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Abstract

We introduce a new latent variable model with count variable indicators, where

usual linear parametric effects of covariates, nonparametric effects of continuous co-

variates and spatial effects on the continuous latent variables are modelled through

a geoadditive predictor. Bayesian modelling of nonparametric functions and spatial

effects is based on penalized spline and Markov random field priors. Full Bayesian

inference is performed via an auxiliary variable Gibbs sampling technique, using a

recent suggestion of Frühwirth-Schnatter and Wagner (2006). As an advantage, our

Poisson indicator latent variable model can be combined with semiparametric latent

variable models for mixed binary, ordinal and continuous indicator variables within

an unified and coherent framework for modelling and inference. A simulation study

investigates performance, and an application to post war human security in Cambo-

dia illustrates the approach.

Keywords: Latent variable models, Poisson indicators, penalized splines, spatial

effects, MCMC.
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1 Introduction

In this paper, we introduce a flexible geoadditive latent variable model (LVM), where ob-

served or manifest indicators are count variables. Conditional on common latent variables

and possibly, on some covariates, we assume as measurement model that the indicator vari-

ables follow a log-linear Poisson model, extending the usual linear predictor constructed

from covariates through a linear combination of latent variables and factor loadings. In this

way, correlation between the indicators is also automatically accounted for. The effects of

further covariates of different type on the latent variables are modelled through a geoad-

ditive predictor, extending the usual linear predictor by adding nonparametric functions

for possibly nonlinear effects of continuous covariates, and spatial effects resulting from

geographical small area information about the location of units or residence of individuals

in the sample. Covariates of this type are present in Section 5, where we illustrate our

approach to a latent variable model with count variable indicators for post war human se-

curity in Cambodia. This application is motivated by the study in Benini, Owen and Rue

(2006) where separate independent geoadditive Poisson regressions are applied to the same

indicators. In contrast, our latent variable model automatically accounts for correlation of

indicator through a common latent factor.

We develop full Bayesian inference for parameters, functions and spatial effects as well as

for the latent variable, using an underlying variable approach (UVA) to facilitate simulation

based posterior analysis via Gibbs sampling. Following a recent proposal by Frühwirth-

Schnatter and Wagner (2006) in the context of state space models for count variables,

we generate auxiliary, unobservable Gaussian variables from the observable indicators.

Based on the resulting auxiliary measurement model, Gibbs sampling can be performed

along the lines of the sampling scheme proposed in Fahrmeir and Raach (2006) and Raach

(2005) for geoadditive latent variable models with mixed binary, ordered categorical and
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continuous indicators. Moreover, the LVM for count data presented here can therefore

be combined with the latter class of models to flexible semiparametric latent variable

models for mixed categorical, continuous and count variable indicators within a unified

and coherent framework.

In comparison, LVM presented in the literature so far mostly assume that the effects of

covariates on both the observable indicators and the latent variables are modelled in simple

linear parametric form, see Skrondal and Rabe-Hesketh (2004) for a recent comprehensive

introduction. The origin of the LVM with covariate effects can be traced back to the MIMIC

model of Jöreskog and Goldberger (1975). Sammel, Ryan and Legler (1997) discussed a

LVM with covariates for mixed outcomes in the Item Response Theory (IRT) context.

A comparison of different approaches for ordinal indicators including covariate effects is

provided by Moustaki, Jöreskog and Mavridis (2004). Zhu, Eickhoff and Yan (2005) firstly

discussed the influence of spatial covariates on the latent variables using a ML approach. A

latent variable model for mixed categorical and survival data has been recently suggested by

Moustaki and Steele (2005). In all this work the effects of covariates are modelled through a

simple linear predictor. Notable exceptions are nonlinear latent variable models suggested

by Arminger and Muthén (1998), Lee and Song (2004), and Song and Lee (2005), but

the nonlinear relationship is still of conventional parametric form. The semiparametrically

structured geoadditive predictor used in our LVM is described in Fahrmeir, Kneib and Lang

(2004), and Brezger and Lang (2006) in the simpler context of semiparametric generalized

regression for univariate responses.

This paper is organized as follows: Section 2 presents the measurement model for the

observable indicators as well as the corresponding auxiliary Gaussian measurement model,

and the geoadditive structural model for the latent variables. Section 3 outlines the Gibbs

sampling scheme for Bayesian inference. Section 4 investigates performance in a simulation
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study, and Section 5 illustrates the approach by a real data application to a study on post

war security in Cambodia.

2 Statistical model

2.1 Measurement model

In our LVM all indicators or manifest variables yj, j = 1, . . . p, are count data, that means

nonnegative integers. Let yij denote the observed value of indicator yj, ωi = (ωi1, . . . , ωid)
′

a vector of covariates, and zi = (zi1, . . . , ziq), q < p, a vector of latent variables for

individual i, i = 1, . . . , n. Conditional on covariates and latent variables we assume a

log-linear Poisson model

yij|µij, · ∼ Po(µij) , µij = exp
(
λj0 + λ′

jzi + α′

jωi

)
, i = 1, . . . , n , j = 1, . . . , p. (1)

In (1) λj0 is an intercept term, the q-dimensional vector λ′

j = (λj1, . . . , λjq) consists of

the factor loadings indicating the strength of relationship between latent and manifest

variables, and α′

j = (αj1, . . . , αjd) is the vector of direct effects of covariates on yij. Note

that (1) extends the usual linear predictor λj0 + α′

jωi of log-linear Poisson models by

incorporating the linear effect λ′

jzi of latent variables.

In analogy to latent variable models with binary and ordinal indicators, our concept for

Bayesian modelling and inference is based on an underlying variable approach (UVA) for

auxiliary Gaussian variables. This facilitates full Bayesian inference via Gibbs sampling,

and it allows us to combine geoadditive latent variable models developed in Fahrmeir and

Raach (2006) for binary, ordinal and continuous indicators with models for count indicators

4



considered here. Following a recent suggestion of Frühwirth-Schnatter and Wagner (2006)

in the context of state space models for count data, the introduction of two so called

data augmentation steps eliminates the nonlinearity of the Poisson model as well as the

nonnormality of the error term. The (conditional) distribution of yij |µij, · is considered

as the distribution of the number of jumps of an unobserved Poisson process in the time

interval [0, 1]. The first data augmentation step introduces the interarrival times τijl,

i = 1, . . . , n, j = 1, . . . , p, l = 1, . . . , yij + 1, of this unobserved Poisson process. Because

of the properties of a Poisson process, we know that these interarrival times τijl follow an

exponential distribution with parameter µij, this means τijl | · ∼ Exp(µij) = Exp(1)/µij.

Taking logarithms we obtain the linear model

−log τijl | · = λj0 + λ′

jzi + α′

jωi + εijl, εijl ∼ log Exp(1).

This way the nonlinearity of the Poisson model is eliminated, but the nonnormality of the

error term εijl still remains. The density f (εijl) of the error term is independent of any

unknown parameter:

f (εijl) = exp {εijl − exp (εijl)} .

According to Chib et al. (2002) who approximate the density of a log χ2-distribution by a

normal mixture, Frühwirth-Schnatter and Wagner (2006) approximate the density of the

log Exp(1)-distribution of the error term εijl by a mixture of ten normal distributions to

obtain a conditionally Gaussian model

f (εijl) ≈
10∑

r=1

wr fN

(
εijl; mr, σ

2
r

)
. (2)

To achieve a satisfactory approximation quality the parameters (weights wr, means mr

and variances σ2
r) were calculated by minimizing the Kullback-Leibler distance. The cor-
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responding values of the weights, means and variances can be found in Table 1.

Table 1: Parameter values for the normal mixture approximation of the logExp(1)-distribution
r 1 2 3 4 5 6 7 8 9 10

ωr 0.00397 0.0396 0.168 0.147 0.125 0.101 0.104 0.116 0.107 0.088
mr -5.09 -3.29 -1.82 -1.24 -0.764 -0.391 -0.0431 0.306 0.673 1.06

σ2

r 4.5 2.02 1.1 0.422 0.198 0.107 0.0788 0.0766 0.0947 0.146

To demonstrate the quality of the approximation we plot the real as well as the approxi-

mated density of this distribution in Figure 1a. The difference of these two densities can

be seen in Figure 1b.

a) b)
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Figure 1: a) Density of the logExp(1)-distribution and the density of the mixture distribution,
b) Difference between logExp(1)-distribution and approximation

The second data augmentation step introduces for every εijl the so called component in-

dicator as another unobserved magnitude. Conditional on these component indicators we

obtain a Gaussian distribution instead of the Poisson-distribution in (1):

−log τijl | ·, rijl = λj0 + λ′

jzi + α′

jωi − mrijl
+ ζijl, (3)

where the error term ζijl | rijl follows a N
(
0, σ2

rijl

)
-distribution. Thus we get:

−log τijl | ·, rijl ∼ N
(
λj0 + λ′

jzi + α′

jωi − mrijl
, σ2

rijl

)
. (4)

After eliminating the nonnormality of the error term by the second data augmentation
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step we define the underlying (or auxiliary) variables y∗

ijl as follows:

y∗

ijl = −log (τijl | ·, rijl) + mrijl
, l = 1, . . . , yij + 1.

This means, for every yij we obtain yij + 1 auxiliary Gaussian measurement models

y∗

ijl | ·, rijl = λj0 + λ′

jzi + α′

jωi + ζijl , (5)

with ζijl | rijl ∼ N
(
0, σ2

rijl

)
and l = 1, . . . , yij +1. Obviously we obtain yij +1 measurement

replications y∗

ij1, . . . , y
∗

ij(v+1) with the same predictor λj0 + λ′

jzi + α′

jωi but with different

variances σ2
rijl

for the error terms ζijl | rijl, l = 1, . . . , yij + 1. In the following detailed

presentation (6) we shortly write y∗

ijl instead of y∗

ijl | ·, rijl :




y∗

ij1

...

y∗

ijl

...

y∗

ij(v+1)




=




λj0 + λ′

jzi + α′

jωi

...

λj0 + λ′

jzi + α′

jωi

...

λj0 + λ′

jzi + α′

jωi




+




ζij1

...

ζijl

...

ζij(v+1)




. (6)

Defining y∗

i =
(
y∗

i11, . . . , y
∗

i1(yi1+1), . . . , y
∗

ip1, . . . , yip(yip+1)

)
′

,

λ∗

0 = (λ10, . . . , λ10, . . . , λp0, . . . , λp0)
′, Λ∗ = (λ1, . . . ,λ1, . . . ,λp, . . . ,λp)

′,

A∗ = (α1, . . . ,α1, . . . ,αp, . . . ,αp)
′, and ε =

(
ζ∗

i11, . . . , ζ
∗

i1(yi1+1), . . . , ζ
∗

ip1, . . . , ζip(yip+1)

)
′

the

underlying Gaussian measurement model is given in matrix notation as

y∗

i = λ∗

0 + Λ∗zi + A∗ωi + εi , i = 1, . . . , n. (7)

Given the values of the manifest Poisson variables the dimension of the vector y∗

i is
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dim (y∗

i ) = (yi1 + 1) + · · · + (yip + 1), i = 1, . . . , n. Note that the dimensions of λ∗

0, Λ∗

and A∗ also depend on i, but we suppress this notationally. We point out that according

to (6) all yij + 1 underlying variables of the Poisson indicator yij have the same predictor.

This is why we have to repeat the rows λj0, λ′

j and α′

j, j = 1, . . . , p, (yij + 1)-times in

the intercept vector λ∗

0, in the matrix of the factor loadings Λ∗ and in the matrix of the

regression coefficients A∗. The error term εi in (7) is normal,

εi ∼ N (0,Σi) with Σi = diag
(
σ2

ri11
, . . . , σ2

ri1(yi1+1)
, . . . , σ2

rip1
, . . . , σ2

rip(yip+1)

)
.

The latent factors zi are assumed to be i. i. d. with zi ∼ Nq (0, Iq). Then the conditional

and marginal characterising moments of the measurement model are Var
(
y∗

ijl |z
)

= σ2
rijl

,

Cov
(
y∗

ijl, y
∗

ikm |z
)

= 0, Var
(
y∗

ijl

)
=

q∑
r=1

λ2
jr + σ2

rijl
, Cov

(
y∗

ijl, y
∗

km

)
=

q∑
r=1

λjrλlr.

The measurement model faces a well known identification problem because there is an

indeterminateness concerning the matrix of factor loadings Λ = (λ1, . . . , λp)
′ and factor

scores. The model is invariant under transformations with any orthogonal q × q matrix

V of the form Λ̃ = ΛV ′ and z̃i = V zi because this transformation keeps the variance

of the latent scores unchanged (Var(z̃i) = V IqV
′ = Iq). An indefinite number of models

exists since all orthogonal rotations of the latent space could occur. The solution lies in the

restriction of parameters of Λ in a suitable way e. g. Lopes and West (2004). We solve this

identification problem by postulating a lower block triangular matrix of factor loadings of

full rank with positive diagonal elements. This way to ensure identification is also used

by Geweke and Zhou (1996) and Aguilar and West (2000). Since we use only one latent

variable in the later presented simulation and application, this restriction is not necessary.

The reason for this is that there exists only one orthogonal transformation in a model with

only one latent variable. The only possible orthogonal transformation is nothing else than

a change of the sign of factor loadings and factor scores. Hence, in a model with one latent
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variable the problem of indeterminateness can simply be solved after the computation.

Where required, we solely have to multiplicate the loadings and scores by −1, see also

Steinert (2006).

We complete this subsection with prior assumptions on parameters of the measurement

model: Let λ̄ =
(
λ10,α

′

1,λ
′

1, λ20,α
′

2,λ
′

2, . . . , λp0,α
′

p,λ
′

p,
)
′

denote the p · (1 + d + q)-

dimensional vector which contains all intercepts, factor loadings and regression coefficients.

For intercepts λj0 and regression coefficients αj we usually choose noninformative flat priors

p (λj0) ∝ const , p (αj) ∝ const , j = 1, . . . , p .

Choice of (weakly) informative priors is also possible, however, and can easily be integrated

in the corresponding Gaussian full conditional of our Gibbs sampling scheme.

However, it may be reasonable to include prior information for the factor loadings in order

to prevent the occurrence of Heywood cases in the Bayesian setting. A Heywood case

appears when one factor loads up completely on one (sometimes even more) indicator(s),

hence the latent variable accounts for the full variability of the respective indicator. Since

this result is highly implausible, we choose informative priors with a normal density cen-

tered at zero with a certain precision (inverse variance). A recommended standard choice

in applications (Lopes and West (2004); Quinn (2004)) is a prior variance of one because

this prevents the occurrence of Heywood cases, is only weakly informative and therefore

allows to obtain high factor loadings. We suggest three different prior precision settings,

weak (0.5), standard (1.0) and strong (4.0). Simulation studies in Raach (2005) show that

the probability of Heywood cases decreases as the number of observations n or the number

of indicators increases. Moreover, for large sample sizes (some thousands), all three choices

for the prior variance lead to practically the same posterior estimates. Note also, that Hey-

wood cases tend to arise of the researcher attempts to extract more latent variables than
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the information provided by the data contains. This is not the case here, because we use

only one latent variable in simulation studies (Section 4) and in the application (Section

5).

2.2 Structural model

Structural models commonly relate latent variables zir, r = 1 . . . , q, to a covariate vector

ui through a linear model

zir = u′

iγ + δir, i = 1, . . . , n (8)

with i. i. d. errors δir ∼ N(0, 1). The variances of the errors are set to 1 for identifiability

reasons. The linear predictor ηir = u′

iγr assumes linear parametric effects of the covariate

vector ui, with coefficient vector γr. Again for identifiability reasons, the linear predic-

tor must not contain an intercept term. We extend the linear predictor to a geoadditive

predictor

ηir = fr1(xi1) + · · · + frg(xig) + fr,spat(si) + γ ′

rui , (9)

where fr1(xi1), . . . , frg(xig) are nonlinear functions for the effects of additional continuous

covariates x1, . . . ,xg and fr,spat(s) is the spatial effect at location s ∈ {1, . . . , d}, indexing

d geographical regions or, more generally, a discrete lattice of spatial locations. If there is

no spatial information in form of location variables in the data, the spatial effect fr,spat(s)

is deleted in (9), and we obtain an additive predictor. The geoadditive predictor has the

same form as for geoadditive or structured additive regression models proposed in Fahrmeir,

Kneib and Lang (2004), Lang and Brezger (2004), and for semiparametric latent variable

models for mixed Gaussian and categorical indicators in Fahrmeir and Raach (2006). In

complete analogy we model functions fr1, . . . , frg through Bayesian P-splines and spatial
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effects through a Markov random field. Then the predictor vector η(r) = (η1r, . . . , ηnr)
′ can

always be written in form of a large linear (mixed) model

η(r) = (η1r, η2r, . . . , ηnr)
′ = X1βr1 + . . . + Xgβrg + Xspatβr,spat + Uγr , (10)

where the design matrices X1, . . . ,Xg contain the function values of B-spline basis func-

tions and Xspat is a (n × d)-incidence matrix, where the sth element of row i is 1 if

observation i comes from region s and all other elements are 0. The parameter vectors

βr1, . . . ,βr,spat are random with priors defined below. From a frequentist perspective the

parameter vector γr is considered as ’fixed’, so that (10) may be interpreted as a lin-

ear mixed model predictor. The structural model is completed by prior assumptions on

parameters and functions. We assume independent priors for separate functions and pa-

rameters as well as for functions and parameters of different predictors, η(r), r = 1, . . . , q.

To simplify notation, we therefore drop indices. For the parameter γ of the linear part of

predictors, we routinely assign flat, noninformative priors p(γ) ∝ const, but informative

normal priors would also be possible.

Priors for functions of continuous covariates are defined through Bayesian P-splines, based

on Lang and Brezger (2004) and Brezger and Lang (2006). The unknown function f of a

continuous covariate x is approximated by a polynomial spline of degree D defined on a

set of equally spaced knots xmin = ̺0 < ̺1 < . . . < ̺I−1 < ̺I = xmax with I intervals, and

is constructed by a linear combination

f(x) =
d∑

c=1

βcBc(x) .

of d = D + I B-spline basis functions Bc with regression coefficients β = (β1, β2, . . . , βd)
′.

The characteristics of B-splines are described in the above mentioned literature and in
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Dierckx (1993), Eilers and Marx (1996). Smoothness of the function f is achieved by

penalizing differences of coefficients of adjacent B-splines. In a Bayesian approach, this

penalization is incorporated conveniently by applying a first-order or second-order random

walk prior to the B-splines regression coefficients f :

βt = βt−1 + ut and βt = 2βt−1 − βt−2 + ut

with ut ∼ N(0, κ2), respectively. The first-order random walk has a diffuse prior β1 ∝

const; the second-order random walk additionally has β2 ∝ const. The variance κ2 de-

termines the smoothness of the resulting function f , and acts as an inverse smoothing

parameter. The entire prior distribution of a function f can equivalently be rewritten in

form of a global smoothness prior

p(β |κ2) = exp

(
−

1

2κ2
β′Kβ

)

with appropriately defined penalty matrix K. The design matrix X is constructed in the

following way: each row i of X contains the values of the B-spline basis functions evaluated

at xi, hence Xic = Bc(xi). Thus the vector of function evaluations for all observations is

given by Xβ. In our analysis, we choose B-splines of degree D = 3 with I = 10 intervals.

The prior for the spatial effect is defined through a Markov random field (MRF). Let

us assume that location si denotes the region where observation i comes from, and the

vector f geo = (fgeo(s1), . . . , fgeo(sn)) of function evaluations β = (β1, β2, . . . , βd) contains

the effect βs := fspat(s), s = 1, . . . , d, of the d different regions. The spatial function

evaluations of all observations i can be written as Xβ with the n × d dimensional design

matrix X, where Xis = 1 if observation i is associated to region s; all other values of

row i equal zero. The basic assumption is that adjacent regions should have a similar
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impact on the latent scores whereas two regions far apart from each other do not exhibit

such a similarity. In our context, two regions are considered neighbours when they share

a common boundary. We apply the following smoothness prior to the spatial effects βc,

c = 1, . . . , d, for all d regions:

βs|βs′ , s
′ 6= s, κ2 ∼ N

(
∑

s′∈∂s

βs′

Ns

,
κ2

Ns

)
, (11)

where Ns indicates the number of adjacent sites of region s, and s′ ∈ ∂s denotes all regions

s′ being neighbours of region s. Hence the conditional mean of βs is an unweighted average

of the function values of all adjacent regions. The entire prior distribution follows as

p(β |κ2) ∝ exp(−β′Kβ/(2κ2)) with the d-dimensional penalty matrix K whose entries

are

kss = Ns and kss′ =




−1 , s′ ∈ ∂s ,

0 , otherwise .

More general MRF priors are possible, see Rue and Held (2005).

Priors for smoothing parameters: All priors for nonparametric functions and the spatial

effect are defined conditional on the inverse smoothing parameter κ2. It is automatically

estimated in our Bayesian approach. We assign weakly informative but proper inverse

Gamma priors

κ2 ∼ IG (a, b) ,

with small values a = b = ǫ, to avoid problems with possibly improper posteriors.

Stacking all regression parameters and smoothing parameters in vectors β, γ and κ, the
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full prior specification is given by

p(β,γ,κ) = p(β |κ)p(γ)p(κ)

=
∏q

r=1

∏spat

h=1 p(βrh) ·
∏q

r=1 p(γr)

∝
∏q

r=1

∏spat

h=1 exp(− 1
2κ2

rh

β′

rhKrhβrh)p(κ2
rh) ·

∏q

r=1 p(γr) .

3 Bayesian inference

Full Bayesian inference can be carried out via Gibbs sampling in combination with data

augmentation, considering underlying variables y∗ and latent variables z as additional

”parameters”. Gathering interarrival times τ and mixture component indicators r of the

underlying variable model, intercepts λ0, factor loadings Λ and direct effects A of the

measurement model as well as parameters β, γ and κ of the structural model in the vector

θ of all parameters, the resulting posterior is

p (θ,y∗,z |y, ) ∝ p (θ) · p (y,y∗,z |θ)

= p (θ) · p (y∗,z |θ) · p (y |y∗,θ)

Gibbs sampling is performed in the following steps:

1. Generate underlying variables y∗, including interarrival times τ and component in-

dicators r.

2. Generate latent variables z.

3. Draw from the posterior p (γ | ·).

4. Draw from the posteriors p (βh | ·), h = 1, . . . , spat.

5. Draw from the posteriors p (κh | ·) for smoothing parameters.

6. Draw from posteriors p (λ0,Λ,A | ·).
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Steps 2-5 are essentially the same as in Fahrmeir and Raach (2006) and Raach (2005).

Therefore we focus here on steps 1 and 6. Further details are given in Steinert (2006).

Step1. Following Frühwirth-Schnatter and Wagner (2006), we proceed as follows.

(i) Generating interarrival times τ j = {τijl, l = 1, . . . , (yij + 1), i = 1, . . . , n}:

Set v = yij. If yij > 0 draw gij1, . . . , gijv from the uniform distribution on [0, 1]

and construct the resulting order statistic gij(1), . . . , gij(v). Interarrival times are then

given by

τijl = gij(l) − gij(l−1) , l = 1, . . . , v ,

where gij(0) = 0, and

τij(v+1) = 1 −

v∑

l=1

τijl + ξi , ξi ∼ Exp(µij) .

(ii) Generating component indicators rijl, l = 1, . . . , (yij + 1):

P (rijl = k | τijl, ·) ∝ f (τijl | rijl = k, ·) wk.

(iii) Generating underlying variables y∗

ijl:

y∗

ijl | · ∼ N
(
λj0 + λ′

jzi + α′

jωi, σ
2
rijl

)

Step 6. Generating λ̄
j
=
(
λ0j,α

′

j,λ
′

j

)
′

:

λ̄
j
| · ∼ N

(
E(λ̄

j
| ·), Var(λ̄

j
| ·)
)

. ,

where

E
(
λ̄

j
|W jy

∗

j ,z,ω
)

=
(
Λ̄

∗j
+ L′

jW
−1
j Lj

)
−1 (

Λ̄
∗j

λ̄
∗j

+ L′

jW
−1
j y∗

j

)
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Var
(
λ̄

j
|y∗

j ,z,ω
)

=
(
Λ̄

∗j
+ L′

jW
−1
j Lj

)
−1

.

and

y∗

j =
(
y∗

1j1, . . . , y
∗

1j(y1j+1), . . . , y
∗

nj1, . . . , y
∗

nj(ynj+1)

)
′

,

W j = diag
(
σ2

r1j1
, . . . , σ2

r1j(y1j+1)
, . . . , σ2

rnj1
, . . . , σ2

rnj(ynj+1)

)
,

L′

j = (l′1, . . . , l
′

1, . . . , l
′

n, . . . , l
′

n)
′

and

l′i = (1, ωi1, . . . , ωid, zi1, . . . , ziq)
′ .

4 Simulation

To investigate performance several simulation studies were conducted in Steinert (2006).

We confine presentation to only one LVM with two different numbers of observations,

N1 = 300 and N2 = 1000, respectively. This model includes three Poisson distributed

indicators and one latent variable. It also includes two indirect covariates, one metric and

one spatial covariate. To demonstrate that it is possible to estimate nonparametric effects

of a metric covariate in a LVM with Poisson responses we used the function

f (x) = sin

(
2πx

20

)
, x ∈ [0, 20],

which rises and drops with a high curvature. As in Raach (2005) we used the two-

dimensional function

fspat = sin

(
2πx

20

)
·

(
2πy

20

)
, x = 1, . . . , 20, y = 1, . . . , 20,
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to generate a spatial covariate. As mentioned before, here two regions are considered

neighbours when they share a common boundary. According to this assumption our regions

have four neighbours, apart from the regions at the corners or on the border which clearly

have less neighbouring regions as can be seen in Figure 2.

−1 10

Figure 2: Map of 400 regions with corresponding true functional values of spatial function fspa

As mentioned above LVM with mixed responses are possible, too. Results of further

simulation studies for models with mixed responses as well as with pure Poisson responses

and different covariate combinations and more than one latent factor are given in Steinert

(2006).

After performing analysis with different numbers of iterations for the burnin and the sam-

pling phase, we considered 2000 iterations for the burnin phase and 5000 iterations for

the sampling phase as satisfactory. In order to judge the estimation quality of the model

parameters we generated S = 50 different data sets for both numbers of observations.

After analysing these data sets as described in the preceding sections, we calculated mean

(MEAN), standard deviaton (STD), bias (BIAS) and the mean squared error (MSE) to

assess the quality of estimation. Let θtrue denote the true value of an arbitrary model

parameter, θ̂s the estimated value for the sth data set and θ̂std
s denotes the standard error

of the estimation for data set s. Above mentioned characteristic magnitudes can be cal-

culated as follows: MEAN= 1
S

∑S

s=1 θ̂s, STD= 1
S

∑S

s=1 θ̂std
s , BIAS= 1

S

∑S

s=1

(
θ̂s − θtrue

)
,

MSE= 1
S

∑S

s=1

(
θ̂s − θtrue

)2

. By calculating the portion of simulation runs for which the

true parameter value θtrue is inside the corresponding 95% credible region we obtain the

17



empirical 95% coverage (COV) probability.

We first depict the estimated parameters of the measurement model. Thereafter we show

the results of the structural model.

Mean, standard deviation, bias, mean squared error and coverage of the simulation studies

are given in Table 2 for N1 = 300 observations and in Table 3 for N2 = 1000 observations,

respectively. As expected STD and MSE decrease for an increasing number of observations.

In general we can conclude that the estimates fit the true values very well.

Table 2: True parameter values and estimated results obtained by simulations of 50 different
data sets with N1 = 300 observations

Par. TRUE MEAN STD BIAS MSE COV

λ10 0.3 0.3032 0.0595 0.0032 0.0034 96
λ20 0.5 0.5021 0.0517 0.0021 0.0026 98
λ30 0.8 0.7759 0.0681 -0.0240 0.0051 94
λ11 0.5 0.4823 0.0455 -0.0176 0.0023 98
λ21 0.5 0.4769 0.0470 -0.0230 0.0027 90
λ31 0.8 0.7786 0.0654 -0.0213 0.0046 92

Table 3: True parameter values and estimated results obtained by simulations of 50 different
data sets with N2 = 1000 observations

Par. TRUE MEAN STD BIAS MSE COV

λ10 0.3 0.2967 0.0352 -0.0032 0.0012 96
λ20 0.5 0.5039 0.0517 0.0299 0.0039 98
λ30 0.8 0.8071 0.0375 0.0071 0.0014 96
λ11 0.5 0.4882 0.0277 -0.0117 0.0008 94
λ21 0.5 0.4843 0.0285 -0.0156 0.0010 90
λ31 0.8 0.7765 0.0318 -0.0234 0.0015 82

For the nonparametric effects we used highly diffuse but proper hyperpriors for the smooth-

ing parameters with a = b = 0.001, c f. subsection 2.2. Figure 3 shows the results of the

estimation of nonparametric effects of a metric covariate and the corresponding 10%- and

90%-quantiles. Since the nonparametric estimates fit the true values very well differences

between estimated and true function are hardly distinguishable for both numbers of obser-

vations. Furthermore it is observed that with increasing numbers of observations the bias

decreases and the 80% credible region narrows.

The mean of the estimated spatial effects and the corresponding bias are also plotted in

Figure 3 for both numbers of observations. The plots show that the quality of estimation
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increases for N2 = 1000 observations. This is justified by the fact that on average we have

only 0.75 observations for one region for N1 = 300 observations. However, in both cases the

estimates have the right tendency. Another common property is that high function values

are estimated too low and low function values are estimated too high, as can be seen in the

bias graphs. This is due to our choice of a MRF prior, but might not be representative for

real data sets with smoother spatial effects than our function fspat whose function values

change quite suddenly between high and low values.

N1 = 300 N2 = 1000

Mean

−1 10 −1 10

Bias

−0.491 0.5220 −0.277 0.2870

Fct
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Figure 3: Mean (top) and bias (middle) of the estimated spatial effects. The function estimates
(below) show the mean (black line), the 10%- and the 90%-quantiles (grey lines). The dotted line
represents the true function f .

The estimates of the smoothing parameters κ2
spa and κ2

fct are given in table 4. The es-

timated values as well as the standard deviations decrease with an increasing number of

observations.
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Table 4: Estimation of smoothing parameters κ2
spa and κ2

fct
N1 = 300 N2 = 1000

Par. Mean STD Mean STD

κ2

spa 0.5945 0.2794 0.4240 0.0937

κ2

fct 0.4847 0.1585 0.3390 0.0705

We can conclude that besides a very good estimation of model parameters corresponding

to the measurement model in a LVM with Poisson responses, nonparametric effects of an

indirect covariate as well as spatial effects of an indirect spatial covariate can be recovered

quite reasonably. Furthermore, as expected, the quality of estimation becomes better with

an increasing number of observations.

5 Application

We illustrate our approach with an application to data from a study on post war human

security in Cambodia. The conflict and violence data in this study has been collected by

the monitoring arm of the Government of Cambodia’s decentralisation program SEILA,

the Khmer word for foundation stone. We use data collected for the year 2002 and obtained

from headmen and leaders of over 13000 villages and urban neighbourhoods. More details

on the data as well as sociological and political background is given in Benini, Owen and

Rue (2006). They used separate geoadditive count data models to analyse the impact of

the legacy of war, poverty and resource competition, urbanity, and governance quality on

the three dependent variables

- number of serious crime committed

- number of land conflicts

- number of households known to have domestic violence problems.

We apply a Poisson indicator LVM to these three indicators, focusing on the latent variable

”disposition for violence”. Instead of the total numbers of counts per year, we use the
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monthly averages y1, y2 and y3 of the three count variables as target variables. Because

the yearly numbers are only estimates provided by local leaders, the effect of averaging can

be neglected, and it helps to make data analysis computationally feasible.

Based on the study of Benini, Owen and Rue (2006), we formulate the following Poisson

indicator LVM:

yij = exp (µij) µij = λj0 + λjzi + αj · nrfam i

zi = f1(usbombi) + f2 (contam i) + fspat(community i) + δi

For i = 1, . . . , n = 1619,

- yi1 is the monthly average of serious crime (j = 1) in community i,

- yi2 is the monthly average of land conflicts (j = 2) in community i,

- yi3 is the monthly average of domestic violence (j = 3) in community i,

- nrfam i is the logarithm of the numbers of families living in community i,

- usbombi is log10 (pound i + 1 ), where pound is the US bombing load in community i given

in pounds,

- contam i is log10 (sq m + 1 ), where sqm is the contaminated area in square meters in

community i,

- community i is the spatial location of community i, compare the map in Figure 5.

The log10-transformations were chosen also in Benini, Owen and Rue (2006), motivated

by the belief that the destruction in the heavily bombed and mined regions went hand in

hand with the magnitude of the bombing or mining, rather than the absolute bombing

density in terms of load per surface. We use nrfam i as a direct covariate to adjust for the

effect of size of the communities on the rates µij.

The functions f1 and f2 are modelled as cubic P-splines with ten knots, and the spatial

effects as a Markov random field. Because data were missing for nine communities, esti-
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mation based on the remaining communities only. As for the simulations before, we used

2000 iterations for the burnin and 5000 iterations for the sampling phase, and additionally

a thinning parameter of five. Again we used highly diffuse hyperpriors for the smoothing

parameters with a = b = 0.001. Furthermore in Figure 4 we plot the autocorrelation of the

sampling paths of some parameters, i. e. the parameters λ30 (Figure 4a) and λ31 (Figure

4b).
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Figure 4: a) Autocorrelation for λ30, b) autocorrelation for λ31; The x-axis denotes the lag.

Table 5 shows the parameter estimates for the measurement model. The factor loading

λ11 = 0.4378 for serious crime is the highest, but still of comparable magnitude with the

two other factor loadings, so that no single factor loading is strongly dominant.

Table 5: Results
Parameter MW STD 2.5%-Quantil Median 97.5%-Quantil

λ10 -9.7060 0.4951 -10.6835 -9.6862 -8.7985
λ20 -6.1013 0.3585 -6.8249 -6.0949 -5.4142
λ30 -4.7471 0.2826 -5.3056 -4.7472 -4.1829
λ11 0.4378 0.0385 0.3709 0.4363 0.5165
λ21 0.3568 0.0276 0.3069 0.3567 0.4141
λ31 0.3202 0.0243 0.2758 0.3216 0.3629
α11 1.2536 0.0653 1.1295 1.2510 1.3842
α21 0.8619 0.0489 0.7681 0.8610 0.9581
α31 0.7681 0.0383 0.6937 0.7692 0.8408

κ2

contam 0.0476 0.1729 0.0007 0.0127 0.2866

κ2

usbomb 0.0177 0.0494 0.0005 0.0052 0.1041

κ2

community 3.8455 1.0804 2.1231 3.7536 6.0977

The map of estimated spatial effects in Figure 5 provides clear evidence of significant

spatial variability. For interpretation, it is important to note that our measurement model

already adjust for population density in the communities through the effect of the number

of families (nrfam) living in a community. Therefore, the map in Figure 5 shows spatial
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effects after adjusting for population density. For comparison, Figure 6 shows observed

rates of land conflicts for the provinces of Cambodia, rated to the population number in

the provinces. A map of domestic violence rated to the population has a similar pattern.

The map of community-specific spatial effects on the latent variable ”disposition of vio-

lence”, after adjustment for the number of families, roughly has a similar pattern: Disposi-

tion for violence seems to be significantly below average in the north-east at the border to

Laos and Vietnam, in the south-east, in particular the Mekong delta, and in parts of the

west. On the other side, there is a significant increase in the east at the border to Vietnam,

and in the north-east at the border to Thailand. This evidence motivates to search for

underlying determinants, to support politics and governance.

−2.801 5.2080

Figure 5: Map of Cambodia with the estimated spatial effects for all 1628 communities

Figure 7 shows the estimated effects f1 (usbomb) and f2 (contam). (Note that both variables

have already been transformed logarithmically). Function f2 indicates a monotonically

increasing effect of the amount of contaminated area, while the effect of the intensity of

US bombing seems to be linear and small. The latter was confirmed in a second analysis,

where the effect of usbomb was assumed to be linear.
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Figure 6: Province rates for land conflicts, rated to population (light: below average, dark: above
average)
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Figure 7: a) Estimated effects f1 (usbomb), b) estimated effects f2 (contam)

6 Conclusion

Modern Bayesian inference based on MCMC technology is particular useful in developing

flexible models incorporating latent variables. Our Poisson indicator variable model can

be combined with corresponding LVM for continuous, ordinal and binary indicators to a

broad class of latent variable models useful in many applications, from social sciences to

medicine and biology.
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