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Abstract

The multinomial logit model (MNL) is one of the most frequently used
statistical models in marketing applications. It allows to relate an un-
ordered categorical response variable, for example representing the choice
of a brand, to a vector of covariates such as the price of the brand or
variables characterising the consumer. In its classical form, all covari-
ates enter in strictly parametric, linear form into the utility function of
the MNL model. In this paper, we introduce semiparametric extensions,
where smooth effects of continuous covariates are modelled by penalised
splines. A mixed model representation of these penalised splines is em-
ployed to obtain estimates of the corresponding smoothing parameters,
leading to a fully automated estimation procedure. To validate semipara-
metric models against parametric models, we utilise proper scoring rules
and compare parametric and semiparametric approaches for a number of
brand choice data sets.

Key words: mixed models, multinomial logit model, brand choice, penalised
splines, proper scoring rules, semiparametric regression
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1 Introduction

Since its introduction to marketing by McFadden (1974, 1980), the multinomial
logit model (MNL) has become one of the most popular models in marketing
applications. In particular, it has regularly been used to identify and quantify
the influence of price, promotional activities and consumer loyalty on brand
choice (e.g. Guadagni and Little, 1983, or Ailawadi et al., 1999). In nearly
all empirical applications of the MNL model, the consumer’s utility associated
with a brand chosen has been assumed to be a linear function of explanatory
variables, although possible nonlinear effects have been suggested by several
marketing theories, as briefly described in the following.

According to adaptation level theory (Helson, 1964), an individual’s percep-
tion of a new stimulus is formed relative to a reference value (an adaptation
level) formed through experience (e.g., Blattberg and Neslin, 1990). Applied to
brand choice problems, this theory suggests that consumers compare observed
prices to internal reference prices, determined by previous prices to which the
individual has been exposed. Some authors have therefore included additional
covariates in brand choice models reflecting the discrepancy between observed
prices and reference prices (e.g. Kalwani et al., 1990, or Kalyanaram and Little,
1994). Sherif and Hovland (1961) postulate the existence of a region of indiffer-
ence or ”latitude of acceptance” surrounding the reference point. The difference
between the observed price and the reference point is assumed to be underesti-
mated (assimilated) if the price lies within this region, while larger discrepancies
are overestimated (contrasted) and therefore perceived larger than they really
are. If this theory (known as assimilation-contrast theory) holds, we would ex-
pect a consumer’s utility to be a sigmoid function of price difference. Observed
prices above the reference price are perceived as ”losses”, while observed prices
below the reference price are considered as ”gains”. Kahnemann and Tversky
(1979) observed that individuals tend to overstate losses as compared to gains.
This bias in perception will result in a steeper function when consumers observe
a price above their reference price.

In addition to these reference price theories supporting non-linear price re-
sponse, there are further arguments to assume nonlinear effects of marketing
variables in brand choice models. For example, we may expect a saturation ef-
fect on a consumer’s utility for increasing or decreasing levels of brand attributes
other than price, if considered in the model. For other important predictors of
brand choice, there is at least an exploratory justification to look for possible
non-linear effects. For example, there is no reason to expect a strictly linear
effect of a consumer’s brand loyalty on her/his brand utility so that a more
flexible model, allowing for non-linear influences, is a valuable tool to validate
the linearity assumption.

One possibility to overcome strict linearity for the consumer’s utility func-
tion are nonlinear transformations of predictor variables which still yield utility
functions linear in parameters. Krishnamurthi and Raj (1988) used a logarith-
mic transformation of prices, while Tellis (1988) compared models with loga-
rithms and quadratic functions of advertising exposure as well as interaction

2



terms between ad exposure and loyalty. Piecewise linear utility functions have
been applied by, for example, Kalyanaram and Little (1994), Ben-Akiva and
Lerman (1985) or Wedel and Leeflang (1998). The main advantage of nonlinear
transformations or piecewise linear functions is that the parameters can still be
estimated by ordinary maximum likelihood using standard software. However,
such approaches have the fundamental drawback that the functional form is pre-
determined by the choice of possible transformations or by boundaries (knots)
between linear pieces, respectively. For piecewise linear functions, extensive
search algorithms may be used to determine the number and location of knots
instead of fixing them prior to estimation (see, e.g. Steinberger, 2001).

Abe (1998, 1999) introduced a framework to estimate semiparametric utility
functions within the MNL. With this methodology, called GAM-MNL, splines
or kernels can be used to model nonlinear influences on the response variable.
While this model requires no a priori assumption about the functional form,
the amount of smoothness for each function must be fixed before estimation.
Hence, in case of several metric covariates, the selection of an optimal model
has to be achieved by a high-dimensional grid search-type algorithm based on
a number of predetermined smoothing parameter values.

We propose a semiparametric extension of the MNL that combines flexibility
in terms of non-linear effects of covariates with automatic smoothing parameter
selection. The strictly linear predictor is replaced by an additive predictor con-
sisting of several smooth functions of continuous covariates which are parsimo-
niously represented by penalised splines. Estimation of smoothing parameters
is based on a mixed model representation of penalised splines. In Gaussian and
univariate exponential family regression models, the idea of representing penal-
isation approaches as mixed models has gained considerable attention in recent
years (e.g. Ruppert, Wand and Carroll, 2003, Fahrmeir, Kneib and Lang, 2004,
or Kauermann, 2006). The advantage is that smoothing parameters in the orig-
inal model formulation transform into variance components in the mixed model,
and mixed model methodology can be applied for their marginal likelihood es-
timation. Kneib and Fahrmeir (2006) extended mixed model based inference
to categorical regression models but focused on cumulative regression models
for ordered responses. Furthermore, they did not allow for category-specific
covariates in the MNL which are clearly needed in our application. Our ap-
proach overcomes these limitations and additionally allows for changing choice
sets, due to non-availability of some of the alternatives. The approach is imple-
mented in the software package BayesX, which is available free of charge from
http://www.stat.uni-muenchen.de/~bayesx.

When replacing simpler models with more flexible, complicated ones, the
latter should be justified not only by theoretical considerations but also by as-
sessing their performance. We will therefore evaluate the predictive performance
of the semiparametric models compared to the usual linear versions based on
a cross validation approach. The notion of proper scoring rules (see Gneiting
and Raftery, 2005) will give us the possibility to select sensible scores for the
evaluation of predictions. We will therefore give a short review about proper
scoring rules and compare several scores in our application.
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The rest of the paper is organised as follows: Section 2 recalls some details
of multinomial logit models and introduces semiparametric extensions. Sec-
tion 3 describes the mixed model representation and the resulting estimation
scheme, while Section 4 focuses on model assessment based on proper scoring
rules. Finally, Section 5 presents results of semiparametric models for several
applications of consumer choice behaviour analysis and the concluding Section 6
comments on directions of future research.

2 Semiparametric Multinomial Logit Models

2.1 Multinomial Logit Models

When analysing consumer choice behaviour, the aim is to relate the response
variable ’brand choice’ to covariates. Hence, from a statistical perspective the
response variable is given by a nominal categorical variable Y ∈ {1, . . . , k} with
unordered categories. The most prominent regression model for this situation is
the multinomial logit model (MNL, McFadden, 1974, Fahrmeir and Tutz, 2001,
Ch. 3) which can be derived from considering latent (unobservable) utilities of
the form

l(r) = u′α(r) + w(r)′δ + ε(r) = η(r) + ε(r), r = 1, . . . , k, (1)

where u and w(r) are global and category-specific covariates, respectively, and
α(r) and δ denote the corresponding regression coefficients. In an MNL the error
terms ε(r) are independent across the categories and assumed to be standard
extreme value distributed.

In our applications, the latent utilities will represent the gain associated with
the choice of a certain brand. Hence, assuming rational behaviour, an individual
chooses the brand that maximises her/his utility, i.e.

Y = r ⇔ l(r) = max
s=1,...,k

l(s).

Under the MNL it follows that the probability for observing Y = r is given by

π(r) = P (Y = r) ∝ exp(η(r)).

Since the probabilities have to sum up to one, appropriate identifiability restric-
tions have to be imposed on redundant parameters. Without loss of generality,
we choose the last category as reference category and assume α(k) = 0 and
w(k) = 0. The latter can be achieved by simply redefining w(r) as w(r) − w(k),
i.e. we only consider contrasts to the reference category. This finally leads to
the model

π(r) =
exp(η(r))

1 +
∑k−1

s=1 exp(η(s))
, r = 1, . . . , k − 1, (2)

and
π(k) = 1− π(1) − . . .− π(k−1).
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The standard model formulation requires that all categories are available for
all observations, i.e. π

(r)
i > 0 for i = 1, . . . , n and r = 1, . . . , k. However,

in our applications we know that for some of the observations some of the
brands are not available and therefore π

(r)
i = 0 for some i and r. From a

theoretical perspective it is easy to fix this problem by simply setting some
of the probabilities in (2) to zero. In practice, we can achieve this either by
introducing offset terms that effectively set some of the probabilities to zero
or by excluding some of the probabilities from (2) using availability indicators.
While the former approach is simpler to implement, the latter has the advantage
of being more exact. We compared both approaches in our applications and
found almost no differences. The results presented in Section 5 are based on the
second strategy.

To account for possibly non-linear covariate effects influencing consumer
choice behaviour, we extend the parametric utility model (1) to a semipara-
metric model, i.e. we replace the parametric predictor with a semiparametric
predictor of the form

η(r) = u′α(r)+w(r)′δ+f
(r)
1 (x1)+. . .+f (r)

q (xq)+fq+1(x
(r)
q+1)+. . .+fp(x(r)

p ). (3)

Again we have to differentiate between global covariates x1, . . . , xq with category-
specific effects and category-specific covariates x

(r)
q+1, . . . , x

(r)
p with global effects.

To ensure identifiability, the assumptions from above have to be extended to
f (k)(xj) = 0, j = 1, . . . , q, and fj(x

(k)
j ) = 0, j = q + 1, . . . , p. The latter can

in principle be achieved by redefining the corresponding functions fj(x
(r)
j ) as

fj(x
(r)
j )− fj(x

(k)
j ). We will discuss later-on in this section how to include both

conditions into the estimation framework.

2.2 Penalised Splines

To model the smooth functions in (3) we employ penalised splines as proposed
by Eilers and Marx (1996) since they provide a flexible and parsimonious repre-
sentation of non-linear covariate effects. To simplify notation, we will suppress
the category index in the following discussion, i.e. we consider functions f(x).
The basic idea of penalised splines is to represent f(x) as a polynomial spline
of degree l based on a moderately large number of B-spline basis functions, i.e.

f(x) =
d∑

j=1

βjBj(x). (4)

This, in principle, recasts the semiparametric model (3) into a large linear model,
since (4) is linear in the parameters, but instead of estimating the B-spline
coefficients βj unrestricted via maximum likelihood, a penalty term is added to
regularise the estimation problem. To be more specific, we want to ensure that
the function estimate f̂(x) despite being flexible is not too wiggly. From B-spline
theory (see e.g. de Boor, 1993) we know that k-th order derivatives of B-splines
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depend essentially on k-th order differences of the sequence of parameters βj ,
j = 1, . . . , d. Therefore, if we want to ensure smooth function estimates in terms
of the k-th derivative, the log-likelihood has to be augmented by a penalty term
constructed based on squared k-th order differences, e.g. as

1
2τ2

d∑

j=2

(βj − βj−1)2

for first order differences or

1
2τ2

d∑

j=3

(βj − 2βj−1 + βj−2)2

for second order differences. The smoothing parameter τ2 controls the trade-off
between fidelity to the data (τ2 large) and smoothness (τ2 small).

In vector notation, function evaluations f(x) can be represented as f(x) =
v′β, where v = (B1(x), . . . , Bd(x))′ and β = (β1, . . . , βd)′. Similarly, the penalty
terms can be rewritten as quadratic forms 1/(2τ2)β′Kβ, where the penalty
matrix K = D′D is constructed from difference matrices D of appropriate order.
Applying the vector notation to the model (3) now provides us with a possibility
to include the condition fj(x

(k)
j ) = 0, j = q + 1, . . . , p. Since fj(x

(k)
j ) = v

(k)
j

′βj ,

we can simply redefine the corresponding function as fj(x
(r)
j ) = (v(r)

j − v
(k)
j )′βj .

Note that this is not equivalent to using the modified covariate x
(r)
j − x

(k)
j and

defining fj(x
(r)
j ) as fj(x

(r)
j − x

(k)
j ). For functions f

(r)
j (xj) = v′jβ

(r)
j of globally

defined covariates we simply have to set β
(k)
j = 0 to ensure identifiability.

3 Mixed Model Based Inference

Estimation of semiparametric multinomial logit models is based on a penalised
likelihood approach, i.e.

lpen(α, δ, β) = l(α, δ, β)−
k−1∑
r=1

q∑

j=1

1

2(τ (r)
j )2

β
(r)
j
′Kjβ

(r)
j −

p∑

j=q+1

1
2τ2

j

β′jKjβj (5)

has to be maximised with respect to the regression coefficients α = (α(1)′, . . . , αk−1′)′,
δ and β = (β(1)

1
′, . . . , βk−1

q
′, β′q+1, . . . , β

′
p)
′. Note that the likelihood l(α, δ, β)

can in fact be evaluated as for usual parametric multinomial logit models since
despite of the penalty term our semiparametric models are still linear in the
regression coefficients. Maximisation of (5) can be achieved by augmenting
the usual iteratively weighted least squares (IWLS) algorithm with appropriate
penalty terms, compare e.g. Fahrmeir and Tutz (2001, Ch. 5). However, the
crucial question on how to select the smoothness parameters τ2 remains. There-
fore we will now introduce a different perspective on semiparametric regression
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models that allows to determine the smoothness parameters based on mixed
model methodology.

For the sake of simplicity we will again restrict ourselves to one nonpara-
metric function f(x) and drop the category indices. As we have seen, f(x) can
be written as a linear combination of scaled basis functions, i.e. f(x) = v′β.
The vector of regression coefficients is assigned a quadratic penalty term, which,
from a Bayesian perspective, is equivalent to assuming that β is multivariate
Gaussian distributed with density

p(β|τ2) ∝
(

1
2πτ2

) rk(K)
2

exp
(
− 1

2τ2
β′Kβ

)
. (6)

From a frequentist perspective this corresponds to the assumption that β is
a correlated vector of random effects with (6) as random effects distribution.
Note however, that in contrast to classical mixed models the distribution of β
is partially improper since rk(K) < dim(β). In principle, we might now employ
mixed model based estimation schemes for the determination of variance para-
meters such as marginal likelihood estimation. However, to obtain a valid mixed
model representation, we have to reparameterise β to obtain a mixed model with
proper random effects distribution. This can be achieved by decomposing the
vector β as

β = Xγ + Zb (7)

where the dimension of b is given by the rank of the penalty matrix, i.e. dim(b) =
rk(K) while the dimension of γ is given by dim(γ) = dim(β)−rk(K). The goal of
this decomposition is to achieve an explicit differentiation between penalised and
unpenalised coefficients. Since K does not have full rank, a part of β remains
unpenalised while another part is penalised. However, the penalised and the
unpenalised part are fused together in a complicated way in the vector β. In
contrast, after applying (7) we can explicitly differentiate between penalised
coefficients (contained in the vector b) and unpenalised coefficients (contained
in the vector γ). In addition, if we choose appropriate design matrices in (7) we
can achieve

p(γ) ∝ const and b ∼ N(0, τ2I),

i.e. γ represents a vector of fixed effects and b represents a vector of i.i.d.
random effects with common variance τ2. Compare Kneib and Fahrmeir (2006)
for details on how to construct the design matrices X and Z.

Applying decomposition (7) to all nonparametric components in our semi-
parametric MNL, yields a mixed model representation where all random effects
are proper. Now we can apply mixed model methodology to estimate not only
the regression coefficients but also to automatically determine the smoothness
parameters. We utilised a marginal likelihood approach which can be interpreted
as a generalisation of the well-known restricted maximum likelihood approach
to situations with nonnormal responses. This involves a Laplace approximation
to the likelihood of the multinomial logit model, leading to a multivariate work-
ing linear model with working observations and working weights as in the IWLS
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algorithm for the determination of the regression coefficients (compare Kneib
and Fahrmeir, 2006, and Fahrmeir and Tutz, 2001, Ch. 3 for details).

Finally, our estimation scheme can be summarized as follows: Iteratively
update the regression coefficients for given variances using a penalised version of
IWLS and the variances based on a working linear mixed model given the current
estimates of the regression coefficients. Upon convergence, the algorithm returns
the penalised maximum likelihood estimates for the regression coefficients and
marginal likelihood estimates for the smoothness parameters.

4 Predictions and Proper Scoring Rules

To evaluate the performance of the proposed semiparametric MNL in our ap-
plications, we will employ a prediction oriented approach. Therefore we divided
each of the data sets into two parts, estimated the model based on the first part
and predicted consumer choices for the second part. Now the question arises,
how to actually evaluate the predictive performance of an estimated model.
Usual approaches include computation of the hit rate (i.e. the percentage of
true positive predictions) or the log-likelihood in the prediction sample. How-
ever, it is not generally clear, which of these measures is preferable or which
properties a suitable measure should have.

To discuss this question more generally, we will now consider the notion of
proper and strictly proper scoring rules as described in Gneiting and Raftery
(2005). First of all, we have to define what we understand by a prediction. In
fact, a useful prediction should not only consist of a point prediction but of a
whole predictive distribution. In case of the MNL this predictive distribution
is simply obtained by computing the probabilities for all k categories of the
response according to the estimated model, i.e. we obtain the predictive dis-
tribution π̂ = (π̂(1), . . . , π̂(k)). Now a scoring rule is any real-valued function
S(π̂, r) that assigns a value to the event that category r is observed when π̂ is
the predictive distribution. Hence, a suitable score is obtained by the sum

S =
n∑

i=1

S(π̂i, ri)

where we sum over all observations in the test data set, π̂i denotes the predictive
distribution derived from the estimated model for observation i and ri is the
truly observed value in the test data set.

To compare different scoring rules, Gneiting and Raftery (2005) consider
the expected value of the score under the true distribution π0 and denote it by
S(π̂, π0). Then a scoring rule is called proper if S(π0, π0) ≤ S(π̂, π0) for any
predictive distribution π̂. The scoring rule is called strictly proper if equality
holds if and only if π̂ = π0. Gneiting and Raftery present theoretical results
characterising (strictly) proper scoring rules and discuss a number of examples.
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Let us consider first the so-called hit rate, i.e.

S(π̂i, ri) =

{
1
n if π̂(ri) = max{π̂(1), . . . , π̂(k)},
0 otherwise.

Gneiting and Raftery (2005) show that this scoring rule is proper but not strictly
proper. It is also quite obvious that we are only using a very small part of the
information contained in the predictive distribution. The scoring rule takes on
the same value regardless of the exact form of the predictive distribution as
long as the category with the maximum value remains the same. In particular,
the scoring rule does not take into account the variability in the predictive
distribution.

A second popular scoring rule is obtained from the log-likelihood contribu-
tions and is called the logarithmic score:

S(π̂, ri) = log(π̂(ri)).

This scoring rule is strictly proper but still has the drawback that it involves only
one of the probabilities of the predictive distribution. Therefore the logarithmic
score is sensitive with respect to extreme observations.

Two further strictly proper scoring rules are given by the Brier score

S(π̂, ri) = −
k∑

r=1

(
1(ri = r)− π̂(r)

)2

and the spherical score

S(π̂, ri) =
π̂(ri)

√∑k
r=1(π̂(r))2

.

Especially the Brier score is a popular choice to compare categorical regres-
sion model that circumvents the problems discussed for the hit rate and the
logarithmic score.

In our applications we will utilise all four scores to compare the predictive
performance of semiparametric MNL models to parametric approaches.

5 Empirical Application: Consumer Choice Be-
havior

5.1 Data

In our empirical application, we use panel data from three product categories.
One data set includes purchases of coffee over a time span of 52 weeks. The sam-
ple refers to the five largest brands in this category (in terms of market share),
accounting for 53% of all purchase acts, and covers a total of 49.083 purchases
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from 6.407 households. We further apply the model to two US scanner panel
data sets provided by A.C. Nielsen. These data sets consist of 26.820 purchase
acts by 2.494 households in the category ketchup and 66.679 purchase acts
by 2.317 households in the category yogurt. In the ketchup (yogurt) category,
we considered the three (five) largest brands accounting for 87% (74%) of all
purchases. The data provide information about the date of purchase acts and
the brand chosen by the household as well as prices (”price”) and promotional
activities.

5.2 Specification of Loyalty and Reference Price Terms

Marketing research has revealed that consumers develop loyalities to particular
brands. In brand choice models, therefore, variables reflecting brand loyalty
are regularly included. To measure brand loyalty, we employed an approach
introduced by Guadagni and Little (1983) where the loyalty for brand r of
household i at the k-th buying occasion is recursively defined as

loyalty(r)
ik = ϕL loyalty(r)

i,k−1 + (1− ϕL)1(Yi,k−1 = r).

Hence, loyalty at the k-th buying occasion is an exponentially weighted average
of past purchases of the same brand, with the constant ϕL determining the
persistence of loyalty.

The approach of Guadagni and Little has shown its high ability to increase
model fit and prediction in a number of applications and is widely used in the
marketing literature to capture brand loyalty. The smoothing constant ϕL,
estimated by a grid search within the interval [0,1], is 0.75, 0.74, and 0.48 for
the brand types coffee, ketchup and yogurt, respectively.

Similarly, we obtained the reference price for brand r of household i at the
k-th buying occasion via (see, e.g., Kalyanaram and Little, 1994)

refprice(r)
ik = ϕR refprice(r)

i,k−1 + (1− ϕR) price(r)
i,k−1.

Here, 0.57, 0.69 and 0.40 were estimated for the smoothing constant ϕR for
the brand types coffee, ketchup and yogurt, respectively. For each data set, the
first three purchases of each household were used for initialisation of loyalty and
refprice, and were therefore excluded from estimation.

In our model, we consider both the reference price and the difference between
the reference price and the observed price (diffprice) as covariates:

diffprice(r)
ik = refprice(r)

ik − price(r)
ik .

An inclusion of price, reference price and price deviation would result in
perfect collinearity. In accordance with most studies, we use the reference price
and not the observed price, because the correlation between reference price and
price deviation is considerably smaller (0.27, 0.30 and 0.14 for coffee, ketchup
and yogurt) as compared to the correlation between reference price and observed
price (0.64, 0.66 and 0.33 respectively).
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For ketchup and yogurt, promotional activities are considered by using two
dummy variables describing the presence (=1) or absence (=0) of advertising
(”AdCode”) and display activities (”Display”) for each brand and purchase act.
For coffee, the covariate ”Promotion” covers the presence (=1) or absence (=0)
of any kind of promotional activity. These dummies are included as fixed effects
in our model.

Given the specifications for the reference price and loyalty terms stated above
and the vector δ representing the effects of promotional dummies, we estimate
the following model for a brand r (suppressing household and purchase occasion
indices i and k):

η(r) = β
(r)
0 + w(r)′δ + f1(refprice(r)) + f2(diffprice(r)) + f3(loyalty(r))

5.3 Interpretation of Results

Figure 1 shows the estimated effects of loyalty, refprice and diffprice on a con-
sumer’s utility. As expected, a consumer’s utility and therefore her/his choice
probability increases with increasing loyalty. Moreover, the shape of the loyalty
curve looks similar in all three product categories. Especially, we can observe
a strong kink of the curves in the lower extreme of the loyalty range (around a
loyalty value of approximately 0.2). This indicates that if a household buys a
certain brand for the first time, the probability to purchase this brand in the
future increases more strongly as compared to a household who already has
bought the brand and therefore already has a higher loyalty. The marginal ef-
fect of loyalty further increases for loyalties above 0.95. This reflects the buying
behaviour of some households who are very brand loyal and always buy the
same brand.

For the effect of refprice, we obtain very smooth functions. As expected, the
functions decrease in all three categories, reflecting a decline in brand choice
probability as prices increase. However, the curves are differently shaped, rang-
ing from a convex shape in the ketchup category and a rather linear shape in
the coffee category to a concave shape in the yogurt category.

Concerning the discrepancy between observed prices and reference prices,
we can not confirm theoretical suggestions as described in the introductory
section. Accordingly, we would have expected an inverse s-shaped function. Es-
pecially, there is no flat region around a difference of zero (as predicted by the
assimilation-contrast theory). We further recognise an unexpected decrease in
utility for large gains in the coffee category as well as an unexpected increase
for large losses in the ketchup category. These irregularities may be due to
chance, however, as only less than one percent of all price differences (0.8% in
the coffee category and 0.15% in the Ketchup category, respectively) lie within
these areas. This is also reflected by the relatively wide confidence intervals
for these parts of the estimated functions. The flat region for differences larger
than one in the ketchup category may lead to the conclusion that large price
decreases do not pay for the company. However, one must not ignore that there
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is usually some collinearity between price gains and promotional variables, as
promotional activities (like the use of display or advertising) are often accompa-
nied by temporary price reductions. With regard to all observations (purchases)
in the Ketchup category, only 7 percent of the brands were bought on display
and only 16 percent were accompanied by advertising. When we consider only
purchases with price gains larger than one, however, 15% of those purchases
were made on display and 40% were accompanied by advertising.

Table 1 summarises the estimated effects for the promotional variables. In
the product categories ketchup and yogurt, the promotional effects show the
expected sign (i.e., if a promotion is offered for a brand, a consumer’s utility is
expected to increase). The negative sign of the promotional parameter in the
product category coffee may be caused by collinearity with the variable diffprice.
The average price difference is significantly higher for purchases of coffee under
promotion (-26.92 for purchases not accompanied by a promotion versus 41.90
for purchases on promotion) accounting for an increase in utility which is three
times higher than the promotional parameter.

δ̂j sd(δ̂j) 95% ci p-value
Coffee data

Promotion -0.311 0.030 -0.370 -0.252 <0.0001
Ketchup data

AdCode 0.898 0.051 0.798 0.998 <0.0001
Display 0.808 0.072 0.666 0.949 <0.0001

Yogurt data
AdCode 1.076 0.052 0.973 1.178 <0.0001
Display 0.556 0.108 0.345 0.767 <0.0001

Table 1: Estimated fixed effects.

Finally, Table 2 contains results for the four scoring rules discussed in the
previous section for both the estimation and the prediction part of the data
sets. Obviously, semiparametric models always lead to an improved score in the
estimation data set due to their additional flexibility. However, this observation
does not necessarily hold for the validation data, since more flexible models
bear the risk of overfitting. Indeed, we observe this phenomenon for the coffee
data, where all four scoring rules indicate a better predictive performance of the
parametric model on the validation data. Hence, a purely parametric approach
seems to be more suitable for this data set.

In contrast, the semiparametric MNL outperforms the parametric MNL for
the ketchup data. Despite of the hit rate, all scoring rules indicate an improve-
ment of the predictive performance when allowing for a more flexible model
equation. In terms of the hit rate, both models perform equally well. Since,
however, the hit rate is not strictly proper, it seems more plausible to rely on
the results of the three strictly proper scoring rules.

12



Results for the yogurt data are somewhere in between the coffee and the
ketchup data results. The hit rate as well as the logarithmic score prefer the
parametric model while the Brier score and the spherical score assign improved
performance to the semiparametric MNL. Again, since the hit rate and the
logarithmic score have theoretical drawbacks as discussed in Section 4, we favour
the Brier and the spherical score, indicating the need for a flexible model.
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6 Discussion

Adequate modelling of real-life phenomena frequently requires more flexible
models than the usual regression models relying on parametric, linear predic-
tors. In this paper we have described such a flexible regression model for the
case of categorical, unordered response variables and successfully applied it to
the analysis of consumer choice behaviour. A fully automated inferential scheme
has been outlined, allowing for the joint determination of all model parameters
without the need of subjective judgements. The notion of (strictly) proper scor-
ing rules provided a useful tool to validate the (predictive) performance of the
flexible models.

While our estimation scheme can be considered a frequentist approach based
on a penalised likelihood, it is also conceptually equivalent to an empirical Bayes
approach relying on posterior modes. Hence, it would be worthwhile to compare
it to its fully Bayesian counterpart with estimation relying on Markov chain
Monte Carlo (MCMC) simulation techniques. Brezger and Lang (2006) describe
Bayesian semiparametric multinomial logit models but their approach does not
allow for category-specific covariates and varying choice sets.

Along the lines of Brezger and Lang (2006) and Kneib and Fahrmeir (2006)
our semiparametric MNL can also be extended to include further model compo-
nents if required by the application at hand. For example, spatial effects can be
based on similar penalisation approaches leading to geoadditive MNL models.

A further direction of future research is the inclusion of monotonicity or,
more general, concurvity constraints. For example, we might want to restrict
price effects to monotonic functions leading to a stabilisation of the estimation
procedure in the tails of the price distribution where the number of observations
is low. Brezger and Steiner (2007) describe a Bayesian approach to monotonic
regression for the analysis of price response functions. However, their estimation
procedure relies heavily on MCMC simulations and can not be straightforwardly
adapted to our approach.
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