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Abstract

We describe a stochastic model based on a branching process for analyzing

surveillance data of infectious diseases that allows to make forecasts of the future

development of the epidemic. The model is based on a Poisson branching process

with immigration with additional adjustment for possible overdispersion. An ex-

tension to a longitudinal model for the multivariate case is described. The model is

estimated in a Bayesian context using Markov Chain Monte Carlo (MCMC) tech-

niques. We illustrate the applicability of the model through analyses of simulated

and real data.
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1 Introduction

Surveillance of notifiable infectious diseases is a common task in most countries. One

major goal is to detect outbreaks in disease incidence, in order to employ appropriate

public health interventions. A similar task has gained increasing interest in the context

of combatting bioterrorism attacks. For a recent review of the methodology used see

Farrington and Andrews (2003).

How does such outbreak detection work? Most methods currently in use consider only

a single time series of cases. Basically, suspiciously high number of cases are flagged as

outbreaks. However, typically longitudinal space-time data is available, i.e. the number

of cases in each district, say, and at each time point, e.g. day or week. Clearly, a lot of

statistical efficiency will be lost if such longitudinal data is analysed separately, series by

series.

A second issue arises regarding the mechanism how to detect outbreaks. In nearly all

methods proposed, a simple statistical model is used to roughly describe the incidence

in the past. For example, this could be a Poisson time series model with constant or

linear time trend as in Farrington et al. (1996), or even assuming approximate normality

of the observed counts (Stroup et al., 1989). For the current time point, observed cases

are compared to the expected cases, under the fitted model to the past data. If the

discrepancy is too large, i.e. the observed cases exceed some upper confidence limit for

the predicted cases, an alarm will be flagged.

Farrington et al. (1996) have realized a problem with such a procedure: implicitly the

method assumes that no outbreak has happened in the past. They suggest to downweight

past observations with suspiciously large residuals under the simple model, and re-analyse

the data with the new weights.

In this paper we follow a different strategy. First, we try to use a model that, at least
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qualitatively, allows for outbreaks, in fact it can be justified as an approximation to

the so-called SIR-model, often used to analyse person-to-person infections (see Anderson

and Britton, 2000). More specifically, we will assume that the observed number of

cases follows a so-called branching process with immigration (Guttorp, 1995). Branching

processes are often used as approximations to SIR-model (Farrington et al., 2003, and

the references therein), especially if there is no data on the number of susceptibles.

This is nearly always the case for surveillance data, hence this model seems appropriate

to describe the time course of surveillance data on infectious diseases. We will use a

branching process model with Poisson distributed offsprings, i.e. the number of cases at

time t is Poisson distributed with mean proportional to the number of infected case at

time t − 1.

However, a problem with branching processes is that, with probability one, the epidemic

will either explode or die out in finite time, again clearly inappropriate for most infectious

disease surveillance data, where endemic (i.e. quasi-stationary) incidence typically plays

a large role. Therefore, we add an endemic part with constant rate to the branching

process in order to describe the total observed counts. The resulting model is known as

a branching process model with immigration (Guttorp, 1995). Under certain restrictions

on the parameters, the model is now stationary, but is able to capture an epidemic

behaviour in the observed counts.

To flag outbreaks, we also follow a different strategy and use the predictive distribution

for the number of cases at the next time point. So, essentially, we assume that our model

is “correct”, in sharp contrast to the assumption of a “wrong” model in the methods cur-

rently in use for outbreak detection. One clear benefit of such a model-based approach is

that the chosen model can be validated through residual and predictive checks. However

adjustments for additional overdispersion in the observed counts are typically required,
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because otherwise the residual variance will exceed the predicted variance for most data

we have analysed. Technically this is no problem, essentially we replace the Poisson

distribution for the observed counts with a negative binomial distribution.

Further motivation to adjust for overdispersion comes from the fact that the generation

time of the branching process represents the spread of the epidemic. However, the (mean)

length of the generations normally does not fit the length of the observation intervals,

typically days or weeks. Besides, the generation time may be random. This can introduce

an extra amount of variation in the data. Simulation studies showed, that discrepant

generation and observation times result in overdispersion. However, the interpretation

of the process as a classical branching process is now lost.

Finally, our model can easily be extended to the multivariate case, and we describe such

an extension in this paper. This has the distinct advantage that model parameters can

be estimated much more precisely based on all parallel time series and the statistical

predictions will improve.

A few comments should be made on alternative autoregressive specifications for time

series of counts. Diggle et al. (2002), Section 10.4 describe so-called transition models

for Poisson counts within a generalized linear model framework. Unfortunately, in the

log-linear Poisson case one cannot simply include past outcomes as explanatory vari-

ables, since the conditional mean will either grow exponentially in time, or can only

describe negative association between outcomes. A modified model, proposed by Zeger

and Qaqish (1988) addresses this problem and proposes a model somewhat similar to

ours, since it can be interpreted as a size-dependent branching process. However, here the

offspring rate of each case is inversely related to the number of cases at time t−1, to en-

sure stationarity, whereas we employ additional “immigration” in the branching process,

enabling us to decompose the total incidence into endemic and epidemic cases.
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Another modification to the autoregressive Poisson model, proposed in Knorr-Held and

Richardson (2003), is to include additional epidemic indicators in the model, which decide

if the autoregressive component is switched on or off. The indicators are modelled with

a two-state hidden Markov model, and ensure that the process will not explode. This

model has been successfully applied in a space-time context to rare infectious diseases,

such as meningitis (Knorr-Held and Richardson, 2003), see also Diggle et al. (2003).

However, a downside of this model is that, while it can model epidemic increases, the

return to the “endemic” level must be abrupt by switching off the relevant indicator.

This paper is organized as follows. We first describe our model, both in the time series

and multivariate case. Then we outline how to estimate the model using a Bayesian

approach and Markov chain Monte Carlo (MCMC) techniques. We illustrate the per-

formance of the model through several analyses of simulated and real surveillance data.

Finally, we discuss several ways how to improve the model formulation.

2 Model

First we describe our model for a (equally spaced) time series Zt, t = 1, . . . , n, where Zt

is the number of observed cases at time t. The model assumes that Zt is the sum of an

endemic part, Xt, and an epidemic part, Yt: Zt = Xt+Yt, t = 1, . . . , n. The endemic part

Xt is assumed to follow a Poisson distribution with fixed parameter ν. The epidemic

part Yt is assumed to have an autoregressive structure and infections are assumed to

occur with rate proportional to the observed number of cases Zt−1 at time t − 1. The
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model for Xt and Yt is

Xt ∼ Po(ν), t = 1, 2, . . . , n,

Yt ∼







Po
(

ωs
λν

1−λ

)

t = 1,

Po(λ(Yt−1 + Xt−1)) t = 2, 3, . . . , n.
(1)

Here λ ∈ (0, 1) is unknown and ωs has a Gamma distribution with expectation equal to

1 and variance equal to [ν(1 + λ)]−1, i.e. ωs ∼ Ga(ν(1 + λ), ν(1 + λ)). This particular

choice will be motivated below. The parameters Xt and Yt are latent variables that are

not observed, but can be estimated using MCMC.

The model corresponds to a branching process with immigration, as defined in Guttorp

(1995), p. 99. For t = 2, . . . , n, Zt is the sum of Zt−1 independent random variables

Lt,j, j = 1, . . . , Zt−1, each following a Poisson distribution with mean λ (the so-called

offspring distribution) and the immigration variable Xt:

Zt =

Zt−1
∑

j=1

Lt,j + Xt.

It can be shown (Guttorp, 1995, p. 99) that Zt has a stationary distribution with mean

µZ = ν/(1− λ) and variance σ2
Z = ν/{(1− λ)(1− λ2)}. The epidemic part Yt = Zt −Xt

thus has stationary mean µY = λν/(1−λ) and variance σ2
Z = ν/{(1−λ)(1−λ2)}−ν. The

choice ωs ∼ Ga(ν(1+λ), ν(1+λ)) in (1) simply results in a negative binomial distribution

for Y1 (after integrating out ωs), with mean and variance equal to the stationary mean

and variance of Yt. Note that the parameters ν and λ represent the rate of the endemic

and the infection rate of the epidemic part and do not depend on t. Figure 1 shows a

simulation from this model using the parameter values ν = 50 and λ = 0.7.
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2.1 Overdispersion for the response variable

Typically, the observed time is not the same as the generation time of the branching

process that shall represent the spread of the epidemic. The mean length of the gener-

ations normally does not fit the (typically arbitrary) length of the observation intervals.

Besides, the generation time may be random. This can introduce an extra amount of

variation into the model. Simulation studies showed, that it can therefore be useful to

include parameters ωt, t = 1, . . . , n into the model, to adjust for possible overdispersion:

ωt ∼ Ga(ψ, ψ), ψ > 0,

Yt|ωt ∼







Po(ωt
ωsλν
1−λ

) for t = 1,

Po(ωtλ(Xt−1 + Yt−1)) for t = 2, . . . , n.

It can be shown (DeGroot, 1970, p. 119) that the marginal distribution of Yt integrating

out ωt is a negative binomial distribution,

Yt ∼







NegBin
(

ωs
λν

1−λ
, ψ

)

for t = 1,

NegBin (λ(Xt−1 + Yt−1), ψ) for t = 2, . . . , n,

where NegBin(µ, ψ) denotes the negative binomial distribution with expectation µ and

dispersion parameter ψ. Thus the marginal mean of Yt is the same as in (1), but the

marginal variance is now

V [Yt] = E[Yt]

(

1 +
E[Yt]

ψ

)

,

hence larger. For ψ → ∞ it can be seen that V [Yt] → E[Yt]. Figure 2 shows a
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simulation from this model using the parameter values ν = 50, λ = 0.7 and ψ = 10. Note

that, by introducing overdispersion to the model, the branching process interpretation

is no longer valid, since there is no offspring distribution for which the Yt can be seen as

the sum of Yt−1 + Xt−1 offspring distributed random variables.

3 Estimation

The model is estimated using MCMC methods. Prior distributions are assumed for all

unknown model parameters, and full conditionals are derived wherever possible to employ

the Gibbs sampler, otherwise a Metropolis-Hastings algorithm is used. The distribution

of the data Z and the parameters θ, including the latent variables X and Y , is given as

p(Z, θ) = p(λ)p(ν)

·
n

∏

t=1

(P (Zt|Xt, Yt)P (Xt|ν))
n

∏

t=2

P (Yt|λ, Yt−1, Xt−1)

·P (Y1|λ, ν, ωs)p(ωs|ν, λ).

The prior distributions for the parameters λ and ν are

λ ∼ Beta(αλ, βλ), ν ∼ Ga(αν , βν).

The MCMC algorithm uses Xt as unknown auxiliary variables, i.e. generates samples of

Xt, conditional on Zt and all model parameters. This conditional distribution is a simple

binomial distribution, and the value of Yt is then determined through Yt = Zt − Xt.

The mixing parameter ωs has a gamma full conditional, and this is also the case for

the rate parameter ν. Only λ has a non-standard full conditional and here we use a

simple Gaussian Metropolis random walk proposal for updating. All full conditionals
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and Metropolis-Hastings steps are described in detail in the Appendix.

3.1 Overdispersion for Yt

In the case of the Poisson-Gamma model used to obtain overdispersion, a Ga(αψ, βψ)

prior is assumed for ψ. This parameter is then updated using a Metropolis-Hastings

algorithms with a Gaussian random walk proposal. The distribution of the data Z and

the parameters θ, now including ωt and ψ, is then

p(Z, θ) = p(λ)p(ν)p(ψ)

·

n
∏

t=1

(P (Zt|Xt, Yt)P (Xt|ν)p(ωt|ψ))
n

∏

t=2

P (Yt|λ, ωt, Yt−1, Xt−1)

·P (Y1|ω1, λ, ν, ωs)p(ωs|ν, λ).

The mixing parameters ωt, t = 1, . . . , n all have gamma full conditionals. For more

details see the Appendix.

3.2 Model comparisons

For model comparison, the deviance information criterion (DIC) described in Spiegelhal-

ter et al. (2002) is used. It allows to compare models where the number of parameters is

not clearly defined by considering the effective number of parameters in the model, pD.

The (saturated) deviance is

DS(θ) = −2 log P (Z|θ) + 2 log P (Z|µ(θ) = Z)

= 2
n

∑

t=1

(Zt log(Zt/ηt) − Zt + ηt),
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using the convention that 0 log 0 = 0. Here ηt = ν + ω1ωs
λν

1−λ
for t = 1 and ηt =

ν + ωtλ(Xt−1 + Yt−1) for t = 2, . . . , n.

The effective number of parameters in the model is calculated as

pD = DS(θ) − DS(θ),

and the DIC is

DIC = DS(θ) + 2pD

= 2DS(θ) − DS(θ),

where DS(θ) is the posterior mean of the saturated deviance and DS(θ) is the saturated

deviance at the posterior means of the parameters. A smaller value of the DIC indicates

a more appropriate model.

3.3 Predictive distribution

One of the main aims is to compute the predictive distribution for the number of cases

at time n + 1. Using MCMC the predictive distribution of Zn+1 can be easily estimated.

In every iteration k, a sample of Zn+1 is generated using the values of the k-th iteration

of ν, λ, Yn, Xn, ψ:

Xn+1 ∼ Po(ν),

ωn+1 ∼ Ga(ψ, ψ),

Yn+1 ∼ Po(λωn+1(Yn + Xn)),

Zn+1 = Xn+1 + Yn+1.
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3.4 Estimation results

The model is first estimated for the simulated data, without and with overdispersion.

Later the model is applied to Leptospirosis data observed in Rio de Janeiro in the time

from January 1995 to December 1999.

3.4.1 The estimation of simulated data

The model is now estimated for the simulated data {Zt} shown in Figure 1. A Beta(7,3)

prior distribution is assumed for λ and a Ga(10,0.2) for ν so that the prior mean is equal

to the true value. Results of the posterior distribution for the parameters of interest as

well as the posterior deviance and the posterior distribution of the stationary mean µZ

and variance σ2
Z together with a 95% credibility interval are shown in Table 1. The mean

and variance of the data is 169.29 and 370.01, respectively. The DIC is 104.92 where pD

is 2.07. The estimates of ν and λ agree quite well with the values of the simulation. Also,

the estimates of the stationary mean and variance agree with the mean and variance of

the data.

The model is now estimated with a different prior distribution. A Beta(5,3) prior distri-

bution is assumed for λ and a Ga(10,0.1) for ν. The results are shown in Table 2. The

DIC is now 105.53 where pD is 2.01. There is some sensitivity with respect to the choice

of the prior distributions. A reason for this may be that the number of time points is

just 100. The deviance for the first choice of the prior is slightly smaller then for the

second but there is virtually no difference in the DIC values.

3.4.2 The estimation of simulated data with overdispersion

The model is now estimated for the simulated data with overdispersion {Zt} shown

in Figure 2. A Beta(7,3) prior distribution is assumed for λ, a Ga(10,0.2) for ν and
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a Ga(10,1) for ψ so that the prior mean is again equal to the value of the simulation.

Results of the posterior distribution for the parameters of interest as well as the posterior

deviance together with a 95% credibility interval are shown in Table 3. The model with

overdispersion can not be seen as branching process, which makes it difficult to derive

the stationary variance of the Zt depending on ψ. The mean and variance of the data is

175.17 and 5368.32, respectively. The DIC is 189.14 where pD is 88.32. The estimates

of λ, ν and ψ agree quite well with the values of the simulation.

The model is now estimated with different prior distribution for ψ, a Ga(20,1) distribu-

tion. The results are shown in Table 4. The DIC is 188.98 where pD is 86.33. There

is also some sensitivity with respect to the choice of the prior distribution of ψ. The

deviance for the second choice of the prior distribution is again slightly higher, but there

is virtually no difference in DIC values.

3.4.3 The estimation of Leptospirosis data

After the estimation of simulated data the model is now applied to the Leptospirosis

data, observed in Rio de Janairo in the time from January 1995 to December 1999. The

number of cases are shown in Figure 3. Leptospirosis is a bacterial infection usually

caused by contaminated water. The data show one major outbreak that was caused by

an inundation in combination with bad hygienic conditions. Clearly, the time series is

dominated by this large outbreak. The mean and variance of the data is 6.78 and

1247.69, respectively. In most weeks there are very few cases observed except the big

outbreak in the beginning of 1996. Therefore the parameter ν has to be small. The

mean of the estimated stationary mean should be around the data mean. Because of the

relation µZt
= ν/(1 − λ), λ can not be very close to 1. A Beta(2,1) prior distribution

is assumed for λ and a Ga(1,1) for ν. The results are shown in Table 5. The DIC is
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now 1794.14 where pD is 2.46. The estimated stationary mean agrees well with the data

mean. However, the estimated stationary variance is much smaller then the variance of

the data. The reason for this is, that given ν, the stationary variance of Zt is determined

by the stationary mean. The mean of the data is small, because most of the weeks

there are few cases observed. The variance, however, is big because of the big outbreak.

Therefore the model is not able to explain the outbreak very well, what can also be seen

by the big deviance. One possibility to explain bigger outbreaks like this is to allow a

time varying ν or λ, which will be discussed at the end of the article. Another possibility

is to explain the higher variance by overdispersion.

Finally, a credibility interval for the predictive distribution has been calculated. We

will always use a 95% credibility level. The last two observed values Zn−1 = 1 and

Zn = 2 are very small. However the next value Zn+1 = 9, not included in the analysis,

is surprisingly high and could be the beginning of another outbreak. The credibility

interval of the predictive distribution [0,6] does not include this observed value.

3.4.4 The estimation of Leptospirosis data with overdispersion

The model is estimated for the time series Leptospirosis data with overdispersion. The

variance of the data is much bigger than the mean, so ψ must be small. A Beta(2,1)

prior distribution is assumed for λ, a Ga(1,1) for ν and a Ga(1,2) for ψ. The results are

shown in Table 6. The DIC is now 440.25 where pD is 85.68. The estimated parameter

ψ is very small. The DIC of the estimation with overdispersion is much smaller then

of the estimation without overdispersion, so the model with overdispersion seems to fit

the data much better. The credibility interval of the predictive distribution [0,9] is now

larger and includes the observed value 9. This is because overdispersion explains an extra

amount of variation.
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4 Extension to the multivariate case

The model is now extended to a space-time model in order to describe the incidence of

a disease, that is observed in I regions. In this basic space-time model the progress of

the epidemic in on region is assumed to be independent from the other regions, given

the model parameters ν, λ and ψ. However, all regions are linked since they share

the same model parameters. The endemic part is assumed to be stationary in every

region with mean depending of the population size of the region. The data Zi,t, i =

1, . . . , I, t = 1, . . . , n are given as I time series of length n. Additionally the proportion

of the population of the I regions from the total population ξi, i = 1, . . . , I is known. In

the following we use Zit instead of Zi,t. The model is given as

Xit ∼ Po(νξi), t = 1, 2, . . . , n,

Yit ∼







Po
(

ωs,i
λνξi

1−λ

)

t = 1,

Po(λ(Yi,t−1 + Xi,t−1)) t = 2, . . . , n,

Zit = Xit + Yit,

where i = 1, . . . , I, λ ∈ (0, 1) and ωs,i ∼ Ga(νξi(1 + λ), νξi(1 + λ)). Note that the

parameters ν and λ do not depend on i or t. Since we use the population proportions it

follows that
∑I

i=1 ξi = 1, and hence the parameter ν can be seen as a parameter for the

total population, since
∑I

i=1 Xit ∼ Po(ν).

Zit is a branching process with immigration for every region i. The introduction of

overdispersion, the estimation, the predictive distribution and the model comparison

follow the time series case, where ν is replaced by νξi.
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4.1 Estimation Results

The model is first simulated and estimated for the simulated data, for the case without

and with overdispersion. Later the model is applied to Campylobacter data observed in

Germany in the time from January 2001 to July 2003.

4.1.1 The estimation of simulated data

A realization of the model is simulated with parameters n = 100, I = 5, λ = 0.7 and

ν = 50. The ξi are 0.2 for every region. The model is now estimated for the simulated

data {Zi,t}. A Beta(7,3) prior distribution is assumed for λ and a Ga(10,0.2) for ν so

that the prior mean is equal to the value of the simulation. The results are shown in

Table 7. The mean and variance of the data, cumulated over the regions, is 170.79 and

465.2, respectively. The DIC is 473.54 where pD is 4.45. The mean of the estimated

parameters ν and λ are close to the estimates of the time series case, but the credibility

intervals are smaller in the multivariate case. Although there are not more cases, the

observation of more than one time series seems to supply more information.

The model has also been estimated with a different prior distribution. Now a Beta(5,3)

prior distribution is assumed for λ and a Ga(10,0.1) for ν. The results are shown in

Table 8. The DIC is 473.55 where pD is 4.25. The model seems to be less sensitive to

the prior distribution in the multivariate case then in the time series case, which makes

sense, because the amount of data is much larger. Similar results have been obtained for

simulated data with overdispersion.

4.1.2 The estimation of Campylobacter data

After the estimation of simulated data the model is now applied to the Campylobacter

data, observed in the 16 states of Germany in the time from January 2001 to July 2003
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over 129 weeks. The total counts in Germany are shown in the Figure 4. Campylobacter

is a bacterial infection of the intestine that is mostly caused by contaminated food or

transmitted by the excrements of pets or sometimes also by infected persons. It has a

endemically dominated incidence. From Figure 4 it can be seen that there is a seasonal

structure in the data. During the summer there is an increase of the observed cases,

while in the winter the number of cases is smaller.

The mean and variance of the data is 282.62 and 10298.24, respectively. There are two

apparent “outbreaks” in the summer, we will comment on this later. Therefore, the

estimated λ is likely to be close to unity. The relation of ν and λ for the stationary

mean then forces ν to be small. A Beta(9,0.5) prior distribution is assumed for λ and

a Ga(10,1) for ν. The results are shown in Table 9. The DIC is 8239.83 where pD is

12.84. The estimated parameter λ is rather large. The reason is that the model can not

explain the seasonal structure of the data by the endemic part that is assumed to have a

constant parameter ν. However, endemically dominated incidence often has a seasonal

structure. It will therefore be necessary to allow for a time varying ν that can explain the

seasonal structure by the endemic part. Additionally a seasonal component of ν would

make sense, in order to get a better prediction. Figure 5 shows the credibility intervals of

the predictive distributions for the 16 German states and the actually observed value at

this time. The predictive distribution seems not to predict the real values very well. Four

of the 16 observed values are larger than the upper credibility interval limit. The reason

is that the model underestimates the variance of the data, the estimated stationary

variance is smaller then the empirical variance of the data. A consequence is that the

variance of the predictive distribution is also smaller. To get a better fit the data should

be estimated allowing for overdispersion.
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4.1.3 The estimation of Campylobacter data with overdispersion

The variance of the data is not so large compared with the mean. Therefore a Beta(9,0.5)

prior distribution is assumed for λ, a Ga(10,1) for ν and a Ga(10,1) for ψ. The results

are shown in Table 10. The DIC is now 3850.26 where pD is 1416.74. The parameters

ν and λ are similar to the estimation without overdispersion, while the estimation of

ψ shows that there is some overdispersion. The DIC is smaller for the estimation with

overdispersion then without overdispersion, The model with overdispersion seems to fit

the data better, what can also be seen in the predictive distribution. The observed values

are all, except one, inside the credibility intervals of the predictive distribution shown in

Figure 6.

We conclude that the model with overdispersion seems to predict the development of

the disease quite well. However, the assumption of a constant parameter ν is not very

realistic. A better model could be obtained by allowing ν to have a seasonal pattern.

5 Discussion

We have proposed a new model to describe the typical temporal behaviour of surveil-

lance data on infectious diseases. Using a Bayesian approach and MCMC, a predictive

distribution for the future number of cases can easily be calculated. We believe that this

distribution could form the basis for a model-based outbreak detection system. Also, we

have outlined a multivariate extension in order to analyse the routinely collected longi-

tudinal data on infectious diseases. Of course, there is a lot of scope for improvement of

the model. We now outline a few areas that we currently consider.

In our model the transmission of the disease in the epidemic part is assumed to be

independent in the I regions. In real epidemics an infectious disease often spreads from
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one region to others. It may therefore be necessary to allow an individual of a region to

infect individuals in the regions of the neighborhood. One way to model this is based on

the theory of a multi-type branching process.

Within a region the epidemic part is assumed to be stationary. In most diseases with

predominantly endemic part a seasonal structure can be observed. Therefore a time

depending νit can be introduced into the model including a seasonal component. For

example, one could use a parametric model with a few Fourier frequencies.

The parameter λ is assumed to be constant over time, and therefore has to be smaller

than 1, otherwise the process has a positive probability to explode, which normally can

not happen in surveillance data. On the other hand it is known that some infectious

diseases have a basic reproduction number larger than 1, which would correspond to

λ > 1. Therefore a time varying λt (with stationary mean smaller then one) might be

interesting to consider. This would also allow to estimate the effect of public health

interventions, which should result in a smaller λ parameter.

Besides these extensions of the model area-level covariates could be introduced in ν or

λ as commonly done in ecological regression analyses. Another interesting question is,

if it is possible to integrate an unknown underreporting rate in the model. Morton

and Finkenstädt (2004) have included such a parameter in a spatio-temporal model for

measles, however, they also had information on the number of susceptibles, which is

typically not the case for ordinary surveillance data.
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A Estimation

The time series model is given as a special case of the space-time model with I = 1 and

ξi = 1. The full conditional for the parameter ν can be derived via

p(ν| . . .) ∝ p(ν)
I

∏

i=1

n
∏

t=1

(P (Xit|ν, ξi))
I

∏

i=1

P (Yi1|λ, ν, ξi, ωs,i)

∝ ναν−1 exp(−βνν)
I

∏

i=1

n
∏

t=1

(νXit exp(−νξi))
I

∏

i=1

(

νYi1 exp

(

−
λνξiωs,i

1 − λ

))

∝ ναν−1 exp(−βνν)ν
∑I

i=1

∑n
t=1

(Xit) exp

(

−nν

I
∑

i=1

ξi

)

ν
∑I

i=1
Yi1 exp

(

−
λν

1 − λ

I
∑

i=1

ξiωs,i

)

∝ ναν+
∑I

i=1

∑n
t=1

(Xit)+
∑I

i=1
Yi1−1 exp

(

−

(

βν + n +
λ

1 − λ

I
∑

i=1

ξiωs,i

)

ν

)

,

hence

ν| . . . ∼ Ga

(

αν +
I

∑

i=1

n
∑

t=1

Xit +
I

∑

i=1

Yi1, βν + n +
λ

1 − λ

I
∑

i=1

ξiωs,i

)

.

Instead of λ, λ̃ = logit(λ) will be updated using a Metropolis-Hastings algorithm, to be

able to get candidates form a not truncated distribution using a random walk proposal,

which simplifies the acceptance probability and to introduce covariates into the model.

For the full conditional of λ applies

p(λ| . . .) ∝ p(λ)
I

∏

i=1

n
∏

t=2

P (Yit|λ,Xi,t−1, Yi,t−1)
I

∏

i=1

P (Yi1|λ, ν, ξi, ωs,i)

The acceptance probability of the Metropolis-Hastings algorithm can be derived by

change of variables. For λ̃ a Gaussian random walk proposal distribution with vari-
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ance σ2
λ̃

is used, where σ2
λ̃

is tuned in order to get acceptance rates between 30% and

40% (see Gelman et al., 1996).

The parameters ωs,i are updated using the Gibbs sampler since

p(ωs,i| . . .) ∝ p(ωs,i)P (Yi1|ν, λ, ωs,i)

∝ ω
νξi(1+λ)−1
s,i exp(−ωs,iνξi(1 + λ))

(

ωs,i
λνξi

1−λ

)Yi1

Yit!
exp

(

−ωs,i

λνξi

1 − λ

)

∝ ω
νξi(1+λ)−1
s,i exp(−ωs,iνξi(1 + λ))ωYi1

s,i exp

(

−ωs,i

λνξi

1 − λ

)

∝ ω
νξi(1+λ)+Yi1−1
s,i exp

(

−ωs,i

(

νξi

(

(1 + λ) +
λ

1 − λ

)))

and therefore

ωs,i| . . . ∼ Ga

(

νξi(1 + λ) + Yi1, νξi

(

(1 + λ) +
λ

1 − λ

))

.

The parameters (Xit, Yit) are updated in a block because of the dependence that is given

by the equation Zit = Xit + Yit. The full conditional of (Xit, Yit) can be written as

P (Xit, Yit| . . .) = P (Yit|Xit, . . .)P (Xit| . . .),

where P (Yit|Xit, . . .) is deterministic: Yit = Zit − Xit. The full conditional of Xi1 is

binomial distributed,
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Xi1|Zi1, . . . ∼ Bin

(

Zi1,
νξi

νξi + ωs,i
λνξi

1−λ

)

,

and the full conditional of Xit, t = 2, . . . , n is

Xit|Zit, . . . ∼ Bin

(

Zit,
νξi

νξi + λ(Yi,t−1 + Xi,t−1)

)

Overdispersion for Yit

In case of the Poisson-Gamma construction used to obtain overdispersion a Ga(αψ, βψ)

prior is assumed on ψ. The parameter ψ̃ = log(ψ) is then updated using Metropolis-

Hastings algorithms with a Gaussian random walk proposal with variance σ2
ψ. The full

conditional of ψ is

p(ψ| . . .) ∝ p(ψ)
I

∏

i=1

n
∏

t=1

P (ωit|ψ).

the acceptance rate of the Metropolis-Hastings algorithm can be derived by change of

variables. For ψ̃ a Gaussian random walk proposal distribution with variance σ2
ψ̃

is used,

where σ2
ψ̃

is again tuned in order to get appropriate acceptance rates.

The full conditional of ωi1 is
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ωi1| . . . ∝ p(ωi1)P (Yi1|ωi1, λ, ν, ξiωs,i)

∝ ωψ−1
i1 exp(−ψωi1)

(

ωi1
λνξiωs,i

1−λ

)Yi1

Yi1!
exp

(

−ωi1
λνξiωs,i

1 − λ

)

∝ ωψ−1
i1 exp(−ψωi1)ω

Yi1

i1 exp

(

−ωi1
λνξiωs,i

1 − λ

)

∝ ωψ+Yi1−1
i1 exp

(

−ωi1

(

ψ +
λνξiωs,i

1 − λ

))

∼ Ga

(

ψ + Yi1, ψ +
λνξiωs,i

1 − λ

)

,

and for t = 2, . . . , n the full conditional of ωit is

ωit| . . . ∝ p(ωit)P (Yit|λ, ωit, Xi,t−1, Yi,t−1)

∝ ωψ−1
it exp(−ψωit)

(λωit(Xi,t−1 + Yi,t−1))
Yit

Yit!
exp(−λωit(Xi,t−1 + Yi,t−1))

∝ ωψ−1
it exp(−ψωit)ω

Yit

it exp(−λωit(Xi,t−1 + Yi,t−1))

∝ ωψ+Yit−1
it exp(−ωit(ψ + λ(Xi,t−1 + Yi,t−1)))

∼ Ga (ψ + Yit, ψ + λ(Xi,t−1 + Yi,t−1)) .

The update of the other parameters changes as follows:
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λ| . . . ∝ p(λ)
I

∏

i=1

n
∏

t=2

P (Yit|λ, ωit, Xi,t−1, Yi,t−1)
I

∏

i=1

P (Yi1|ωi1, λ, ν, ξi, ωs,i),

ν| . . . ∼ Ga

(

αν +
I

∑

i=1

n
∑

t=1

(Xit) +
I

∑

i=1

Yi1, βν + n +
λ

1 − λ

I
∑

i=1

ξiωs,iωi1

)

,

ωs,i ∼ Ga

(

νξi(1 + λ) + Yi1, νξi

(

(1 + λ) +
ωi1λ

1 − λ

))

,

Xi1|Zi1, . . . ∼ Bin

(

Zi1,
νξi

νξi + ωi1
λνξiωs,i

1−λ

)

,

Xit|Zit, . . . ∼ Bin

(

Zit,
νξi

νξi + λωit(Yi,t−1 + Xi,t−1)

)

.
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Figure 1: A Realization of Xt, Yt and Zt for model (1).
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Figure 2: A Realization of Xt, Yt and Zt for model (1) with overdispersion.
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mean std.dev 2.5% 97.5%
ν 44.89 9.03 28.62 63.64
λ 0.73 0.05 0.62 0.83

DS(θ) 102.85 1.87 100.80 107.77
µ 168.14 5.10 157.92 178.32

σ2 377.42 74.71 273.51 546.41

Table 1: Estimation results for the simulated data

mean std.dev 2.5% 97.5%
ν 53.81 9.09 36.34 71.09
λ 0.68 0.05 0.58 0.79

DS(θ) 103.52 2.23 100.88 108.98
µ 168.49 4.15 160.39 176.84

σ2 322.13 49.63 251.87 443.33

Table 2: Estimation results for the simulated data for a second prior distribution

mean std.dev 2.5% 97.5%
ν 42.26 7.34 27.67 56.83
λ 0.75 0.05 0.65 0.85
ψ 11.34 2.01 7.78 15.67

DS(θ) 100.82 14.31 74.85 130.37

Table 3: Estimation results for the simulated data with overdispersion

mean std.dev 2.5% 97.5%
ν 37.12 6.24 24.94 49.89
λ 0.78 0.04 0.70 0.86
ψ 14.73 2.25 10.65 19.44

DS(θ) 102.65 14.69 75.81 132.98

Table 4: Estimation results for the simulated data with overdispersion for a second prior
distribution
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Figure 3: The Number of observed cases of Leptospirosis per week in Rio de Janeiro in
the time from January 1995 to December 1999.

mean std.dev 2.5% 97.5%
ν 0.88 0.08 0.73 1.03
λ 0.87 0.02 0.82 0.91

DS(θ) 1791.68 2.24 1789.19 1797.25
µ 6.78 1.28 4.85 9.80

σ2 28.96 11.18 15.42 56.40

Table 5: Estimation results for the Leptospirosis data without overdispersion

mean std.dev 2.5% 97.5%
ν 1.08 0.10 0.90 1.29
λ 0.63 0.09 0.47 0.82
ψ 0.51 0.12 0.31 0.76

DS(θ) 354.56 16.00 324.39 387.35

Table 6: Estimation results for the Leptospirosis data with overdispersion

28



mean std.dev 2.5% 97.5%
ν 45.30 5.05 35.36 54.91
λ 0.73 0.03 0.68 0.79

DS(θ) 469.09 2.81 465.15 475.91
µ 170.60 4.93 161.19 180.67

σ2 374.69 41.05 310.46 470.42

Table 7: Estimation results for the simulated data

mean std.dev 2.5% 97.5%
ν 48.02 4.82 38.31 57.13
λ 0.72 0.03 0.66 0.78

DS(θ) 469.31 2.90 465.18 476.31
µ 170.75 4.56 161.99 179.82

σ2 356.57 35.39 300.86 436.31

Table 8: Estimation results for the simulated data for a second prior distribution
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Figure 4: The Number of observed cases of Campylobacter per week in Germany in the
time from January 2001 to July 2003.
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mean std.dev 2.5% 97.5%
ν 38.03 2.43 33.33 42.88
λ 0.95 0.00 0.94 0.95

DS(θ) 8226.99 11.02 8207.26 8250.48
µ 719.84 39.50 646.27 800.43

σ2 7039.10 828.77 5635.48 8848.86

Table 9: Estimation results for the Campylobacter data without overdispersion
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Figure 5: Posterior predictive credibility interval together with the observed
value(indicated by a triangle)

mean std.dev 2.5% 97.5%
ν 36.60 4.00 28.97 44.36
λ 0.95 0.01 0.94 0.96
ψ 11.62 0.58 10.53 12.78

DS(θ) 2433.52 69.15 2298.82 2571.30

Table 10: Estimation results for the Campylobacter data with overdispersion
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Figure 6: Posterior predictive credibility interval together with the observed
value(indicated by a triangle)
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