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SUMMARY
For an AR(1) process with ARCH(1) errors, we propose empirical likelihood tests for testing
whether the sequence is strictly stationary but has infinite variance, or the sequence is an ARCH(1)
sequence or the sequence is an iid sequence. Moreover, an empirical likelihood based confidence
interval for the parameter in the AR part is proposed. All of these results do not require more
than a finite second moment of the innovations. This includes the case of ¢-innovations for any

degree of freedom larger than 2, which serves as a prominent model for real data.

Some key words: ARCH model, Empirical likelihood, Stationary, Weighted least squares

1. INTRODUCTION

Consider the following autoregressive model with ARCH(1) errors:
Xt = OéXt_l + (ﬁ + )‘Xt2—1)1/2€t7 te N, (].)

where a € R, 3 > 0,A > 0, {¢; : t € N} are independent and identically distributed (iid)
random variables with mean zero and variance one, and X is independent of {¢ : ¢t €
N}. Borkovec & Kliippelberg (2001) show the existence and uniqueness of a stationary
distribution under some regularity conditions, and prove that the stationary distribution
is heavy-tailed. Asymptotic normality of the quasi maximum likelihood estimator for the
parameter vector (o, 3, ) is derived in Ling (2004) under the assumption that F(e}) < oc.
Chan & Peng (2005) study the weighted least absolute deviations estimator and derive its
asymptotic normality only assuming that E(e?) < oc.

Another important issue in economic and financial study is to test the stationarity of a



model. It follows from Borkovec & Kliippelberg (2001) that {X;} is geometrically ergodic
and has a unique stationary distribution if the following regularity conditions hold:
Condition 1. The noise ¢; has a symmetric, positive and continuous Lebesgue density in
(—o00, 00).

Condition 2. The parameter space is
O={0=(a,8,N)": E(log|a+\"%]) <0,—0c0 < a <o, >0X>0}.

It is clear that { X;} is neither strictly nor weakly stationary when (a, \) = (£1,0). Ling
(2004) employs the Lagrange multiplier test to test the null hypothesis (a, A) = (£1,0)
against the alternative hypothesis (a, A) # (41, 0). However, one can not claim that {X;} is
stationary when the above null hypothesis is rejected. On the other hand, Kliippelberg et al.
(2002) employ a pseudo-likelihood ratio test to test the null hypothesis a = 0,5 > 0,A =0
against the alternative hypothesis § > 0, A > 0, (o, A) # (0,0). Note that both tests require
that E(e}) < oc.

As shown in Remark 5 of Borkovec & Kliippelberg (2001) the strictly stationary distri-
bution has finite second moment if and only if o> + AEe? < 1. Consequently, for o = 1 the
process {X,} is strictly but not weakly stationary as the second moment does not exist.

Define ©; = {(a,3,N)T : a =1} N6, 0, = {(a, 3, N)T : @ = 0} NO and O3 =
{(a,3,\)" : @ =0,\ =0} NO. In this paper, we propose to apply the empirical likelihood
method to test the following three different tests:

Héi) :0 € ©; against Hl(i) 10 €0\ 06,

for i = 1,2,3. We remark that Hé”, HéQ) and Hé?’) imply that {X;} is strictly stationary
but not weakly stationary, is an ARCH(1) sequence and is an iid sequence, respectively.

The empirical likelihood method as a non-parametric robus statistical method has many
advantages in comparison to parametric likelihood methods, see Owen (2001). Recently,
Chuang & Chan (2002) applied the empirical likelihood method to unit root AR models
with finite variance errors, and Chan et al. (2005) apply the empirical likelihood method
to near-integrated AR models with infinite variance errors.

We organize this paper as follows. In section 2, the empirical likelihood tests are pro-
posed. Moreover, an empirical likelihood based confidence interval for « is given. A simu-

lation study supports our theory in section 3. All proofs are postponed to the appendix.



2. EMPIRICAL LIKELIHOOD METHOD
Throughout we assume that the median of €7 is m, which is unknown. Rewrite model
(1) as
2
(X¢ = aXi1)? = (Bm + AmX7,) = (Bm + AmX7,) (- - 1), (2)

When m is assumed to be known and equal to one, Chan & Peng (2005) propose the
following weighted least absolute deviations estimator for 6* = (a*, 3*, \*)T = (2a, Bm, o> —
)T

Am)*, which is defined as

n
. P 1
0* = (&*, B*, \)T = arg min — X2 —a' X, X, - B+ NX2 L (3
(&%, 6%, A7) g(a*,ﬂ*,k*);l-i-Xfl t 1 X1 — 0 i1l (3)
Here we propose to employ the empirical likelihood method to the above weighted least
absolute deviations with unknown m as follows.
Let p = (p1,...,Pn) be a probability vector, i.e., Y. p;=1landp; > 0fori=1,...,n.
2
Put Y;(0*) = X? — "X, X,y — B* + N*X2 | and Z, = (— 35 L2

_ _ i1 T
1+X7_,° 1+Xf_1’1+Xf_1) for

t =1,...,n. Then the empirical likelihood is defined as

L(0*) = sup {Hpt > pe=1p >0, pZisgn(Yi(0%)) = 0} ,
t=1 t=1 t=1

where sgn(z) equals 1 if x > 0, and —1 if x < 0. By the method of Lagrange multipliers,

we have .
pr = E{1+7TZtsgn(Y}(0*))}’l, t=1,...,n, (4)

where v = (71,72,73)" satisfies

L~ Zsm(NE) (5)

9(v) = n 1+ ~TZsqn(Y,(6%))

t=1
The empirical likelihood ratio is defined as

1(67) =2 log{1 + " Zusgn(Yy(6%))}.

=1

Our main results are as follows.

Theorem 1. Suppose model (1) holds with Conditions 1 and 2. Then
l,(cg) = arg 9*:(2£§;,A*)T 1(0%) — argrréinl(g*) N Y1),

where ag denotes the true value of a. Therefore, an asymptotic confidence interval for ayq

with significance level 100a% is
I, ={a:l(a) <ugt,

3



where u, denotes the 100a%-level quantile of x*(1).

Theorem 2. Suppose model (1) holds with Conditions 1 and 2. Then,
(i) under Hél), we have

. % . «\ d 2
T, = 1(6%) — 16%) % \2(1);
p=arg  min (67) —argminl(67) = x*(1);

(ii) under HéQ), we have

J— 3 * _ . % d 2 .
T = arga*:(gl’lﬁlg)\*)Tl(Q ) — arg n;lnl(ﬁ ) S 2 (1);

(iii) under Hé?’), we have

. % . %\ d 2
Ty = 10%) - 10%) 5 \2(2).
s=arg  min o (07) — argminl(67) = x*(2)

Remark 1. Kliippelberg et al. (2002) employ the pseudo likelihood ratio test to test Hég),
but obtained a different limiting distribution from that given in case (iii) of Theorem 2. The
reason is that §* = (0, 3*,0)" is not at the boundary of the parameter set of §* although
6 = (0,3,0)" is indeed at the boundary of the parameter set of f. Moreover, the limit in
Kliippelberg et al. (2002) involves the fourth moment of ¢;.

3. NUMERICAL STUDIES

We investigate the finite sample behaviors of our tests by focusing on testing Hé?’)
against Hl(?’) for the case, where the fourth moment of the innovations is infinite. Since
other methods like the pseudo likelihood ratio test in Kliippelberg et al. (2002) and the
Lagrange multiplier test in Ling (2004) require finite fourth moment, we concentrate on
noise variables with infinite fourth moment.

We draw 1000 random samples with size n = 300 and 1000 from model (1) with
a=40d/n,\=40/n, = 1for different §, and ¢, having a standardized (3) or ¢(4) distribution
such that E(e?) = 1. For the significance level 0.05, we compute the empirical sizes and
powers for testing Hég) based on our empirical likelihood method, see Table 1. We conclude
from Table 1 that the sizes of the empirical likelihood method are reasonably close to the
nominal level 0.05 and the powers show that this test is powerful. For the case n = 1000,

the test for #(4) is more powerful than that for ¢(3).



n = 300
3 0 1 10 50 100 500
3) 10.043 0.054 0.070 0.429 0.958 1.000
4) 1 0.039 0.051 0.055 0.428 0.982 1.000
n = 1000
3 0 1 10 50 100 500
(3) | 0.041 0.039 0.043 0.161 0.565 1.000
(4) | 0.044 0.034 0.051 0.163 0.609 1.000

~

~~

Table 1: Empirical sizes and powers of the empirical likelihood method for testing Hé?’)

against Hl(?’) at the significance level 0.05.
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APPENDIX: PROOFS

Proof of Theorem 1.

Define v = (vy,v,v3)T, v1 = n'2(a* — ), va = n'/2(B8* — Bg), and vz = n'/2(\* — %),

where 05 = (af, 85, \§)T denotes the true value of §*. Our first step is to prove that
1yl = 0,(n™"?)  locally uniformly in o, (6)

where || - || denotes the Euclidean norm. Write v = py,, where p > 0 and ||y|| = 1. By (4),

we have
1+~ Zsgn(Y,(0%)) > 0,

ie.,

(147" Zusgn(Yi(07) ™" = (L + prg Zesgn(¥e(07)) ™" = {1 + p max (| Zusgn(Yi(67)) [}



Hence

0 = [lgNIl=lglpw)ll
> v 9(p0))
1| r oo — Zysgn(Yi(0*))g Zisgn(Yi(6"))
= - Zisgn (Y (0%)) —
n %{Z agn(31(6°)) p; 1+ pyd Zisgn(Yi(67)) J
1
> T - =Nz Y, (6*
2 Ozumoztsgn( D) %Z wgn(i( ”‘
> —{1+pmaXHZtsgn(Yt G Zzt T — fyoTZZtsgn(Yt(H*))‘.
t=1
That is,
1 n
TS 220 — (i | Zesgn GO DI)E S 8 Zisgn (i)

e (7)
<= 3 i Zisgn(vi(0")|.

Recall that v; = n'/?(a* — o) and define A; | = By + A\ X? ;. Then

* 1/2 U1 X1
Yi(60°) = {At/lq - W} — Bm — AmX7

and, denoting by my the true median, we have
sgn(Y1(07)) — sgn(Yi(05))
= 2{I(Yi(fp) <0) = I(Y,(6") < 0)}

= 2{](—\/m_0 <€ < \/my)

—(Bm 4+ ImXE )2+ 27 In V20, X,
_[< AL2
t—1

< €

(Bm 4+ dmX2 )2+ 27072, X,
< AL/2 >}
=1

Let F' denote the distribution function of ¢; and put

S;.1=1+X2, and h(c,d) = E{ed(c < e < d)}.



Then we can write
n

% Z X;i(tll {sgn(Y}(G*)) - sgn(Yt(%‘))}

_ %Z“g{_ﬂl{( Vi < & < /i) = F(/iig) + F(—/io) }

< €

L e e
1/2

A

_ (Bm 4+ ImX2 )2+ 21n1/2v1Xt_1>

1/2
Atil
sy
AL2
t—1
+F(_(6m + )‘th{l)l/Q + 2_1n_1/2U1Xt1> }
A2
t—1

fZXtSﬁt LT < o < V) — h—m, i)

Xt 1At 1 (Bm + )\th271>1/2 + 2_177/_1/2'01th1
Z {er (= NG
t—1

< €

_ (ﬁm + )\TrLXlFl)l/2 +2- 1n_1/2v1Xt_1>
1/2
A
—(Bm + AmX2 )V 42720 X,y
_h( A2
t—1
(Bm 4+ AmX2 )2 427072y X,
N )}
t—1

) Z WXL P(y) ~ F(- )

(ﬁm +AmXZ2 V2427 n 20 X,
F( A2 )
t—1

—(Bm + AmX?2 )2 + 2_1n_1/2v1Xt1> }
1/2
AL
X, AL
Z St 1t 1{ —vV Mo, /M )
—(Bm +AmX2 )2 27 n 20 X,
R A
(Bm 4+ AmX2 )2 427072y X,
N )}
-1

)

+F(

)

= L+ + 1.



By Corollary 3.1 of Hall & Heyde (1980), we can show that
|11+]2‘ :Op(l) and ‘]3+]4‘ :Op(l)

locally uniformly in v. Hence it follows from (8), Condition 1, and the ergod
Borkovec & Kliippelberg (1998) that

f Z S sgn((07) - sgn(Yi(85)

(203 (V) B gk — 2 () g o

~200 () Bt + 200 () B A s + 0, (1)

locally uniformly in ». Similarly,

% Z St_l{sgn(Yt(H )) — sgn(Yi(65))}
X? 1
= 200/ (VD) B — 27 (V) Bl

and

O
= 200 f(y/m)E( Sﬁl)m - 2 (VB s
2 () B Ao + 0y (1)

locally uniformly in v. Thus, by (9) - (11),

T2 30 Zsan(Vi(0) = sn(i(65)} = v+ o,(1)

locally uniformly in v, where

(8)

icity result in

(12)

BE(h) + VI E(A) agB(sk) —aoE(g)
S, = 2f (o) a0 B(2E) E(sk)  —E(sh)
_QOE(SIA) o (Si(il) E(Si(il)




Then it follows from (12) and the proof of Theorem 1 in Chan & Peng (2005) that

||— ZZtsgn Yi(0%))|| = Op(n~"?)  locally uniformly in v (13)
and
1
o Z ZiZ 0 = 70 Sa,s (14)
where
ofB(X/ST) + BoE(X/SE) + ME(X{/S?) aoE(XP/ST) —aoE(X{/SP)
Sy = aoE (X7 /57) E(1/SY)  —E(X}/S7)

—agE(X{/S?) —E(X?/S?)  E(X1/SP)
On the other hand, it is straightforward to check that
max || Zsgn(Y;(0%))|| = Op(1)  locally uniformly in . (15)

1<t<

Hence, (6) follows from (7) - (15). Furthermore

= { ZZtZT} i Zysgn(Y,(0%)) + Op(n—l/Q)

and

1(6) = n{% i Ztsgn(Y}(G*))}T{% i ZtZtT}l{% i Ztsgn(Y}(G*))} +0,(1)  (16)

locally uniformly in ». Similarly we can show that

:n{%iZtsgn(Yt(Ga‘))} {ii tZT} 1{ ZZtsgnY} }—l—op(l) (17)

locally uniformly in v. Using (12), (14), (16) and (17), we have
10%) —1(0;) = v S 85 ' Sw + 2078 85 {f ZZtsgn V(0 ))} +0,(1)  (18)

locally uniformly in v. By minimizing the above equation with respect to v, we obtain

1(65) — arg ming- 1(6*)

{ Z ZtsgnYt } { Z ZtsgnYt ))}+op(1).

(19)



7 1 th 1
Set Z; = (_1+Xf_1’ 1T X7,

and (18), we can show that

)Y for t =1,...,n. Using the same arguments as in proving (12)

% S Zifsgn(il(3, 5,7))) = sgn(Yi(6;))} = Sa(va, va)" + 0p(1)

and
[((ag, B595)T) = 1(65)
= (vg,v3) BT 5,1 B3 (va, v3)T + 2(v, v )ZTEI{LZn Zys n(Y(H*))}—i—o (1)
’ 3 &g 23 \V2, U3 2’334\/ﬁt:1t‘q 0 p

locally uniformly in v, and v3, where

E(sy) —E(s4
] B

X7 X7
_E(SlAl) E(SlAl)

and
E(1/S})  —E(X{/S})

~E(X}/S)  E(X{/SY)

24:

By minimizing the above equation with respect to vy and v3, we obtain
1(65) — ?rg Ming-_(qz g y+)T l(0*)T
— s * -1J 1 nos *
_ {%thlztsgn(n(eo))} 5 {ﬁztletsgn(Yt(ﬁo))} +o,(1).

Hence, the thoerem follows from (14), (19) and (20).

(20)

Proof of Theorem 2. Cases (i) and (ii) follow from Theorem 1 immediately, and case

(iii) can be shown in a way similar to Theorem 1.
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