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SUMMARY

In general, risk of an extreme outcome in financial markets can be expressed as a
function of the tail copula of a high-dimensional vector after standardizing marginals.
Hence it is of importance to model and estimate tail copulas. Even for moderate dimension,
nonparametrically estimating a tail copula is very inefficient and fitting a parametric
model to tail copulas is not robust. In this paper we propose a semi-parametric model
for tail copulas via an elliptical copula. Based on this model assumption, we propose a
novel estimator for the tail copula, which proves favourable compared to the empirical

tail copula, both theoretically and empirically.

Keywords: Asymptotic normality, Dependence modeling, Elliptical copula, Elliptical distribu-

tion, Multivariate modeling, Regular variation, Tail copula.

1 Introduction

Risk management is a discipline for living with the possibility that future events may cause
adverse effects. An important issue for risk managers is how to quantify different types of
risk such as market risk, credit risk, operational risk, etc. Due to the multivariate nature
of risk, i.e., risk depending on high dimensional vectors of some underlying risk factors, a
particular concern for a risk manager is how to model the dependence between extreme
outcomes although those extreme outcomes occur rarely. A mathematical formulation of

this question is as follows.

! Author for correspondence.



Let X = (X1,...,X4)" be a random vector with distribution function ' and contin-
uous marginals F,..., F;. Then the dependence is completely determined by the copula
C of X given by Sklar’s representation (cf. Nelsen (1998) or Joe (1997))

F(z) = C(Fi(21),..., Fylzq)), x=(x1,---,249)" €RL.

Moreover, the copula alone allows us to describe dependence on extreme outcomes. As C'is
a multivariate uniform distribution on [0, 1]¢, extreme values are near the boundaries and
extreme dependence happens around the points (0,...,0) and (1,...,1). This motivates
the definition of the tail copula of X as

Mz, . xq) = limt™'P(1 - F (X)) <txy,..., 1 - Fy(Xy) <txg), (1.1)

t—0

where z1,...,x4 > 0. The bivariate case, when d = 2, has been thoroughly investigated
and \¥ (1, 1) is called the upper tail dependence coefficient of X; and X, see Joe (1997).
It models dependence along the 45 degree line, where the bivariate dependence effects
are mostly concentrated. For x,y € [0,1]? the function x + y — A (z,y) is called the tail
dependence function of X; and X, by Huang (1992); such notions go back to Gumbel
(1960), Pickands (1981) and Galambos (1987), and they represent the full dependence
structure of the model.

The approach via a dependence function yields that the risk of an extreme outcome
in financial markets can be expressed as a function of the tail copula A\X (2, ..., 24) after
standardizing marginals. When d = 2, the tail copula A\*(z,y) or the tail dependence
function x +y — A¥ (2, y) can be estimated nonparametrically via bivariate extreme value
theory; see Einmahl, de Haan and Piterbarg (2001) and references therein. Also paramet-
ric models for the tail dependence function have been suggested and estimated, see Tawn
(1988), Ledford and Tawn (1997) and Coles (2001) for examples and further references.
The application of both, nonparametric and parametric estimation of tail dependence
functions has almost only been investigated for the case d = 2 although theoretically
both methods are applicable to the case d > 2. For an approach to nonparametric esti-
mation of tail dependence in higher dimensions see Hsing, Kliippelberg and Kuhn (2004).
Recently, Heffernan and Tawn (2004) proposes a conditional approach to model multi-
variate extremes via investigating the limits of normalized conditional distributions. Ob-
viously, nonparametric estimation severely suffers from the curse of dimensionality, when
d becomes large, and fitting parametric models for large d is not robust in general.

In this paper, we concentrate on the dependence structure only, which means we work
in the tradition of estimating a dependence function. However, we neither work with purely
nonparametric estimates nor do we specify a parametric model. Instead we propose to

model the tail copula via an elliptical copula, a novel approach, which may be viewed



as a semi-parametric approach. For the applications of copulas and elliptical copulas to
risk management, we refer to Frey, McNeil and Nyfeler (2001) and Embrechts, Lindskog
and McNeil (2003). Recently, Demarta and McNeil (2005) study some parameterized
elliptical copulas. One of the advantages in employing elliptical copulas is the simplicity
of simulating multivariate extremes.

Recall that the random vector Z = (Z;,..., Zy)T has an elliptical distribution,

4

A GAU, (1.2)

where G > 0 is a random variable, A is a deterministic d x d matrix with 4AAT =¥ =
(0ij)1<ij<a and rank(X) = d, U is a d-dimensional random vector uniformly distributed
on the unit hyper-sphere S; := {z € R : 272 = 1}, and U is independent of G. Repre-
sentation (1.2) implies that the elliptical distribution is uniquely defined by the matrix ¥
and the random variable G. For a detailed discription of elliptical distributions, we refer
to Fang, Kotz and Ng (1987). Then, an elliptical copula is defined as the copula of an
elliptical distribution.

Define the linear correlation between Z; and Z; as p;; = aij/\/m and denote by
R := (pij)1<i,j<a the correlation matrix. Note that p;; exists for any elliptical distribution;
if finite second moments exist it coincides with the usual correlation. Hult and Lindskog
(2002) showed in their Theorem 4.3 under weak regularity conditions that regular vari-
ation of P(G > -) with index o > 0 (notation: P(G > -) € RV_,) is equivalent to
multivariate regular variation of Z with the same index . We refer to Resnick (1987) for
the definition and properties of multivariate regular variation. This implies, in particular,
that the correlation matrix and the index « of regular variation are copula parameters.

Further, we denote the upper tail dependence coefficient between 7Z; and Z; as

w/2 /2
A _ « «
Ni1,1) = ( [ d¢>/( | teose) d¢) (1.3

when P(G > -) € RV_,; in this case it is positive (cf. Hult and Lindskog (2002), Theo-
rem 4.3).

For illustration of our methodology, we focus on the case d = 2 from now on and the
extension to d > 2 is given in section 5. Kliippelberg, Kuhn and Peng (2005) studied two
estimators for estimating the tail copula A*(z,y) as defined in (1.1), when observations
have an elliptical distribution; i.e., X < Z with Z defined in (1.2) and P(G > -) € RV_,

for some a > 0. One estimator is based on extreme value theory, another one on an



extended version of (1.3); i.e., denoting A\f, = A\” and pis = p,

™/ (x/y)'/*
M(z,y) = (/ 2 z(cos ) do + /9 ' )y (sin(¢ + arcsin p))® qu)
g

((z/y)l/a) — arcsin p

w/2 -1
X </ /2(cos¢)adq5> = Ma;z,y, p), (1.4)

where ¢(t) := arctan ((t - p)/ﬂ) € [—arcsin p, /2] for t > 0. Note that in this
setup « can be estimated from observations.

Here we propose to model only the copula C' (not the full distribution) of X by the
copula of Z with P(G > -) € RV_,, i.e.,

P(Fi(X)) <z, Fy(Xo) <y) = P(F/(Z) <, F(Z)<vy), (1.5)

where F/ and Fy denote the marginal distributions of 7.

In our approach, the copula C is not completely determined, since we only work
with the tail information (the regular variation) of G. Without doubt, how to test the
above model assumptions is important, and will be investigated in a separate paper. In
the present paper, we focus on the estimation issue, i.e., seeking a way to improve the
empirical tail copula estimator. For iid data X; = (X;1, Xjp) fori = 1, ..., n, with unknown
distribution function F' and tail copula as in (1.1) the empirical tail copula estimator is
defined as

~ 1 < ~ k ~ k
AGmP k = T I{1-F X,L < — s 1—F. Xz < — , 1.6
(2, y: k) L 2221 < 1(Xin) < nflf 5(Xin) < n@/) (1.6)
where ﬁj denotes the empirical distribution function of {Xj;}7, for j = 1,2 and we

consider k = k(n) — oo and k/n — 0 as n — oc.

A natural way to improve the empirical tail copula estimator is to employ (1.4) like
Kliippelberg, Kuhn and Peng (2005). However, o can not be estimated directly from
the observations under the model assumptions. Hence, we propose to estimate « first by
using (1.4) with the empirical tail copula and an estimator for p. Then we estimate the
tail copula A by plugging in the estimators for o and p; see section 2 for details. Some
theoretical comparisons are provided in section 3. We present a simulation study in section
4. The generalization to higher dimension is discussed in section 5. Finally, all proofs are

summarized in section 6.

2 Methodologies and Main Results

Throughout this section we assume that d = 2. Because of (1.5), we can estimate \Z(x, )
by Xemp(:r,y;k). It follows from Lindskog, McNeil and Schmock (2003) that condition

4



lp| < 1 implies 7 = %arcsin p, where 7 is Kendall’s tau, i.e.
T = P ((X11 — XQl) (Xlg — XQQ) > 0) - P ((Xll — Xgl) (X12 — XQQ) < U) .

Hence we can estimate p by p = sin (37), where

T = ﬁ Z sign (X1 — X;1)(Xie — Xj2)) . (2.7)

In order to estimate « via (1.4), we need to solve this equation as a function of a.

Theorem 2.1. For any fized x,y > 0 and |p| < 1, define o* := |In(x/y)/In(p VvV 0)|. Then

Ma; z,y, p) is strictly decreasing in « for all a > a*.

Based on the above theorem, we are able to define an estimator for a as follows.
Let A (-;x,y,p) denote the inverse of A(«;z,y,p) with respect to «, if it exists. By
Theorem 2.1, we know that A (-; 1,1, p) exists for all & > 0. Hence, an obvious estimator
for ais a(1,1,k) := )\“(Xemp(l, 1;k); 1,1, p) for any estimator p of p. Since this estimator
only employs information at x = y = 1, it may not be efficient.

Next we define an estimator which takes also Xemp(:c, y; k) for other values (z,y) € R?
into account. Based on Theorem 2.1 we define corresponding ranges for y/z = tan. To
ensure that (z,y) = (1,1) is taken into account, we look at (z,y) = (v/2cos#,/2sin#)
for different angles #. Note that Xemp(.fr,y; k) = Xemp(\/icos 0,+/2sin0; k*) for 0 =
arctan(y/x) and some k*, hence it is sufficient not to consider all (z,y) € R% but only
(z,y) = (V2cosf,v/2sin ). Define

Q = {0 € (0,%) : /)\\emp(ﬁcosﬁ,\/isinﬁ;k) <

In(tan @) | A
<A ( m ; ﬁcosﬁ,ﬁsm@,p)},
O = {9 c (og)  |In(tan 0)] < &(1,1:k) (1 — k%) [In(p v 0)\} and
Q= {9 e (og)  [In(tan 6)| < a\ln(pvo)|}.

It follows from Theorem 1 that there exists a unique «; > |In(tan)/In(p Vv 0)| such that
Mo V2 cos6,v2sin 6, p) = /)\\emp(\/icos 0,V2sin0; k), 0¢ @ .

Therefore, for § € Q we can define the inverse function of A -;v/2cos0,v/2sin 6, p) giving

a(V2cos0,V/2sinb; k) = A (l)\\emp(\/i cosB,v/2sin6; k); V2 cos 0, v/2sin 6, ﬁ) . (2.8)

Next we have to ensure consistency of this estimator. This can be done by further requiring
6 € @, which implies that the true value of « is larger than |In(tan@)/In(p Vv 0)| with

5



probability tending to one. Thus, our estimator for « is defined as a smoothed version of

a. That is, for an arbitrary nonnegative weight function w we define

1
Ak e ~—~—

where W is the measure defined by w.

/ ~a(v2cos0,V2sin6; k) W(d9) (2.9)
QNG

Before we give the asymptotic normality of @, we list the following regularity condi-

tions:

(C1) X satisfies relation (1.5) and Z has tail dependence function (1.4) and P(G > -) €
RV_,, for some a > 0 and |p| < 1.

(C2) There exists A(t) — 0 such that

o tTIP(1 - B (X)) <tz 1 — Fy(Xy) < ty) — XXz,
lim ( 1( 1)_ A(t) 2( 2)_ ?J) ( ?J) _ 6(02)(%@/)

t—0

uniformly on Sy, where b (,y) is not a multiple of A\¥(z,y).
(C3) k= k(n) — oo, k/n — 0 and VEA(k/n) — bes) € (—o0,00) as n — oo,
The following theorem gives the asymptotic normality of a.

Theorem 2.2. Suppose that (C1)-(C3) hold, and that w is a positive weight funtion
satisfying supyeg- w(0) < oo. Then, denoting by W the measure defined by w, asn — oo,

Vk(@(k, w) - a)

d 1 bca)boa) (V2 cos 0, /2 sin ) + B(V/2cosf,/2sin6)
W(Q*) Joco- N (a; V2 cosf,v/2siné, p)

W (db),

where N (o x,y, p) := O%A(aw’y’p)’

0 0
B(‘r: y) = B(:r,y) - B(x: 0) (1 - a)‘(‘r: y)) - B(OJ y) <1 - a_y)‘(xay)>
and B(z,y) is a Brownian motion with zero mean and covariance structure

E (B(x1,y1)B(x2,42)) = 1 ATa4+y1 Aya — M@y A 2o, y1) — Mxy A 29, Yo)
=M1, y1 Ay2) — Mx2, y1 Aye) + M@, y2) + Mz, y1) + Mz A xa, y1 A ya).

Next, like in Kliippelberg, Kuhn and Peng (2005), we estimate p via the identity
7 = 2 arcsin p and the estimator (2.7) and obtain an estimator for A(z,y) by

-~

Mz, yi kyw) = Ma(k,w);z,y,p). (2.10)

We derive the asymptotic normality of this new estimator X(a:, y; k,w) as follows.

6



Theorem 2.3. Suppose that the conditions of Theorem 2.2 hold. Then, for T > 0, we

have as n — oo,

. 1
VE (Xz, ysk,w) = M (z,y)) = N 2,9, p) 7 ms
U<szl’1yp;T ((:cy w) (x y)) (a9, p) @)

x/ bies)bieay (V2 cos B, v/2sin 8) + B(v/2 cos 0, v/2sin 0, 1)
e, MN(a; v/2cosB,v/2sin ), p)

W(d)| = o,(1).

3 Theoretical Comparisons

The following corollary gives the optimal choice of the sample fraction & for @ in terms

of the asymptotic mean squared error. First, denote

i 1 bioo (V2 cos 0, +/2sin 6
abias, (w) - = W /GEQ* )\’Ea;)f/icos 0, V2 sin 0, 3)) W (df)
and
B 1
avar, (w) = WX

V2 cos6;,v/2sin Bl)g(ﬂcos 05, /2 sin 02)>
/ / W (d0) WV (dy).
01€Q* GzEQ*

200801,\/§sin91, p) N (a; /2 cos Oy, /2 sin 0y, p)
Corollary 3.1. Assume that (C1)-(C3) hold and A(t) ~ ct® ast — 0 for some ¢ # 0

and 8 > 0. Then the asymptotic mean squared error of a(k,w) is
amseq(k, w) = ?(k/n)? (abiasy(w))* + k™ avar, (w).

By minimizing the above asymptotic mean squared error, we obtain the optimal choice of

k as

1/(26+1
ko(w) = avar, (w) [eot )n25/(25+1)
’ 23¢%(abias, (w))? '

Hence the optimal asymptotic mean squared error of & is

2/(28+2)

amseq (ko(w), w) = <<M>ﬂabiasa(w)c\/ﬁ> <1+L>

n 2/

Firstly, we compare a(k,w) with a(1, 1; k). As a first weight function we choose wq(6)
equal to one if § = 7/4, and equal to zero otherwise. Since a(1,1;k) = a(k,wy), the

asymptotic variance and optimal asymptotic mean squared error of a(1,1; k) are
avar,(wo) = k 'avar,(wg) and amse,(wg) = amse, (ko (wo), wp) -

7



For simplicity, we only compare a(k, wy) and a(k,w;) with the weight function

0

wi(f) = 1—<7T—/4—1>2, 0<6<

o

. (3.11)

In Figure 1, we plot the ratio ratioy., . = avar,(w;)/avar,(wy) against « for p € {0.3,0.7},
which shows that a(k, w;) has a smaller variance than (1, 1; k) in many cases, especially
when « is large or p is small. Hence a/(k, wy) is better than (1, 1; k) in terms of asymptotic
variance. Without doubt, the weight function w, is not an optimal one. Seeking an optimal
weight function is important, but difficult.

Secondly, we compare X(:c, y; k, w) with Xemp(.fr, y; k). It follows from Theorem 2.3 that

the asymptotic variance and the asymptotic mean squared error of X(:c, y; k,w) are
(N m,y, p)) avare(k, w) and (N (a;z,y, p))’ amseq (k, w),

respectively. As before, we obtain the optimal asymptotic mean squared error of/)\\(x, y; k., w)
as (N(o: 2.y, p))* amseq (ko(w), w). Put

_ < E(B*(z,y)) )1/(2ﬁ+1)n26/(26+1)
26¢2(b(oz) (2,9))*
amseemp (k) = *(k/n)*’ (bcoy(z,y))* + & "E(B*(2,y)).

and

kemp

Then the asymptotic variance and the optimal asymptotic mean squared error of Xemp(:c, y; k)
are

avaryems (k, w) = k™' (EB(z,y))? and amseyems (k, w) = amseemp (Kemp) -
In Figure 2, we plot the ratio of the variances of X(x, y; wy) and Xemp(.fr, y; k) given by

E(B*(z,y))
()‘I(a x,y, p))2 avary, (wl) ’

ratioyar )

for (z,y) = (V/2cos ¢,\/2sin ¢) against ¢ € (0,7/2) for different pairs (o, p) € {1,5} x
{0.3,0.7}, which shows that the new estimator for A*(z,y) has a smaller variance than

the empirical estimator /)\\emp(x, y; k).

4 Simulation Study

In this section we conduct a simulation study to compare a(k,w;) with a(k,wy) =
a(l,1,k), and to compare X(:c, y; k,wy) with Xemp(:c, y; k) by drawing 1000 random sam-
ples with sample size n = 3000 from an elliptical copula with P(G > z) = exp{—x~*},
x> 0.



For comparison of a(k,w;) and a(1,1, k), we plot the averages of a(1,1,k), a(k, w;)
and corresponding mean squared errors in Figures 3 and 4. We observe that a/(k, w;) has
a smaller mean squared error than a(1,1,%) in most cases. Further, we plot a(1,1,k)
and a(k,w;) based on a particular sample in Figure 7, which shows that a(k,w;) is
much smoother than a(1,1, k) with respect to k. This is because a(k,w;) employs more
Xemp(x, y; k)'s and (1,1, k) only uses /)\\emp(l, 1; k). In summary, one may prefer a(k, w;)
to a(1,1, k).

Next we compare the empirical estimator Xemp(:c, y; k) with the new X(a:, y; kywy). We
plot the averages of Xemp(l, 1; k), 3\\(1, 1, k,wy) and corresponding mean squared errors
in Figures 5 and 6. We also plot estimators Xemp(l, 1; k) and X(l, 1; k,wy) based on a
particular sample in Figure 8. Like the comparisons for estimators of a, we observe that
X(l, 1; k,wy) has a slightly smaller mean squared error than /)\\emp(l, 1; k), but /)\\(1, 15k, wy)
is much smoother than Xemp(l, 1; k) with respect to k. More improvement of X(:c, y; k,wy)
over /)\\emp(m, y; k., wg) are found when z/y is away from one; see Figures 9 and 10.

Finally, we compare /)\\(x,y; 50, w;) and /)\\emp(m, y; 50, wy) for different x and y. It fol-
lows from Figure 5 that £ = 50 is a reasonable choice. Again, we plot the averages of
3\\(\/5 cos ¢, /2 sin ¢; 50, w1 ), Xemp(\/i cos ¢, /2 sin ¢; 50) for 0 < ¢ < 7/2 and correspond-
ing mean squared errors in Figures 11 and 12. Based on a particular sample, we also
plot estimators /)\\(\/5 cos ¢, v/2sin ¢; 50, wy) and /)\\emp(\/i cos ¢, v/2sin ¢; 50) in Figure 13.
From these figures, we observe that, when ¢ is away from 7 /4, /)\\(\/5 cos ¢, v/2sin ¢; 50, wy)
becomes much better than /):emp(\/i cos ¢, /2 sin ¢; 50).

In conclusion, with the help of an elliptical copula, we are able to estimate the tail

dependence function more efficiently.

5 Elliptical Copula of Arbitrary Dimension

In this section we generalize our results in section 2 to the case, where the dimension
d > 2 is arbitrary.

Theorem 5.1. Assume that X = (X1,..., Xy)T has the same copula as the elliptical vec-
tor Z = (Zy,...,Z3)T, whose distribution is given in (1.2). W.l.o.g. assume that AAT = R
is the correlation matrixz of 7. Let A;. denote the i-th row of A and and let Fy; denote the
uniform distribution on Sy. Then the tail copula of X is given by
)\X(l“l, - ,a:d) = 111’%1‘571P (1 — Fl(Xl) <txy,...,1— Fd(Xd) < tl‘d)
_)

_ / /d\xi(Ai.u)“dFU(u)( / (Al.u)adFU(u)>_.1 (5.12)

WES AL u>0,.. Ay, u>0 =1 wES A1 u>0



Remark 5.2. (a) For d = 2 representation (5.12) coincides with (1.4). To see this
write u € Sy as u = (cos¢,sin@)T for some ¢ € (—m,7), A;. = (1,0) and Ay. =
(p, /1 — p?). Then, Au = (cos ¢, pcos¢ + /1 — p>sin )T = (cos ¢, sin(¢ + arcsin p))7,
giving the equivalence of (5.12) and (1.4).

(b) For d > 3 one can also use multivariate polar coordinates and obtain analogous

representations. The expression, however, becomes much more complicated.

The estimation procedure in d dimensions is a simple extension of the two-dimensional
case. Assume iid observations X; = (X;1,..., X;9)%, i =1,...,n, with an elliptical copula.
Then we can estimate p,, via Kendall’s 7 and «a,,, based on bivariate subvectors (X;,, X;,)
for 1 < p,q < d. Denote these estimators by p,, and (for any positive weight function w)

Qpq(k, w), respectively. Then we estimate o and R by

~ 1 ~ S
a(k,w) = m Z Qpg(k,w) and R = (Dpg)1<pg<i-
p#q

For any decomposition AAT = ]/i;, we obtain an estimator for A. This yields an estimator
for A(z1,...,x4) by replacing o and A;. in (5.12) by @(k,w) and A;., respectively. The
asymptotic normality of this new estimator can be derived similarly as in Theorems 2.2
and 2.3.

In Figure 14 we give a three-dimensional example. We simulate a sample of length
n = 3000 from an elliptical copula with P(G > z) = exp{—2~?}, 2 > 0, and parame-
ters p1g = 0.3, p13 = 0.5, pog = 0.7 and o = 5. In the upper row we plot the true tail
copula \¥ (\/3 cos ¢, V/3sin ¢y cos ¢y, /3 sin ¢y sin ¢2), b1, 02 € (0,7/2), and each col-
umn corresponds to perspective, contour and grey-scale image plot of a AX, respectively.
In the middle and lower row, we plot the corresponding estimators X( ..3100,w;) and
Xemp(. ..;100), respectively. From this figure, we also observe that ) becomes much better
than A™P in the three-dimensional case.

Next we apply our estimators to a three-dimensional real data set which consists of
n = 4903 daily log returns of currency exchange rates of GBP, USD and CHF with respect
to EURO between May 1985 and June 2004. As in Figure 14, we plot the perspective,
contour and grey-scale image of h) (\/§ oS ¢, V3 sin ¢y cos ¢y, /3 sin ¢y sin ¢y k, wl) and
/)\\emp(. ..; k); see Figures 15, 16 and 17 for k£ = 100, £ = 150 and k = 200, respectively.
Comparing the contour plots (middle columns) of ) and Xemp, one may conclude that the

assumption of an elliptical tail copula ist not an unrealistic restriction.
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6 Proofs

Proof of Theorem 2.1. Define

w/2 m/2
o = [ Gosords. e = [ (coso)in(cos)do.

/2 /2

w/2 /2
D(a,z) = ¢ / (cos @) In(cos @) dp — ¢4 / (cos ¢)*d¢p and
C(a,z) = D(a,z)+ <p+ 1 — p?tan z) 70D(a,—z+arccos p).

Then, by variable transformation, we obtain

w/2 /2
Masz,y,p) = ¢ (fv/ (cos ¢)* d¢+y/ (cos ¢)* d¢)
g9

((z/y)1/=) 9((z/y)=1/>)
and
N(az,y,p) = %A(a;x,y,p) = ¢;” [#D (o, g ((x/)"*)) + yD (c, g ((z/y)~"*))]
= ¢;%2C (a,g ((x/y)l/a)) .
Since
Dyy(a,z) = %D(a, z) = (cosz)® (¢; — ¢gln(cos z)),

we can show that there exists 0 < 2y < 7/2 such that

( Doi(a,2) >0, ifz€(—m/2 —2),
Doi(a,2) =0, if 2= —z,
Doi(a, 2) <0, if 2 € (=2, 20),
Do, 2) =0, if 2 = 2,

[ Doa(a,2) >0, if 2 € (2,7/2).

Note that zy, depends on «. Since D(a,0) = liirn/ D(a, z) = 0, we have
z—tm/2

D(a,z) >0, ifze (—7/2,0),
D(a,z) <0, ifze (0,7/2).

Hence, if 2/y € [(pV 0)*", (pV 0) "] for some a* € (0,00), then C (a, g ((z/y)"/*")) <0
for all & > a*. Since also z/y € [(pV 0)*, (pV0)~?] holds for all @« > «a*, we have
C (a,g ((:r/y)l/“)) < 0 for all @ > a*. Hence the theorem follows by choosing a* =

In(z/y)/ In(p v 0)].
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Proof of Theorem 2.2. Using the same arguments as in Lemma 1 (Page 30) of Huang
(1992) or Corollary 3.8 of Einmahl (1997), we can show that

sup ‘\/E(Xemp(x,y) - )\X(:E,y)> — benben (@, y) — B(z,y)| = 0,(1)  (6.13)

0<z,y<T

as n — oo. Note that the above equation can also be shown in a way similar to Schmidt
and Stadtmiiller (2005) by taking the bias term into account. Since A(«; z,y, p) in (1.4) is
a continuous function of o, by invoking the delta method, the theorem follows from (6.13),
7 — 1 = 0,(1/Vk) (see e.g. Hoeffding (1948)), supyeq- [N (c; V2 cos 0, v2sin b, p)| < oo
and a Taylor expansion.

Proof of Theorem 2.3. It easily follows from (1.4) and Theorem 2.2.

Proof of Theorem 5.1. Since copulas are invariant under strictly increasing transfor-
mations, we can assume w.l.o.g that AA” = R is the correlation matrix. Therefore, the
Z; < RA;. U, 1<1i<d, have the same distribution, say F. Hence

P(]_—Fz(Zl) <t$1,...,1—Fz(Zd) <tl‘d)

d —
_ / r(a>\/ W) dFy (u), (6.14)
wES, A1 . u>0,...,Aq. u>0 i=1

where F§ denotes the inverse function of F. Since P(G > -) € RV_, implies that
1 — F; € RV_,, the inverse function F} is regularly varying in 0 with index —1/« (e.g.
Resnick (1987), Proposition 0.8(v)). This implies

lim P(G > F; (1 —tx;)/(A4;.u))

t—0 P(G>F;(1—1))
Now note that, forallz=1,...,d,

:l‘i(Ai.U)a, Z:]_,,d

t = P(Zi>F5(1—1)

] p(os B0 g

P(GA; U > F; (1—1))

%

A
u€Sy,A;. u>0

giving by means of Potter’s bounds (e.g. see (1.20) in Geluk and de Haan (1987)),

/ / PG> P (L= /(A w) oo

PGS A=) P(G>F;(1—1)

u€S ,A;. u>0

_ / (Avw)*dFy(u) Yi=1,....d. (6.15)

ueSy,A;. u>0

Applying the same method to (6.14) yields the proof.
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Figure 3: Averages of a(1,1,k) and a(k,w;) are plotted against & = 10, 20, ..., 300.
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Figure 4: Estimated mean squared errors of estimators in Figure 3.
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Figure 16: Same as Figure 15 but for & = 150.
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Figure 17: Same as Figure 15 but for £ = 200.
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