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Abstract

Functional data analysis can be challenging when the functional objects are sampled
only very sparsely and unevenly. Most approaches rely on smoothing to recover the un-
derlying functional object from the data which can be difficult if the data is irregularly
distributed. In this paper we present a new approach that can overcome this chal-
lenge. The approach is based on the ideas of mixed models. Specifically, we propose a
semiparametric mixed model with boosting to recover the functional object. While the
model can handle sparse and unevenly distributed data, it also results in conceptually
more meaningful functional objects. In particular, we motivate our method within the
framework of eBay’s online auctions. Online auctions produce monotonic increasing
price curves that are often correlated across two auctions. The semiparametric mixed
model accounts for this correlation in a parsimonious way. It also estimates the underly-
ing increasing trend from the data without imposing model-constraints. Our application
shows that the resulting functional objects are conceptually more appealing. Moreover,
when used to forecast the outcome of an online auction, our approach also results in
more accurate price predictions compared to standard approaches. We illustrate our
model on a set of 183 closed auctions for Palm M515 personal digital assistants.

Key words and phrases: Nonparametric methods, smoothing, mixed model, boosting, penalized
splines, online auction, eBay.
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1 Introduction

The technological advancements in measurement, collection, and storage of data have led to more

and more complex data-structures. Examples include measurements of individuals’ behavior over

time, digitized 2- or 3-dimensional images of the brain, and recordings of 3- or even 4-dimensional

movements of objects travelling through space and time. Such data, although recorded in a discrete

fashion, are usually thought of as continuous objects represented by functional relationships. This

gives rise to functional data analysis (FDA). In FDA (Ramsay and Silverman, 2002, 2005) the center

of interest is a set of curves, shapes, objects, or, more generally, a set of functional observations.

This is in contrast to classical statistics where the interest centers around a set of data vectors.

In that sense, functional data is not only different from the data-structure studied in classical

statistics, but it actually generalizes it. Many of these new data-structures call for new statistical

methods in order to unveil the information that they carry.

Any set of functional data consists of a collection of continuous functional objects such as a

set of continuous curves describing the temperature changes over the course of a year, or the price

increase in an online auction. Despite their continuous nature, limitations in human perception and

measurement capabilities allow us to observe these curves only at discrete time points. Thus, the

first step in a typical functional data analysis is to recover, from the observed data, the underlying

continuous functional object. This recovery is typically done with the help of smoothing methods.

When recovering the functional object, one encounters a variety of challenges two of which

are sparse and unevenly distributed data. Smoothing methods often operate locally which means

that sparse and unevenly distributed data can lead to curves that are very unrepresentative of the

underlying functional object. The problem of sparse and unevenly distributed data is very acute

since more and more real-world processes generate such kind of data. One example are online

auctions where the arrival of data is determined by many different sources that act independently

of one another, such as sellers who decides when to start and stop the auction, or bidders who

decide when and where to place their bids. The situation is similar in web logs (“blogs”) where the

arrival of new postings depends on the arrival (and the importance) of news. Similarly, information

on a patient’s medical status becomes available only when the patient decides to visit a doctor.

Either way, the result is irregularly spaced data which pose a challenge to traditional smoothing

methods.
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It is important to obtain accurate representations of the underlying functional object. Just

like measurement error leads to an (unwanted) source of variation in classical statistics, poor curve

representation can lead to an (additional) error source in FDA. Moreover, in FDA one often analy-

ses derivatives of the functional objects in order to, say, study the dynamics of a process (Jank

and Shmueli, 2005b). Then, if already the curve contains error, this error will be propagated (and

magnified) to the curve-derivative. Another important area is curve-forecasting to obtain dynamic,

real-time predictions of online auctions (Wang et al., 2006; Jank et al., 2006). There, if the func-

tional object is poorly represented, then the prediction (together with the ensuing conclusions) can

be far off. In this paper we propose a method that can overcome sparse and unevenly distributed

data by borrowing information from neighboring functional objects. The underlying idea is very

similar to that of mixed models (McCulloch and Searle, 2000).

One additional advantage of our modeling approach is that it results in conceptually more

meaningful functional objects compared to previous approaches. Much of the extant literature that

studies online auctions assumes independence between two auctions (Lucking-Reiley et al., 1999;

Kauffman and Wood, 2003; Bapna et al., 2003; Roth and Ockenfels, 2002; Bapna et al., 2005). This

assumption though is hard to justify from a practical point of view given that it is very easy for

a bidder to monitor 10 or more auctions simultaneously. For instance, if a bidder participates in

two auctions simultaneously, then prices in these two auctions are no longer independent of one

another. Also, the independence assumption implies that two auctions for the same (or similar)

item transacting during the same period of time have no affect on one another (see Jank and

Shmueli, 2005a, for evidence against this assumption). This assumption is typically not made

out of ignorance of the fact, but rather due to the lack of models flexible enough to account for

the different types of correlation structures. Clearly, there is room for statistical thought and

innovation. The method proposed in this manuscript is one attempt into that direction.

We focus here on methods that can overcome irregularly spaced data and that can also incorpo-

rate dependencies among functional objects. These methods are derived from the mixed regression

model framework. In the context of regression models, much work has been done to extend the

strict parametric form to include more flexible semi- and nonparametric approaches. For details

see Hastie and Tibshirani (1990), Green and Silverman (1994) or Schimek (2000). For example, the

P-Spline (e.g. Eilers and Marx, 1996) is very versatile and requires only an a-priori decision about

a few basic smoothing parameter settings such as the location and number of knots, the order of
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the spline, and the magnitude of the smoothing penalty. However, one of the disadvantages of

P-Splines (and also of other smoothing methods), is the manual (or semi-manual) selection of the

smoothing parameters. Another disadvantage is that they require relatively large sample sizes to

produce reliable results. Furthermore, not only is the sample size important but also the sample

variability. For instance, if one wishes to estimate a function over a particular region, then the

results returned by P-Splines can be very poor if that region is sampled only very locally. Thus,

traditional smoothing methods can be problematic if the data are sparse and only unevenly dis-

tributed. We overcome this problem using semiparametric mixed models. Our boosting approach

also results in automated selection of the smoothing parameters.

This paper is organized as follows. In Section 2 we review the basics of eBay’s auction mechanism

and describe the data-challenges it produces. In Section 3 we describe two approaches for modeling

sparse and unevenly spaced data. The first approach is the more traditional approach based on

penalized smoothing splines and we demonstrate situations when it becomes unreliable. The second

approach uses the ideas of mixed models. We describe the general semiparametric mixed model for

estimating sparse and unevenly spaced data and describe boosting strategies to estimate the model

parameters. We apply the method to a set of eBay auctions in Section 4. We conclude with final

remarks in Section 5.

2 Recovering the Price-Curve in Online Auctions

In the following we motivate the problem of recovering sparse and unevenly sampled curves by

considering eBay’s online auctions (see www.ebay.com). We describe eBay’s auction mechanism,

the data that it generates, and the challenges involved in taking a functional approach to analyzing

online auction data.

2.1 eBay’s Auction Mechanism

eBay is one of the biggest and most popular online marketplaces. In 2005, eBay had 180.6 million

registered users, of which over 76.8 million bid, bought, or sold an item, resulting in over 1.9 billion

listings for the year. Part of its success can be attributed to the way in which items are being sold

on eBay. The dominant form of sale is the auction and eBay’s auction format is a variant of the

second price sealed-bid auction (“Vickrey auctions”, see e.g. Krishna, 2002) with “proxy bidding”.
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This means that individuals submit a “proxy bid”, which is the maximum value they are willing to

pay for the item. The auction mechanism automates the bidding process to ensure that the person

with the highest proxy bid is in the lead of the auction. The winner is the highest bidder and pays

the second highest bid. For example, suppose that bidder A is the first bidder to submit a proxy

bid on an item with a minimum bid of $10 and a minimum bid-increment of $0.50. Suppose that

bidder A places a proxy bid of $25. Then eBay’s web page automatically displays A as the highest

bidder, with a bid of $10. Next, suppose that bidder B enters the auction with a proxy bid of $13.

eBay still displays A as the highest bidder, however it raises the displayed high-bid to $13.50, one

bid increment above the second-highest bid. If another bidder submits a proxy bid above $25.50,

bidder A is no longer in the lead. However, if bidder A wishes, he or she can submit a new proxy

bid. This process continues until the auction ends. Unlike some other auctions, eBay has strict

ending times, ranging between 1 and 10 days from the opening of the auction, as determined by

the seller.

2.2 eBay’s Data

eBay is a rich source of high-quality – and publicly available – bidding data. eBay posts complete

bid histories of closed auctions for a duration of at least 15 days on its web site1. One implication

of this is that eBay-data do not arrive in the traditional form of tables or spreadsheets; rather, they

arrive in the form of HTML pages.

Figure 1 shows an example of eBay’s auction data. The top of Figure 1 displays a summary

of the auction attributes such as information about the item for sale, the seller, the opening bid,

the duration of the auction, and the winner. The bottom of Figure 1 displays the bid history, that

is, the temporal sequence of bids placed by the individual bidders. Figure 2 shows the scatter of

these bids over the auction duration (a 7-day auction in this example). We can see that only 6

bids were placed in this auction and that most bids were placed towards the auction end, with the

earlier part of the auction only receiving one bid. If we conceptualize the evolution of price as a

continuous curve between the start and the end of the auction, then Figure 2 shows an example of

a very sparse and unevenly sampled price-curve.
1See http://listings.ebay.com/pool1/listings/list/completed.html
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Figure 1: Bid history for a completed eBay auction. The top part displays auction attributes and

includes information on the auction format, the seller and the item sold; the bottom part displays

the detailed history of the bidders and their bids.

6



0 1 2 3 4 5 6 7

0
10

20
30

40

Day of Auction

P
ric

e

Figure 2: Scatterplot for bid history in Figure 1. The “×” marks the opening bid; the “4” marks

the final price. Of the total of 6 bids, only one arrives before day 6.

2.3 Price-Curve and Data Challenges

Studying and modeling the price-curve can help in finding answers to questions such as “Does

price in a typical online auctions increase sharply at first and then level-off towards the end?”

Or, conversely, “Does price remain low throughout most of the auction only to experience sharp

increases at the end?” And if so, “Is this price pattern the same for auctions of all types? Or do

patterns differ between different product categories?” Jank and Shmueli (2005b) show that answers

to these questions can help in characterizing auction dynamics and lead to more informed bidding

or selling decisions. Wang et al. (2006) build upon these ideas to develop a dynamic forecasting

system for live auctions (see also Jank et al., 2006). In related work, Shmueli et al. (2006) develop

an interactive visualization and forecasting tool for online auction data.

One way of modeling the price-curve is via functional models. However, this modeling task

is complicated due to the data structure found in online auctions. Consider again the example

in Figure 2. The first step in functional data analysis is to recover, from the observed bids, the

continuous price-curve. Notice, however, that only 6 bids are observed, most of them occurring at

the auction end. Using traditional smoothing methods to recover a continuous curve from only 6

data points of which 5 are located at the end is not particularly meaningful or reasonable and will

not lead to very representative estimates of the price-curve.
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Figure 3: Three individual bid histories and their combined bids (bottom right panel).

3 Modeling Sparse and Unevenly Sampled Data

One solution is to borrow information from other, similar auctions. Figure 3 shows the bid histories

for three similar auctions for the same item, labeled #6, #121 and #173. We can see that the

price curve in auction #6 is only sampled at the end. Conversely, in auction #121 the price is

sampled predominantly at the beginning, with no information from the middle of the auction.

And finally, auction #173 contains lots of price information from the auction middle but only

little from its start and end. While every auction by itself contains only partial information about

the entire price-curve, if we combine the information from all three auctions, we obtain a more

complete picture. This is shown in the bottom right panel of Figure 3. The idea of semiparametric

mixed model smoothing is now as follows: whenever an individual auction contains incomplete

information, we borrow from the combined information of all similar auctions. We describe this

method more formally next.

3.1 Penalized Splines: The Challenge

The basic model for price that we consider has the form

Pricei(t) = αi0 + α(i)(t) + εi(t), (1)
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where t stands for time, Pricei(t) denotes the price of the i-th auction at time t, αi0 is the intercept,

α(i)(t) denotes a suitable function of time, centered around zero, and εi(t) is a noise process with

zero mean and variance σ2
ε .

A common approach for obtaining estimates of α(i)(t) is via basis function expansion. One of

the simplest basis function, the truncated power series basis of degree d, yields

α(i)(t) = γ
(i)
0 + γ

(i)
1 t + . . . γ

(i)
d td +

M∑

s=1

α(i)
s (t− ks)

d
+ ,

where k1 < . . . < kM are distinct knots, and γ
(i)
j and α

(i)
s are parameters to be estimated from the

data. More generally, one uses a function of the form

α(i)(t) =
M∑

m=1

α(i)
m φ(i)

m (t) = φT
i (t)αi (2)

where φ
(i)
m denotes the m-th basis function, φT

i (t) = (φ(i)
1 (t), . . . , φ(i)

M (t)), and αT
i = (α(i)

1 , . . . , α
(i)
M )

are unknown parameters.

Let the data be given by the pairs (yis, tis), i = 1, . . . , n, s = 1, . . . , Si, where yis is the price of

auction i at bid number s which occurs at time tis. The number of bids and their timing varies

across auctions. The additive model we consider has the general form

yis = αi0 + α(i)(tis) + εis, i = 1, . . . , n, s = 1, . . . , Si (3)

where E(εis) = 0, Var(εis) = σ2
ε . The above approach models each auction separately, resulting

in n different function-estimates α̂(i)(.) and n different parameter-estimates α̂i0, i ∈ 1, . . . , n. For

semi- and nonparametric regression models, Marx and Eilers (1998) propose the numerically more

stable B-splines which have also been used by Hastie and Tibshirani (2000) and Wood (2004). For

further properties of basis functions see also Wand (2000) and Ruppert and Carroll (1999).

Using (2) and writing xT
is = [1, φT (tis)] and δT

i = (αi0,α
T
i ), (3) becomes

yis = αi0 + φ(tis)T αi + εis = xT
isδi + εis, (4)

or in matrix form

yi = αi0 + ΦT
i αi + εi = Xiδi + εi, (5)

with yT
i = (yi1, . . . , yiSi), Φi has rows φT

i (tis), εT
i = (εi1, . . . , εiSi) and Xi = [1,Φi]. Estimates for

αi may be based on the penalized log-likelihood for auction i

l(i)p (δi) = − 1
2σ2

ε

(yi −Xiδi)T (yi −Xiδi)− 1
2
λδT

i Kδ(i), (6)
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where λδT
i Kiδi is a penalty term which penalized the coefficients αi. For the truncated power

series an appropriate penalty is given by

K = diag(0, I)

where I denotes the identity matrix and λ determines the smoothness of the function α. For

λ → ∞, a polynomial of degree d is fitted. P-splines use Ki = DT
i Di where Di is a matrix of the

difference between adjacent parameters yielding the penalty λαT
i Kiαi.

From the derivative of l
(i)
p (δi) one obtains the estimation equation ∂l

(i)
p (δi)/∂δi = 0 which yields

δ̂i = (
1
σ2

ε

XT
i Xi + λKi))−1 1

σ2
ε

XT
i yi.

The tuning parameter lambda may be optimized by using the generalized cross-validation (GCV)

criterion described in Wood (2000).

Figure 4 illustrates the performance of the penalized smoothing spline for four sample auctions.

For each auction, we investigate four different smoothing scenarios: a low order (grey line) vs. a

high order (black line) smoothing spline (i.e. 2nd order vs. 4th order), coupled with a low (solid

line) vs. a high (dashed line) smoothing parameter (λ = 0.1 vs. λ = 1). We chose four very

representative auctions out of the set of all 183 auctions.

We can see in Figure 4 that for auction #51 (upper left panel) all four smoothers deliver very

similar curves, which all approximate the observed data very well. In contrast, for auction #121

(bottom left panel), the performance of the four smoothers differs greatly, especially in the middle of

the auction (between days 3 and 6) where no observations are available. Moreover, notice that the

higher order smoother (coupled with the lower penalty term) results in a locally variable curve where

the curve increases up to day 3 but then decreases to day 6. This curve-decrease is hard to justify

from a conceptual point of view since auction prices, by nature of the ascending auction mechanism,

should be monotonically increasing. In fact, notice that the actual observations do increase over

the same time period. However, the sparsity of the data between day 3 and day 6 causes the

high-order/low-penalty smoothing spline to exhibit too much local variability. Consequently, it

appears as if the lower order spline (together with the higher penalty term) is the better choice for

auction #121, at least from a conceptual viewpoint. Now consider auction #141 (top right panel)

which has a strong price surge at the auction-end. While the price changes only little throughout

most of the auction, it jumps dramatically during the last day. Not surprisingly, only the smoother
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Figure 4: Performance of penalized splines using different smoothing parameters. The circles

correspond to the actual live bids observed during the auction.

with the highest flexibility (order 4 and λ = 0.1) manages to capture this last moment surge in

price-activity well. While the other smoothers produce a reasonable approximation for most of the

auction duration, they all fail at the auction-end due to the high bidding-intensity. And finally,

consider auction #165 (bottom right panel) . Interestingly, for this auction all four smoothers vary

quite significantly in their fit and, more importantly, none captures the price-activity at the last

moments of the auction.

In summary, although in some cases smoothing splines can produce very reasonable functional

objects regardless of the smoothing parameters, in other cases the choice of the parameters can

have a significant impact. In particular, while some data-scenarios call for smoother objects of

lower order and higher penalty term, other scenarios require more flexible objects of higher order.
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And yet, the data challenges presented in online auctions are so vast that even four different

smoothers are not sufficient for accounting for all scenarios as seen in auction #165 above. There

exist alternative types of smoothers that may offer some relief such as monotone smoothing splines

(Ramsay, 1998); however, they can be more expensive to compute. Moreover, we find monotonicity

constraints not necessary when using a mixed-model approach. We describe that approach (and

our findings) next.

3.2 A Solution: Semiparametric Mixed Models

Mixed-models have been around in the statistics literature for quite a while. Yet, to date, they have

found only little use in the context of functional data analysis. The basic idea of mixed effect models

(or random effect models) is the presence of several data-clusters and repeat observations within

each cluster (see e.g. Henderson (1953), Laird and Ware (1982) and Harville (1977)). Overviews

including more recent work can be found in Verbeke and Molenberghs (2001) and McCulloch and

Searle (2001). Concepts for estimating semiparametric mixed models with an implicit estimation of

the smoothing parameters are described in Verbyla et al. (1999), Parise et al. (2001), Lin and Zhang

(1999), Brumback and Rice (1998), Zhang et al. (1998), and Wand (2003). Bayesian approaches

have been considered by e.g. Fahrmeir and Lang (2001). A different concept is the use of boosting

techniques. Boosting allows fitting of additive models with many covariates. One of the major

advantages of boosting is the automated selection of the smoothing parameters. Moreover, boosting

techniques may be used to incorporate subject-specific variation of smooth influence functions by

specifying “random slopes” on smooth effects. This results in flexible semiparametric mixed models

which are appropriate in cases where a simple random intercept is unable to capture the variation

of effects across subjects.

Recall that in (1), we model each auction separately, assuming independence across all n auc-

tions. A more parsimonious (and conceptually more appealing) approach is based on semiparamet-

ric mixed model methodology. Assume that the price-curve is modeled as

Pricei(t) = α0 + α(t) + bi0 + εi(t), (7)

where bi0 is a random effect with bi0 ∼ N(0, σ2
b ), σ2

b is the variance for the random intercept bi0 and

α0 is the (fixed) intercept for the model. Notice that in (7) we assume a common slope function

α(t) for all auctions. We also assume that the intercepts of all auctions vary randomly with mean
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α0 and variance σ2
b . The residual error εi is assumed to be N(0, σ2

εR), where R is a known residual

structure, e.g. autoregressive first order. In that sense, all auctions are conditionally independent

given the level (the random intercept). In this fashion, we can model all auctions within one

parsimonious model; yet, we obtain a price-curve estimate for each auction individually.

We can obtain further modeling flexibility by also assuming random slope functions. To that

end, we extend the model using flexible splines of the form

Pricei(t) = α0 + α(t) + bi0 + bi1α(t) + εi(t) (8)

where bi0, bi1 are again random effects with b := (bi0, bi1) ∼ N(0,Q). The error εi is assumed to be

N(0, σ2
εR). The model implies a common intercept and slope function for all auctions. Individual

heterogeneity is induced by an auction-specific random intercept bi0 and an auction-specific random

“slope”. The covariance Q can be parameterized by ρ, a vector of parameters to be optimized. For

an unstructured covariance matrix with elements q11, q21 and q22,

Q(ρ) =


q11 q21

q21 q22


 ,

the vector ρ is then the set of the elements in the lower triangular matrix of the Cholesky root

Q1/2. In a more technical sense, ρ is the symmetric diagonal operator of Q1/2.

What we obtain via the model in (8) is an estimated price-curve for auction i that is character-

ized by the level bi0, the common slope α(t) and the auction-specific modification bi1α(t). Model

(8) can be regarded as a restricted version of (1) using the information of the other auctions in the

form

α(i)(t) ≈ bi0 + α(t) + bi1α(t)

In the following, we describe an estimation approach via boosting. Boosting allows us to jointly

estimate not only the model parameters, but also the smoothing terms. Moreover, boosting as a

stepwise procedure allows us to include multiplicative effects, which is not possible using REML.

3.3 Boosting and mixed model approach

Boosting originates in the machine learning community where it has been proposed as a technique

for improving classification procedures by combining estimates with reweighted observations. Since

it has been shown that reweighing corresponds to minimizing iteratively a loss function (Breiman
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(1999), Friedman (2001)), boosting has been extended to regression problems in an L2-estimation

framework by Bühlmann and Yu (2003). In the following, boosting is used to obtain estimates for

the semiparametric mixed model. Instead of using REML estimates for the choice of smoothing

parameters (see Wand (2000) and Ruppert et al (2003)), the estimates of the smooth components are

obtained by using “weak learners” iteratively. For observations (yit, tis), i = 1, . . . , n, s = 1, . . . Si,

one writes

yis = α0 + φ(tis)T α + bi0 + bi1φ(tis)T α + εis, or in familiar mixed-model matrix form,

yi = Xiδ + Zib + εi,

where 
b

εi


 ∼ N


0,


Q(ρ) 0

0 σ2
εR





 ,

and where we write Xi = [1, Φi], δT = (α0, α) and Zi = [1, Φiα]. Let Vi = Vi(σ2
ε , ρ) denote the

covariance matrix of the marginal model Vi = ZiQ(ρ)ZT
i + σ2

εR. Penalizing (α0, α) by δ is based

on the penalty matrix which for the truncated power series has the form K = Diag(0, λI).

The weak learner for δ is based on an initially fixed and very large smoothing parameter λ.

By iteratively fitting of the residuals, the procedure adapts automatically to the possibly varying

smoothness of the individual components. The algorithm is initialized by using an appropriate

weak learner. The basic concept in boosting is that in one step the refitting of α(tis) is done by

using a weak learner which in our case corresponds to large and fixed λ in the penalization term.

The algorithm works in the following way. Let η
(l−1)
i denote the estimate from the previous

step. Then the refitting of residuals (without selection) is done by fitting the model

yi − η
(l−1)
i ∼ N(ηi, Vi(θ))

with

ηi = 1α0 + Φiα + (1, Φiα̂
(l−1))


bi0

bi1


 (9)

where α0, α are the parameters to be estimated and α̂(l−1) is known from the previous step. Using

the resulting estimates α̂0, α̂, the next update takes the form

α̂(l) = α̂(l−1) + α̂ , α̂
(l)
0 = α̂

(l−1)
0 + α̂0.
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The algorithm is stopped if enough complexity is in the model. Since boosting is an iterative way of

fitting data the complexity of the model increases from step to step. In the beginning one fits a very

robust model which adapts stepwise to the data. The complexity of the model is measured via the

BIC-Criterion. Therefore in every boosting step the projection matrix of yi on the new estimates

α(l) and α
(l)
0 is computed. Then, the trace of this matrix is used to compute the BIC-Criterion in

the l-th step by setting BIC(l) = −2∗ l(α̂(l)
0 , α̂(l))+log(n)∗df, where df is the trace of the projection

matrix, l(α(l)
0 , α̂(l)) is the log-likelihood in the l-th step and n is the number of different auctions

in the dataset.

The basic idea behind the refitting is that forward iterative fitting procedures like boosting are

weak learners. In that sense, the previous estimate is always considered known in the last term

of (9). Of course, in every step the variance components corresponding to (bi0, bi1) have to be

re-estimated. For the complete algorithmic detail see Appendix A.

4 Application to eBay’s Price Evolution

4.1 Data Description

Our data consist of 183 closed auctions for Palm M515 personal digital assistants (PDAs) that took

place between March 14 and May 25 of 2003. In an effort to reduce as many external sources of vari-

ability as possible, we included data only on 7-day auctions, transacted in US Dollars, for completely

new (not used) items with no added-on features, and where the seller did not set a secret reserve

price. These data are publicly available at http://www.smith.umd.edu/ceme/statistics/.

The data for each auction include its opening price, closing price, and the entire series of bids

(bid-amounts and time-stamps) that were placed during the auction. This information is found in

the bid history, as shown in Figure 1.

Note that the series of bids that appear in the bid history are not the actual price shown by

eBay during the live-auction; rather, they are the proxy bids placed by individual bidders (which

become available only after the auction closes). eBay uses a second-price mechanism, where the

highest bidder wins but pays only the second highest bid. Therefore, at each point in time, the

price displayed during the live-auction is the second highest bid. For this reason, we converted the

bids into “current price” values that capture the evolution of price during the live-auction. Notice

that the current price data are indeed monotone increasing. This adds the extra requirement on our
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smoothing method that the recovered functional object be monotone. Only few standard smoothing

methods meet this requirement (Ramsay, 1998); moreover, monotonicity constraints typically also

increase the computational complexity of the smoother. In the following we show that our approach,

without explicitly adding any such constraints, automatically estimates the underlying monotonicity

from the pooled data and imposes it on each auction-estimate individually.

4.2 Model Fit

We fit the following mixed effects model to all 183 auctions

s(Priceis) = α0 + α(tis) + bi0 + bi1α(tis) + εis.

Notice that α0 and α(t) denote again the intercept and slope function, common across all auctions.

The random effects bi0 and bi1 capture auction-individual variation. We estimate the parameters

α0, α(t), q11, q21, q22, σ
2
ε using the algorithm “BoostMixed” outlined in the appendix.

Figure 5 shows the resulting curve-estimates for the first 36 auctions. The solid lines correspond

to the mixed model fit; the dashed lines correspond to the ordinary penalized smoothing spline

fit. We can see that the penalized smoothing splines can result in poor curve representations:

in some auctions there is a lack of curvature (e.g. #3, #12), while in others there is excess

curvature (e.g. #23, #34); yet in other auctions they do not produce any estimates at all due

to data-sparseness (e.g. #16, #20), and yet in other auctions data-unevenness may result in very

unrepresentative curves (e.g. #25, #23). Moreover, many of the curves produced by penalized

splines are unsatisfactory from a conceptual point of view: for instance, in auction # 4 or #34,

penalized splines result in an estimated price-path that is not strictly monotonic increasing, which

violates the assumption underlying ascending auction formats.

This is very different for the estimates produced by the mixed model approach. Consider Figure

?? which shows the estimate for α(t) which denotes the mean slope function, common to all 183

auctions. Notice that the mean slope is monotonically increasing, as expected from an ascending

auction. Moreover, the slope is steepest at the beginning and at the end of the auction which is

consistent with the phenomena of early bidding and bid sniping observed in the online auction

literature (Bapna et al., 2003; Shmueli et al., 2004). Mixed model smoothing takes the mean slope

as blueprint for all auctions and allows for variation from the mean through the random effects b.

Indeed, while the solid lines in Figure 5 all resemble the mean slope, they differ in steepness and
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the timing of early and late bidding. These differences from the mean are driven by the amount

(and distribution) of the observed data. For instance, auction #10 has a considerable number of

bids which are distributed evenly across the entire auction-length. As a result, the estimated curve

is quite different from the mean slope function. On the other hand, auction #20 only has one

observation. While penalized smoothers break down with only so little information available (and

do not produce any curve-estimates at all), the mixed model approach is still able to produce a

reliable (and conceptually meaningful) result by borrowing information from the mean slope. It

is also interesting to note that all of the price curves created by the mixed model approach are

monotonically increasing. This is intriguing since, unlike the monotone smoothing splines (Ramsay,

1998), the mixed model has no built-in feature that forces the estimates to be monotone. Instead, it

“learns” this feature from the pooled data which makes this a very flexible and powerful approach,

suitable for many different data-scenarios.

Table 1: Estimated covariance matrix Q(ρ̂) for the random intercept b0 and slope b1. The correlation

is given in brackets.

b0 b1

b0 4.536 (1) -0.619 (-0.847)

b1 -0.619 (-0.847) 0.117 (1)

4.3 Forecasting with the Mixed Model

Another way to evaluate the quality of a smoother is via its ability to forecast the continuation

of the curve. Specifically in the auction setting, we are interested in how well the estimated price

curve can predict the final price of an auction. Price predictions for online auctions are becoming

an increasingly important topic (Wang et al., 2006; Jank et al., 2006; Ghani, 2005; Ghani and

Simmons, 2004). On eBay, an identical (or near-identical) product is often sold in numerous, often

simultaneous auctions. For instance, a simple search under the key words “iPod shuffle 512MB

MP3 player” returns over 300 hits for auctions that close within the next 7 days. A more general

search under the less restrictive key words “iPod MP3 player” returns over 3,000 hits. Clearly, it

would be challenging, even for a very dedicated eBay user, to make a purchasing decision that takes

into account all of these 3,000 auctions. The decision making process can be supported via price
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forecasts. Given a method to predict the outcome of an auction ahead of time, one could create an

auction-ranking (from lowest to highest predicted price) and select only those auctions for further

inspection with the lowest predicted price. In the following we investigate the ability of the mixed

model approach to predict the final price of an auction.

We do this in the following way. We split each auction into a training set and a validation set.

Specifically, we assume that the first two-thirds of the auction are observed; we estimate our model

on the price observed during this time interval. Then, using the estimated model, we investigate

how well it predicts price from the last third of the auction, i.e. from the validation set. In other

words, for auction i let

Ti := {(tis, Price(1)
is )|tis <

2
3
∗ 7 days}

be the time/price pairs observed during the first two-thirds of the 7-day auction. This is the training

data. Similarly, let

Vi := {(tis, Price(2)
is )|tis ≥ 2

3
∗ 7 days}

denote the validation data from the last auction-third. For comparison, we also investigate the

performance of the penalized smoothing splines using the same approach. Since we cannot fit a

penalized smoothing spline to auctions with less than 3 bids, we removed those auctions. This

reduces the total set to 132 auctions.

We estimate both penalized splines and mixed model splines from the training data and compute

the mean squared prediction error based on the validation data. Specifically, for the penalized

splines we estimate the model

s(Price(1)
is ) = α0 + φT (t(1)

is )αi

while in the case of the mixed models we estimate

s(Price(1)
is ) = α̃0 + φT (t(1)

is )α + bi0 + φT (t(1)
is )α̃bi.

The mean squared prediction error is shown in Table 2. We can see that the penalized splines

result in an MSE almost 60 times larger than that of the mixed model approach. This implies that

taking a traditional smoothing approach can result in forecasts that are severely off.
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MSE

Penalized Spline 1,701,507

Mixed Model 28,352

Table 2: Mean squared prediction error for penalized spline and mixed model forecasting, respec-

tively.

5 Conclusion

Functional data analysis often arrives with many data-related problems and challenges. One such

challenge is sparse and unevenly distributed data. Traditional smoothing approaches often break

down and/or produce conceptually not very meaningful results when the functional objects are

sampled sparsely and unevenly. We propose a new approach which is based on the concept of mixed

model methodology. In particular, we propose semiparametric mixed models together with boosting

for parameter estimation. Our approach has several appeals: First, by borrowing information

from similar functional objects, we can overcome challenging sparse data situations with as little

as only one sample point per functional object. Moreover, our approach also allows to capture

dependencies across functional objects. This is especially appealing in situations like ours where

different processes (i.e. auctions) are hardly independent of one another. And lastly, by assuming a

common underlying trend for all functional objects and by estimating this trend from all the data,

our approach can induce shape restrictions on the functional objects without explicitly assuming

any model-constraints. Our boosting approach allows for a convenient joint estimation of all model

and smoothing parameters under one roof. The resulting model is parsimonious in that it adds

only two additional parameters: the variance of the slope and the covariance between slope and

intercept. It is very flexible, yet easy to interpret, which may make it an uncomplicated and

pragmatic model for functional data.

On the substantive side, we contribute to the literature on online auctions by suggesting a new

way of accounting for dependencies across different auctions. Much of the current online auction

literature assumes independence which is typically not out of ignorance of the fact, but due the lack

of appropriate statistical models. Online auction data feature complicated dependency structures:

Auctions for the same (or similar) product may be correlated because they are competing for the

same set of bidders. Moreover, repeat auctions by the same seller may be similar in terms of auction
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design (e.g. auction length, opening bid, usage of a secret reserve price, number of pictures, quality

of descriptions, etc.). This similarity in turn may lead to similar auction outcomes. And lastly,

bidders have the freedom to participate in more than one auction. As a consequence, events in

one auction (e.g. stark price increases) may cause bidders to updated their strategies in other

auctions and thus the bids a bidder places in one auction are no longer independent from the bids

s/he places in another auction. All of this means that online auction data can feature complicated

dependencies. Our approach is one step into capturing some of these dependency structures.

A Algorithmic details

The algorithmic details of boosting are given below. For additional details see Tutz and Reithinger

(2005).

BoostMixed

1. Initialization

Compute starting values α̂
(0)
0 , α̂(0) and set η̂i

(0) = Xiδ
(0), Ẑ(0)

i = [1,Φα̂(0)]

2. Iteration

For l=1,2,. . .

(a) Refitting of residuals

i. Computation of parameters

One fits the model for residuals

yi − η
(l−1)
i ∼ N(ηi,V

(l−1)
i )

with V(l−1)
i = Vi(ρ̂(l−1), (σ̂2

ε )
(l−1)) = (Ẑ(l−1)

i )TQ(ρ̂(l−1))Ẑ(l−1)
i + (σ̂2

ε )
(l−1)I and ηi =

Xiδ , yielding δ̂.

ii. Stopping step

Stop if BIC(l−1) was smaller than BIC(l).

iii. Update
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Update for i = 1, . . . , n using δ̂
T

= (α̂0, α̂)

η
(l)
i = η

(l−1)
i + Xiδ̂ ,

α̂(l) = α̂(l−1) + α̂

α̂
(l)
0 = α̂

(l−1)
0 + α̂0

and set

Z(l)
i = [1,Φiα

(l)].

(b) Computation of Variance Components

The computation is based on the penalized log-likelihood

lp(θ|η(l); δ(l)) = −1
2

∑n
i=1 log(|V(l)

i |) +
∑n

i=1(yi − η
(l)
i )TV(l)

i (ρ, σ2
ε ))

−1(yi − η
(l)
i )

−1
2(δ̂

(l)
)TKδ̂

(l)
.

Maximization yields ρ(l), (σ2
ε )

(l).
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Figure 5: Smoothed Time: The first 36 auctions with their specific behavior regarding price and

Time. Mixed model approach is shown by the solid lines, separately fitted penalized splines are the

dotted lines.
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