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Stochastic Modelling of the Spatial Spread of Influenza in Germany

Christiane Dargatz, Vera Georgescu, Leonhard Held

Ludwig-Maximilians-University, Munich

September 2, 2005

Abstract: In geographical epidemiology, disease counts are typically available in discrete

spatial units and at discrete time-points. For example, surveillance data on infectious dis-

eases usually consists of weekly counts of new infections in pre-defined geographical areas.

Similarly, but on a different time-scale, cancer registries typically report yearly incidence or

mortality counts in administrative regions.

A major methodological challenge lies in building realistic models for space-time interac-

tions on discrete irregular spatial graphs. In this paper, we will discuss an observation-driven

approach, where past observed counts in neighbouring areas enter directly as explanatory

variables, in contrast to the parameter-driven approach through latent Gaussian Markov ran-

dom fields (Rue & Held, 2005) with spatio-temporal structure. The main focus will lie on

the demonstration of the spread of influenza in Germany, obtained through the design and

simulation of a spatial extension of the classical SIR model (Hufnagel et al., 2004).

Zusammenfassung: In der räumlichen Epidemiologie liegen Fallzahlen typischerweise für

diskrete Gebiete und diskrete Zeitpunkte vor. Bei der Erfassung infektiöser Krankheiten

beispielsweise zählt man die wöchentlichen Inzidenzen in vorgegebenen Regionen. Ähnlich,

aber auf einer anderen Zeitskala, werden Krebsfälle jährlich registriert.

Eine Herausforderung liegt darin, eine Methode zur realistischen Modellierung von räumlich-

zeitlichen Zusammenhängen auf diskreten, unregelmäßigen räumlichen Graphen zu entwick-

eln. In diesem Artikel beschäftigen wir uns mit einem Ansatz, der bereits erfasste Fälle

in angrenzenden Gebieten direkt als erklärende Variablen einbezieht, im Gegensatz zur

Modellierung durch latente Gauß-Markov-Zufallsfelder (Rue & Held, 2005) mit räumlich-

zeitlicher Struktur. Dazu stellen wir die Ausbreitung von Influenza in Deutschland mittels

einer räumlichen Erweiterung des klassichen SIR-Modells (Hufnagel et al., 2004) in Com-

putersimulationen nach.

Keywords: Space-time interaction; Gaussian Markov random fields; Epidemic modelling;

Stochastic differential equations; Global SIR model; Influenza.

1 Introduction

There has been much recent interest in space-time models for disease counts collected in discrete spatial

units and discrete time points. While most of the work has mainly focused on non-infectious diseases, in

particular on cancer, recently models for infectious disease data have been developed. For non-infectious

diseases, hierarchical Bayesian approaches have been proposed, where latent parameters follow Gaussian

Markov random field (GMRF) models (Waller et al., 1997, Knorr-Held & Besag, 1998, Knorr-Held,

2000a, Lagazio et al., 2001, Lagazio et al., 2003, Schmid & Held, 2004). Common to these models is

the assumption that the observed counts are conditionally independent, given the latent parameters.

However, the allowance for realistic space-time interaction in GMRFs is non-trivial, one approach that

dates back to Clayton (1996) is to use Kronecker product structures (see also Rue & Held, 2005, Sec-
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tion 3.4.3) for interaction parameters while keeping main effects for overall spatial and temporal trends.

In this paper we will focus on a different modelling strategy, where past counts enter explicitly in the

disease rate and hence the conditional independence assumption is lost. This class of models, called

observation-driven (Cox, 1981), is motivated by the fact that parameter-driven models, such as the

GMRF models mentioned above, are not able to capture the epidemic trends observable in data on in-

fectious diseases. Indeed, epidemic models have used such observation-driven models for decades; in

particular the class of SIR models (susceptible–infected–removed) has been extensively studied. How-

ever, this has been done mainly in a purely temporal and simplistic context, ignoring the fact that global

epidemics spread in a spatio-temporal fashion.

A recent approach described in Hufnagel et al. (2004) fills this gap, proposing a spatio-temporal model

on two scales (local and global) to describe the spread of the SARS epidemic based on stochastic dif-

ferential equation models. Watts et al. (2005) developed a metapopulation model which incorporates

mixing even at multiple scales. We adopt and extend the model of Hufnagel et al. (2004) and use it to

investigate if it is able to describe an influenza epidemic in Germany 2005.

A major requirement in SIR models is knowledge of the number of susceptibles. In surveillance appli-

cations, often the whole population is considered as susceptible, due to the lack of available data (e.g.

Knorr-Held & Richardson, 2003). An alternative approach is to use a branching process model as an ap-

proximation to the SIR model. This class of models has the advantage that it does not require knowledge

of the number of susceptibles, however, some form of stationarity is needed to ensure that the stochastic

process, describing the number of counts at each time point, does not explode to infinity. Held, Höhle,

and Hofmann (2005) have used an extended version of this model in a series of applications from sur-

veillance data. In particular, they showed that maximum likelihood estimation is straightforward and

extended the model to the space-time domain using a multivariate branching process formulation. How-

ever, the application of this class of model to highly infectious diseases such as influenza is perhaps not

suitable, due to the underlying assumption of stationarity.

In the next section, we will start with the classical SIR model and then describe the approach by Hufnagel

et al. (2004) to model the spatio-temporal spread of infectious diseases. In Section 3, we develop an

algorithm for simulating this model. A central feature of the formulation is that the dispersal of infected

cases in space is not necessarily solely local but also global, if necessary. For example, infected cases

might travel through air traffic large distances in a small amount of time. Based on data on air and train

traffic in Germany, we define such a dispersal rate matrix for administrative regions in Germany and

investigate whether simulations from such a model show similar patterns as an influenza epidemic in

Germany in 2005. Model parameters are chosen based on external knowledge.

2 From the Standard Deterministic to a Global Stochastic SIR Model

2.1 Standard SIR Model

In the SIR model, we divide a population into three categories: Those who are susceptible to the dis-

ease (S), those who are infected and infectious (I), and those who are removed from the system because

they are recovered and immune, or quarantined, or dead (R). With s, j, and r we denote the fractions of

susceptible, infectious, and removed individuals of the total population N . Transitions from one category
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to another happen according to

S + I
α−→ 2I , I

β−→ R,

where α is the rate of an individual’s contacts per day which are sufficient to spread the disease, and β−1

is the average infectious period. The infection dynamics in the standard deterministic SIR model is given

by the set of differential equations

ds/dt = −αsj, dj/dt = αsj − βj. (1)

Hence, while recovery follows a linear process, infections occur on high rate only when both the numbers

of susceptibles and infectives are sufficiently large. Since we assume a closed population, i.e. ignoring

births, non-related deaths, and migration during the relatively short duration of an influenza epidemic,

we expect the size of the population to be constant. The fraction of recovered individuals thus reads

r = 1−s− j. The ratio ρ = α/β is called the basic reproduction number and states a decisive parameter

for the course of the epidemic: When ρ−1 is greater than the initial fraction of susceptibles s0, no epi-

demic will develop. Otherwise, the epidemic will fall off as soon as the decreasing function s(t) drops

below ρ−1.

In case of influenza, an infected individual aquires immunity to the strain he was affected by and can

hence not become susceptible during the same wave of flu again. Therefore, there is no need for a

transition from state R back to S. However, there are steadily new antigen mutants of the influenza virus

coming up, which is why at the beginning of the next epidemic the whole population will be susceptible

again.

2.2 Stochastic SIR Model

Bearing in mind that the infection and recovery processes are of rather stochastic than deterministic

character, we write (1) in terms of stochastic Langevin equations:

ds

dt
= −αsj +

1√
N

√

αsj ξ1(t)

dj

dt
= αsj − βj − 1√

N

√

αsj ξ1(t) +
1√
N

√

βj ξ2(t),

where ξ1(t) and ξ2(t) are independent Gaussian white noise forces, modelling fluctuations in transmis-

sion and recovery matters. These are of particular importance during the initial phase when the number

of infected individuals is relatively small.

2.3 Excursus: SLIR Model

It is possible to also incorporate a latent status in our considerations, which yields the following transi-

tions, the so-called SLIR model:

S + I
α−→ L + I , L

ε−→ I , I
β−→ R,

where ε−1 is the average latent period. Let l denote the fraction of latent individuals of the total popula-

tion. The differential equations then read

ds/dt = −αsj, dl/dt = αsj − εl, dj/dt = εl − βj
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in the deterministic case and

ds

dt
= −αsj +

1√
N

√

αsj ξ1(t)

dl

dt
= αsj − εl − 1√

N

√

αsj ξ1(t) +
1√
N

√
εl ξ3(t)

dj

dt
= εl − βj − 1√

N

√
εl ξ3(t) +

1√
N

√

βj ξ2(t)

in the stochastic model, where ξ3(t) accounts for noise in the duration of the latent period.

Since our objective is the modelling of the spread of influenza, where an individual can normally pass on

the virus from the moment of infection, we from now on suppress the consideration of latency. Never-

theless, the following observations can easily be adjusted to the SLIR model (cf. supporting material at

http://www.statistik.lmu.de/ d̃argatz/publications).

2.4 Global SIR Model

So far, our model describes the spread of a disease in a single closed population under the assumption

of homogeneous mixing. But this condition applies only as long as individuals cover relatively short

distances—an assumption that is not given in our fully connected world anymore, even if we restrict our

focus to a comparatively small area like Germany. As suggested in Hufnagel et al. (2004), we introduce a

network of subregions 1, . . . , n of the primarily observed area, each region i having a population size Ni

being composed of Si, Ii, and Ri susceptible, infectious and removed individuals. Whilst the local

infection dynamics within a subregion is given by the stochastic SIR model as introduced above, the

global dispersal between the knots of the network is rated in a connectivity matrix γ = (γij)ij :

Si + Ii
α−→ 2Ii, Ii

β−→ Ri, Si

γij−→ Sj , Ii

γij−→ Ij .

The system of stochastic differential equations now changes to

dsi

dt
= −αsiji −

∑

k

γiksi +
∑

k

γkisk +
1√
Ni

√

αsiji ξ
(i)
1 (t)

+
1√
Ni

√

∑

k

γiksi ξ
(i)
4 (t)− 1√

Ni

√

∑

k

γkisk ξ
(i)
5 (t)

dji

dt
= αsiji − βji −

∑

k

γikji +
∑

k

γkijk −
1√
Ni

√

αsiji ξ
(i)
1 (t) +

1√
Ni

√

βji ξ
(i)
2 (t) (2)

+
1√
Ni

√

∑

k

γikji ξ
(i)
4 (t)− 1√

Ni

√

∑

k

γkijk ξ
(i)
5 (t)

dri

dt
= βji −

1√
Ni

√

βji ξ
(i)
2 (t).

for i = 1, . . . , n. Here, ξ1(t) = (ξ
(1)
1 (t), . . . , ξ

(n)
1 (t)), ξ2(t), ξ4(t), and ξ5(t) are independent vector-

valued white noise forces which stand for fluctuations in transmission, recovery, and outbound and in-

bound traffic, respectively.
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Since in the global model the single populations are not closed anymore due to migration, the property

si + ji + ri = 1, i = 1, . . . , n, does not necessarily hold. Instead, si, ji, and ri indicate the fractions of

susceptible, infectious and removed individuals as measured by the original population Ni. That is why

in (2) we also declared the formula for ri.

3 Implementation

3.1 Keeping the System Closed

Let us focus on the Gaussian white noises ξj. The components of ξ1(t) and ξ2(t) (and also of ξ3(t))

are all stochastically independent of each other, but we have to introduce a weak form of dependence to

the components of ξ4(t) and ξ5(t) due to the following: Since we assume the area of our n regions to

be closed, we have to require
n
∑

i=1

(

dsi

dt
+

dji

dt
+

dri

dt

)

= 0 .

The left hand side of this equation reads

∑

i

(

−
∑

k

γiksi +
∑

k

γkisk

)

+
∑

i

(

−
∑

k

γikji +
∑

k

γkijk

)

(3)

+
∑

i

1√
Ni





√

∑

k

γiksi +

√

∑

k

γikji



 ξ
(i)
4 (t) (4)

+
∑

i

1√
Ni





√

∑

k

γkisk +

√

∑

k

γkijk



 ξ
(i)
5 (t) . (5)

Obviously, the two sums over i in (3) both equal 0. In order to also let rows (4) and (5) disappear, we

correlate the components of ξ4(t) and those of ξ5(t) among each other such that equality with zero

holds almost surely.

For the components of ξ4, we proceed as follows (see Knorr-Held, 2000b): Define

xi(t) :=
1√
Ni





√

∑

k

γiksi(t) +

√

∑

k

γikji(t)



 .

We hence seek
n
∑

i=1

xi(t) ξ
(i)
4 (t) = 0 a.s. for all t. (6)

Define the n× n-matrices

M := In −
1

n
1n1

′
n =











n−1
n

− 1
n
· · · − 1

n

− 1
n

n−1
n
· · · − 1

n
...

...
. . .

...

− 1
n
− 1

n
· · · n−1

n











,
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where In ∈ R
n×n denotes the identity matrix and 1n = (1, 1, . . . , 1)′ ∈ R

n×1. Furthermore,

Σ(t) := diag
(

x2
1(t), . . . , x

2
n(t)

)

and

Q(t) := M ·Σ(t) ·M =
(

qij(t)
)

ij

with

qii =





1

n2

∑

k 6=i

x2
k(t) +

(n− 1

n

)2
x2

i (t)



 ,

qij =





1

n2

∑

k 6=i,j

x2
k(t)−

n− 1

n2

(

x2
i (t) + x2

j(t)
)



 for i 6= j,

and let

u(t) :=
(

x1(t) ξ
(1)
4 (t), . . . , xn(t) ξ

(n)
4 (t)

)′ ∼ N
(

0,Q(t)
)

, (7)

i.e. Q(t) is the covariance matrix of u(t). Then, as required,

var
(

xi(t) ξ
(i)
4 (t)

)

= qii(t) ≈ x2
i (t) for n large and i = 1, . . . , n

(xi(t) remains constant for t fixed, hence var (xi(t) ξ
(i)
4 (t))

!
= x2

i (t)). Moreover,

E

(

n
∑

i=1

xi(t) ξ
(i)
4 (t)

)

= 0 and var

(

n
∑

i=1

xi(t) ξ
(i)
4 (t)

)

= 1′

nQ(t)1n = 0,

yielding (6). Unfortunately, the desired property
∑

i,j qij(t) = 0 yields the drawback that Q(t) is not

positive definite and hence unsuitable as covariance matrix. Instead of u(t), we hence consider a linear

transformation Lu(t) with

L :=

(

In−1 −1n−1

1′
n−1 1

)

∈ R
n×n ,

whose first n− 1 components have dispersion

P(t) := diag
(

x2
1(t), . . . , x

2
n−1(t)

)

+ x2
n(t)1n−11

′
n−1 ∈ R

(n−1)×(n−1).

Draw π(t) = (π1(t), . . . , πn−1(t), 0)
′ with

(

π1(t), . . . , πn−1(t)
)′ ∼ N

(

0,P(t)
)

and retransform u(t) = (u1(t), . . . , un(t)) = Mπ(t). We obtain

ξ
(i)
4 (t) =

ui(t)

xi(t)
, i = 1, . . . , n.

Note that, for any i, we have xi(t) > 0 as long as ri(t) < 1, since for all i ∈ {1, . . . , n} there is

a k ∈ {1, . . . , n} with γik > 0 (i.e. each district is directly connected to at least one other). However,

if xi(t) = 0, the value of ξ
(i)
4 (t) does not matter since in (4) it will be multiplied by xi(t).

Obtain ξ5 in the same way as ξ4, replacing xi(t) by

yi(t) :=
1√
Ni





√

∑

k

γiksk(t) +

√

∑

k

γikjk(t)



 .
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3.2 Numerical Scheme

Given initial conditions si(0), ji(0), and ri(0), i = 1, . . . , n, as well as fixed values for the transmis-

sion rate α and the reciprocal average infectious period β, we simulate the epidemic process at discrete,

equidistant instants in the time domain [0, tmax]. Let δ be the (suitably small) time step. For the approxi-

mation of the differential equations (2), we apply the Euler-Maruyama approximation scheme

si

(

mδ
)

= si

(

(m− 1)δ
)

+
[

dsi(t)
/

dt
]

t=(m−1)δ

ji

(

mδ
)

= ji

(

(m− 1)δ
)

+
[

dji(t)
/

dt
]

t=(m−1)δ
(8)

ri

(

mδ
)

= ri

(

(m− 1)δ
)

+
[

dri(t)
/

dt
]

t=(m−1)δ

for m ≥ 1 and i = 1, . . . , n (Kloeden & Platen, 1999).

3.3 Algorithm

After having fixed the parameters α, β, and γ, the time step δ and initial values for si, ji, and ri,

i = 1, . . . , n, the proceeding for each instant of time now reads as follows (m = 0, . . . , (tmax/δ)− 1):

1. For i = 1, . . . , n, calculate

µi := αsi(mδ) ji(mδ), νi := β ji(mδ),

and

ηi :=
n
∑

k=1

γik si(mδ), ζi :=
n
∑

k=1

γki sk(mδ), ρi :=
n
∑

k=1

γik ji(mδ), τi :=
n
∑

k=1

γki jk(mδ).

2. For i = 1, . . . , n, compute xi = mi(
√

ηi +
√

ρi ) and yi = mi(
√

ζi+
√

τi ), where mi :=
√

Ni
−1

.

3. Set P4 = diag
(

x2
1, . . . , x

2
n−1

)

+ x2
n1n−11

′
n−1 and P5 = diag

(

y2
1 , . . . , y

2
n−1

)

+ y2
n1n−11

′
n−1.

4. Generate π(j) =
(

π
(j)
1 , . . . , π

(j)
n

)

, j = 4, 5, with
(

π
(j)
1 , . . . , π

(j)
n−1

)

∼ N(0,Pj) and π
(j)
n = 0.

5. Compute u = (u1, . . . , un) = Mπ4 and v = (v1, . . . , vn) = Mπ5 with M = In − n−11n1
′
n.

6. Evaluate ξ1, ξ2 ∼ N(0, In) and ξ4, ξ5 with ξ
(i)
4 = ui/xi, ξ

(i)
5 = vi/yi, i = 1, . . . , n.

7. For i = 1, . . . , n, calculate

[dsi/dt]t=mδ = −µi − ηi + ζi + mi

(√
µi ξ

(i)
1 +

√
ηi ξ

(i)
4 −

√

ζi ξ
(i)
5

)

[dji/dt]t=mδ = µi − νi − ρi + τi + mi

(

−√µi ξ
(i)
1 +

√
νi ξ

(i)
2 +

√
ρi ξ

(i)
4 −

√
τi ξ

(i)
5

)

[dri/dt]t=mδ = νi −mi
√

νi ξ
(i)
2

8. Approximate si((m+1)δ), ji((m+1)δ), and ri((m+1)δ), i = 1, . . . , n, with the Euler-Maruyama

formula (8).

9. For i = 1, . . . , n, correct approximation errors by setting negative values of si, ji, and ri equal to

zero.
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10. (Optional step.) Rescale si, ji, and ri, i = 1, . . . , n, via

si

(

(m + 1)δ
)

← si

(

(m + 1)δ
)

·
(

si

(

(m + 1)δ
)

+ ji

(

(m + 1)δ
)

+ ri

(

(m + 1)δ
))−1

ji

(

(m + 1)δ
)

← ji

(

(m + 1)δ
)

·
(

si

(

(m + 1)δ
)

+ ji

(

(m + 1)δ
)

+ ri

(

(m + 1)δ
))−1

ri

(

(m + 1)δ
)

← ri

(

(m + 1)δ
)

·
(

si

(

(m + 1)δ
)

+ ji

(

(m + 1)δ
)

+ ri

(

(m + 1)δ
))−1

.

With this transformation, we constantly adjust the fractions of susceptible, infected, and recovered

individuals to the current population size of the respective region.

4 Initialization

We use our simulation program for the demonstration of spread of influenza in Germany for varying

resolutions: for districts (”Landkreise/Stadtkreise”), counties (”Regierungsbezirke”), and states (”Bun-

desländer”).

4.1 Dataset

The underlying data about incidences of influenza in Germany is taken from the Robert Koch Institute

(RKI): SurvStat, http://www3.rki.de/SurvStat, deadline: 8 July 2005. We only consider cases

categorized as A or A/B (i.e. no further differentiation), since it is the influenza A virus that is most re-

sponsible for national epidemics of the flu. Unfortunately, the data suffers from underreporting. Accord-

ing to estimations of the Federal Ministry of Health and Women, Austria (http://www.bmgf.gv.at),

and the Robert Koch Institute (http://www.rki.de), the annual number of influenza cases is approxi-

mately 4.5% of the total population. However, only one out of 500 of these cases is reported to the RKI.

Moreover, the number of announced cases depends on the number of medical examinations induced and

does hence not reflect the actual geographical distribution. In particular, affections will be more clustered

in the dataset than in reality.

4.2 Connectivity Matrix

The connectivity matrix γ describes the strength of traffic between the subunits of Germany. For its

design we take into account the dispersal between adjacent regions, caused e.g. by commuters, and the

domestic train and air traffic. Each of these three components is provided with a weight regulating its

influence.

At district level, we assume that the major part of the traffic between regions arises from commuters.

Data from the Federal Statistical Office Germany (http://www.destatis.de/e home.htm) about the

lengths of ways to work lead us to the assumption that about 30% of the employees work in a different

district than their home town. Adding private traffic, we obtain an estimated fraction of 16% of the total

population that is migrating between districts every day, which is reflected by γ having an average row

total of 0.16. We choose the weights of the train and of the flight network to be 1/20 and 1/80 of the

traffic between neighboured districts according to the annual amounts of travellers, which are about 200

million in the inter urban rail services and 50 million in the domestic flight connections. Certainly, these

weights depend on the kind of disease and time period under observation. For example, the influence of

the flight network will be less when considering children’s diseases, and during school terms an increas-

ing national mixing rate should be considered.

8



Within the matrix γ, the strength of migration between two adjacent districts is measured by their

densities and numbers of surrounding districts. Our rail network model consists of 57 cities which

are served by ICE trains. Data about flight connections was obtained from the OAGflights database

(http://www.oagflights.com) and composed as in Hufnagel et al. (2004).

For counties and states, we assume the migration between parts of Germany to be more uniform than in

the case of districts. For more details, see the supporting material.

4.3 Transmission Rate and Infectious Period

Before being able to run the simulation, we need an estimate of the parameters α and β. Recall that α is

the daily number of contacts sufficient for infection an individual has with other individuals, and β−1 is

the average infectious period of the disease. Due to these meanings, it is easy to estimate β, but more

complicated to guess α. We hence try to estimate the basic reproduction number ρ = α/β. For that, we

return to the standard deterministic SIR: Devide the second equation of (1) by the first one and obtain

the time-independent differential equation

dj

ds
= −1 +

1

ρs
,

which has the explicit solution

j(t) = −s(t) +
1

ρ
log s(t) + c

with a constant c. At the very beginning of an influenza epidemic, almost all individuals of the considered

population are susceptible, whilst the number of infected should be about zero. With these assumptions,

i.e. s0 = 1 and i0 = 0, we obtain c = 1. Consequently,

ρ =
log s(t)

j(t) + s(t)− 1
for all t ≥ 0. (9)

Certainly, the term on the right is not constant for the available data. Moreover, as time goes by and safety

measures like vaccination or isolation are increased, the reproduction number is going to fall. However,

we assume ρ to be constant in time, but varying in space. From the application of formula (9) to our

district-level data and limt→∞ s(t) = 0.955 (compare Section 4.1) and limt→∞ j(t) = 0, we set

ρ(di) = 10−5 · di + 1.0179,

where di is the population density of region i. This relation reflects the intuitively clear fact that the

disease is more likely to spread in areas with high population densities. Since the infectious period

of influenza usually lasts for four to five days, we assume β = 2/9 and calculate αi via β · ρ(di),
i = 1, . . . , n.

5 Simulation Results

In this section we want to present the results of our simulations. We run the program for different start-

ing scenarios for both the deterministic and stochastic model and try the effects of the parameters on the

outcomes. Although we draw comparisons between the (highly under-)reported and the simulated data,

we want to emphasize that the objective of this paper is neither to predict the future nor to exactly repeat
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former data, but to give an idea of the spatio-temporal spread of influenza and the effect of stochastic

fluctuations on its outbreak.

Results of the simulations are returned as animated maps of Germany, which are available at

http://www.statistik.lmu.de/ d̃argatz/publications.

5.1 Long-Term Simulations

We repeatedly run our simulation at district level with α and β as estimated in Section 4.3 and with an

initial number of infectious individuals according to week 5/2005 in our dataset (Section 4.1). Though

being probabilistic, the simulations generally yield the same pattern (see also Figure 1): From South

Germany, where an increased level of prevalence was observed in week 5, the disease bounces to Bre-

men and at the same time moves via Frankfurt to North Rhine-Westphalia and Lower Saxony, from

where it spreads to the Eastern part of Germany and finally affects the whole nation. This shows sur-

prisingly good agreement with the actual course of the influenza epidemic in 2005 as demonstrated at

http://influenza.rki.de. In the last graphic of Figure 1, we interpret the increased morbidity at

the national borders, especially in North and East Germany, as edge effects.

As mentioned in Section 4.1, cases in our dataset appear more concentrated in one region than they

probably are, which might be due to different reporting behaviour. In contrast to that, our simulation

does not leave any district unaffected. The final size of the epidemic, which is the fraction of individuals

that have been affected by the disease at the end of the epidemic, is about 4.5% on average. Figure 2

shows the simulated final sizes of the epidemic in each district after 100 iterations. The duration of the

outbreak in our simulations is about 150 days, which is twice as long as the actual continuance of the

influenza wave from week 5/2005 on. We see the reason for this in a slow onset of the epidemic—caused

by too small numbers of initially infectious individuals—and the reproduction number ρ not decreasing

in time but being constant, which contradicts the real situation (see Section 4.3). Investigations show

that the amount of initially infected individuals hardly affects the final size of the epidemic—as long as

the fraction of susceptibles at the very beginning does not fall below ρ−1—but rather shifts the starting

point of the major outbreak. To our surprise, changes in the time step δ do not really matter regarding the

speed, course and intensity of the spread, which means that our numerical scheme already yields good

results for relatively large δ.

5.2 One Week’s Forecasts

We initialize the computer program with data from various weeks of our dataset and simulate the follow-

ing week’s spread of the epidemic repeatedly. Figure 3 compares the distributions of the proportions of

infected individuals of the total population in week 7/2005 for 2000 simulations of the stochastic model

with the respective deterministic result and actual data for the three considered divisions of Germany

and δ ∈ { 0.1, 1} (measured in days). It turns out that the deterministic outcomes are similar for all

resolutions and both values of δ, but do not agree with the dataset, which is not surprising due to the high

level of underreporting mentioned in Section 4.1. On county and state level, the stochastic results seem to

be normally distributed with the deterministic value as mean, where the variance is smaller for δ = 0.1
than for δ = 1. In contrast to that, the probabilistic modelling on district level yields results that are

larger than in the deterministic case (for δ = 1 much more clearly than for δ = 0.1), though apparently

also normally distributed. We suspect the reason for this offset in the starting distribution of infectious

individuals: While there are reported affections in almost all counties and states, prevalences are concen-
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Figure 1: Stochastic simulation of the spread of influenza in Germany. The initial situation corresponds

to week 5/2005 in the dataset. Displayed are the fractions of infectives at days 50, 70, 85, 110, 133, and

150 after the starting point.
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Figure 2: Average final sizes of the epidemic in the 438 German districts after 100 iterations, started at

week 5/2005. The horizontal line indicates the mean of all bars.
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Figure 3: Distributions of the fractions of infectives after 2000 stochastic simulations of one week’s

spreads. The starting scenario corresponds to week 6/2005. The vertical marks display the respective

deterministic (thick line) and actual (thin line) outcomes according to the dataset. Simulations were

performed on state, county, and district level (from the left to the right). The first row shows the results

for δ = 1, the second one for δ = 0.1.
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Figure 4: Distributions of the fractions of infectives in Berlin, Böblingen, and Bremerhaven (from the

left to the right) after 2000 simulations with δ = 1. The starting scenario corresponds to week 6/2005.

The vertical marks display the respective deterministic (thick line) and actual (thin line) outcomes.

trated on relatively few districts. When in our simulation the epidemic spreads to those districts with the

initial fraction of infectives being zero, the stochastic fluctuations in this dynamics are kind of bounded

to one side (compare with step 9 of the algorithm in Section 3). Obviously, this effect is deeper for larger

values of δ. If we focus on those few districts where morbidity was already present at the beginning of

the simulation, we obtain rather satisfying results already for δ = 1 (see Figure 4). For these districts,

the actual data lies within the range of the stochastic results. We conclude that the stochastic simulation

at district level is rather inappropriate as long as we consider relatively short terms or cannot improve the

quality of the underlying data.

6 Conclusion and Outlook

In this paper, we presented a global extension of the classical SIR model as well as technical details for

its implementation and initialization. Computer simulations provided quite realistic demonstrations of

the spread of diseases in Germany. In future work, we will further refine the model, e.g. by involving

time-dependent parameters (cf. Sections 4.3 and 5.1). Furthermore, we intend to deal with the question

of finding surveillance strategies in case of a sudden outbreak of an epidemic, like specific isolation,

vaccination or observation of migration. One main purpose of our research will certainly involve the

application of more formal statistical inference techniques for estimating the model parameters based on

available data from surveillance databases.
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