − γ1p)

 .
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A.1 Estimated misclassification Matrix

For a binary misclassified variable the matrix C22 has the form

C22 = diag
(
π̂00(1− π̂00)

nV,0

n
, π̂11(1− π̂11)

nV,1

n

)
(17)

where nV,j is the sample size of the validation study for the case Y = j or
X = j, and n the sample size of the data set.

In the case of misclassified response the estimation equation Ψ is given by

Ψ(·) = (MC[Πλ](yi)−H(xiβ))xT
i

with xi being the i-th row of the design matrix and

Πλ =
1

1− δ

(
1− π11 + (1− π00)δλ (1− π11)(1− δλ)

(1− π00)(1− δλ) 1− π00 + (1− π11)δλ

)
(18)

where δ = det (Π) = π00+π11−1. To estimateA12 the derivatives (∂Πλ/∂ΠV )Ψ(·)
are needed. For B → ∞, fixed λ and a binary misclassified response, Ψ(·) can
be written as

Ψ(·) = (πλ
00(0−H(xiβ))xT

i + (1− πλ
00)(1−H(xiβ))xT

i )Iyi=0

+ (πλ
11(1−H(xiβ))xT

i + (1− πλ
11)(0−H(xiβ))xT

i )Iyi=1. (19)

with I being the indicator function

Iy=a

{
1 : y = a
0 : y 6= a

and xi row i of the design matrix, e.g. for a simple linear model with intercept
(1, xi, z

T
i ).

The derivatives of Πλ are needed:

Πλ
00

∂π00
=

(λ(π00 − 1)(π00 + π11 − 2)δλ−1 + (δλ − 1)(π11 − 1))
(π00 + π11 − 2)2

(20)

Πλ
00

∂π11
=

(
λ (π00 + π11 − 2) δλ−1 − δλ + 1

)
(π00 − 1)

(π00 + π11 − 2)2
(21)

Πλ
11

∂π11
=

(λ(π11 − 1)(π00 + π11 − 2)δλ−1 + (π00 − 1)(δλ − 1))
(π00 + π11 − 2)2

(22)

Πλ
11

∂π00
=

(π11 − 1)
(
λ (π00 + π11 − 2) δλ−1 − δλ + 1

)
(π00 + π11 − 2)2

(23)

This leads to an estimate for A12 for fixed λ

A12,λ =(
n−1

n∑
i=1

∂Πλ
11

∂π00
xiIyi=1 −

∂Πλ
00

∂π00
xiIyi=0, n

−1
n∑

i=1

∂Πλ
11

∂π11
xiIyi=1 −

∂Πλ
00

∂π11
xiIyi=0

)
(24)

22
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