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Estimation of a Linear Regression

under Microaggregation with the

Response Variable as a Sorting

Variable

Matthias Schmid and Hans Schneeweiss

Department of Statistics, University of Munich
Ludwigstr. 33, 80539 Munich, Germany

Abstract

Microaggregation is one of the most frequently applied statistical disclosure control

techniques for continuous data. The basic principle of microaggregation is to group

the observations in a data set and to replace them by their corresponding group

means. However, while reducing the disclosure risk of data files, the technique

also affects the results of statistical analyses. The paper deals with the impact of

microaggregation on a linear model in continuous variables. We show that para-

meter estimates are biased if the dependent variable is used to form the groups.

Using this result, we develop a consistent estimator that removes the aggregation

bias. Moreover, we derive the asymptotic covariance matrix of the corrected least

squares estimator.

Keywords: Asymptotic variance, consistent estimation, disclosure control,

linear model, microaggregation.

1 Introduction

Microaggregation is one of the most frequently applied statistical disclosure

control techniques for continuous microdata (Defays and Nanopoulos (1993),
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Domingo-Ferrer and Mateo-Sanz (2002)). The main idea of microaggrega-

tion is to subdivide the observations in a data set into small groups (using a

minimum group size A) and to replace the original data values by their cor-

responding group means. Thus, as each observation in the microaggregated

data set appears at least A times, individual records cannot be identified,

and the disclosure risk of the anonymized data is kept low.

The main problem with microaggregation is that traditional statistical esti-

mation techniques may be severely biased and less efficient if applied to the

microaggregated data. Thus, in order to reduce the information loss imposed

by microaggregation, only those data values which are ”similar” to each other

should be grouped (see Feige and Watts (1972)). In the literature, many sug-

gestions have been made on how to best form the groups (Domingo-Ferrer

and Mateo-Sanz (2002), Laszlo and Mukherjee (2005)). However, the impact

of these techniques on parameter estimation, hyptothesis tests, etc., has still

to be investigated.

The present paper deals with microaggregation by a sorting variable, one of

the oldest and most frequently applied microaggregation techniques (Paass

and Wauschkuhn (1985), Mateo-Sanz and Domingo-Ferrer (1998)). This pro-

cedure uses a fixed group size. The sorting variable can either be one of the

regressors or the dependent variable in a statistical model. Groups are then

formed by observations having similar values for the sorting variable.

Our aim is to investigate the effects of this technique on the least squares

(LS) estimation of a linear regression in continuous variables. While the naive

LS estimator remains unbiased if one of the covariates is used as the sorting
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variable (see Feige and Watts (1972)), an extensive simulation study per-

formed by Schmid and Schneeweiss (2005) has shown that microaggregation

induces a severe bias if the dependent variable is used as the sorting vari-

able. Although aggregating with respect to a covariate therefore seems to be

more convenient for statistical analysis, it has to be pointed out that data

providers usually do not know before anonymization which variable will serve

as the dependent one. Thus, investigating microaggregation with respect to

the dependent variable is a very relevant case.

In the following, we will derive analytically the asymptotic properties of the

naive LS estimators when applied to data that have been microaggregated

with respect to the dependent variable. We will not only determine the (as-

ymptotic) bias, but also develop a new estimation procedure that corrects for

the bias, leading to a consistent estimator of the linear model. In addition,

the asymptotic covariance matrix of the corrected LS estimator of the slope

parameter vector β will be derived.

The paper generalizes previous results for the simple linear regression (see

Schmid et al. (2005a,b)) to the case of of a multiple linear regression. In

addition to the arguments of the previous papers, some new lemmas are

needed to prove the results of this paper.

Section 2 starts with a brief description of microaggregation by a sorting vari-

able. In Section 3 we derive theoretical results on the effects of this procedure

on the estimation of a linear model. Furthermore, a method for correcting

the aggregation bias is developed. Section 4 deals with the asymptotic co-

variance matrix of the corrected LS estimator of the slope parameter vector.
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Section 5 contains a simulation study on the results derived in Sections 3

and 4. In Section 6 we apply our results to the 2003 Munich Rent Data. The

results of this paper are summarized in Section 7. Proofs of lemmas are given

in the appendix.

2 Microaggregation by a Sorting Variable

We consider microaggregation with respect to a sorting variable in the data

set. In a linear model, the sorting variable can either be the dependent vari-

able or one of the covariates. The microaggregation procedure is as follows:

First, the data set has to be ordered according to the magnitude of the sort-

ing variable. After having chosen a fixed group size A, the sorted data set is

subdivided into small groups, each consisting of A adjacent data values. For

simplicity, we assume that the sample size n is a multiple of A. In each of

the n/A groups the data are averaged, and the averages are assigned to the

items of the group.

For example, consider a linear model with two covariates X1 and X2 and a

dependent variable Y . Assume the data set to be

x1 2 1 4 7 3 4

x2 1 3 4 2 8 6

y 2 7 6 8 3 1

.
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Now, if Y is the sorting variable and A = 3, we obtain the sorted data set

x1,sort 4 2 3 4 1 7

x2,sort 6 1 8 4 3 2

ysort 1 2 3 6 7 8

and the microaggregated data set

x̃1 3 3 3 4 4 4

x̃2 5 5 5 3 3 3

ỹ 2 2 2 7 7 7

.

3 Consistent Estimation

3.1 Notation

As microaggregation with respect to a covariate leads to unbiased linear

model estimates (compare Feige and Watts (1972)), we only consider mi-

croaggregation with respect to the dependent variable. In the following, the

effect of this type of microaggregation on the LS estimation of the multiple

linear regression model

Y = β0 + β1X1 + · · · + βpXp + ǫ (1)

is investigated. Y denotes the response (or endogenous) variable, while

X1, . . . , Xp denote the covariates (or exogenous variables). Y and X1, . . . , Xp

are assumed to be continuous random variables with variances σyy,

σ11, . . . , σpp. The supports of Y,X1, . . . , Xp are (possibly infinite) intervals.
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The random error ǫ is assumed to be independent of (X1, . . . , Xp) with

zero mean and variance σ2
ǫ . The objective is to estimate the parameter

vector (β0, β1, . . . , βp)
′ and the residual variance σ2

ǫ from an i.i.d. sample

(yz, xz1, . . . , xzp), z = 1, . . . , n. Let y := (y1, . . . , yn)′ and xi := (x1i, . . . , xni)
′,

i = 1, . . . , p, contain the data values. The vectors containing the aggregated

data are denoted by ỹ and x̃1, . . . , x̃p. For simplicity, it is assumed through-

out that n is a multiple of A. Note that in this case, the empirical means

ȳ, x̄1, . . . , x̄p of y, x1, . . . , xp are the same as the empirical means ¯̃y, ¯̃x1, . . . , ¯̃xp

of ỹ, x̃1, . . . , x̃p, respectively. We denote the covariance of Xi and Xj

by σij, i, j = 1, . . . , p, the covariance of Xi and Y by σiy, i = 1, . . . , p,

and the variance of Y by σyy.

Further denote the empirical covariance of xi and xj by sij and the empirical

covariance of x̃i and x̃j by s̃ij:

sij :=
1

n

n∑

z=1

(xzi − x̄i)(xzj − x̄j) , i, j = 1, . . . , p , (2)

s̃ij :=
1

n

n∑

z=1

(x̃zi − x̄i)(x̃zj − x̄j) , i, j = 1, . . . , p . (3)

The covariance matrix of (X1, . . . , Xp) is denoted by Σ := (σij)i,j=1,...,p. Sim-

ilarly let σ := (σiy)i=1,...,p be the covariance (column) vector of (X1, . . . , Xp)

and Y . The empirical variances of y and ỹ are denoted by syy and s̃yy, respec-

tively, and the empirical covariances of xi and y and of x̃i and ỹ are denoted

by siy and s̃iy, respectively. Finally let

s :=




s1y

...

spy


 , s̃ :=




s̃1y

...

s̃py


 , i = 1, . . . , p, (4)
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and let S := (sij)i,j=1,...,p and S̃ := (s̃ij)i,j=1,...,p be the empirical covariance

matrices of (x1, . . . , xp) and (x̃1, . . . , x̃p), respectively.

3.2 Consistent Estimation of β

We focus on the estimation of the vector of genuine regression coefficients

β := (β1, . . . , βp)
′. When we know how to estimate β consistently, it will be

clear how to estimate β0 and σ2
ǫ as well. We denote the naive least squares

estimator of β by b̃, which is given by

b̃ := S̃−1s̃ . (5)

In order to study the bias of b̃ and to construct a consistent estimator for β,

we need the following lemma:

Lemma 1. Assume that there exist inverse linear relationships

Xi = αi + γiY + δi , i = 1, . . . , p , (6)

where the δi’s are random variables, independent of Y , with zero mean and

variances and covariances σδiδj
, 1 ≤ i, j ≤ p. Then the following probability

limits exist:

a) plimn→∞s̃yy = σyy,

b) plimn→∞s̃ = σ,

c) plimn→∞S̃ = 1
A

Σ +
(
1 − 1

A

)
σσ′

σyy
=: Σ̃.

Proof: See appendix.
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With Lemma 1, the probability limit of b̃ can be evaluated as

β̃ := plimn→∞b̃ = Σ̃−1σ = A
(
Σ +

A − 1

σyy

σσ′
)−1

σ

= A

(
Σ−1 −

(
1 +

A − 1

σyy

σ′Σ−1σ
)−1 A − 1

σyy

Σ−1σσ′Σ−1

)
σ . (7)

In order to obtain (7), we used a matrix inversion formula which can be

found, e.g., in Dhrymes (1984), Corollary 5. With some algebra and using

β = Σ−1σ, it follows that

β̃ =
A

1 + (A − 1)σ′Σ−1σ/σyy

β . (8)

Thus the asymptotic bias of b̃ depends on the multiple correlation coefficient

R2 := σ′Σ−1σ/σyy. This coefficient is always smaller than or equal to 1, so

that β is asymptotically overestimated by the naive LS estimator b̃. The only

exceptions are the following two cases:

1. R2 = 1 (which corresponds to a perfect linear relationship between Y

and X1, . . . , Xp). In this case β̃ = β.

2. R2 = 0 (in which case β = 0 and thus also β̃ = 0).

In a simple linear model with one covariate X1, equation (8) reduces to

β̃ =
A

1 + (A − 1)ρ2
β , (9)

where ρ is the correlation between Y and X1. This is the same relationship

as the one derived in Schmid et al. (2005a), Section 4.

From (8), we also see that the asymptotic bias of b̃ grows if the group size A

becomes larger. As expected, for the non-aggregated data (A = 1), the bias

factor in (8) is equal to 1.
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In order to construct a consistent estimator of β, we start from β = Σ−1σ

and replace Σ with

Σ =

(
AΣ̃ − (A − 1)

σσ′

σyy

)
(10)

from Lemma 1c). By algebraic manipulations similar to those that led to (8),

this yields

β =
1

A − (A − 1)σ′Σ̃−1σ/σyy

β̃ , (11)

where β̃ = Σ̃−1σ was used. According to Lemma 1, σyy and σ can be con-

sistently estimated by s̃yy and s̃. A consistent estimator b̃c is thus given by

b̃c :=
1

A − (A − 1) s̃′S̃−1s̃/s̃yy

b̃ =
1

A − (A − 1)R̃2
b̃ , (12)

where R̃2 denotes the empirical multiple correlation coefficient based on the

aggregated data. Note that the factor in front of b̃ is always positive and is

less than 1 for A > 1 and R̃2 < 1.

A consistent estimator of the intercept β0 is simply given by

b̃0c := ¯̃y − (b̃1c
¯̃x1 + · · · + b̃pc

¯̃xp) , (13)

where b̃1c, . . . , b̃pc are the elements of b̃c.

Furthermore, from (10) and (12), we obtain a consistent estimator of the

residual variance σ2
ǫ = σyy − β′Σβ:

σ̃2
ǫ,c := s̃yy − b̃′c

(
AS̃ − (A − 1)

s̃s̃′

s̃yy

)
b̃c . (14)
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With some algebra, we obtain

σ̃2
ǫ,c =

A

A − (A − 1)R̃2
s̃yy

(
1 − R̃2

)
=

A

A − (A − 1)R̃2
σ̃2

ǫ , (15)

where σ̃2
ǫ is the naive estimator of σ2

ǫ based on the aggregated data. We thus

see that σ2
ǫ is systematically underestimated by σ̃2

ǫ .

4 Asymptotic Covariance of b̃c

To derive the asymptotic covariance matrix of b̃c, we need stronger assump-

tions than in Section 3: Y,X1, . . . , Xn are now assumed to be jointly normally

distributed random variables.

We will use the following notation:

• Two random sequences an and bn are said to be ”asymptotically equiv-

alent”, written an ∼ bn, if plimn→∞

√
n(an − bn) = 0.

• The asymptotic variance or covariance of a random sequence an is

said to be ”equal to σ2
a/n” if plimn→∞an =: a∞ exists and if

√
n(an − a∞) converges in distribution to N(0, σ2

a) as n → ∞.

The asymptotic variance or covariance of an is then denoted by

var(an) = σ2
a/n.

First note that, by (5) and (12),

b̃c = F (S̃) , (16)
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where F is a continuously differentiable function of

S̃ :=




vech(S̃)

s̃

s̃yy


 . (17)

The vector vech(S̃) contains the lower triangular elements of S̃. Denote the

probability limit of S̃, which is known from Lemma 1, by S̄. Thus

S̄ =




vech(Σ̃)

σ

σyy


 . (18)

The idea is now to show that

S̃ − S̄ ∼ G(S) + ∆ , (19)

where G is a continuously differentiable function of the second moments

S :=




vech(S)

s

syy


 (20)

based on the non-aggregated data. As will be shown, the ”error vector” ∆ is

a function of the δi defined in (6). Moreover, it is independent of S. Thus,

by computing the covariance matrices of S and ∆ and by using the delta

method, the asymptotic covariance matrix of S̃ can be derived from (19).

From (16), by using the delta method once more, one can finally obtain the

asymptotic covariance matrix of b̃c.
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To prove (19), we introduce the following fundamental lemma:

Lemma 2. Assume Y,X1, . . . , Xp to be jointly normally distributed. Con-

sider the inverse regression models (6). Let the empirical variances and

covariances of the non-aggregated and aggregated values of δi and δj,

1 ≤ i, j ≤ p, be denoted by sδiδj
and s̃δiδj

, respectively (they are defined in a

similar way as (2) and (3)). The following relations hold for i, j = 1, . . . , p:

a) s̃ij − σ̃ij ∼ 1
A

(sij − σij) + (1 − 1
A
)
(

siysjy

syy
− σiyσjy

σyy

)
+ (s̃δiδj

− 1
A
sδiδj

).

b) s̃iy − σiy ∼ siy − σiy.

c) s̃yy − σyy ∼ syy − σyy.

Proof: See appendix.

Lemma 2 can now be used to define the elements of ∆: Let Sδ :=

(s̃δiδj
− 1

A
sδiδj

)i,j=1,...,p. Then

∆ :=



 vech(Sδ)

0



 , (21)

where 0 is a (p + 1)-dimensional vector of zeros. From Lemma 2 and from

the definition of the elements of ∆, it is easily seen that equation (19) holds:

The function G is implicitly given by the right hand sides of the relations a),

b), and c) of Lemma 2, but without the term s̃δiδj
− 1

A
sδiδj

. Moreover, it can

be shown that G(S) and ∆ are asymptotically independent.

Next, we have to compute the asymptotic covariance matrix of ∆. To this

purpose, we introduce another lemma:
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Lemma 3. For any 1 ≤ i, j ≤ p, the expressions ∆ij := (s̃δiδj
− sδiδj

/A) are

asymptotically jointly normally distributed with zero mean. The asymptotic

covariance of ∆ij and ∆mn, 1 ≤ i, j,m, n ≤ p, is given by

σ∆ij∆mn
:=

1

n

A − 1

A2

(
σδiδm

σδjδn
+ σδiδn

σδjδm

)
. (22)

Proof: See appendix.

With the help Lemma 3, the covariance matrix of ∆ (denoted by Σ∆ in the

following) can be evaluated. Note that the elements of Σ∆ corresponding to

the zero subvector of ∆ are equal to 0.

Now, by applying the delta method, we obtain

cov(S̃) = DG cov(S)D′
G + Σ∆ , (23)

where DG is the Jacobian matrix of G(S) evaluated at plimn→∞S.

The covariance matrix of S in (23) can be derived as follows: De-

note the covariance matrix of (Y,X1, . . . , Xp) by ΣY,X and the empiri-

cal covariance matrix of (Y,X1, . . . , Xp) by SY,X . Now, as SY,X follows a

Wishart(p + 1, n − 1, ΣY,X) distribution, we have

cov(sij, smn) =
1

n
(σimσjn + σinσjm) , i, j,m, n = y, 1, . . . , p (24)

(compare Evans et al. (1993), p. 158).

From (23), by applying the delta method once more, we finally obtain

var(b̃c) = DF (DG cov(S)D′
G + Σ∆)D′

F , (25)
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where DF is the Jacobian matrix of F (S̃) evaluated at S̄. Obviously, as seen

from (22) and (24), var(b̃c) is a function of the variances and covariances σδiδj

and σij and also of the covariance matrix Σ̃. The asymptotic variance of b̃c

can thus be estimated by replacing

• σiy, i = 1, . . . , p, with their consistent estimators s̃iy, i = 1, . . . , p,

• σyy with its consistent estimator s̃yy,

• σδiδj
, i, j = 1, . . . , p, with their consistent estimators (see (30))

σ̃δiδj ,c := A

(
s̃ij −

s̃iys̃jy

s̃yy

)
, i, j = 1, . . . , p, (26)

• σij, i, j = 1, . . . , p, with their consistent estimators (see (33))

σ̃ij,c := As̃ij + (1 − A)
s̃iys̃jy

s̃yy

, i, j = 1, . . . , p, (27)

• Σ̃ with S̃.

5 Finite Sample Behavior of b̃c

In this section we check whether the asymptotic results derived in Sections 3

and 4 hold in realistic data situations. To this purpose, we carry out a system-

atic simulation study using the statistical software R. The model we study is

a linear regression with two normally distributed covariates X1 and X2. The

variance parameters have been chosen to be σ11 = 1, σ22 = 4, and σ12 = 1,

which corresponds to a correlation of 0.5 between the two covariates.
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5.1 Bias of b̃c for Finite Samples

To study the bias of b̃c, we took A = 3 (which is the group size commonly

used in practice) and β0 = 1. For simplicity, we kept β2 = −1 fixed. The

residual variance σ2
ǫ was set to 9, which is a rather large value if compared

to the values of σ11 and σ22.

Now, for various values of β1, the bias of b̃c was estimated from 1000 randomly

generated data sets (xi1, xi2, yi), i = 1, . . . , n. In Figs. 1 and 2, bias(b̃) and

bias(b̃c) are plotted vs. β1 for various sample sizes. Apparently, the finite

sample bias of b̃c is close to zero if n ≥ 150. Moreover, it can be seen from

Fig. 1 that the bias of b̃ does not converge to 0.
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Figure 1: Bias of b̃ (solid line: n = 51, dashed line: n = 150, dotted line:

n = 300)
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Figure 2: Bias of b̃c (solid line: n = 51, dashed line: n = 150, dotted line:

n = 300)

5.2 Variance of b̃c for Finite Samples

Fig. 3 contains the variances and covariances of b̃1,c and b̃2,c, which were esti-

mated from the above simulation study. Moreover, Fig. 3 shows the averages

of the estimated asymptotic variances and covariances of the elements of b̃c,

as well as the corresponding true asymptotic variances and covariances. We

see that if the sample size is small (n = 150), var(b̃1,c) and var(b̃2,c) are un-

derestimated by their asymptotic counterparts, whereas cov(b̃1,c, b̃2,c) is over-

estimated by its asymptotic counterpart. For large sample sizes (n = 600),

we see that the asymptotic covariance matrix of b̃c is a good approximation

of the true covariance matrix.
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6 Analysis of the Munich Rent Data

The simulation results presented in Section 5 are based on samples drawn

from a multivariate normal distribution. In fact, the joint normality of the

variables in model (1) is one of the key assumptions made to derive the

asymptotic covariance matrix of b̃c. In practice, however, the normality as-

sumption will usually not hold.

In order to see how our method works in practice and also to

find out how sensitive our results are with respect to deviations

from the normality assumption, we applied our estimation method to

the 2003 Munich Rent Data (http://www.statistik.lmu.de/service/

datenarchiv/miete/miete03 e.html), which certainly deviate from nor-

mality (see later). The data set contains 2053 households interviewed for

the 2003 Munich rent standard. As it is publicly available, the origi-

nal parameter estimates can be computed, and the impact of microag-

gregation on a linear regression can be studied directly. We are inter-

ested in the relationship between the monthly net rent of the households

in EUR (nr, dependent variable), the floor space in m2 (fs, independent

variable), and the year of construction of the buildings (yc, independent

variable). These variables clearly are not normally distributed (compare

Fig. 4).

To see whether our results hold despite the non-normality of nr, fs, and yc,

we estimated a linear model based on the original (non-aggregated) data. We

then compared the resulting estimates to the linear model estimates based

on the microaggregated data set with group size A = 3 and nr serving as
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Figure 4: Histograms of nr, fs, and yc

the sorting variable. To obtain a sample size which is a multiple of A (i.e.

n = 2052), we sorted the original data set with respect to nr and deleted the

median observation.

The linear model estimates are shown in Table 1. Row 1 contains the origi-

nal parameter estimates based on the non-aggregated data. Row 2 contains

the naive parameter estimates based on the microaggregated data, while the
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β̂fs β̂yc σ̂fs σ̂yc σ̂ǫ

non-aggr. data 7.281 1.930 0.150 0.151 167.078

aggr. w.r.t. nr (naive) 10.201 2.556 0.130 0.191 122.175

aggr. w.r.t. nr (corr.) 6.824 1.710 0.212 0.224 172.990

Table 1: Regression of nr on fs and yc

corrected parameter estimates are contained in row 3. As expected, microag-

gregation with respect to nr leads to an overestimation of the effects of fs

and yc by the naive LS estimators. Table 1 also shows that the correction

of b̃ works as it should: The corrected estimates are close to the original

estimates, although the standard errors of the parameter estimates, as es-

timated by the procedure described in Section 4, increase by about 45%

(compared to the standard errors based on the non-aggregated data).

To see whether the standard errors in row 3 of Table 1 are reliable estimates of

the true standard errors of b̃fs,c and b̃yc,c, we additionally estimated cov(b̃c)

from 10000 bootstrap samples of size n = 2052. This procedure resulted

in v̂ar(b̃fs,c) = 0.2432 and v̂ar(b̃yc,c) = 0.1882. Apparently, the bootstrap

variance estimates are close to their counterparts based on the multivariate

normal distribution (which take the values 0.2122 and 0.2242, respectively).

We thus see that the correction procedure proposed in Sections 3 and 4 is

robust against violations of the model assumptions.



21

7 Conclusion

We have analyzed the effects of microaggregation by a sorting variable on

the estimation of a linear regression model in continuous variables. Feige

and Watts (1972) have already shown that linear model estimates remain

unbiased if one of the regressors is used to sort the data. We thus focused on

the special case where the dependent variable is the sorting variable. We have

shown that in this case, linear model estimates are asymptotically biased by

a scalar factor. The bias factor is always greater than or equal to 1, which

implies that the true slope parameters of the linear model are overestimated

in absolute value. Moreover, the bias of the naive LS estimator depends on

the multiple correlation coefficient R2 of the dependent variable and the

regressors. As R2 → 1, the asymptotic bias of the naive LS estimator tends

to 0. In the special case where one of the slope parameters is equal to 0, the

corresponding LS estimator of this parameter is asymptotically unbiased.

The main result of the present paper is the development of a consistent

estimator that removes the aggregation bias of the naive LS estimator. The

simulation study in Section 5 as well as the analysis of the Munich Rent

Data in Section 6 show that the correction procedure already works well if

the sample size is moderately high (n ≥ 300).

We also derived the asymptotic covariance matrix of the corrected estimator

for the slope parameter vector β. To do this, we assumed the dependent

variable and the regressors to be jointly normally distributed. Although this

assumption usually does not hold in practice, the analysis of the Munich Rent

Data has shown that the estimation procedure is robust against deviations
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from normality.

Future research includes the extension of the above results on all ”single-axis

sorting” microaggregation techniques. These techniques use an arbitrary lin-

ear combination of the dependent variable and the regressors to sort the data.

For example, the sorting variable can be the first principle component projec-

tion or the sum of z-scores of the variables in a data set. The microaggregation

technique considered in the present paper (where the dependent variable is

the sorting variable) can thus be seen as a special case of single-axis sorting

microaggregation. This implies that the correction procedure developed in

this paper marks a starting point for a general evaluation of the bias induced

by single-axis sorting microaggregation.

Appendix

Proof of Lemma 1: Part a) was proved in Schmid et al. (2005a). There it

was also shown that plimn→∞s̃iy = σiy, from which part b) follows.

To derive the probability limit of s̃ij, we make use of the relationships

x̃i = αi + γiỹ + δ̃i , i = 1, . . . , p , (28)

where δ̃i is the vector containing the aggregated data values of δi. Equation

(28) implies

s̃ij = γiγj s̃yy + s̃δiδj
+ γis̃yδj

+ γj s̃yδi
, (29)

where the empirical variances and covariances s̃δiδj
and s̃yδi

, i, j = 1, . . . , p,

are defined correspondingly to (3).
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By part a) of the lemma, plimn→∞s̃yy = σyy. In Schmid et al. (2005a) it was

also shown that plimn→∞s̃yδi
= 0. The probability limit of s̃δiδj

is stated in

the following corollary:

Corollary 1. s̃δiδj
converges in probability to σδiδj

/A.

Proof. Microaggregation by a sorting variable subdivides the set of indices

G := {1, . . . , n} into groups G1, . . . , Gk, . . . , Gn/A. Now, as ¯̃δi = δ̄i and

plimn→∞δ̄i = 0 for i = 1, . . . , p, plimn→∞s̃δiδj
can be written as

plimn→∞s̃δiδj
= plimn→∞



A

n

n/A∑

k=1

( 1

A

∑

z∈Gk

δzi

)( 1

A

∑

z∈Gk

δzj

)




= E

(
∑

z∈G1

δzi/A
∑

z∈G1

δzj/A

)

=
1

A
σδiδj

. (30)

From (29) and (30) we obtain

σ̃ij := plimn→∞s̃ij = γiγjσyy +
1

A
σδiδj

. (31)

As

σij = γiγjσyy + σδiδj
(32)

and γi = σiy/σyy, i = 1, . . . , p, we finally obtain

σ̃ij =
(
1 − 1

A

)
γiγjσyy +

1

A
σij

=
(
1 − 1

A

)σiyσjy

σyy

+
1

A
σij , (33)
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from which part c) follows.

Proof of Lemma 2:

For the proofs of parts b) and c), we refer to Schmid et al. (2005b). As to the

proof of a), (29) and a corresponding equation for the non-aggregated data

values yield

√
n(s̃ij − sij) =

√
nγiγj(s̃yy − syy) +

√
nγi(s̃yδj

− syδj
)

+
√

nγj(s̃yδi
− syδi

) +
√

n(s̃δiδj
− sδiδj

) . (34)

In Schmid et al. (2005b) it was shown that
√

n(s̃yy − syy),
√

n(s̃yδj
− syδj

),

and
√

n(s̃yδi
− syδi

) all converge in probability to 0. Therefore

s̃ij − sij ∼ s̃δiδj
− sδiδj

(35)

and consequently

s̃ij − σ̃ij ∼ sij +
1

A
sδiδj

− sδiδj
+
(
s̃δiδj

− 1

A
sδiδj

)
− σ̃ij . (36)

Denote by ŝδiδj
the empirical variances and covariances of the estimated resid-

uals δ̂zi and δ̂zj, 1 ≤ i, j,≤ p, z = 1, . . . , n, based on the non-aggregated data.

Now, as sδiδj
∼ ŝδiδj

(compare Schmid et al. (2005b)), we have

s̃ij − σ̃ij ∼ sij −
(
1 − 1

A

)
ŝδiδj

− σ̃ij +
(
s̃δiδj

− 1

A
sδiδj

)
. (37)

Lemma 2a) now follows from (37), Lemma 1c), and from the fact that

ŝδiδj
= sij −

siysjy

syy

. (38)
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Proof of Lemma 3: Using the same notation as in the proof of Corollary 1,

we obtain

√
n∆ij ≈ A√

n

n/A∑

k=1

( 1

A

∑

z∈Gk

δzi

)( 1

A

∑

v∈Gk

δvj

)
− 1

A
√

n

n/A∑

k=1

∑

z∈Gk

δziδzj

=
1

A
√

n

n/A∑

k=1

∑

z,v∈Gk
z 6=v

δziδvj

=

√
A

n

n/A∑

k=1

∆ij(k) , (39)

where ”≈” means that the difference converges to 0. The expressions ∆ij(k) :=
∑

z,v∈Gk,z 6=v δziδvj/A
3/2, k = 1, . . . , n/A, are i.i.d. random variables with zero

mean. By the central limit theorem, the
√

n∆ij are asymptotically jointly

normally distributed. Moreover, the asymptotic covariance of
√

n∆ij and
√

n∆mn is equal to E(∆ij(1)∆mn(1)). Now

E(∆ij(1)∆mn(1)) =
1

A3

∑

z,u,v,w∈G1

z 6=u,v 6=w

E(δziδujδvmδwn) . (40)

Obviously, only the terms where z = v and u = w or where z = w and u = v

contribute to the sum on the right hand side of (40). The number of these

terms is A(A − 1) in both cases. Therefore

σ∆ij∆mn
=

1

n
E(∆ij(1)∆mn(1)) =

1

n

(A − 1)

A2
(σδiδm

σδjδn
+ σδiδn

σδjδm
) . (41)
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Schmid, M., H. Schneeweiss and H. Küchenhoff (2005b): ”Statistical In-

ference in a Simple Linear Model under Microaggregation,” Discussion

Paper 416, SFB 386, Department of Statistics, University of Munich.


