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Geoadditive hazard regression for interval censored

survival times

Thomas Kneib

Department of Statistics, University of Munich

Abstract

The Cox proportional hazards model is the most commonly used method when

analyzing the impact of covariates on continuous survival times. In its classical

form, the Cox model was introduced in the setting of right-censored observations.

However, in practice other sampling schemes are frequently encountered and there-

fore extensions allowing for interval and left censoring or left truncation are clearly

desired. Furthermore, many applications require a more flexible modeling of covari-

ate information than the usual linear predictor. For example, effects of continuous

covariates are likely to be of nonlinear form or spatial information is to be included

appropriately. Further extensions should allow for time-varying effects of covariates

or covariates that are themselves time-varying. Such models relax the assumption of

proportional hazards. We propose a regression model for the hazard rate that com-

bines and extends the above-mentioned features on the basis of a unifying Bayesian

model formulation. Nonlinear and time-varying effects as well as the baseline haz-

ard rate are modeled by penalized splines. Spatial effects can be included based

on either Markov random fields or stationary Gaussian random fields. The model

allows for arbitrary combinations of left, right and interval censoring as well as left

truncation. Estimation is based on a reparameterisation of the model as a vari-

ance components mixed model. The variance parameters corresponding to inverse

smoothing parameters can then be estimated based on an approximate marginal

likelihood approach. As an application we present an analysis on childhood mortal-

ity in Nigeria, where the interval censoring framework also allows to deal with the

problem of heaped survival times caused by memory effects. In a simulation study

we investigate the effect of ignoring the impact of interval censored observations.

Key words: extended Cox model, interval censoring, left truncation, marginal likelihood,

mixed models, geoadditive hazard regression, time-varying covariates
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1 Introduction

When analyzing continuous survival times, the Cox proportional hazards model is the

classical choice, if no parametric form for the distribution of the survival times can be

assumed. While allowing for a flexible baseline hazard rate, the Cox model expects a

parametric form for all covariate effects, which may be too restrictive in realistically

complex applications. For example, in the present analysis of childhood mortality the

effect of the mother’s body mass index is often assumed to be of nonlinear form due to

theoretical considerations. In addition, the data set contains spatial information on the

observations and it is of interest to judge whether spatial variation remains unexplained

by the covariates considered in the analysis. Furthermore the baseline hazard rate itself is

of interest in this specific application and therefore joint estimation of the baseline hazard

rate and covariate effects is desirable.

Several proposals for the analysis of such geoadditive survival data have been made in

the last years. Henderson, Shimakura & Gorst (2002) propose a Cox model with gamma

frailties, where the frailty means follow either a Markov random field (MRF) or a sta-

tionary Gaussian random field (GRF) kriging model. They use a kind of hybrid MCMC

scheme, plugging in the Breslow estimator for the baseline hazard at each updating step.

Banerjee & Carlin (2003) and Carlin & Banerjee (2002) combine MRF and GRF priors

for the spatial component with nonparametric estimation of the baseline hazard rate. Ef-

fects of continuous covariates are still assumed to be of linear parametric form. Full and

empirical Bayes inference in hazard regression models that can deal with all the afore-

mentioned issues have been developed by Hennerfeind, Brezger & Fahrmeir (2004) and

Kneib & Fahrmeir (2004), respectively.

While most of the recent literature on geoadditive survival data deals only with the

classical case of right-censored observations, other sampling schemes are often encountered

in practice. For example, almost all uncensored survival times in our exemplary data set

are given in months because the data were collected using a retrospective questionnaire

of the mother. In contrast, censoring times of right-censored observations are available in

days. A possible way to deal with this problem, is to treat the survival times as interval

censored. In addition, the problem of heaped survival times, caused by memory effects

due to the retrospective design of the study, can easily be incorporated in the interval

censoring framework.

Cai & Betensky (2003) present a mixed model approach to estimate the baseline haz-

ard rate in the presence of interval censoring based on penalized splines. Their model

also allows for the inclusion of parametric covariate effects. An extended class of hazard

regression models is described in Kooperberg & Clarkson (1997). The baseline hazard
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rate, covariate effects and time-varying effects are approximated by linear splines. Tensor

product splines can be used to model interaction surfaces. Smoothness of the estimated

curves and surfaces is not ensured via penalization but through a variable selection proce-

dure based on information criteria. A Bayesian approach to correlated interval censored

survival times is presented in Komárek et al. (2005). While interval censoring is mod-

eled via data augmentation, frailties are used to incorporate correlations. Transformation

models for interval censored survival times in combination with a generalized estimating

equations approach to account for correlations are described in Bogaerts et al. (2002).

In this paper, we propose an extended geoadditive Cox model that combines the following

features:

• the ability to deal with arbitrary combinations of left, right, and interval censoring

as well as left truncation,

• joint estimation of covariate effects and baseline hazard rate,

• the possibility to include (piecewise constant) time-varying covariates,

• relaxation of the proportional hazards assumption via the inclusion of time-varying

effects,

• estimation of non-linear effects of continuous covariates based on penalized splines,

• estimation of spatial effects based on Markov random fields, stationary Gaussian

random fields, and two-dimensional extensions of penalized splines,

• further model components such as cluster-specific frailties, interaction surfaces or

varying coefficient terms.

Inference in this extended Cox model is based on a unified Bayesian formulation of the

different model components that supplements all effects with appropriate priors of dif-

ferent degrees of smoothness but one general form. This general form allows to rewrite

the model as a variance components model where regression coefficients can be estimated

based on penalized likelihood. The smoothing parameters of the original model formu-

lation transform to variance components in the mixed model and are estimated jointly

with the regression coefficients using (approximate) marginal likelihood. The presented

methodology is implemented in BayesX, a public domain software package for Bayesian

inference, available from http://www.stat.uni-muenchen.de/~bayesx1.

Section 2 describes geoadditive hazard regression models and likelihood contributions for

different censoring schemes. Section 3 gives details on the mixed model based inferen-

tial procedure. A simulation study investigating the effect of ignoring interval censoring

1The described methodology will be available in release 1.4 of BayesX
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is conducted in Section 4 and Section 5 presents an application that demonstrates the

flexibility of geoadditive hazard regression models. The concluding section comments on

directions of future research.

2 Geoadditive Hazard Regression

2.1 Hazard Rate Model

Since the publication of the seminal paper of Cox (1972) influences of covariates on sur-

vival times are commonly described by a regression model for the hazard rate. The Cox

proportional hazards model assumes the multiplicative structure

λ(t, v) = λ0(t) exp(v′γ) (1)

where λ0(t) is an unspecified smooth baseline hazard rate and v′γ is a linear predictor

formed of covariates v and regression coefficients γ. On the line of additive regression

models, the Cox model can be extended to

λi(t) = exp(ηi(t)), i = 1, . . . , n, (2)

where i is an observation index and ηi(t) is a geoadditive predictor of the form

ηi(t) = v′iγ + g0(t) +
L∑

l=1

gl(t)uil +
J∑

j=1

fj(xij) + fspat(si). (3)

Here g0(t) = log(λ0(t)) is the log-baseline hazard, gl(t) represent time-varying effects of

covariates uil, fj(xij) are nonlinear effects of continuous covariates, fspat(si) is a spatial

effect, and v′iγ corresponds to covariate effects that are modeled in the usual parametric

way. Nonparametric effects fj as well as time-varying effects g0(t) and gl(t) are estimated

based on penalized splines, see Section 2.2.1. Spatial effects can be estimated either

based on Markov random field priors or Gaussian random field priors, see Section 2.2.2.

A number of further extensions, such as interaction surfaces or cluster-specific frailties

can be included in the predictor (3) and are also supported in our implementation (see

Section 2.2.3).

To obtain a compact formulation of geoadditive hazard regression models and to ease the

description of inferential details in Section 3, we introduce some matrix notation. All

different effects in (3) can be cast into one general form, and therefore each vector of

function evaluations can be written as the product of a design matrix Z and a possibly

high-dimensional vector of regression coefficients β. Thus, after appropriate reindexing,

the predictor (3) can be rewritten as

η = V γ + Z1β1 + . . . + Zpβp, (4)
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where V γ represents parametric effects while each of the terms Zjβj represents a non-

parametric, time-varying or spatial effect.

2.2 Priors

From a Bayesian perspective, specification of model (4) is completed by assigning appro-

priate priors to the regression coefficients γ and βj. While diffuse priors are assigned to

fixed effects γ, priors for the remaining effects can be expressed in the general form of a

multivariate Gaussian distribution, i.e.

p(βj|τ 2
j ) ∝ exp

(
− 1

2τ 2
j

β′jKjβj

)
. (5)

The precision matrix Kj acts as a penalty matrix and shrinks parameters towards zero

or penalizes too abrupt jumps between adjacent parameters. The variance parameter

τ 2
j can be interpreted analogously to a smoothing parameter with large (small) values

corresponding to rough (smooth) estimates. From a frequentist perspective, assuming

prior (5) is equivalent to specifying βj as a correlated random effect. However, since Kj

is in general rank-deficient, the random effects distribution may be partially improper.

2.2.1 Continuous covariates and time-varying effects

Effects of continuous covariates as well as time-varying effects are often assumed to vary

smoothly over their codomain. One possibility to express this prior knowledge is the usage

of penalized splines (Eilers & Marx 1996), where a function fj(xj) or gl(t) is approximated

by a polynomial spline of degree l. Such a polynomial spline can be written as a sum of

basis functions Bm defined on a grid of equally spaced knots xmin = κ0 < κ1 < . . . < κs =

xmax, i.e.

fj(xj) =
l+s∑
m=1

βjmBm(xj). (6)

To ensure smoothness of the fitted curve, a moderately large number of knots is used

in combination with penalization of adjacent regression coefficients based on a difference

penalty. In a Bayesian formulation, the difference penalty can be replaced by the assump-

tion of first or second order random walks, see (Lang & Brezger 2004) for details. The

joint distribution of the regression coefficients can then be shown to be of form (5) with

Kj = D′D, where D is a first or second order difference matrix. Since linear (constant)

effects are not penalized by Kj if a second (first) order random walk is employed, the pre-

cision matrix has a two-(one-)dimensional null space. The design matrix Zj contains the

B-spline basis functions evaluated at the observed covariate values, i.e. Zj[i,m] = Bm(xij).
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2.2.2 Spatial effects

For spatial effects we distinguish two situations: Either spatial information is given exactly

in terms of longitude and latitude or the observations can be assigned to a finite number

of regions or sites.

In the first case, spatial effects can be constructed as in classical geostatistical models

(kriging) based on zero-mean stationary Gaussian stochastic processes {βspat
s : s ∈ R2}.

Due to the assumption of normality, the prior distribution of the spatial effect is com-

pletely determined by its variance τ 2
spat and a correlation function ρ(βspat

s , βspat
s′ ). In

many applications isotropy of the correlation function is a reasonable assumption, i.e.

ρ(βspat
s , βspat

s′ ) = ρ(||s− s′||) depends only on the Euclidean distance of the two sites and

not on their direction and location. Kriging terms can be cast into the general form (5)

with Kspat = C−1 and C[i, j] = ρ(||si − sj||). In this case Kspat is of full rank and the

corresponding prior distribution is proper. The design matrix Zspat is a 0/1-incidence

matrix, i.e. its value in the i-th row and the s-th column is 1 if the i-th observation is

located at site s, and zero otherwise.

If observations are clustered in geographical regions, Markov random field (MRF) priors

can be used to induce spatial correlations among observations. In contrast to GRFs

correlations are not modeled explicitly but via an extension of random walks to two

dimensions. If δs denotes the set of neighbors of region s, a MRF assumes

βs|βs′ , s′ 6= s, τ 2
str ∼ N

(
1

Ns

∑

s′∈∂s

βs′ ,
τ 2
str

Ns

)
. (7)

Therefore the expected value of the spatial function at site s is given by the (unweighted)

average of the adjacent sites. Extensions of the basic MRF (7) allow for weighted averages

but are less often used in practice. Whether two regions are neighbors is most commonly

decided by the existence of a common boundary. The design matrix Zspat is again a

1/0-incidence matrix and Kspat has the form of an adjacency matrix.

Although presented separately, approaches for exact locations can be used in the case of

connected geographical regions too, e.g. based on the centroids of the regions. Conversely,

we can also apply MRFs to exact locations if neighborhoods are defined by a distance

measure or via discretisation of the observation area. The main difference between GRFs

and MRFs, considering their numerical properties, is the dimension of the penalty matrix.

For MRFs the dimension of Kspat equals the number of different regions and is therefore

independent from the sample size. On the other side, for GRFs, the dimension of Kspat

is given by the number of distinct locations, which in most cases is close or equal to the

sample size. To overcome the numerical problems that arise from the large number of

regression coefficients involved in a GRF, Kammann & Wand (2003) proposed low-rank
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kriging, where a space-filling algorithm is used to reduce the dimension of the estimation

problem. Again, low-rank kriging can be cast into the presented general framework.

2.2.3 Extensions

Several extensions of the basic model (3) are conceivable and supported by the presented

framework. For example, i.i.d. cluster-specific frailties with Gaussian prior are a spe-

cial case of (5). Furthermore, interaction surfaces based on two-dimensional extensions

of penalized splines or varying coefficient terms with either spatial or continuous effect

modifiers can be included in the predictor (3). Note that the time-varying effects in (3)

can also be subsumed in the varying coefficients framework. Further details on extended

modelling of covariate effects and the inclusion in the presented framework are discussed

in Fahrmeir, Kneib & Lang (2004) in the context of regression models for univariate

responses from exponential families.

2.3 Likelihood Contributions

Usually, the Cox model and extensions are developed for right-censored observations.

More formally spoken, if the true survival time is given by T and C is a censoring time,

only T̃ = min(T, C) is observed along with the censoring indicator δ = 1(T≤C). Many

applications, however, confront the analyst with more complicated data structures in-

volving more general censoring schemes. For example, interval censored survival times T

are not observed exactly but are only known to fall into an interval [Tlo, Tup]. If Tlo = 0

such survival times are also referred to as being left censored. Furthermore, each of the

censoring schemes may appear in combination with left truncation of the corresponding

observation, i.e. the survival time is only observed if it exceeds the truncation time Ttr.

Accordingly, some survival times are not observable and the likelihood has to be adjusted

appropriately. Figure 1 illustrates the different censoring schemes we will consider in the

following: The true survival time is given by T which is observed for individual 1 and 2.

While individual 1 is not truncated, individual 2 is left truncated at time Ttr. Similarly,

individuals 3 and 4 are right-censored at time C and individuals 5 and 6 are interval

censored with interval [Tlo, Tup] with the same pattern for left truncation.

In a general framework an observation can now be described completely by the quadruple

(Ttr, Tlo, Tup, δ), with

Tlo = Tup = T , δ = 1 if the observation is uncensored,

Tlo = Tup = C, δ = 0 if the observation is right censored,

Tlo < Tup, δ = 0 if the observation is interval censored.
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Figure 1: Illustration of different censoring schemes: For individuals 1 and 2 the true

survival time T is observed, individuals 3 and 4 are right censored at time C, and indi-

viduals 5 and 6 are interval censored, where the interval is given by [Tlo, Tup]. Individuals

2, 4 and 6 are left truncated at time Ttr.

For left truncated observations we have Ttr > 0 and Ttr = 0 for observations which are

not truncated.

Based on these definitions we can now construct the likelihood contributions for the

different censoring schemes in terms of the hazard rate (2) and the survivor function

S(t) = exp(
∫ t

0
λ(u)du). Under the common assumption of noninformative censoring and

conditional independence, the likelihood for β = (γ′, β′1, . . . , β
′
p)
′ is given by

L(β) =
n∏

i=1

Li(β), (8)

where

Li(β) = λ(Tup)S(Tup)/S(Ttr) = λ(Tup) exp

(
−

∫ Tup

Ttr

λ(t)dt

)

for an uncensored observation,

Li(β) = S(Tup)/S(Ttr) = exp

(
−

∫ Tup

Ttr

λ(t)dt

)

for a right censored observation and

Li(β) = (S(Tlo)− S(Tup))/S(Ttr) = exp

(
−

∫ Tlo

Ttr

λ(t)dt

)(
1− exp

(
−

∫ Tup

Tlo

λ(t)dt

))

for an interval censored observation. Note that for explicit evaluation of the likelihood

(8) some numerical integration technique has to be employed, since none of the integrals

can in general be solved analytically.
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The above notation also allows for the easy inclusion of piecewise constant, time-varying

covariates via some data augmentation. Noting that

∫ T

Ttr

λ(t)dt =

∫ t1

Ttr

λ(t)dt +

∫ t2

t1

λ(t)dt + . . . +

∫ tp

tp−1

λ(t)dt +

∫ T

tp

λ(t)dt

for Ttr < t1 < . . . < tq < T , we can replace an observation (Ttr, Tlo, Tup, δ) by a set of new

observations (Ttr, t1, t1, 0), (t1, t2, t2, 0), . . . (tp−1, tp, tp, 0), (tp, Tlo, Tup, δ) without changing

the likelihood. Therefore, observations with time-varying covariates can be split up into

several observations, where the values t1 < . . . < tp are defined by the changepoints of

the covariate and the covariate is now time-constant on each of the intervals. In theory,

other paths for a covariate x(t) than piecewise constant ones are also possible, if x(t) is

known for Ttr ≤ t ≤ Tlo. In this case the likelihood (8) can also be evaluated numerically

but a general path x(t) may lead to complicated data structures.

Figure 2 illustrates the data augmentation step for a left truncated, uncensored observa-

tion and a covariate x(t) that takes the three different values x1, x2 and x3 on the three

intervals [Ttr, t1], [t1, t2] and [t2, Tup]. Here, the original observation (Ttr, Tup, Tup, 1) has to

be replaced by (Ttr, t1, t1, 0), (t1, t2, t2, 0) and (t2, Tup, Tup, 1).

0 Ttr t1 t2 Tup

x1

x3

x2

Figure 2: Illustration of time-varying covariates: Covariate x(t) takes the three different

values x1, x2 and x3 on the three intervals [Ttr, t1], [t1, t2] and [t2, Tup].

Combining prior information and the likelihood contributions given above finally leads to

the posterior

Lpen(β) = L(β)

p∏
j=1

p(βj|τ 2
j ), (9)

which has to be maximized to obtain posterior mode or empirical Bayes estimates. Note

that the form of posterior (9) is similar to a penalized likelihood where penalty terms are

based on the log-priors and so posterior mode estimation is closely related to penalized

likelihood estimation.
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3 Mixed Model based Inference

Since in most cases at least some of the effects in (3) exhibit improper priors, geoadditive

hazard regression model can not be directly estimated using mixed model methodology for

survival times. Instead we first have to reparameterise the model to obtain proper priors,

see the next subsection. Within the obtained proper mixed model, estimates for regression

coefficients and variance components can be derived by iterating between the following

two steps: Given the current values of the variances, estimates of the regression coefficients

are computed via maximization of a penalized likelihood based on a Newton-Raphson-

algorithm (subsection 3.2). Conversely, updated estimates for the variances given the

regression coefficients are obtained by a Fisher-Scoring-type algorithm (subsection 3.3)

that maximizes the (approximate) marginal likelihood of the variances. This way of

estimating nonparametric or spatial effects based on mixed models has become quite

popular in the context of generalized linear models throughout the last years (compare

e.g. Lin & Zhang (1999), Ruppert, Wand & Carroll (2003), Kammann & Wand (2003)

or Kneib & Fahrmeir (2004)). While estimation of regression coefficients could also be

performed within the original formulation of geoadditive hazard regression, estimation of

the variances relies heavily on the reparameterisation, since improper priors do not allow

for marginal likelihood estimation.

3.1 Mixed Model Representation

In the following we assume that βj has dimension dj and the corresponding penalty matrix

has rank kj ≤ dj. To rewrite the geoadditive predictor (3) we proceed as follows: Each

vector of regression coefficients βj is decomposed into two parts, i.e.

βj = Zunp
j βunp

j + Zpen
j βpen

j (10)

with a dj×(dj−kj) matrix Zunp
j and a dj×kj matrix Zpen

j . Choosing appropriate matrices

in (10) results in a (dj−kj)-dimensional vector βunp
j with a flat prior and a kj-dimensional

vector βpen
j with i.i.d. Gaussian prior, i.e.

p(βunp
j ) ∝ const and βpen

j ∼ N(0, τ 2
j I).

While βunp
j captures the part of fj that is not penalized by Kj, βunp

j represents the

orthogonal deviation from this unpenalized part. Accordingly, the matrices Zunp
j and

Zpen
j can be constructed based on the spectral decomposition of the penalty matrix Kj.

To be more specific, Zunp
j contains a basis of the null space of Kj and Zpen

j is build from a

basis of the orthogonal deviation from this null space (compare Kneib & Fahrmeir (2004)

for details).
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Applying decomposition (10) to all components of the additive predictor (4) yields

η = V γ +

p∑
j=1

ZjZ
unp
j βunp

j + ZjZ
pen
j βpen

j

= Xβunp + Zβpen

where X = (V, Z1Z
unp
1 , . . . , ZpZ

unp
p ), Z = (Z1Z

pen
1 , . . . , ZpZ

pen
p ), βunp = (βunp

1 , . . . , βunp
p )

and βpen = (βpen
1 , . . . , βpen

p ). This is a variance components model with distributional

assumptions

p(βunp) ∝ const and βpen ∼ N(0, Σ),

where Σ = blockdiag(τ 2
1 I, . . . , τ 2

p I).

3.2 Regression Coefficients

To construct a Newton-Raphson update step for the regression coefficients, we need first

and second derivatives of (9) with respect to βunp and βpen. To ease notation, consider

for the moment a hazard rate of the form

λ(t) = exp(x(t)′β)

which essentially reflects the structure of a structured hazard regression model. Defining

Dj(t) = − ∂

∂βj

∫ t

0

λ(u)du = −
∫ t

0

xj(u)λ(u)du

and

Ejk(t) = − ∂2

∂βj∂βk

∫ t

0

λ(u)du = −
∫ t

0

xj(u)xk(u)λ(u)du,

first and second derivatives of the log-likelihood contributions for uncensored and right

censored observations are given by

δ · xj(Tup) + Dj(Tup)−Dj(Ttr) and Ejk(Tup)− Ejk(Ttr).

For interval censored survival times formulae become more complicated. Here, first and

second derivatives of the log-likelihood contributions can be shown to equal

Dj(Tlo)−Dj(Ttr)− exp [Λ(Tlo)− Λ(Tup)] [Dj(Tlo)−Dj(Tup)]

1− exp [Λ(Tlo)− Λ(Tup)]

and

Ejk(Tlo)− Ejk(Ttr)− exp [Λ(Tlo)− Λ(Tup)]
2 [Dj(Tr)−Dj(Tl)][Dk(Tr)−Dk(Tl)]

{1− exp [Λ(Tlo)− Λ(Tup)]}2

−exp [Λ(Tlo)− Λ(Tup)] {[Dk(Tr)−Dk(Tl)][Dj(Tr)−Dj(Tl)] + [Ejk(Tr)− Ejk(Tl)]}
1− exp [Λ(Tlo)− Λ(Tup)]

.

Note that for Ttr = 0 these results are equivalent to those presented in Kooperberg &

Clarkson (1997). To evaluate the derivatives, we again have to employ some numerical

integration rule. Due to its simplicity, we used the trapezoidal rule based on an equidistant

set of knots in our implementation.
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3.3 Variance Components

The main benefit of the mixed model representation of structured hazard regression mod-

els is the possibility to estimate the variance parameters based on methodology for mixed

models. Most commonly, this is achieved via maximization of the marginal likelihood

Lmarg(Σ) =

∫
Lpen(βunp, βpen, Σ)dβunpdβpen (11)

with respect to the variances contained in Σ. In Gaussian regression models this is

equivalent to restricted maximum likelihood estimation of the variances (Harville 1974).

Direct maximization of (11) is in general intractable, since the high-dimensional integral

can not be evaluated, neither analytically nor numerically. Instead we apply a Laplace

approximation to the marginal likelihood yielding

lmarg(Σ) ≈ l(β̂unp, β̂pen)− 1

2
log |Σ| − 1

2
β̂pen′Σ−1β̂pen − 1

2
log |H|.

Assuming that l(β̂unp, β̂pen) and β̂pen vary only slowly when changing the variance com-

ponents allows for a further reduction of the marginal likelihood to

lmarg(Σ) ≈ −1

2
log |Σ| − 1

2
log |H| − 1

2
βpen′Σ−1βpen, (12)

where βpen denotes a fixed value not depending directly on the variances, e.g. a current

estimate. This approximation was found to work well for right censored survival times

(see Kneib & Fahrmeir (2004)) and also proved to result in reasonable estimates in our

general setting (compare the simulation study in the next section).

Since the approximate marginal likelihood (12) is of the same form regardless of the

special type of censoring involved, first and second derivatives of (12) can be computed in

complete analogy to Kneib & Fahrmeir (2004) to construct a Fisher-Scoring algorithm.

4 Ignoring interval censoring: A simulation Study

To investigate the impact of ignoring interval censoring when analyzing survival data, we

conducted a simulation study that mimics a situation frequently found in clinical studies:

The survival status of a patient is assessed at fixed dates until the end of the study. Exact

survival times were generated from a geoadditive model with hazard rate

λ(t; x, s) = exp(g0(t) + f(x) + fspat(s)),

where g0(t) is the log-baseline hazard rate, f(x) is a function of the continuous covariate x

with sinusoidal form and fspat(s) is a spatial function defined by the density of a mixture

of two two-dimensional normal distributions. Two different baseline hazard rates were
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applied: A bathtub-shaped one with strong variation over the whole time-domain and a

relatively flat, monotonically decreasing one. All survival times exceeding 8 were treated

as right-censored at C = 8. The remaining interval [0, 8] was divided into l equidistant

intervals and each observation was assigned to the interval, the corresponding survival

time pertained to. To evaluate the impact of interval censoring, we compared three

different values for l, namely l = 8, l = 16 and l = 32 corresponding to intervals with

length 1, 0.5 or 0.25. The simulation design is summarized in more detail in Figure 3.

The resulting data sets were analyzed based on three different strategies:

• Use the correct censoring mechanisms, i.e. treat all observations with survival time

less than 8 as interval censored and all other observations as right censored (IC).

• Use a binary discrete-time survival model with complementary log-log-link. Such a

model can be seen as a grouped Cox-model (compare e.g. Fahrmeir & Tutz (2001,

ch. 9)) (CLL).

• Treat all observations with survival time less than 8 as uncensored and all other

observations as right censored. To account for the interval censoring, uncensored

observations are spread randomly across the corresponding interval (UC).

Note that we also tried to treat all survival times less than 8 as uncensored without

spreading the observations across the intervals. However, due to numerical problems this

strategy could not be routinely applied and is therefore not included in the comparison.

Similar numerical problems appeared in the application, compare the next section. Both

the log-baseline and the effect of x are modeled by cubic P-splines with second order

random walk penalty and 20 inner knots. The spatial effect is estimated using Markov

random field prior (7).

The results of the simulation study can be summarized as follows:

• In case of the bathtub-shaped baseline, the interval censoring approach leads to the

best estimates for the baseline hazard rate. While the discrete time model performs

comparably well for a sufficient large number of intervals, the uncensored approach

remains dissatisfying (Figure 4 a)).

• In contrast, in case of the flat baseline, the discrete time model leads to the best

estimates for the baseline for a small number of intervals. For a larger number of

intervals, both the interval censoring approach and the discrete time model give

comparable results and, again, outperform the uncensored approach.

Considering covariate effects, both types of baseline hazard rates lead to similar conclu-

sions and we therefore only show results for the bathtub-shaped baseline:
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• For a sufficiently large number of intervals, all strategies lead to a comparable fit for

the nonparametric effect f(x) in terms of MSEs. For a smaller number of intervals

the interval censoring approach and the discrete time model give preferable results

compared to the uncensored approach (Figure 4 c)).

• Considering the spatial effect, the discrete time model leads to the best fit for a

small and a medium number of intervals. The quality of both the interval censoring

and the uncensoring approach increase with an increasing number of intervals, but

only the interval censoring approach reaches results comparable to those from the

discrete time model (Figure 4 d)).

• Figure 5 shows a similar result based on average estimates for the spatial function.

While the uncensored approach introduces noticeably more bias for a small number

of intervals, discrete time and interval censoring lead to comparable estimates. When

increasing the number intervals, differences between the three strategies become

smaller but are still present.

Based on these results we come to the conclusion that the impact of interval censoring

depends on the structure of the underlying model, especially on the baseline hazard rate.

While details of the model may be lost by ignoring interval censoring for highly fluctuating

baselines and a relatively small number of large intervals, this effect decreases for an

increasing number of intervals. When the baseline is relatively flat, interval censoring

does not per se lead to improved estimates but in any case performs better than an

approach based on randomly spreading the observations across the intervals.

5 Childhood mortality in Nigeria

This analysis is based on data collected within the 2003 Nigeria Demographic and Health

Survey (DHS), which is a nationally representative survey concerning the health status

of women in reproductive age (13–49 years) and their children. The survival time of the

children is obtained from a retrospective interview of the mother and should (in theory) be

known in days. However, due to memory effects, only survival times within the first two

months are observed exactly while all other survival times are actually given in months. In

contrast, right censoring times are given in exact days, since these could be computed from

the date of the interview and the child’s birth date. Because of this special structure of

the data, a model based on interval censored survival times seems to be more appropriate

than a classical Cox model including only right censored observations. In particular, all

survival times exceeding two months are treated as interval censored, where the interval

is determined by the first and the last day of the corresponding month.
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An additional challenge of this survival data can be seen from Figure 6, which shows

the absolute frequencies of the observed survival times in months. Obviously, a lot of

survival times are heaped at the values 12, 18, 24, 36 and 48 while a much smaller

number of deaths is recorded between these time points. Such a heaping effect occurs

quite commonly in retrospective studies on survival times and has to be incorporated

appropriately to obtain valid estimates. Within the interval censoring framework this

can easily be achieved by introducing larger intervals for the heaped observations. In the

present analysis we assigned non-overlapping, symmetric intervals of 6 or 12 month length

to the heaped survival times.

For the hazard rate we chose the geoadditive predictor

η = g0(t) + f1(bmi) + f2(age) + f3(bord) + f4(size) + fspat(s) + u(t)′γ

where g0(t) denotes the log-baseline hazard rate, f1, . . . , f4 are functions of the continuous

covariates ’body mass index of the mother’ (bmi), ’age of the mother at birth’ (age),

’number of the child in the birth order’ (bord) and ’number of household members’ (size).

fspat models a spatial effect based on the district s the mother lives in and u(t) comprises

fixed effects of numerous categorical covariates describing the economic situation of the

family, circumstances at birth, and the breastfeeding behaviour of the mother. While

most of these categorical covariates are time invariant, the duration of breastfeeding is

described by a time-varying covariate which takes the value one as long as the child is

breastfed zero otherwise. Using the findings from subsection 2.3 this can be easily included

in the present model using data augmentation.

Both the log-baseline and nonparametric effects are modeled by cubic P-splines with 20

inner knots. The spatial effect is assumed to follow the Markov random field prior (7).

Due to missing values, the final number of observations is given by n = 5323. 117 children

die within the first two months and are therefore treated as uncensored. The 474 children

that die within the remaining study time are treated as interval censored as described

above.

To shorten the discussion, we will not show results for the fixed effects but focus on results

of nonparametric and spatial effects (see Figure 8). The effect of the maternal body mass

index is almost linear with a slightly increasing risk for larger values. However, since the

pointwise credible intervals include zero, the influence of the body mass index seems to

be neglectable. The remaining three nonparametric effects are of nonlinear but almost

monotone functional form. While a higher age of the mother could be shown to induce

an increased risk, both a higher number of the child in the birth order and a higher

number of household members lead to decreased risk. While the former effect may be

caused by an increased knowledge about childcare by the mother, the latter may reflect

15



the fact that well-endowed households attract additional members. The range of the

estimated spatial effect is very small and a pointwise significance map shows no districts

with effects different from zero. It should however be noted, that in an analysis which

only comprises a spatial effect and no other covariates, a highly significant spatial pattern

emerges. Therefore observations are clearly spatially correlated but the spatial variations

is completely explained by the covariates.

Figure 7 shows the estimated log-baseline hazard rate for three different models: The first

one (straight line) is exactly the model given above, where all observed death times beyond

two months are treated as interval censored and heaping effects are incorporated. In the

second model (dashed line), death times are treated as interval censored but the heaping

effect is neglected. Finally, the third model (dotted line) mimics model 1 but achieves

the interval censoring by randomly spreading the death times across the corresponding

interval (similarly as in the simulation study in section 4). Note that this model also

accounts for heaping effects.

Obviously, ignoring the heaping effect leads to highly implausible results, with risk esti-

mates approximating zero where no deaths are recorded. This problem also occurred in

the simulation study when the right interval boundaries were to be used as exact survival

times. Incorporating the heaping effect significantly reduces this phenomena but still

leaves some fluctuations in the estimate which are not expected to reflect the true tem-

poral development of the hazard rate. Surprisingly, model 3 leads to the most plausible,

smooth estimate for the log-baseline. Probably this outcome is caused by the additional

information assumed in this model. Since all observed death times are treated as exactly

observed, the model contains much more information than the corresponding model based

on interval censoring which is therefore more susceptible to produce artificial behavior.

6 Discussion

We presented a rather general approach for the analysis of continuous survival times,

both in terms of the functional form of covariate effects and the supported censoring

schemes. Particularly the possibility to combine left truncation, right censoring and in-

terval censoring considerably broadens the applicability of geoadditive hazard regression

models. The results of our simulation studies showed that the inclusion of interval cen-

soring can in some situations lead to substantially improved estimates, but also indicated

some situations, where competing methods may give preferable results.

In future work we plan to extend geoadditive regression models to the more general setting

of multi-state models. This framework includes a number of well known model classes for

the analysis of competing risks or event history analysis. Within such models a similar
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data structure as with interval censored survival times is frequently encountered: In many

applications exact transition times are not available and the states can only be observed

at fixed time points. While the likelihood of multi-state models can be easily calculated

if transition times are observed exactly, the likelihood becomes much more complicated

when interval censoring is present and additional numerical problems have to be addressed

in order to obtain estimates of the parameters of interest.
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- Hazard rate:

λ(t; x, s) = exp(g0(t) + f(x) + fspat(s))

- Baseline no. 1:

exp(g0(t)) =





0.5 · [cos(t) + 1.2] , t ≤ 2π

0.5 · [1 + 1.2] , t > 2π

- Baseline no. 2:

exp(g0(t)) = exp(−t) + 0.75

- f(x) = sin(1.05 · x) · log(x + 6)

- x is chosen randomly from an equidistant of 100 values

between -5 and 5.

- fspat(s) = N(µ1, Σ1, sx, sy) + N(µ2, Σ2, sx, sy)− 1.406

µ1 =

(
0.75

0.25

)
Σ1 =

(
0.05 0.01

0.01 0.05

)

µ2 =

(
0.25

0.75

)
Σ2 =

(
0.1 0.01

0.01 0.1

)

- (sx, sy) are the centroids of the 124 districts s of the

two southern states of Germany.

- Survival times exceeding 8 are considered as right-

censored.

- The interval [0, 8] is divided in l = 8, 16 or 32 equidis-

tant parts for interval censoring.

- Number of observations per replication: n = 500.

Figure 3: Simulation design.
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Figure 4: Simulation study: Boxplots of log(MSE) for the two different baselines, the

nonparametric effect and the spatial effect. IC denotes results from treating survival times

as interval censored, CLL denotes results from the complementary log-log model and UC

denotes results from treating the survival times as uncensored. The boxplots are arranged

columnwise corresponding to l = 8 intervals (left three boxplots), l = 16 intervals (middle

three boxplots) and l = 32 intervals (right three boxplots).
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Figure 5: Simulation study: Average estimates for fspat. IC denotes results from treating

survival times as interval censored, CLL denotes results from the complementary log-log

model and UC denotes results from treating the survival times as uncensored. The left

panel shows results obtained for l = 8 intervals and the right panel shows results for

l = 32 intervals.
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Figure 6: Childhood mortality in Nigeria: Frequencies of observed survival times in

months.
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Figure 7: Childhood mortality in Nigeria: Estimated log-baselines based on interval cen-

soring with heaping (straight line), interval censoring without heaping (dashed line) and

randomly spread uncensored observations (dotted line).
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Figure 8: Childhood mortality in Nigeria: Estimates for nonparametric effects (with 95%

credible intervals) and for the spatial effect.
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