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Abstract

This document gives an introduction to the R-Package ’surveillance’
containing tools for outbreak detection in routinely collected surveil-
lance data. The package contains an implementation of the procedures
described by Stroup et al. (1989), Farrington et al. (1996) and the
system used at the Robert Koch Institute, Germany. For evaluation
purposes, the package contains example data sets and functionality to
generate surveillance data by simulation. To compare the algorithms,
benchmark numbers like sensitivity, specificity, and detection delay can
be computed for a set of time series. Being an open-source package it
should be easy to integrate new algorithms; as an example of this
process, a simple Bayesian surveillance algorithm is described, imple-
mented and evaluated.

Keywords: infectious disease, monitoring, aberrations, outbreak, time
series of counts.

1 Introduction

Public health authorities have in an attempt to meet the threats of infectious
diseases to society created comprehensive mechanisms for the collection of
disease data. As a consequence, the abundance of data has demanded the
development of automated algorithms for the detection of abnormalities.
Typically, such an algorithm monitors a univariate time series of counts using
a combination of heuristic methods and statistical modelling. Prominent
examples of surveillance algorithms are the work by Stroup et al. (1989)
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and Farrington et al. (1996). A comprehensive survey of outbreak detection
methods can be found in (Farrington and Andrews, 2003).

The R-package surveillance was written with the aim of providing a
test-bench for surveillance algorithms. From

http://www.stat.uni-muenchen.de/~hoehle/software/surveillance/

the package can be downloaded together with its source code. It allows
users to test new algorithms and compare their results with those of stan-
dard surveillance methods. A few real world outbreak datasets are included
together with mechanisms for simulating surveillance data. With the pack-
age at hand, comparisons like the one described by Hutwagner et al. (2005)
should be easy to conduct.

The purpose of this document is to illustrate the basic functionality of
the package with R-code examples. Section 2 contains a description of the
data format used to store surveillance data, mentions the built-in datasets
and illustrates how to create new datasets by simulation. Section 3 contains
a short description of how to use the surveillance algorithms and illustrate
the results. Further information on the individual functions can be found in
the on-line documentation of the package, which is also provided in printed
form as an Appendix of this document.

2 Surveillance Data

Denote by {yt ; t = 1, . . . , n} the time series of counts representing the sur-
veillance data. Because such data typically are collected on a weekly basis,
we shall also use the alternative notation {yi:j} with j = {1, . . . , 52} being
the week number in year i = {−b, . . . ,−1, 0}. That way the years are in-
dexed such that most current year has index zero. For evaluation of the
outbreak detection algorithms it is also possible for each week to store – if
known – whether there was an outbreak that week. The resulting multivari-
ate series {(yt, xt) ; t = 1, . . . , n} is in surveillance given by an object of
class disProg (disease progress), which is basically a list containing two
vectors: the observed number of counts and a boolean vector state indicat-
ing whether there was an outbreak that week. A number of time series are
contained in the data directory, mainly originating from the SurvStat@RKI
database at http://www3.rki.de/SurvStat/ maintained by the Robert Koch
Institute, Germany (Robert Koch-Institut, 2004). For example the object
k1 describes Kryptosporidosis surveillance data for the German federal state
Baden-Württemberg 2001-2005. The peak in 2001 is due to an outbreak
of Kryptosporidosis among a group of army-soldiers in boot-camp (Robert
Koch Institute, 2001). In surveillance the readData function is used to
bring the time series on disProg form. The SurvStat@RKI database at
http://www3.rki.de/SurvStat/ maintained by the Robert Koch Institute,
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Germany, uses a 53 weeks a year format; therefore a conversion with cor-
rect53to52 is necessary.

> k1 <- readData("k1", week53to52 = TRUE)

> plot(k1, main = "Kryptosporidiosis in BW 2001-2005")

Kryptosporidiosis in BW 2001−2005
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For evaluation purposes it is also of interest to generate surveillance data
using simulation. The package contains functionality to generate surveillance
data containing point-source like outbreaks, for example with a Salmonella
serovar. The model is a Hidden Markov Model (HMM) where a binary
state Xt, t = 1, . . . , n, denotes whether there was an outbreak and Yt is the
number of observed counts, see Fig. 1.

X1 X2 X3
. . . Xn

Y1 Y2 Y3 Yn

Figure 1: The Hidden Markov Model

The state Xt is a homogenous Markov chain with the following transition
matrix

Xt\Xt+1 0 1
0 p 1− p
1 1− r r

Hence 1 − p is the probability to switch to an outbreak state and 1 − r is
the probability that Xt = 1 is followed by Xt+1 = 1. Furthermore, the
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observation Yt is Poisson-distributed with log-link mean depending on a
seasonal effect and time trend, i.e.

log µt = A · sin (ω · (t + ϕ)) + α + βt.

In case of an outbreak (Xt = 1) the mean increases with a value of K,
altogether

Yt ∼ Po(µt + K ·Xt). (1)

The model in (1) corresponds to a single-source, common-vehicle outbreak,
where the length of an outbreak is controlled by the transition probability
r. The daily numbers of outbreak-cases are simply independently Poisson
distributed with mean K. A physiologically better motivated alternative
could be to operate with a stochastic incubation time (e.g. log-normal or
gamma distributed) for each individual exposed to the source, which results
in a temporal diffusion of the peak. The advantage of (1) is that estimation
can be done by a generalized linear model (GLM) using Xt as covariate
and that it allows for an easy definition of a correctly identified outbreak:
each Xt = 1 has to be identified. More advanced setups would require
more involved definitions of an outbreak, e.g. as a connected series of time
instances, where the number of outbreak cases is greater than zero. Care is
then required in defining what a correctly identified outbreak for time-wise
overlapping outbreaks means.

In surveillance the function sim.pointSource is used to simulate such
a point-source epidemic; the result is an object of class disProg.

> sts <- sim.pointSource(p = 0.99, r = 0.5, length = 400,

+ A = 1, alpha = 1, beta = 0, phi = 0, frequency = 1,

+ state = NULL, K = 1.7)

> plot(sts)
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3 Surveillance Algorithms

Surveillance data often exhibit strong seasonality, therefore most surveillance
algorithms only use a set of so called reference values as basis for drawing
conclusions. Let y0:t be the number of cases of the current week (denoted
week t in year 0), b the number of years to go back in time and w the number
of weeks around t to include from those previous years. For the year zero
we use w0 as the number of previous weeks to include – typically w0 = w.
Altogether the set of reference values is thus defined to be

R(w,w0, b) =

 b⋃
i=1

w⋃
j=−w

y−i:t+j

 ∪

 −1⋃
k=−w0

y0:t+k


Note that the number of cases of the current week is not part of R(w,w0, b).

A surveillance algorithm is a procedure using the reference values to cre-
ate a prediction ŷ0:t for the current week. This prediction is then compared
with the observed y0:t: if the observed number of cases is much higher than
the predicted number, the current week is flagged for further investigations.
In order to do surveillance for time 0 : t an important concern is the choice
of b and w. Values as far back as time −b : t − w contribute to R(w,w0, b)
and thus have to exist in the observed time series.

Currently, we have implemented four different type of algorithms in
surveillance. The Centers for Disease Control and Prevention (CDC)
method (Stroup et al., 1989), the Communicable Disease Surveillance Cen-
tre (CDSC) method (Farrington et al., 1996), the method used at the Robert
Koch Institute (RKI), Germany (Altmann, 2003), and a Bayesian approach
documented in Riebler (2004). A detailed description of each method is be-
yond the scope of this note, but to give an idea of the framework the Bayesian
approach developed in Riebler (2004) is presented: Within a Bayesian frame-
work, quantiles of the predictive posterior distribution are used as a measure
for defining alarm thresholds.

The model assumes that the reference values are identically and inde-
pendently Poisson distributed with parameter λ and a Gamma-distribution
is used as Prior distribution for λ. The reference values are defined to be
RBayes = R(w,w0, b) = {y1, . . . , yn} and y0:t is the value we are trying to
predict. Thus, λ ∼ Ga(α, β) and yi|λ ∼ Po(λ), i = 1, . . . , n. Standard
derivations show that the posterior distribution is

λ|y1, . . . , yn ∼ Ga(α +
n∑

i=1

yi, β + n).

Computing the predictive distribution

f(y0:t|y1, . . . , yn) =

∞∫
0

f(y0:t|λ) f(λ|y1, . . . , yn) dλ
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we get the Poisson-Gamma-distribution

y0:t|y1, . . . , yn ∼ PoGa(α +
n∑

i=1

yi, β + n),

which is a generalization of the negative Binomial distribution, i.e.

y0:t|y1, . . . , yn ∼ NegBin(α +
n∑

i=1

yi,
β+n

β+n+1).

Using the Jeffrey’s Prior Ga(1
2 , 0) as non-informative Prior distribution for

λ the parameters of the negative Binomial distribution are

α +
n∑

i=1

yi =
1
2

+
∑

yi:j∈RBayes

yi:j and
β + n

β + n + 1
=

|RBayes|
|RBayes|+ 1

.

Using a quantile-parameter α, the smallest value yα is computed, so that

P (y ≤ yα) ≥ 1− α.

Now
A0:t = I(y0:t ≥ yα),

i.e. if y0:t ≥ yα the current week is flagged as an alarm. As an example, the
Bayes1 method uses the last six weeks as reference values, i.e. R(w,w0, b) =
(6, 6, 0), and is applied to the k1 dataset with α = 0.01 as follows.

> k1.b660 <- algo.bayes(k1, control = list(range = 27:192,

+ b = 0, w = 6, alpha = 0.01))

> plot(k1.b660, disease = "k1", firstweek = 1, startyear = 2001)
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Several extensions of this simple Bayesian approach are imaginable, for
example the inane over-dispersion of the data could be modeled by using
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a negative-binomial distribution, time trends and mechanisms to correct
for past outbreaks could be integrated, but all at the cost of non-standard
inference for the predictive distribution. Here simulation based methods like
Markov Chain Monte Carlo or heuristic approximations have to be used to
obtain the required alarm thresholds.

In general, the surveillance package makes it easy to add additional
algorithms – also those not based on reference values – by using the existing
implementations as starting point.

The following call uses the CDC and Farrington procedure on the simu-
lated time series sts from page 4. Note that the CDC procedure operates
with four-week aggregated data – to better compare the upper bound value,
the aggregated number of counts for each week are shown as circles in the
plot.

> par(mfcol = c(1, 2))

> cntrl <- list(range = 300:400, m = 1, w = 3, b = 5, alpha = 0.01)

> sts.cdc <- algo.cdc(sts, control = cntrl)

> sts.farrington <- algo.farrington(sts, control = cntrl)

> plot(sts.cdc, legend = F)

> plot(sts.farrington, legend = F)
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Typically, one is interested in evaluating the performance of the various
surveillance algorithms. An easy way is to look at the sensitivity and speci-
ficity of the procedure – a correct identification of an outbreak is defined as
follows: if the algorithm raises an alarm for time t, i.e. At = 1 and Xt = 1 we
have a correct classification, if At = 1 and Xt = 0 we have a false-positive,
etc. In case of more involved outbreak models, where an outbreak lasts for
more than one week, a correct identification could be if at least one of the
outbreak weeks is correctly identified, see e.g. Hutwagner et al. (2005).

To compute various performance scores the function algo.quality can
be used on a SurvRes object.

> print(algo.quality(k1.b660))
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TP FP TN FN Sens Spec dist mlag
[1,] 2 10 154 0 1 0.9390244 0.06097561 0

This computes the number of false positives, true negatives, false negatives,
the sensitivity and the specificity. Furthermore, dist is defined as√

(Spec− 1)2 + (Sens− 1)2,

that is the distance to the optimal point (1, 1), which serves as a heuristic
way of combining sensitivity and specificity into a single score. Of course,
weighted versions are also imaginable. Finally, lag is the average number
of weeks between the first of a consecutive number of Xt = 1’s (i.e. an
outbreak) and the first alarm raised by the algorithm.

To compare the results of several algorithms on a single time series we
declare a list of control objects – each containing the name and settings of
the algorithm we want to apply to the data.

> control = list(list(funcName = "rki1"), list(funcName = "rki2"),

+ list(funcName = "rki3"), list(funcName = "bayes1"),

+ list(funcName = "bayes2"), list(funcName = "bayes3"),

+ list(funcName = "cdc", alpha = 0.05), list(funcName = "farrington",

+ alpha = 0.05))

> control <- lapply(control, function(ctrl) {

+ ctrl$range <- 300:400

+ return(ctrl)

+ })

In the above, rki1, rki2 and rki3 are three methods with reference values
Rrki1(6, 6, 0), Rrki2(6, 6, 1) and Rrki3(4, 0, 2) all called with α = 0.05. The
methods bayes1-bayes3 is the Bayesian algorithm using the same setup of
reference values. The CDC Method is special, since it operates on aggregated
four-week blocks. To make everything comparable a common α = 0.05 level
is used for all algorithms. All algorithms in control are applied to sts
using:

> algo.compare(algo.call(sts, control = control))

TP FP TN FN sens spec dist mlag
rki(6,6,0) 1 7 93 0 1 0.93 0.07 0
rki(6,6,1) 1 1 99 0 1 0.99 0.01 0
rki(4,0,2) 1 1 99 0 1 0.99 0.01 0
bayes(6,6,0) 1 13 87 0 1 0.87 0.13 0
bayes(6,6,1) 1 10 90 0 1 0.9 0.1 0
bayes(4,0,2) 1 7 93 0 1 0.93 0.07 0
cdc(4*,0,5) 1 4 96 0 1 0.96 0.04 0
farrington(3,0,5) 1 3 97 0 1 0.97 0.03 0
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A test on a set of time series can be done as follows. Firstly, a list
containing 10 simulated time series is created. Secondly, all the algorithms
specified in the control object are applied to each series. Finally the results
for the 10 series are combined in one result matrix.

> ten <- lapply(1:10, function(x) {

+ sim.pointSource(p = 0.975, r = 0.5, length = 400,

+ A = 1, alpha = 1, beta = 0, phi = 0, frequency = 1,

+ state = NULL, K = 1.7)

+ })

> ten.surv <- lapply(ten, function(ts) {

+ algo.compare(algo.call(ts, control = control))

+ })

> algo.summary(ten.surv)

TP FP TN FN sens spec dist mlag
rki(6,6,0) 31 25 941 13 0.70 0.97 0.30 1.82
rki(6,6,1) 35 11 955 9 0.80 0.99 0.20 1.90
rki(4,0,2) 37 5 961 7 0.84 0.99 0.16 1.90
bayes(6,6,0) 35 86 880 9 0.80 0.91 0.22 0.67
bayes(6,6,1) 40 52 914 4 0.91 0.95 0.11 0.35
bayes(4,0,2) 42 46 920 2 0.95 0.95 0.07 1.00
cdc(4*,0,5) 23 30 936 21 0.52 0.97 0.48 8.90
farrington(3,0,5) 29 12 954 15 0.66 0.99 0.34 4.79

A similar procedure can be applied when evaluating the 14 surveillance
series drawn from SurvStat@RKI (Robert Koch-Institut, 2004). A problem
is however, that the series after conversion to 52 weeks/year are of length 209
weeks. This is insufficient to apply e.g. the CDC algorithm. To conduct the
comparison on as large a dataset as possible the following trick is used: The
function enlargeData replicates the requested range and inserts it before
the original data, after which the evaluation can be done on all 209 values.

> range = (2 * 4 * 52) + 1:length(k1$observed)

> control <- lapply(control, function(cntrl) {

+ cntrl$range = range

+ return(cntrl)

+ })

> outbrks <- c("m1", "m2", "m3", "m4", "m5", "q1_nrwh",

+ "q2", "s1", "s2", "s3", "k1", "n1", "n2", "h1_nrwrp")

> outbrks <- lapply(outbrks, function(name) {

+ enlargeData(readData(name), range = 1:(4 * 52), times = 2)

+ })

> one.survstat.surv <- function(outbrk) {

+ algo.compare(algo.call(outbrk, control = control))

+ }

9



> algo.summary(lapply(outbrks, one.survstat.surv))

TP FP TN FN sens spec dist mlag
rki(6,6,0) 38 62 2646 180 0.17 0.98 0.83 5.43
rki(6,6,1) 65 83 2625 153 0.30 0.97 0.70 5.57
rki(4,0,2) 80 106 2602 138 0.37 0.96 0.63 5.43
bayes(6,6,0) 61 206 2502 157 0.28 0.92 0.72 1.71
bayes(6,6,1) 123 968 1740 95 0.56 0.64 0.56 1.36
bayes(4,0,2) 162 920 1788 56 0.74 0.66 0.43 1.36
cdc(4*,0,5) 65 94 2614 153 0.30 0.97 0.70 7.14
farrington(3,0,5) 25 26 2682 193 0.11 0.99 0.89 8.21

In both this study and the earlier simulation study the Bayesian approach
seems to do quite well. However, the extent of the comparisons do not make
allowance for any more supported statements. Consult the work of Riebler
(2004) for a more thorough comparision using simulation studies.

4 Discussion and Future work

Many extensions and additions are imaginable to improve the package. For
now, the package is intended as an academic tool providing a test-bench
for integrating new surveillance algorithms. Because all algorithms are im-
plemented in R, performance has not been an issue. Especially the current
implementation of the Farrington Procedure is rather slow and would benefit
from an optimization possible with fragments written in C.

One important improvement would be to provide more involved mech-
anisms for the simulation of epidemics. In particular it would be interest-
ing to include multi-day outbreaks originating from single-source exposure,
but with delay due to varying incubation time (Hutwagner et al., 2005)
or SEIR-like epidemics (Andersson and Britton, 2000). However, defining
what is meant by a correct outbreak identification, especially in the case of
overlapping outbreaks, creates new challenges which have to be met.

5 Acknowledgements

We are grateful to K. Stark and D. Altmann, RKI, Germany, for discussions
and information on the surveillance methods used by the RKI. Our thanks
to C. Lang, University of Munich, for his work on the R–implementation and
M. Kobl, T. Schuster and M. Rossman, University of Munich, for their initial
work on gathering the outbreak data from SurvStat@RKI. The research was
conducted with financial support from the Collaborative Research Centre
SFB 386 funded by the German research foundation (DFG).

10



References

Altmann, D. (2003). The Surveillance System of the Robert Koch Institute,
Germany. Personal Communication.

Andersson, H. and T. Britton (2000). Stochastic Epidemic Models and their
Statistical Analysis, Volume 151 of Springer Lectures Notes in Statistics.
Springer-Verlag.

Farrington, C. and N. Andrews (2003). Monitoring the Health of Popu-
lations, Chapter Outbreak Detection: Application to Infectious Disease
Surveillance, pp. 203–231. Oxford University Press.

Farrington, C., N. Andrews, A. Beale, and M. Catchpole (1996). A statistical
algorithm for the early detection of outbreaks of infectious disease. Journal
of the Royal Statistical Society, Series A 159, 547–563.

Hutwagner, L., T. Browne, G. Seeman, and A. Fleischhauer (2005). Com-
paring abberation detection methods with simulated data. Emerging In-
fectious Diseases 11, 314–316.

Riebler, A. (2004). Empirischer Vergleich von statistischen Methoden zur
Ausbruchserkennung bei Surveillance Daten. Bachelor’s thesis.

Robert Koch-Institut (2004). SurvStat@RKI.
http://www3.rki.de/SurvStat. Date of query: September 2004.

Robert Koch Institute (2001). Epidemiologisches Bulletin 39. Available from
http://www.rki.de.

Stroup, D., G. Williamson, J. Herndon, and J. Karon (1989). Detection
of aberrations in the occurence of notifiable diseases surveillance data.
Statistics in Medicine 8, 323–329.

11



Appendix: The package surveillance
July 18, 2005

Title Test-bench for outbreak detection algorithms in surveillance data

Version 0.9

Author Höhle, Lang, Riebler

Description A framework for the development and the evaluation of outbreak detection algorithms in
in routine collected public health surveillance data. Currently the package contains an
implementation of the procedures described in Stroup et. al (1989), Farrington et. al (1996), a
Bayesian approach and the method used at the Robert Koch Institute, Germany. The package
contains several real-world datasets and the ability to simulate outbreak data.

Maintainer Michael Höhle <hoehle@stat.uni-muenchen.de>

License GPL version 2 (http://www.gnu.org/licenses/gpl.html)

URL http://www.stat.uni-muenchen.de/~hoehle/software/surveillance

R topics documented:
CIdata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
algo.bayes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
algo.call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
algo.cdc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
algo.compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
algo.farrington . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
algo.farrington.assign.weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
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CIdata Confidence-Interval for the Mean of the Poisson Distribution

Description

In the first column the mean from 0 to 20 is shown, In the second the lower and in the third the
upper value of the 95 percent confidence interval. These intervals are used in the RKI Algorithms.

Usage

data(CIdata)

Format

A data frame with header.

Source

L. Sachs. Angewandte Statistik. Springer Verlag, 7. Auflage, S.446, 1991

See Also

algo.rki

Examples

require(surveillance)
data(CIdata)
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algo.bayes The Bayes System

Description

Evaluation of timepoints with the Bayes subsystem 1,2 or 3 or a self defined Bayes subsystem.

Usage

algo.bayesLatestTimepoint(disProgObj, timePoint = NULL,
control = list(b = 0, w = 6, actY = TRUE,alpha=0.05))

algo.bayes(disProgObj, control = list(range = range,
b = 0, w = 6, actY = TRUE,alpha=0.05))

algo.bayes1(disProgObj, control = list(range = range))
algo.bayes2(disProgObj, control = list(range = range))
algo.bayes3(disProgObj, control = list(range = range))

Arguments

disProgObj object of class disProg (including the observed and the state chain).

timePoint time point which shoud be evaluated in algo.rkiLatestTimepoint. The
default is to use the latest timepoint.

control control object: range determines the desired timepoints which should be eval-
uated, b describes the number of years to go back for the reference values, w is
the half window width for the reference values around the appropriate timepoint
and actY is a boolean to decide if the year of timePoint also spend w refer-
ence values of the past. The parameter alpha is the 1− alpha-quantile to use
in order to calculate the upper threshold. As default b, w, actY are set for the
Bayes 1 system with alpha=0.05.

Details

Using the reference values for calculating an upper limit (threshold) via the negative binomial distri-
bution, alarm is given if the actual value is bigger or equal than this threshold. algo.bayes calls
algo.bayesLatestTimepoint for the values specified in range and for the system specified
in control. algo.bayes1, algo.bayes2, algo.bayes3 call algo.bayesLatestTimepoint
for the values specified in range for the Bayes 1 system, Bayes 2 system or Bayes 3 system.

• "Bayes 1" reference values from 6 weeks ago and alpha=0.05 fixed.

• "Bayes 2" reference values from 6 weeks ago and 13 weeks of the year ago (symmetrical
around the comparable week). Alpha is fixed at 0.05.

• "Bayes 3" 18 reference values. 9 from the year ago and 9 from two years ago (also sym-
metrical around the comparable week). Alpha is fixed at 0.05.

Value

survRes algo.bayesLatestTimepoint returns a list of class survRes (surveil-
lance result), which includes the alarm value for recognizing an outbreak (1 for
alarm, 0 for no alarm), the threshold value for recognizing the alarm and the in-
put object of class disProg. algo.bayes gives a list of class survRes which
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includes the vector of alarm values for every timepoint in range and the vector
of threshold values for every timepoint in range for the system specified by b,
w and actY, the range and the input object of class disProg. algo.bayes1
returns the same for the Bayes 1 system, algo.bayes2 for the Bayes 2 system
and algo.bayes3 for the Bayes 3 system.

Author(s)

M. Höhle, A. Riebler, C. Lang

Source

Riebler, A. (2004). Empirischer Vergleich von statistischen Methoden zur Ausbruchserkennung bei
Surveillance Daten. Bachelor’s thesis.

See Also

algo.rkiLatestTimepoint and algo.rki for the RKI system.

Examples

disProgObj <- sim.pointSource(p = 0.99, r = 0.5, length = 208, A = 1,
alpha = 1, beta = 0, phi = 0,
frequency = 1, state = NULL, K = 1.7)

# Test for bayes 1 the latest timepoint
algo.bayesLatestTimepoint(disProgObj)

# Test week 200 to 208 for outbreaks with a selfdefined bayes
algo.bayes(disProgObj, control = list(range = 200:208, b = 1,

w = 5, actY = TRUE,alpha=0.05))
# The same for bayes 1 to bayes 3
algo.bayes1(disProgObj, control = list(range = 200:208,alpha=0.05))
algo.bayes2(disProgObj, control = list(range = 200:208,alpha=0.05))
algo.bayes3(disProgObj, control = list(range = 200:208,alpha=0.05))

algo.call Query Transmission to Specified Surveillance Systems

Description

Transmission of a object of class disProg to the specified surveillance systems.

Usage

algo.call(disProgObj, control = list(
list(funcName = "rki1", range = range),
list(funcName = "rki", range = range,

b = 2, w = 4, actY = TRUE),
list(funcName = "rki", range = range,

b = 2, w = 5, actY = TRUE)))
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Arguments

disProgObj object of class disProg, which includes the state chain and the observed.

control specifies which surveillance systems should be used with their parameters. The
parameter funcName and range must be specified where funcName must be
the apropriate method function (without ’algo.’). range defines the timepoints
to be evaluated by the actual system. If control includes name this name is
used in the survRes Object as name.

Value
list of survRes Objects

generated by the specified surveillance systems.

See Also

algo.rki, algo.bayes, algo.farrington

Examples

# Create a test object
disProgObj <- sim.pointSource(p = 0.99, r = 0.5, length = 400, A = 1,

alpha = 1, beta = 0, phi = 0,
frequency = 1, state = NULL, K = 1.7)

# Let this object be tested from any methods in range = 200:400
range <- 200:400
survRes <- algo.call(disProgObj,

control = list(
list(funcName = "rki1", range = range),
list(funcName = "rki2", range = range),
list(funcName = "rki3", range = range),
list(funcName = "rki", range = range,

b = 3, w = 2, actY = FALSE),
list(funcName = "rki", range = range,

b = 2, w = 9, actY = TRUE),
list(funcName = "bayes1", range = range),
list(funcName = "bayes2", range = range),
list(funcName = "bayes3", range = range),
list(funcName = "bayes", name = "myBayes",

range = range, b = 1, w = 5, actY = TRUE,alpha=0.05)
) )

# this are some survResObjects
survRes$rki1
survRes$myBayes

algo.cdc The CDC Algorithm

Description

Surveillance using the CDC Algorithm
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Usage

algo.cdcLatestTimepoint(disProgObj, timePoint = NULL,
control = list(b = 5, m = 1)

algo.cdc(disProgObj, control = list(range = range,alpha = 0.025))

Arguments

disProgObj object of class disProg (including the observed and the state chain).

timePoint time point which shoud be evaluated in algo.cdcLatestTimepoint. The
default is to use the latest timepoint.

control control object: range determines the desired timepoints which should be eval-
uated, b describes the number of years to go back for the reference values, m is
the half window width for the reference values around the appropriate timepoint.
The standard definition is b=5 and n=1.

Details

Using the reference values for calculating an upper limit, alarm is given if the actual value is big-
ger than a computed threshold. algo.cdc calls algo.cdcLatestTimepoint for the values
specified in range and for the system specified in control. The threshold is calculated by the
predictive version, i.e.

mean(x) + zα/2 ∗ sd(x) ∗
√

(1 + 1/k),

which corresponds to Equation 8-1 in the Farrington and Andrews chapter. Note that an aggregation
into 4-week blocks occurs and m denotes number of 4-week blocks (months) to use as reference
values.

Value

survRes algo.cdcLatestTimepoint returns a list of class survRes (surveillance
result), which includes the alarm value (alarm = 1, no alarm = 0) for recognizing
an outbreak, the threshold value for recognizing the alarm and the input object
of class disProg.
algo.cdc gives a list of class survRes which includes the vector of alarm
values for every timepoint in range, the vector of threshold values for every
timepoint in range for the system specified by b, w, the range and the input
object of class disProg.

Author(s)

M. Höhle

Source

Stroup, D., G. Williamson, J. Herndon, and J. Karon (1989). Detection of aberrations in the oc-
curence of notifiable diseases surveillance data. Statistics in Medicine 8, 323-329.

Farrington, C. and N. Andrews (2003). Monitoring the Health of Populations, Chapter Outbreak
Detection: Application to Infectious Disease Surveillance, pp. 203-231. Oxford University Press.

See Also

algo.rkiLatestTimepoint,algo.bayesLatestTimepoint and algo.bayes for the
Bayes system.
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Examples

# Create a test object
disProgObj <- sim.pointSource(p = 0.99, r = 0.5, length = 500,

A = 1,alpha = 1, beta = 0, phi = 0,
frequency = 1, state = NULL, K = 1.7)

# Test week 200 to 208 for outbreaks with a selfdefined cdc
algo.cdc(disProgObj, control = list(range = 400:500,alpha=0.025))

algo.compare Comparison of Specified Surveillance Systems using Quality Values

Description

Comparison of specified surveillance systems using quality values.

Usage

algo.compare(survResList)

Arguments

survResList a list of survRes objects to compare via quality values.

Value

matrix Matrix with values from algo.quality, i.e. quality values for every surveil-
lance system found in survResults.

See Also

algo.quality

Examples

# Create a test object
disProgObj <- sim.pointSource(p = 0.99, r = 0.5, length = 400,

A = 1, alpha = 1, beta = 0, phi = 0,
frequency = 1, state = NULL, K = 1.7)

# Let this object be tested from any methods in range = 200:400
range <- 200:400
survRes <- algo.call(disProgObj,

control = list(
list(funcName = "rki1", range = range),
list(funcName = "rki2", range = range),
list(funcName = "rki3", range = range),
list(funcName = "rki", range = range,

b = 3, w = 2, actY = FALSE),
list(funcName = "rki", range = range,

b = 2, w = 9, actY = TRUE),
list(funcName = "bayes1", range = range),
list(funcName = "bayes2", range = range),
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list(funcName = "bayes3", range = range),
list(funcName = "bayes", name = "myBayes",
range = range, b = 1, w = 5, actY = TRUE,alpha=0.05)

) )
algo.compare(survRes)

algo.farrington Surveillance for a time series using the Farrington procedure.

Description

The function takes range values of the time series counts and for each uses a GLM to predict
the number of counts according to the procedure by Farrington et. al. This is then compared to the
observed number of counts and in case an exceedance of the confidence interval calculated is seen
an alarm is raised.

Usage

algo.farrington(disProgObj, control=list(range=NULL, b=3, w=3,
reweight=TRUE,verbose=FALSE,alpha=0.01))

Arguments

disProgObj object of class disProgObj (including the observed and the state chain)

control Control object

range Specifies the index of all timepoints which should be tested. If range is
NULL the maximum number of possible weeks is used.

b how many years back in time to include when forming the base counts.
w windows size, i.e. number of weeks to include before and after the current

week
reweight Boolean specifying whether to perform reweight step
verbose show extra debugging information

alpha An approximate (two-sided) (1− α)% confidence interval is calculated

Details

The following steps are perfomed according to the Farrington et. al. paper.

1. fit of the initial model and initial estimation of mean and overdispersion.

2. calculation of the weights omega (correction for past outbreaks)

3. refitting of the model

4. revised estimation of overdispersion

5. rescaled model

6. omission of the trend, if it is not significant

7. repetition of the whole procedure

8. calculation of the threshold value

9. computation of exceedance score
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Value

An object of class SurvRes

Author(s)

M. Höhle

Source

A statistical algorithm for the early detection of outbreaks of infectious disease, Farrington, C.P.,
Andrews, N.J, Beale A.D. and Catchpole, M.A. (1996). , J. R. Statist. Soc. A, 159, 547-563.

See Also

algo.farrington.fitGLM,algo.farrington.threshold

Examples

#Read Salmonella Agona data
library(xtable)
salmonella.agona <- readData("salmonella.agona",week53to52=FALSE)

#Do surveillance for the last 100 weeks.
n <- length(salmonella.agona$observed)
#Set control parameters.
control <- list(b=4,w=3,range=(n-100):n,reweight=TRUE, verbose=FALSE,alpha=0.01)
res <- algo.farrington(salmonella.agona,control=control)
#Plot the result.
plot(res,disease="Salmonella Agona",method="Farrington")

algo.farrington.assign.weights
Assign weights to base counts

Description

Weights are assigned according to the Anscombe residuals

Usage

algo.farrington.assign.weights(s)

Arguments

s Vector of standardized Anscombe residuals

Value

Weights according to the residuals

See Also

See Also as anscombe.residuals
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algo.farrington.fitGLM
Fit the Poisson GLM of the Farrington procedure for a single time
point

Description

The function fits a Poisson regression model (GLM) with mean predictor

log µt = α + βwt

as specified by the Farrington procedure. That way we are able to predict the value c0. If requested
Anscombe residuals are computed based on an initial fit and a 2nd fit is made using weights, where
base counts suspected to be caused by earlier outbreaks are downweighted.

Usage

algo.farrington.fitGLM(response, wtime, timeTrend = TRUE,
reweight = TRUE)

Arguments

response The vector of observed base counts

wtime Vector of week numbers corresponding to response

timeTrend Boolean whether to fit the βt or not

reweight Fit twice – 2nd time with Anscombe residuals

Details

Compute weights from an initial fit and rescale using Anscombe based residuals as described in the
anscombe.residuals function.

Value

An object of class GLM with additional fields wtime, response and phi

See Also

anscombe.residuals
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algo.farrington.threshold
Threshold computations using a two sided confidence interval

Description

Depending on the current transformation h(y) = {y,
√

y, y2/3},

V (h(y0)− h(µ0)) = V (h(y0)) + V (h(µ0))

is used to compute a prediction interval. The prediction variance consists of a component due to the
variance of having a single observation and a prediction variance.

Usage

algo.farrington.threshold <- function(pred,phi,alpha=0.01,
skewness.transform="none")

Arguments

pred A GLM prediction object

phi Current overdispersion (superflous?)

alpha Quantile level in Gaussian based CI, i.e. an (1 − α)% confidence interval is
computed.

skeness.transform
Skewness correction, i.e. one of "none", "sqrt", or "2/3".

Value

vector Vector of length 2 with lower and upper bounds of an (1 − α)% confidence
interval.

algo.quality Computation of Quality Values for a Surveillance System Result

Description

Computation of the quality values for a surveillance System output.

Usage

algo.quality(survResObj, penalty = 20)

Arguments

survResObj object of class survRes, which includes the state chain and the computed alarm
chain

penalty the maximal penalty for the lag
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Details

The lag is defined as follows: In the state chain just the beginnings of an outbreak chain (outbreaks
directly following each other) are considered. In the alarm chain, the range from the beginning of an
outbreak until min(nextoutbreakbeginning,penalty) timepoints is considered. The penalty
timepoints were chosen, to provide an upper bound on the penalty for not discovering an outbreak.
Now the difference between the first alarm by the system and the defined beginning is denoted “the
lag” Additionally outbreaks found by the system are not punished. At the end, the mean of the lags
for every outbreak chain is returned as summary lag.

Value

list of quality values
• TP: Number of correct found outbreaks.

• FP: Number of false found outbreaks.

• TN: Number of correct found non outbreaks.

• FN: Number of false found non outbreaks.

• sens: True positive rate, meaning TP/(FN + TP).

• spec: True negative rate, meaning TN/(TN + FP).

• dist: Euclidean distance between (1-spec, sens) to (0,1).

• lag: Lag of the outbreak recognizing by the system.

See Also

algo.compare

Examples

# Create a test object
disProgObj <- sim.pointSource(p = 0.99, r = 0.5, length = 200, A = 1,

alpha = 1, beta = 0, phi = 0,
frequency = 1, state = NULL, K = 1.7)

# Let this object be tested from rki1
survResObj <- algo.rki1(disProgObj, control = list(range = 50:200))

# Compute the quality values
algo.quality(survResObj)

algo.rki The RKI System

Description

Evaluation of timepoints with the RKI subsystems 1, 2 or 3 or a self defined RKI subsystem.
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Usage

algo.rkiLatestTimepoint(disProgObj, timePoint = NULL,
control = list(b = 2, w = 4, actY = FALSE))

algo.rki(disProgObj, control = list(range = range,
b = 2, w = 4, actY = FALSE))

algo.rki1(disProgObj, control = list(range = range))
algo.rki2(disProgObj, control = list(range = range))
algo.rki3(disProgObj, control = list(range = range))

Arguments

disProgObj object of class disProg (including the observed and the state chain).

timePoint time point which shoud be evaluated in algo.rkiLatestTimepoint. The
default is to use the latest timepoint.

control control object: range determines the desired timepoints which should be eval-
uated, b describes the number of years to go back for the reference values, w
is the half window width for the reference values around the appropriate time-
point and actY is a boolean to decide if the year of timePoint also spend w
reference values of the past. As default b, w, actY are set for the RKI 3 system.

Details

Using the reference values for calculating an upper limit (threshold), alarm is given if the actual
value is bigger than a computed threshold. algo.rki calls algo.rkiLatestTimepoint
for the values specified in range and for the system specified in control. algo.rki1 calls
algo.rkiLatestTimepoint for the values specified in range for the RKI 1 system. algo.rki2
calls algo.rkiLatestTimepoint for the values specified in range for the RKI 2 system.
algo.rki3 calls algo.rkiLatestTimepoint for the values specified in range for the
RKI 3 system.

• "RKI 1" reference values from 6 weeks ago

• "RKI 2" reference values from 6 weeks ago and 13 weeks of the year ago (symmetrical
around the comparable week).

• "RKI 3" 18 reference values. 9 from the year ago and 9 from two years ago (also symmet-
rical around the comparable week).

Value

survRes algo.rkiLatestTimepoint returns a list of class survRes (surveillance
result), which includes the alarm value (alarm = 1, no alarm = 0) for recognizing
an outbreak, the threshold value for recognizing the alarm and the input object
of class disProg.
algo.rki gives a list of class survRes which includes the vector of alarm
values for every timepoint in range, the vector of threshold values for every
timepoint in range for the system specified by b, w and actY, the range and
the input object of class disProg. algo.rki1 returns the same for the RKI
1 system, algo.rki2 for the RKI 2 system and algo.rki3 for the RKI 3
system.

Author(s)

M. Höhle, A. Riebler, Christian Lang
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See Also

algo.bayesLatestTimepoint and algo.bayes for the Bayes system.

Examples

# Create a test object
disProgObj <- sim.pointSource(p = 0.99, r = 0.5, length = 208, A = 1,

alpha = 1, beta = 0, phi = 0,
frequency = 1, state = NULL, K = 1.7)

# Test week 200 to 208 for outbreaks with a selfdefined rki
algo.rki(disProgObj, control = list(range = 200:208, b = 1,

w = 5, actY = TRUE))
# The same for rki 1 to rki 3
algo.rki1(disProgObj, control = list(range = 200:208))
algo.rki2(disProgObj, control = list(range = 200:208))
algo.rki3(disProgObj, control = list(range = 200:208))

# Test for rki 1 the latest timepoint
algo.rkiLatestTimepoint(disProgObj)

algo.summary Summary Table Generation for Several Disease Chains

Description

Summary table generation for several disease chains.

Usage

algo.summary(compMatrices)

Arguments

compMatrices list of matrices constructed by algo.compare.

Details

As lag the mean of all single lags is returned. TP values, FN values, TN values and FP values are
summed up. dist, sens and spec are new computed on the basis of the new TP value, FN value,
TN value and FP value.

Value

matrix summing up the singular input matrices

See Also

algo.compare, algo.quality
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Examples

# Create a test object
disProgObj1 <- sim.pointSource(p = 0.99, r = 0.5, length = 400,

A = 1, alpha = 1, beta = 0, phi = 0,
frequency = 1, state = NULL, K = 1.7)

disProgObj2 <- sim.pointSource(p = 0.99, r = 0.5, length = 400,
A = 1, alpha = 1, beta = 0, phi = 0,
frequency = 1, state = NULL, K = 5)

disProgObj3 <- sim.pointSource(p = 0.99, r = 0.5, length = 400,
A = 1, alpha = 1, beta = 0, phi = 0,
frequency = 1, state = NULL, K = 17)

# Let this object be tested from any methods in range = 200:400
range <- 200:400
control <- list( list(funcName = "rki1", range = range),

list(funcName = "rki2", range = range),
list(funcName = "rki3", range = range)

)

compMatrix1 <- algo.compare(algo.call(disProgObj1, control=control))
compMatrix2 <- algo.compare(algo.call(disProgObj2, control=control))
compMatrix3 <- algo.compare(algo.call(disProgObj3, control=control))

algo.summary( list(a=compMatrix1, b=compMatrix2, c=compMatrix3) )

anscombe.residuals Compute Anscombe residuals

Description

The residuals of m are transformed to form Anscombe residuals. which makes them approximately
standard normal distributed.

Usage

anscombe.residuals(m, phi)

Arguments

m m is a glm object of the fit

phi phi is the current estimated over-dispersion

Value

Standardized Anscombe residuals of m

References

McCullagh & Nelder, Generalized Linear Models, 1989
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campylobacter Weekly Campylobacter Reports in Germany 2001 - (mid) 2003

Description

Reported number of campylobacter cases for each "Kreis" in Germany over the period 1 January
2001 (IfSG) to June 2003. The data have been provided to us by the Robert Koch Institute (RKI),
Berlin, Germany.

Usage

data(campylobacter)

Format

A data frame with 130 weeks (rows) for all 439 Kreise (cols). Each entry is the number of reports
in the Kreis during that week. See kreise.txt for information about the 439 kreise.

1001 Digit code for the 1st kreis, i.e. SK Flensburg.

... ...

16077 Digit Code for the last kreis, i.e. LK Altenburger Land

Source

Data have kindly been provided to us by the Robert Koch-Institut, Germany, 2003.

Examples

data(campylobacter)
#Show the number of cases for entire Germany
plot(apply(campylobacter,MARGIN=1,sum),type="l",ylab="reports",xlab="week no")

compMatrix.writeTable
Latex Table Generation

Description

generates a latex table

Usage

compMatrix.writeTable(compMatrix)

Arguments

compMatrix Matrix which includes quality values for every surveillance system.

Value

xtable Latex table of the entered matrix.
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Author(s)

M. Höhle, A. Riebler, C. Lang

Examples

### First creates some tables ###

# Create a test object
disProgObj1 <- sim.pointSource(p = 0.99, r = 0.5, length = 400,

A = 1, alpha = 1, beta = 0, phi = 0,
frequency = 1, state = NULL, K = 1.7)

disProgObj2 <- sim.pointSource(p = 0.99, r = 0.5, length = 400,
A = 1, alpha = 1, beta = 0, phi = 0,
frequency = 1, state = NULL, K = 5)

disProgObj3 <- sim.pointSource(p = 0.99, r = 0.5, length = 400,
A = 1, alpha = 1, beta = 0, phi = 0,
frequency = 1, state = NULL, K = 17)

# Let this object be tested from any methods in range = 200:400
range <- 200:400
control <- list( list(funcName = "rki1", range = range),

list(funcName = "rki2", range = range),
list(funcName = "rki3", range = range)

)

### This are single compMatrices
compMatrix1 <- algo.compare(algo.call(disProgObj1, control=control))
compMatrix2 <- algo.compare(algo.call(disProgObj2, control=control))
compMatrix3 <- algo.compare(algo.call(disProgObj3, control=control))

### This is a summary compMatrix
sumCompMatrix <- algo.summary( list(a=compMatrix1,

b=compMatrix2, c=compMatrix3) )

### Now show the latextable from the single compMatrix compMatrix1
compMatrix.writeTable(compMatrix1)

### Now show the latextable from the summary compMatrix
compMatrix.writeTable(sumCompMatrix)

correct53to52 Data Correction from 53 to 52 weeks

Description

Correction of data from 53 to 52 weeks a year

Usage

correct53to52(disProgObj, firstweek = 1)
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Arguments

disProgObj object of class disProg (including the observed and the state chain).

firstweek the number of the first week in a year, default = 1 (if it starts with the beginning
of a year). Necessary, because the infected of week 53 and the infected of week
52 must be added.

Details

readData reads data with 53 weeks a year, but normally one year is said to have 52 weeks.

Value

disProg a object disProg (disease progress) including a list of the observed and the
state chain (corrected to 52 weeks instead of 53 weeks a year)

Author(s)

Michael Höhle <http://www.stat.uni-muenchen.de/~hoehle>, Andrea Riebler, Chris-
tian Lang

See Also

readData

Examples

#This call correct53to52 automatically
obj <- readData("k1",week53to52=TRUE)
correct53to52(obj) # first entry is the first week of the year

obj <- readData("n1",week53to52=FALSE)
correct53to52(obj, firstweek = 5) # now it's assumed that the fifth

# entry is the first week of the year

enlargeData Data Enlargement

Description

Enlargement of data which is too short for a surveillance method to evaluate.

Usage

enlargeData(disProgObj, range = 1:156, times = 1)

Arguments

disProgObj object of class disProg (including the observed and the state chain).

range range of already existing data (state, observed) which should be used for
enlargement.

times number of times to enlarge.
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Details

observed and state are enlarged in the way that the part range of observed and state
is repeated times times in front of observed and state. Sometimes it’s useful to care for the
cyclic property of the timeseries, so as default we enlarge observed and state once with the first
three existing years, assuming a year has 52 weeks.

Value

disProg a object disProg (disease progress) including a list of the observed and the
state chain (extended with cyclic data generation)

Author(s)

Michael Höhle <http://www.stat.uni-muenchen.de/~hoehle>, Andrea Riebler, Chris-
tian Lang

See Also

readData

Examples

obj <- readData("k1")

enlargeData(obj) # enlarge once with part 1:156
enlargeData(obj, 33:36, 10) # enlarge 10 times with part 33:36

m1 RKI SurvStat Data

Description

14 datasets for different diseases beginning in 2001 to the 3rd Quarter of 2004 including their
defined outbreaks.

• m1 ’Masern’ in the ’Landkreis Nordfriesland’ (Germany, Schleswig-Holstein)
• m2 ’Masern’ in the ’Stadt- und Landkreis Coburg’ (Germany, Bayern)
• m3 ’Masern’ in the ’Kreis Leer’ (Germany, Niedersachsen)
• m4 ’Masern’ in the ’Stadt- und Landkreis Aachen’ (Germany, Nordrhein-Westfalen)
• m5 ’Masern’ in the ’Stadt Verden’ (Germany, Niedersachsen)
• q1_nrwh ’Q-Fieber’ in the ’Hochsauerlandkreis’ (Germany, Westfalen) and in the ’Landkreis

Waldeck-Frankenberg’ (Germany, Hessen)
• q2 ’Q-Fieber’ in ’München’ (Germany, Bayern)
• s1 ’Salmonella Oranienburg’ in Germany
• s2 ’Salmonella Agona’ in 12 ’Bundesländern’ of Germany
• s3 ’Salmonella Anatum’ in Germany
• k1 ’Kryptosporidiose’ in Germany, ’Baden-Württemberg’
• n1 ’Norovirus’ in ’Stadtkreis Berlin Mitte’ (Germany, Berlin)
• n2 ’Norovirus’ in ’Torgau-Oschatz’ (Germany, Sachsen)
• h1_nrwrp ’Hepatitis A’ in ’Oberbergischer Kreis, Olpe, Rhein-Sieg-kreis’ (Germany, Nordrhein-

Westfalen) and ’Siegenwittgenstein Altenkirchen’ (Germany, Rheinland-Pfalz)
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Usage

data(m1)

Format

A data frame with 212 observations on the following 3 variables.

week weeknumber

observed Number of counts in the corresponding week

state Boolean whether there was an outbreak.

Source

Robert Koch-Institut: SurvStat: http://www3.rki.de/SurvStat; m1 and m3 were queried
on 10 November 2004. The rest during September 2004.

See Also

readData

Examples

require(surveillance)
disProgObj <- readData("k1")

disProgObj <- correct53to52(disProgObj)
survResObj <- algo.rki1(disProgObj, control=list(range=27:192))
plot(survResObj, "RKI 1", "k1", firstweek=27, startyear=2002)

makePlot Plot Generation

Description

Just a test method.

Usage

makePlot(outputpath, data = "k1", method = "rki1",
name, disease, range = 157:339)

Arguments

outputpath path for the storage

data abbreviation of the disease-file

method method to be called

name name of the method

disease disease name

range range to plot
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Details

makePlot reads the data given in data using the function readData, and the data are corrected
to 52 weeks, enlarged using enlargeData and sendt to the surveillance system given in method.
The system result is plotted and stored in outputpath.

Author(s)

M. Höhle, A. Riebler, C. Lang

See Also

readData, correct53to52, enlargeData, algo.call, plot.survRes

Examples

makePlot("./", "k1", "rki2", "RKI 2", "Kryptosporidiose")

plot.disProg Plot Generation of the Observed and the defined Outbreak State of a
Timeseries

Description

Plotting of a disProg object.

Usage

plot.disProg(x, title = "", startyear = 2001, firstweek = 1, ...)

Arguments

x Object of class disProg

title Plot title

startyear Year to begin the axis labeling (the year where the oldest data come from)

firstweek Number of the first week of January in the first year (just for axis labeling
grounds)

... further arguments for the function matplot

Value

a plot showing the number of infected and the defined alarm status for a timeseries
created by simulation or given in data.

Author(s)

M. Höhle, A. Riebler, C. Lang
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Examples

# Plotting of simulated data
disProgObj <- sim.pointSource(p = 0.99, r = 0.5, length = 208,

A = 1, alpha = 1, beta = 0, phi = 0,
frequency = 1, state = NULL, K = 5)

# plot the simulated disease with the defined outbreaks
plot(disProgObj)
title <- "Number of Infected and Defined Outbreak Positions for Simulated Data"
plot(disProgObj, title = title)
plot(disProgObj, title = title,

startyear = 1999, firstweek = 13)
plot(disProgObj, title = title,

startyear = 1999, firstweek = 14)

plot.survRes Plot Generation

Description

Plotting of a survRes object.

Usage

plot.survRes(x, method="", disease="",
startyear = 2001, firstweek = 1, legend=TRUE, ...)

Arguments

x Object of class survRes

method Surveillance method to be used in title

disease Name of disease in title

startyear Year to begin the axis labeling (the year where the oldest data come from)

firstweek Number of the first week of January in the first year (just for axis labeling rea-
sons)

legend Boolean indicating whether to add a legend

... further arguments for the function matplot

Value

a plot showing the number of infected, the threshold for recognizing an outbreak, the
computed alarm status and the defined alarm status.

Author(s)

M. Höhle, A. Riebler, C. Lang
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Examples

# Plotting of simulated data
disProgObj <- sim.pointSource(p = 0.99, r = 0.5, length = 400,

A = 1, alpha = 1, beta = 0, phi = 0,
frequency = 1, state = NULL, K = 5)

# evaluate the timepoints defined by range using RKI 1
control <- list(list(funcName = "rki1", range = 200:400))
survResults <- algo.call(disProgObj, control = control)
# plot the result
plot(survResults[[1]], "RKI 1", "Simulation")
plot(survResults[[1]], "RKI 1", "Simulation",

firstweek = 13, startyear = 2002)
plot(survResults[[1]], "RKI 1", "Simulation", firstweek = 14)

print.algoQV Print quality value object

Description

Print a single qualitity value object in a nicely formatted way

Usage

print.algoQV <- function(algoQVObj)

Arguments

algoQV Quality Values object generated with quality

Examples

# Create a test object
disProgObj <- sim.pointSource(p = 0.99, r = 0.5, length = 200, A = 1,

alpha = 1, beta = 0, phi = 0,
frequency = 1, state = NULL, K = 1.7)

# Let this object be tested from rki1
survResObj <- algo.rki1(disProgObj, control = list(range = 50:200))

# Compute the quality values in a nice formatted way
algo.quality(survResObj)



readData 35

readData Reading of Disease Data

Description

Reading of disease data.

Usage

readData(abb,week53to52=TRUE,sysPath=TRUE)

Arguments

abb abbreviation of the diseasename.

week53to52 Boolean indicating whether to convert RKI 53 Weeks System to 52 weeks a year

sysPath Boolean, if TRUE then R automatically looks in the data directory of the surveil-
lance package.

Details

Value

disProg a object disProg (disease progress) including a list of the observed and the
state chain.

Author(s)

Michael Höhle, Andrea Riebler, Christian Lang

See Also

m1, m2, m3, m4, m5, q1_nrwh, q2, s1, s2, s3, k1, n1, n2, h1_nrwrp

Examples

readData("m5")
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salmonella.agona Salmonella Agona cases in the UK 1990-1995

Description

Reported number of cases of the Salmonella Agona serovar in the UK 1990-1995. Note however
that the counts do not correspond exactly to the ones used by Farrington et. al (1996).

Usage

data(salmonella.agona)

Format

A data frame with 312 observations on the following 2 variables.

week First four digits are the year, last two the week number within that year

observed Number of counts in the corresponding week

state Boolean whether there was an outbreak – dummy not implemented.

Source

A statistical algorithm for the early detection of outbreaks of infectious disease, Farrington, C.P.,
Andrews, N.J, Beale A.D. and Catchpole, M.A. (1996). , J. R. Statist. Soc. A, 159, 547-563.

Examples

data(salmonella.agona)
plot(salmonella.agona$observed,type="l",ylab="counts",xlab="")

sim.pointSource Generation of Simulated Point Source Epidemy

Description

Simulation of epidemies which were introduced by point sources. The basis of this proagramme is
a combination of a Hidden Markov Modell (to get random timepoints for outbreaks) and a simple
model (compare sim.seasonalNoise) to simulate the epidemy.

Usage

sim.pointSource(p = 0.99, r = 0.01, length = 400, A = 1,
alpha = 1, beta = 0, phi = 0, frequency = 1, state = NULL, K)
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Arguments

p probability to get a new epidemy at time i if there was one at time i-1, default
0.99.

r probability to get no new epidemy at time i if there was none at time i-1, default
0.01.

length number of weeks to model, default 400. length is ignored if state is given.
In this case the length of state is used.

A amplitude (range of sinus), default = 1.

alpha parameter to move along the y-axis (negative values not allowed) with alpha >
= A, default = 1.

beta regression coefficient, default = 0.

phi factor to create seasonal moves (moves the curve along the x-axis), default = 0.

frequency factor to determine the oscillation-frequency, default = 1.

state use a state chain to define the status at this timepoint (outbreak or not). If not
given a Markov chain is generated by the programme, default NULL.

K additional weigth for an outbreak which influences the distribution parameter
mu, default = 0.

Value

disProg a object disProg (disease progress) including a list of the observed, the state
chain and nearly all input parameters.

Author(s)

M. Höhle, A. Riebler, C. Lang

See Also

sim.seasonalNoise

Examples

# Plotting of simulated data
disProgObj <- sim.pointSource(p = 0.99, r = 0.5, length = 208,

A = 1, alpha = 1, beta = 0, phi = 0,
frequency = 1, state = NULL, K = 2)

# plot the simulated disease with the defined outbreaks
plot(disProgObj)

state <- rep(c(0,0,0,0,0,0,0,0,1,1), 20)
disProgObj <- sim.pointSource(state = state, K = 1.2)
plot(disProgObj)
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sim.seasonalNoise Generation of Background Noise for Simulated Timeserieses

Description

Generation of a cyclic model of a poisson distribution as background data for a simulated timevector.

Usage

sim.seasonalNoise(A = 1, alpha = 1, beta = 0, phi = 0,
length, frequency = 1, state = NULL, K = 0)

Arguments

A amplitude (range of sinus), default = 1.

alpha parameter to move along the y-axis (negative values not allowed) with alpha >
= A, default = 1.

beta regression coefficient, default = 0.

phi factor to create seasonal moves (moves the curve along the x-axis), default = 0.

length number of weeks to model.

frequency factor to determine the oscillation-frequency, default = 1.

state if a state chain is entered the outbreaks will be additional weighted by K.

K additional weigth for an outbreak which influences the distribution parameter
mu, default = 0.

Value

seasonNoise Object of class seasonNoise which includes the modelled timevector, the
parameter mu and all input parameters.

Author(s)

M. Höhle, A. Riebler, C. Lang

See Also

sim.pointSource

Examples

season <- sim.seasonalNoise(length = 300)
plot(season$seasonalBackground,type = "l")

# use a negative timetrend beta
season <- sim.seasonalNoise(beta = -0.003, length = 300)
plot(season$seasonalBackground,type = "l")
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test Print xtable for several diseases and the summary

Description

Just a test method

Usage

test(data = c("k1", "m5"), range = 157:339)

Arguments

data vector of abbreviations for the diseases

range timepoints to evaluate

Details

The specified datasets are readed, corrected, enlarged and sent to the RKI 1, RKI 2, RKI 3 and Bayes
system. The quality values are computed and printed for each diesease as latex table. Additonally a
summary latex table for all diseases is printed

Value

xtable printed latex tables

Author(s)

M. Höhle, A. Riebler, C. Lang

Examples

test(c("m1", "m2", "m3", "m4", "m5", "q1_nrwh", "q2", "s1",
"s2", "s3", "k1", "n1", "n2", "h1_nrwrp"))

testSim Print xtable for a Simulated Disease and the Summary

Description

Just a test method.

Usage

testSim(p = 0.99, r = 0.01, length = 400, A = 1, alpha = 1,
beta = 0, phi = 0, frequency = 1, state = NULL, K,
range = 200:400)
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Arguments

p probability to get a new epidemy at time i if there was one at time i-1, default
0.99

r probability to get no new epidemy at time i if there was none at time i-1, default
0.01

length number of weeks to model, default 400

A amplitude (range of sinus), default = 1

alpha parameter to move along the y-axis (negative values not allowed) with alpha >
= A, default = 1

beta regression coefficient, default = 0

phi factor to create seasonal moves (moves the curve along the x-axis), default = 0

frequency factor to determine the oscillation-frequency, default = 1

state use a state chain to define the status at this timepoint (outbreak or not). If not
given a Markov chain is generated by the programme, default NULL

K additional weigth for an outbreak which influences the distribution parameter
mu, default = 0

range range of timepoints to be evaluated by the RKI 1 system, default 200:400.

Details

A pointSource epidemy is generated and sent to the RKI 1 system, the quality values for the result
are computed and shown as a latex table. Additionally a plot of the result is generated.

Value

xtable one printed latex table and a result plot

Author(s)

M. Höhle, A. Riebler, C. Lang

See Also

sim.pointSource, algo.call, algo.compare, plot.survRes, compMatrix.writeTable

Examples

testSim(K = 2)
testSim(r = 0.5, K = 5)
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toFileDisProg Writing of Disease Data

Description

Writing of disease data (disProg object) into a file.

Usage

toFileDisProg(disProgObj, toFile)

Arguments

disProgObj The disProgObj to save in file

toFile The path and filename of the file to save

Details

Value

file The file with the disease data

Author(s)

Michael Höhle <http://www.stat.uni-muenchen.de/~hoehle>, Andrea Riebler, Chris-
tian Lang

See Also

readData, sim.pointSource

Examples

disProgObj <- sim.pointSource(length=200, K=1)
toFileDisProg(disProgObj, "./simulation.txt")
mydisProgObj <- readData("./simulation",sysPath=FALSE)

xtable.algoQV Xtable quality value object

Description

Xtable a single qualitity value object in a nicely formatted way

Usage

xtable.algoQV <- function(algoQVObj)
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