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Abstract

Microaggregation by individual ranking is one of the most commonly
applied disclosure control techniques for continuous microdata. The
paper studies the effect of microaggregation by individual ranking on
the least squares estimation of a multiple linear regression model in
continuous variables. It is shown that the naive parameter estimates
are asymptotically unbiased. Moreover, the naive least squares esti-
mates asymptotically have the same variances as the least squares
estimates based on the original (non-aggregated) data. Thus, asymp-
totically, microaggregation by individual ranking does not induce any
efficiency loss on the least squares estimation of a multiple linear re-
gression model.

Keywords: Asymptotic variance, consistent estimation, disclosure control,
individual ranking, linear model, microaggregation.

1 Introduction

The development of empirical research and the growing capacity of modern
computer systems have lead to an increasing demand from researchers for
access to microdata. Statistical offices and other data collecting institutions
are therefore faced with the problem of providing statistically useful data sets
that also comply with confidentiality requirements. One method to solve this
problem is the application of masking procedures to data sets. The masking
procedure itself is communicated to the researcher. Thus anonymized data
sets with a low disclosure risk are created. However, masking a data set
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usually implies that statistical analyses based on the masked data are less ef-
ficient or even biased. Statistical research is thus confronted with the problem
of investigating the impact of masking techniques on parameter estimation,
hypothesis testing, etc.

Over the last years, a wide variety of masking techniques has been devel-
oped, see Doyle et al. (2001), Willenborg and de Waal (2001), or Domingo-
Ferrer (2002) for a general survey. The present paper deals with microag-
gregation, a very promising masking technique for continuous data (An-
war (1993), Defays and Nanopoulos (1993), Domingo-Ferrer and Mateo-
Sanz (2002)). The basic principle of microaggregation is to subdivide a data
set into small groups and to replace the original data values by their corre-
sponding group means. There are various microaggregation techniques, which
mainly differ in how the grouping of the data is done.

In the literature, many suggestions have been made on how to form the
groups (see Domingo-Ferrer and Mateo-Sanz (2002)). To reduce the infor-
mation loss imposed by microaggregation, only those data values which are
”similar” to each other should be grouped (see Feige and Watts (1972)).
The most commonly applied microaggregation techniques are microaggrega-
tion by single-axis sorting (SAS), multivariate microaggregation (MM), and
microaggregation by individual ranking (IR). SAS uses a so-called sorting
variable (e.g. a particular variable in the data set or the first principal com-
ponent projection of the records) to determine the similarity of data values.
MM uses a multivariate distance criterion (such as the Euclidean distance)
to form the groups, while IR microaggregates all variables of a data set
separately (see Section 2 for details). Analyses of selected data sets (Mateo-
Sanz and Domingo-Ferrer (1998), Domingo-Ferrer and Mateo-Sanz (2001),
Domingo-Ferrer and Torra (2001)) as well as an extensive simulation study
performed by Schmid and Schneeweiss (2005) have shown that the efficiency
loss induced by IR is relatively small if compared to other microaggregation
techniques. However, several authors have pointed out that the disclosure
risk of a data set remains relatively high if IR has been applied to it (see,
e.g., Winkler (2002)).

In the present paper, the focus is on the effect of IR on the estimation of a
multiple linear regression model. It is shown analytically that a linear regres-
sion in continuous variables can be consistently estimated by the naive least
squares (LS) estimators if the data set has been anonymized by means of the
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IR method. Thus the simulation results of Schmid and Schneeweiss (2005)
are confirmed. Moreover, it is shown that the LS estimators based on the
aggregated data are asymptotically as efficient as the LS estimators based on
the non-aggregated (original) data. Thus, if the sample size is large, standard
linear model techniques can be applied to the microaggregated data without
leading to a severe bias or loss of efficiency.

The lemmas and theorems of the present paper partly rely on the results of
Schmid et al. (2005a,b), who investigated the effect of microaggregation by
a sorting variable on a simple linear regression model.

Section 2 starts with a description of the IR method. In Section 3 the effect
of IR on the consistency of the LS estimation of a multiple linear regression
model is investigated. Section 4 deals with the asymptotic variances of the
naive LS estimators. Section 5 contains a simulation study on the results
derived in Sections 3 and 4. In Section 6 the results are applied to the 2003
Munich rent data. A summary of the results of the present paper is contained
in Section 7. Proofs of lemmas are given in the appendix.

2 Individual Ranking

The individual ranking technique considered in this paper works as follows:
First, a fixed group size A has to be chosen. Next, the data set is sorted by the
first variable, and groups of successive A values are formed. The values of the
first variable in each group are replaced by their corresponding group mean,
while the values of the other variables in the data set are left unchanged.
Then the same procedure is repeated for the second variable, and so on.

For example, if a data set consists of the two vectors x = (2, 6, 8, 1, 4, 3) and
y = (4, 6, 9, 8, 2, 7), the first step of IR results in the sorted data set

x 1 2 3 4 6 8
y 8 4 7 2 6 9

,

where the columns of the original data set are ordered according to the values
of x. In the second step of IR, with A chosen to be 3, the values of x are
microaggregated:

x 2 2 2 6 6 6
y 8 4 7 2 6 9

.



4

The third step of IR results in the sorted data set

x 6 2 6 2 2 6
y 2 4 6 7 8 9

,

where the columns are ordered according to the values of y. Finally, in the
fourth step of IR, again with A chosen to be 3, the values of y are microag-
gregated:

x 6 2 6 2 2 6
y 4 4 4 8 8 8

.

3 Consistent Estimation

In this section the effect of IR on the least squares estimation of the multiple
linear regression model

Y = β0 + β1X1 + · · ·+ βpXp + ε (1)

is analyzed. Y denotes the response (or endogenous variable), while
X1, . . . , Xp denote the covariates (or exogenous variables). Y and X1, . . . , Xp

are assumed to be continuous random variables with means µy, µx :=
(µx1 , . . . , µxp)

′ and variances σ2
y, σ2

x1
, . . . , σ2

xp
. The supports of Y,X1, . . . , Xp

are (possibly infinite) intervals. The random error ε is assumed to be inde-
pendent of (X1, . . . , Xp) with zero mean and variance σ2

ε . The objective is to
estimate the parameter vector (β0, β1, . . . , βp)

′ and the residual variance σ2
ε

from an i.i.d. sample (yi, xi1, . . . , xip), i = 1, . . . , n. Let y := (y1, . . . , yn)′ and
xj := (x1j, . . . , xnj)

′, j = 1, . . . , p, contain the data values. The vectors con-
taining the aggregated data are denoted by ỹ and x̃1, . . . , x̃p. For simplicity,
it is assumed throughout that n is a multiple of A. Define

β := (β1, . . . , βp)
′ , (2)

X := (x1, . . . , xn) , (3)

X̃ := (x̃1, . . . , x̃n) . (4)
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It is now shown that the least squares estimator




β̃0

β̃1
...

β̃p


 =

(
β̃0

β̃

)
:=

(
(1X̃)′(1X̃)

)−1(
1X̃

)′
ỹ (5)

is a consistent estimator of (β0, β
′)′. First consider β̃, which is the estimator

of the slope parameter vector β. Without loss of generality assume that the
vectors ỹ, x̃1, . . . , x̃p are centered around their means ¯̃y, ¯̃x1, . . . , ¯̃xp. Note that
¯̃y = ȳ, ¯̃x1 = x̄1, . . . , ¯̃xp = x̄p. By definition,

β̃ = (X̃ ′X̃)−1X̃ ′ỹ =




S̃2
x1

S̃x1x2 . . . S̃x1xp

...
...

...

S̃xpx1 S̃xpx2 . . . S̃2
xp


 ·




S̃x1y
...

S̃xpy


 =: S̃xx · S̃xy ,

(6)

where S̃2
x1

, . . . , S̃2
xp

are the empirical variances of x̃1, . . . , x̃p, respectively. The

expressions S̃xjxk
, j, k = 1, . . . , p, j 6= k, are the empirical covariances of x̃j

and x̃k. Analogously, S̃xjy, j = 1, . . . , p, are the empirical covariances of x̃j

and ỹ. The probability limit of β̃ can be obtained by deriving the probability
limits of the variances and covariances in equation (6).

Consider first the empirical variances S̃2
x1

, . . . , S̃2
xp

. As will be shown,

S̃2
x1

, . . . , S̃2
xp

are consistent estimators of the true variances σ2
x1

, . . . , σ2
xp

.

Lemma 1. Assume Z to be a continuous random variable with variance σ2
z

whose support is a (possibly infinite) interval. Denote by S̃2
z the empirical

variance of the aggregated data values z̃1, . . . , z̃n based on an i.i.d. sample
(z1, . . . , zn). Then

S̃2
z

p→ σ2
z . (7)

Proof. See Schmid et al. (2005a).

It follows from Lemma 1 that S̃2
x1

, . . . , S̃2
xp

converge in probability to

σ2
x1

, . . . , σ2
xp

. Next, consider the covariances S̃xjxk
and S̃xjy. As will be shown,
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S̃xjxk
and S̃xjy are consistent estimators of the true covariances σxjxk

and σxjy.

Lemma 2. Assume Z1 and Z2 to be continuous random variables with vari-
ances σ2

z1
and σ2

z2
. Assume the supports of Z1 and Z2 to be (possibly infinite)

intervals. Denote by σz1z2 the covariance of Z1 and Z2. Further denote by S̃z1z2

the empirical covariance of the aggregated data values z̃1 := (z̃i1, . . . , z̃n1)
′ and

z̃2 := (z̃i2, . . . , z̃n2)
′ based on an i.i.d. sample (zi1, zi2), i = 1, . . . , n. Then

S̃z1z2 converges in probability to σz1z2.

Proof. See appendix.

The consistency of (β̃0, β̃
′)′ is stated in the following theorem:

Theorem 1. The least squares estimator (β̃0, β̃
′)′ is a consistent estimator

of the true parameter vector (β0, β
′)′.

Proof. The consistency of β̃ follows, due to equation (6), from Lemma 1 and
Lemma 2. Moreover,

β̃0 = ˜̄y − β̃′




˜̄x1
...
˜̄xp


 = ȳ − β̃′




x̄1
...

x̄p


 p→ µy − β′µx = β0 . (8)

Thus β̃0 is a consistent estimator of β0.

Denote by σ̃2
ε the least squares estimator of the residual variance σ2

ε . By
definition,

σ̃2
ε = S̃2

y − β̃′S̃xxβ̃ , (9)

where S̃2
y is the empirical variance of ỹ. From Lemmas 1 and 2 and from

Theorem 1 it follows that plimn→∞σ̃2
ε = σ2

ε . Thus σ̃2
ε is a consistent estimator

of σ2
ε .
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4 Asymptotic Variance of the Least Squares

Estimator

In this section the asymptotic variance of the least squares estimator (β̃0, β̃
′)′

is derived. To do so, stronger assumptions than in Section 3 are required:
Y, X1, . . . , Xp are now assumed to be jointly normally distributed with mean
µ := (µy, µ

′
x)
′ and covariance matrix

Σ =

(
σ2

y Σ′
xy

Σxy Σxx

)
:=




σ2
y σx1y . . . . . . σxpy

σx1y σ2
x1

σx1x2 . . . σx1xp

...
...

...
...

σxpy σx1xp σx2xp . . . σ2
xp


 . (10)

Some additional notation is required:

• Two random sequences an and bn are said to be ”asymptotically equiv-
alent”, written an ∼ bn, if plimn→∞

√
n(an − bn) = 0.

• The asymptotic variance or covariance of a random sequence an is
said to be ”equal to σ2

a/n” if plimn→∞an =: a∞ exists and if√
n(an − a∞) converges in distribution to N(0, σ2

a) as n → ∞.
The asymptotic variance or covariance of an is then denoted by
var(an) = σ2

a/n.

The derivation of the asymptotic variance of (β̃0, β̃
′)′ is based on the

following lemma, which uses the notations and assumptions of Lemma 2:

Lemma 3. Assume Z1 and Z2 to be jointly normally distributed. Then

a) S̃2
z1

and S̃2
z2

are asymptotically equivalent to S2
z1

and S2
z2

, respectively.

b) S̃z1z2 is asymptotically equivalent to Sz1z2.

Proof. a) See Schmid et al. (2005b). b) See appendix.

The asymptotic variance of (β̃0, β̃
′)′ is characterized by the following theorem:
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Theorem 2. Assume Y, X1, . . . , Xp to be jointly normally distributed random
variables. The asymptotic variance of the least squares estimator (β̃0, β̃

′)′

computed from the microaggregated data is equal to the asymptotic variance
of the least squares estimator (β̂0, β̂

′)′ computed from the non-aggregated data.

Proof. Denote by Sxx the empirical covariance matrix of x1, . . . , xp and by
Sxy the empirical covariance vector of x1, . . . , xp and y. Let x̄ = (x̄1, . . . , x̄p)

′.
By (6) and (8), (β̃0, β̃

′)′ can be expressed as

(β̃0, β̃
′)′ = G(S̃xx, S̃xy, ¯̃x, ¯̃y) = G(S̃xx, S̃xy, x̄, ȳ) , (11)

where G is a continuously differentiable function. A similar relation with the
same function G holds for (β̂0, β̂

′)′:

(β̂0, β̂
′)′ = G(Sxx, Sxy, x̄, ȳ) . (12)

Now, by Lemma 3, S̃xx ∼ Sxx and S̃xy ∼ Sxy. In addition,
√

n(Sxx − Σxx),√
n(Sxy −Σxy),

√
n(x̄1−µx1), . . . ,

√
n(x̄p−µxp), and

√
n(ȳ−µy) are asymp-

totically bounded. Therefore

G(Sxx, Sxy, x̄, ȳ) ∼ G(S̃xx, S̃xy, ˜̄x, ˜̄y) . (13)

Thus (β̂0, β̂
′)′ and (β̃0, β̃

′)′ are asymptotically equivalent, which implies the
theorem.

It follows from Theorem 2 that (β̃0, β̃
′)′ and (β̂0, β̂

′)′ are asymptotically
equally efficient. Thus, asymptotically, microaggregation by individual rank-
ing does not impose any efficiency loss on the least squares estimation of
model (1). The asymptotic variance of (β̃0, β̃

′)′ can be estimated by

Σ̂β̃ := v̂ar((β̃0, β̃
′)′) = σ̃2

ε ((1X̃)′(1X̃))−1 . (14)
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With the help of (14), asymptotic confidence intervals for β0, β1, . . . , βp can
be constructed:

CIβj
=

[
β̃j − z1−α/2

√
Σ̂β̃(jj) , β̃j + z1−α/2

√
Σ̂β̃(jj)

]
, j = 0, 1, . . . , p , (15)

where Σ̂β̃(jj) is the j-th diagonal element of Σ̂β̃ and z1−α/2 is the (1 − α/2)-
quantile of the standard normal distribution.

5 Simulations

In this section the asymptotic results of Sections 3 and 4 are investigated by
means of a simulation study. Thus the finite sample behavior of the naive LS
estimators can be studied under microaggregation. For the simulation study,
a linear model with two standard normal covariates X1 and X2 was estimated
from 500 independent samples. Each sample was microaggregated by means
of the IR method before the linear model was estimated. The residual error
variance σ2

ε was set to 9, the group size A was set to 3. Throughout this
section, the slope parameter β2 is kept fixed (β2 = 1).

Fig. 1 shows the estimated bias of β̃1 for different values of β1 and vari-
ous sample sizes n. The covariates X1 and X2 are uncorrelated. Apparently,
if n is small and β1 is positive, the naive least squares estimate of β1 is
negatively biased. For moderate sample sizes (n = 51, n = 150) the bias al-
most disappears. Fig. 2 shows the corresponding variances of β̃1 (multiplied
with

√
n). Apparently, for small n, the asymptotic variance of

√
nβ̃1 dif-

fers from the true variance of
√

nβ̃1, but for moderate values of n (n = 99,
n = 150) the approximation is very good. Figs. 3 and 4 show the bias and
the variance of β̃1 when X1 and X2 are moderately correlated (cor(X1, X2) =
0.5). Apparently, the bias and variance of β̃1 are larger than in Figs. 1 and 2
(where X1 and X2 are uncorrelated). Again, if the sample size is small, the
true parameters differ from their asymptotic counterparts. As n increases, the
differences disappear. If X1 and X2 are highly correlated (cor(X1, X2) = 0.8),
the bias and variance of β̃1 increase even further (see Figs. 5 and 6). However,
the approximations derived in Sections 3 and 4 are good when the sample
size is higher than n = 99.
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Figure 1: Bias of β̃1 (cor(X1, X2) = 0)

−10 −5 0 5 10

6
8

10
12

14
16

18

beta1

va
r(

be
ta

1)
*s

qr
t(

n)

n=21

−10 −5 0 5 10

6
8

10
12

14
16

18

beta1

va
r(

be
ta

1)
*s

qr
t(

n)

n=51

−10 −5 0 5 10

6
8

10
12

14
16

18

beta1

va
r(

be
ta

1)
*s

qr
t(

n)

n=99

−10 −5 0 5 10

6
8

10
12

14
16

18

beta1

va
r(

be
ta

1)
*s

qr
t(

n)

n=150

Figure 2: Variance of
√

nβ̃1 (cor(X1, X2) = 0), dashed line = asymptotic
variance of

√
nβ̃1



11

−10 −5 0 5 10

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

beta1

bi
as

(b
et

a1
)

n=21
n=51
n=150

Figure 3: Bias of β̃1 (cor(X1, X2) = 0.5)
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6 Munich Rent Data

In this section the results derived in Sections 3 and 4 are ap-
plied to the 2003 Munich rent data (http://www.statistik.lmu.de/
service/datenarchiv/miete/miete03 e.html). The data set contains 2053
households interviewed for the 2003 Munich rent standard. As it is publicly
available, the original parameter estimates can be computed, and the impact
of microaggregation on a linear regression can be studied directly. In the
following, the relationship between the monthly net rent of the households
in EUR (nr, dependent variable), the floor space in m2 (fs, independent vari-
able), and the year of construction of the buildings (yc, independent variable)
is analyzed. First, a linear model based on the original (non-aggregated) data
is estimated. The resulting estimates are then compared to the linear model
estimates based on the data set which has been aggregated by means of the
IR method (with group size A = 3).

The results of the two analyses are contained in Tables 1 and 2. As expected,
microaggregation by individual ranking has almost no influence on the para-
meter estimates. The residual standard error estimates (167.0749 in case of
the non-aggregated data, 166.3248 in case of the aggregated data) are also
very similar.

Moreover, Tables 1 and 2 show that microaggregation by individual ranking
has almost no influence on the estimated standard errors of the coefficients
of fs and yc. This is remarkable because nr, fs, and yc do not follow a
normal distribution (compare Figs. 7 to 9), which means that one important
assumption made in the proof of Theorem 2 does not hold for the Munich rent
data. The estimation procedure thus seems to be robust against violations of
the normality assumption.

Estimate Std. Error t-value p-value
Intercept -3716.1958 298.4688 -12.45 0.0000
fs 7.2804 0.1496 48.67 0.0000
yc 1.9304 0.1513 12.76 0.0000

Table 1: Regression of nr on fs and yc (non-aggregated data)
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Estimate Std. Error t-value p-value
Intercept -3712.0200 296.9041 -12.50 0.0000
fs 7.3017 0.1488 49.07 0.0000
yc 1.9275 0.1505 12.81 0.0000

Table 2: Regression of nr on fs and yc (aggregated data)
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7 Conclusion

Microaggregation based on individual ranking is one of the most commonly
applied disclosure control techniques for continuous data. The present paper
deals with the impact of IR on statistical analysis. It shows that if a mul-
tiple linear regression model in continuous variables is estimated from the
aggregated data, naive least squares estimates are asymptotically unbiased.
Moreover, if the dependent variable and the independent variables are jointly
normally distributed, parameter estimates based on the aggregated data are
asymptotically as efficient as the estimates based on the non-aggregated data.
Thus the efficiency loss induced by IR is negligible if the sample size is high.

The simulation study carried out in Section 5 shows that the finite bias
of the parameter estimates is close to 0 if the sample size is moderately
high (n = 51). For small sample sizes (n = 21), the naive LS estimates are
biased. Similarly, if the sample size is moderately high (n = 99), the finite
sample variances of the parameter estimates are close to their asymptotic
variances (which are the variances of the parameter estimates based on the
non-aggregated data). This implies that the efficiency loss induced by IR is
relatively small. For small sample sizes (n = 21), the sample variances of the
LS estimates differ from their asymptotic counterparts.

The analysis of the Munich rent data in Section 6 shows that even if the
variables are not normally distributed, variance estimates of the model co-
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efficients do not differ notably from the variance estimates based on the
non-aggregated data. Thus the least squares estimators seem to be robust
against violations of the normality assumption.

In summary, microaggregation by individual ranking asymptotically has no
influence on the least squares estimation of linear regression in continuous
variables. This is not generally true for other microaggregation techniques
(see Schmid et al. (2005a,b)) or for masking procedures such as the addition
of random noise (see Brand (2000)). Thus, although IR implies a relatively
high disclosure risk, its analytical properties are far superior to those of many
other anonymization techniques.

Appendix

Proof of Lemma 2:

Each data value zi1, i = 1, . . . , n, can be written as

zi1 = z̃i1 + ηi1 , (16)

where ηi1 is the difference between the original data value zi1 and the aggre-
gated data value z̃i1. Now the empirical variance S2

z1 of z1 := (z11, . . . , zn1)
′

can be decomposed as follows:

S2
z1

= S̃2
z1

+ S2
η1

, (17)

where S̃2
z1

is the between-groups variance of z1 and S2
η1

is the within-groups
variance of z1. In Schmid et al. (2005a) it was shown that S2

η1
converges to 0 in

probability as n →∞. Thus, plimn→∞S̃2
z1

= σ2
z1

. Analogously, zi2 = z̃i2 + ηi2,
i = 1, . . . , n, and plimn→∞S2

η2
= 0.

Denote the empirical covariance of the non-aggregated data vectors z1

and z2 by Sz1z2 . Define z∗1i := z1i−z̄1 and z∗2i := z2i−z̄2. Now, z̃1i− ¯̃z1 = z∗1i−η1i
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and z̃2i − ¯̃z2 = z∗2i − η2i (as η̄1 = η̄2 = 0). One obtains

|S̃z1z2 − Sz1z2| =
1

n

∣∣∣∣∣
n∑

i=1

(z∗i1 − ηi1)(z
∗
i2 − ηi2)−

n∑
i=1

z∗i1z
∗
i2

∣∣∣∣∣

≤
∣∣∣∣∣
1

n

n∑
i=1

z∗i1ηi2

∣∣∣∣∣ +

∣∣∣∣∣
1

n

n∑
i=1

z∗i2ηi1

∣∣∣∣∣ +

∣∣∣∣∣
1

n

n∑
i=1

ηi1ηi2

∣∣∣∣∣

≤
√

S2
z1

S2
η2

+
√

S2
z2

S2
η1

+
√

S2
η1

S2
η2

p→ 0 . (18)

Proof of Lemma 3b):

Analogously to the proof of Lemma 2, S2
z1

and S2
z2

can be decomposed

into S̃2
z1

+ S2
η1

and S̃2
z2

+ S2
η2

, respectively. From Lemma 3a) it follows that
plimn→∞

√
nS2

η1
= 0 and plimn→∞

√
nS2

η2
= 0. Hence by (18)

√
n|S̃z1z2−Sz1z2| ≤

√
S2

z1

√
n
√

S2
η2

+
√

S2
z2

√
n
√

S2
η1

+
√

n
√

S2
η1

√
S2

η2

p→ 0 .

(19)
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Inference in a Simple Linear Model under Microaggregation,” Dis-
cussion Paper 416, SFB 386, Department of Statistics, University of
Munich.



19

Willenborg, L. and T. de Waal (2001): Elements of Statistical Disclosure
Control. New York: Springer.

Winkler, W. E. (2002): ”Single-Ranking Micro-Aggregation and Re-
identification,” Statistical Research Division report RR 2002/08, U.S.
Bureau of the Census, Washington.


