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Abstract

Structured additive regression comprises many semiparametric regression models

such as generalized additive (mixed) models, geoadditive models, and hazard regres-

sion models within a unified framework. In a Bayesian formulation, nonparametric

functions, spatial effects and further model components are specified in terms of

multivariate Gaussian priors for high-dimensional vectors of regression coefficients.

For several model terms, such as penalised splines or Markov random fields, these

Gaussian prior distributions involve rank-deficient precision matrices, yielding par-

tially improper priors. Moreover, hyperpriors for the variances (corresponding to

inverse smoothing parameters) may also be specified as improper, e.g. correspond-

ing to Jeffery’s prior or a flat prior for the standard deviation. Hence, propriety

of the joint posterior is a crucial issue for full Bayesian inference in particular if

based on Markov chain Monte Carlo simulations. We establish theoretical results

providing sufficient (and sometimes necessary) conditions for propriety and provide

empirical evidence through several accompanying simulation studies.

Key words: Bayesian semiparametric regression, Markov random fields, MCMC, penalised

splines, propriety of posteriors
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1 Introduction

Bayesian structured additive regression (STAR) has been proposed in Fahrmeir, Kneib &

Lang (2004) as a comprehensive class of semiparametric regression models with continuous

or discrete responses and different types of covariates and corresponding effects. Popu-

lar subclasses are generalized additive models, additive mixed models, and geoadditive

models that consist of nonparametric effects of continuous covariates, spatial effects and

cluster-specific random effects in different combinations. STAR models allow to combine

these different model classes and a number of extensions in a unifying framework that

also facilitates development of generally applicable inferential schemes. The same model

class can be extended to the analysis of continuous survival times in structured hazard

regression models (Hennerfeind, Brezger & Fahrmeir 2006).

A Bayesian formulation of STAR models involves specification of high-dimensional

Gaussian smoothing priors for nonparametric functions, spatial effects and further model

components. Typically, nonparametric functions are specified through Bayesian penalised

splines (P-splines) with partially improper random walk priors for the B-spline coeffi-

cients. Priors for spatial effects can be formulated as stationary Gaussian random fields

or Gaussian Markov random fields. While the former lead to proper Gaussian smoothing

priors, the latter are again partially improper. In addition, priors for the variances of

the smoothness priors (corresponding to inverse smoothing parameters) are frequently

assumed to follow weakly informative inverse gamma distributions or limiting cases cor-

responding to flat, improper priors for variances or standard deviations. Full Bayesian

inference, described in Fahrmeir et al. (2004) and Brezger & Lang (2006) for exponential

family models and Hennerfeind et al. (2006) for hazard regression models, is based on

Markov chain Monte Carlo (MCMC) simulations building upon sequential sampling from

full conditional distributions. Since these full conditionals may be proper distributions

even in the case of a non-existing, improper joint posterior, the crucial question is: Is the

resulting joint posterior prior despite the (partially) improper formulation of some of the

priors?

In this article, we present theorems guaranteeing propriety under certain assumptions re-

lated mainly to the hyperparameters of the inverse gamma priors of the variances and the

rank deficiency of the precision matrices of the Gaussian smoothness priors. In addition,
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we investigate performance of the MCMC algorithms in interesting limiting cases where,

from a theoretical perspective, the joint posterior is still proper but close to an improper

posterior. Furthermore, we provide some evidence that MCMC works well in some situ-

ations not covered by the (sufficient but not necessary) assumptions for propriety in the

theorems.

Propriety of posteriors when priors are partially improper has been considered in various

statistical models in the literature. Our theoretical results are mainly based on and ex-

tend important research by Sun, Tsutakawa & He (2001) and Speckman & Sun (2003)

on propriety of posteriors in mixed models. However, the assumption of proper Gaussian

smoothing priors in the former articles prevents direct application to STAR models. Sun

& Speckman (2006) present results on propriety in Gaussian additive models build upon

smoothing splines with partially improper priors but their results rely on properties spe-

cific to smoothing splines which are not applicable in the more general setting of STAR

models.

To make results for usual mixed models applicable to STAR models, we make use of the

mixed model representation of STAR models, which has been introduced in Fahrmeir et

al. (2004) as a computational tool for empirical Bayes inference. The mixed model rep-

resentation allows to rewrite STAR models as variance components mixed models with

proper Gaussian priors. This allows to extend results presented in Sun et al. (2001) and

Speckman & Sun (2003) to (the reparameterised) Gaussian STAR models or exponential

family models with individual-specific random effects. Since such individual-specific ef-

fects can not be included in any exponential family regression model (e.g. binary models),

we will introduce a further reparameterisation step that allows to overcome the necessity

of individual-specific effects. We will also discuss how conditions formulated at the differ-

ent stages of the reparameterised model relate to the original STAR model formulation.

In a further step, we extend own work on propriety of Bayesian geoadditive survival mod-

els presented in Hennerfeind et al. (2006). Therefore we will again make use of the mixed

model formulation introduced in Kneib & Fahrmeir (2007) for hazard regression models.

The paper proceeds as follows: Section 2 reviews basic STAR methodology and establishes

the mixed model representation. Section 3 describes propriety in Gaussian STAR models

and provides foundations for the more general model classes discussed in Section 4 for

responses from exponential families and hazard regression models. The accompanying
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simulation studies have been carried out with BayesX (Brezger, Kneib & Lang 2005), a

software package that provides implementations of the discussed STAR models. BayesX

is freely available from http://www.stat.uni-muenchen.de/~bayesx.

2 Structured Additive Regression

2.1 Exponential Family Models

2.1.1 Observation Model

Generalized linear models relate the expectation of response variables from exponential

families to a linear predictor ηi = u′iγ formed by covariates ui and regression coefficients

γ via E(yi|ui) = h(ηi), where h is a suitable known response function. To account for

non-linear effects of continuous covariates, spatial correlations, unobserved heterogeneity

or further non-standard covariate effects, several extensions of the basic linear model have

been considered in the literature. A fairly general geoadditive mixed model is given by

the predictor

ηi = u′iγ + f1(xi1) + . . . + fk(xik) + fgeo(si) + bgi
, (1)

where f1(x1), . . . , fk(xk) are smooth functions of continuous covariates, fgeo(s) is a spatial

function defined upon either spatial coordinates s = (sx, sy) or a discrete spatial lattice

index s ∈ {s1, . . . , sS}, and bg is a cluster-specific random effect with grouping structure

represented by the factor variable g ∈ {1, . . . , G}. Geoadditive mixed models are a special

case of a larger class of regression models called structured additive regression (STAR,

Fahrmeir et al. (2004)) that attempts to combine different types of non-standard covariate

effects in a unified framework. In addition to the model terms in Equation (1), STAR

models may comprise random slopes ujbjg, interaction surfaces fj,k(xj, xk), and varying

coefficient terms ujf(xk) with continuous effect modifier xk or ujfj,geo(s) with spatial effect

modifier s (see Fahrmeir et al. (2004) for a detailed description). In generic notation and

after appropriate reindexing, a general STAR model can be described by the predictor

ηi = u′iγ + f1(vi1) + . . . + fr(vir), (2)

where a function fj(vj) represents any of the effects discussed before and vj is a generic

covariate, which may be continuous, bivariate, or a spatial or grouping indicator depending
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on the corresponding effect. Note that in general model (2) is not identifiable if no

additional assumptions are made about the levels of some of the functions fj. While no

restrictions have to be imposed on varying coefficient terms, the remaining effects are

usually assumed to be appropriately centered. In addition, an intercept term is included

in the parametric part u′γ to account for the overall level of the predictor. We will come

back to the identifiability problem in the next sections where we discuss STAR models

and prior assumptions in more detail.

A special case of STAR models are models with individual-specific random effects bgi
= bi,

i.e. {1, . . . , G} = {1, . . . , n}. In this case, conditions for the propriety of posteriors can

be formulated based on work of Sun et al. (2001). Note that Gaussian models are also

included in this framework if the error terms εi are identified with individual-specific

random effects, although the error variables are of course not parameters of interest.

However, some models such as the binary logit model do not allow for the inclusion of

individual-specific effects, since these are not identifiable from the data. Moreover, the

general inclusion of individual-specific effects even in models where they are formally

identifiable is usually not justified and such effects should only be included when they are

required from a statistical modelling perspective. Therefore it is important to generalize

results for models with subject-specific effects to reduced models without such effects. We

will further pursue this issue in Section 4.

2.1.2 Model Components and Priors

All types of effects considered in STAR models can be expressed as the product of a

suitably chosen design matrix Vj and and a (possibly large) vector of regression coefficients

ξj. Accordingly, predictor (2) can be represented in matrix notation as

η = Uγ + V1ξ1 + . . . + Vrξr, (3)

where U is the usual design matrix of fixed effects. In a Bayesian framework, model

formulation is completed by assigning appropriate priors to the function fj or, in the

predictor (3), the corresponding regression coefficients. In STAR models, these priors can

be expressed in the generic form of a multivariate Gaussian distribution, i.e.

p(ξj) ∝ 1

(τj)rk(Kj)/2
exp

(
− 1

2τj

ξ′jKjξj

)
. (4)
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The precision matrix Kj plays the role of a penalty matrix and, depending on the model

term at hand, penalizes large differences between adjacent parameters or large deviations

from a global mean. In general, the precision matrix does not have full rank, i.e. kj =

rk(Kj) ≤ dim(ξj) = dj. The rank deficiency represents the fact, that for most effects a

specific part of fj remains unpenalized. The amount of smoothness caused by the penalty

is controlled by the variance parameter τj which can be interpreted analogously to the

smoothing parameter in a frequentist setting of nonparametric regression. Large values

of τj allow for a strong variation in the regression coefficients ξj corresponding to wiggly

function estimates, while a reverse implication holds for small variances.

In order to obtain identifiable STAR models, the prior distributions of some of the effects

have to augmented by appropriate centering restrictions. This can be achieved by putting

certain linear restrictions on the coefficients ξj which effectively reduces the dimension of

ξj and the rank-deficiency of Kj by one for the corresponding effects (compare Rue &

Held (2005) for a detailed discussion on priors of the form (4) subject to linear restric-

tions). While the specific form of appropriate restrictions is difficult to specify in the

original model formulation, the mixed model representation of STAR models discussed in

Section 2.3 leads to easy and interpretable indentifiability restrictions.

In a full Bayesian approach, the variance parameters τj are considered as hyperparameters

which have to be estimated jointly with the remaining effects. The conjugate hyperprior

to the multivariate Gaussian prior (4) is of the inverse Gamma type τj ∼ IG(aj, cj) with

density

p(τj) ∝ 1

(τj)aj+1
exp

(
−cj

τj

)
. (5)

For positive values aj > 0 and cj > 0 the prior is proper, while improper priors result for

either aj ≤ 0 or cj ≤ 0. By allowing for improper priors, Equation (5) contains several

special cases of particular interest:

• Setting aj = −1 and cj = 0 corresponds to a flat prior for the variance τj, i.e.

p(τj) ∝ const.

• Setting aj = −0.5 and cj = 0 corresponds to a flat prior for the standard deviation
√

τj, i.e. p(
√

τj) ∝ const.

• Setting aj = cj = 0 results in Jeffrey‘s prior, i.e. p(τj) ∝ 1/τj.
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To make the generic representation of STAR models more intuitive, we will now discuss

some special cases in more detail. For smooth effects of continuous covariates and as a

building block of varying coefficient terms, penalized splines have proven to be a valuable

tool (see Eilers & Marx (1996) for a frequentist and Brezger & Lang (2006) for a Bayesian

description of penalised splines). The basic principle is to approximate a function fj(xj)

by a linear combination of dj basis functions, i.e.

fj(xj) =

dj∑
m=1

ξjmBm(xj). (6)

The design matrix Vj then consists of the basis functions evaluated at the observed co-

variate values (i.e. Vj[i,m] = Bm(xij)) while the amplitudes ξjm are collected in the

coefficient vector ξj. For varying coefficient terms, each row of the design matrix has to

be multiplied by the value of the interaction variable in addition. When B-spline basis

functions are employed in Equation (6), the prior for ξj is usually constructed based on

random walks of order qj, e.g.

ξjm = ξj,m−1 + ujm or ξjm = 2ξj,m−1 − ξj,m−2 + ujm

in case of first and second order random walks with Gaussian error terms ujm ∼ N(0, τj).

This leads to a penalty matrix Kj = D′
jDj formed by the crossproduct of a qj-th order

difference matrix Dj. Correspondingly, a (qj−1)-th order polynomial remains unpenalized

by the precision matrix and prior (4) is partially improper with rk(Kj) = dj − qj. An

alternative representation of P-splines is given by a truncated power series basis expansion

with ridge penalty on the coefficients of the truncated basis functions (Ruppert, Wand &

Carroll 2003). Again a polynomial (represented by the untruncated polynomials in the

basis) remains unpenalized and the precision matrix for the full coefficient vector is rank

deficient.

Similar ideas can be employed for modelling interaction surfaces fj,k(xj, xk) by defining

bivariate basis functions, e.g. based on Tensor products of the univariate bases in xj

and xk direction. Correspondingly, the penalty concept has to be adapted and a bivariate

random walk may be considered. As for univariate splines the design matrix is constructed

from evaluations of the basis functions and the penalty matrix is defined via Kronecker

products of difference matrices for the univariate bases. Thus, the resulting penalty matrix

for the bivariate effect is also rank-deficient, possibly with a higher dimensional null space

resulting from interactions of the null spaces in xj and xk direction.
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For geographical effects fgeo(s) with a spatial lattice index s ∈ {s1, . . . , sS} Markov ran-

dom field (MRF) priors are a suitable choice. MRFs extend commonly known temporal

random walk priors to the spatial case of two-dimensional irregular lattices leading (in

the simplest case) to the following prior for ξs = fgeo(s):

ξs|ξs′ , s
′ 6= s, τgeo ∼ N

(
1

Ns

∑

s′∈∂s

ξs′ ,
τgeo

Ns

)
, (7)

where δs consists of the neighbors of index s and Ns = |δs| denotes the number of such

neighbors. Computing the joint distribution of the vector ξgeo = (ξs1 , . . . , ξsS
)′ yields a

distribution of the form (4), where the precision matrix is given by an adjacency matrix,

compare Rue & Held (2005, Ch. 3) for details. Since rows and columns in the adjacency

matrix sum to zero, the precision matrix has a rank-deficiency of one and prior (7) is

therefore also called an intrinsic MRF. For spatial coordinates s = (sx, sy), spatial effects

can be included as in traditional geostatistical models by assuming a zero mean Gaussian

process with variance τ for {ξs, s ∈ R2}. In case of a finite set of coordinates, the joint

distribution of all ξs is again multivariate Gaussian with the inverse correlation matrix

as precision matrix Kj Obviously, the precision matrix is of full rank in this case. A

compact description of the correlation structure is achieved by assuming a parametric

correlation function for the Gaussian process, e.g. a member of the Matérn family. In

both approaches to spatial modelling the design matrix is simply a 0/1 incidence matrix

linking observations with the corresponding entries in the vector ξgeo, i.e. Vgeo[i, s] equals

one when observation i is located at site or coordinate s and zero otherwise.

As a last special case of (4) consider i.i.d. Gaussian random effects with respect to a

grouping indicator g ∈ {1, . . . , G}. In this case the joint distribution is a proper multi-

variate Gaussian distribution with precision (and correlation) matrix Kj = IG. Similar as

for the spatial effect, observations and random effects are linked by an incidence matrix

as design matrix Vj.

2.1.3 Posterior and Sampling Scheme

The joint posterior of all effects in a STAR model is obtained using Bayes’ Theorem as

p(ξ1, . . . , ξr, τ1, . . . , τr, γ|y) ∝ L(y, ξ1, . . . , ξr, γ)
r∏

j=1

[p(βj|τj)p(τj)] ,
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where L(.) denotes the likelihood derived from the exponential family assumption for the

response. An efficient sampling scheme for STAR models can now be constructed based

on Metropolis Hastings steps for the regression coefficients and Gibbs sampling steps for

the variances. More precisely, we consider an iteratively weighted least squares (IWLS)

proposal for ξj based on a Gaussian approximation to the full conditional with precision

matrix and mean

Pj = V ′
j WVj +

1

τj

Kj and mj = P−1
j V ′

j W (ỹ − η−j),

where the diagonal matrix W and the vector of working observations ỹ are constructed

in complete analogy to the usual GLM case (compare Fahrmeir & Tutz (2001)) and

η−j = η − Vjξj denotes the predictor without the j-th effect. Similar expressions are

obtained for the vector of fixed effects, compare Brezger & Lang (2006) for details. The

full conditional of τj is inverse Gamma with updated parameters

a′j = aj +
1

2
rk(Kj) and c′j = cj +

1

2
ξ′jKjξj.

Note that in general the full conditionals of the parameter blocks are all proper distribu-

tions, although the joint posterior may be improper. In particular, it is often not possible

to determine impropriety of the posterior from the output of the MCMC simulation.

2.2 Structured Hazard Regression

Similar extensions as considered in Section 2.1 for exponential family regression can also

be defined for hazard regression models when analysing survival data (ti, δi), where ti

is an observed duration time and δi is the usual censoring indicator for right censored

durations (compare Hennerfeind et al. (2006)). A geoadditive model comparable to (1) is

given by a hazard rate λi(t) = exp(ηi(t)) with

ηi(t) = h0(t) + zi1h1(t) + . . . + zilhl(t) + f1(xi1) + . . . + fk(xik) + bgi
+ u′iγ. (8)

In addition to the geoadditive effects already discussed in the previous section, the predic-

tor (8) contains an expression for the log-baseline hazard h0(t) = log(λ0(t)) and several

time-varying effects hl(t) of covariates zl. Due to the inclusion of time-varying effects,

structured hazard regression models are not restricted to the assumption of proportional

hazards. Of course, similar extensions of the geoadditive model as mentioned in Sec-

tion 2.1.1 can be considered in the survival case.
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In generic notation, the predictor of a structured hazard regression model can also be ex-

pressed in the form (2), where the generic functions fj(vj) may now also be time-dependent

when representing a time-varying effect. Both the log-baseline hazard and time-varying

effects can be modelled using penalised splines for a representation of hj(t), j = 0, . . . , l.

In particular, time-varying effects can be subsumed in the varying coefficient framework,

if the survival time is considered the effect modifier. The posterior of structured hazard

regression models and an MCMC sampling scheme can be derived in a similar form as in

Section 2.1.3, compare Hennerfeind et al. (2006) for details.

2.3 Mixed Model Representation

In the following we will introduce a general mixed model representation of both struc-

tured additive models within the exponential family framework and structured hazard

regression for continuous survival times. The fact that many penalisation approaches are

equivalent to specific mixed models has received considerable attention throughout recent

years and has been used to estimate semiparametric regression models in a variety of set-

tings (compare Ruppert et al. (2003) for an overview, Fahrmeir et al. (2004) for results on

exponential family STAR models, and Kneib & Fahrmeir (2007) for mixed model based

hazard regression). In addition, the mixed model representation allows to adapt condi-

tions for proper posteriors in mixed models to the more general case of STAR models.

Sun & Speckman (2006) employed the mixed model representation of smoothing splines

to derive conditions for purely additive models consisting of several smooth effects. How-

ever, the conditions presented in Sun & Speckman (2006) do only apply to models with

Gaussian responses and are furthermore restricted to purely additive smoothing spline

models. Semiparametric models which are usually required in most applications are not

supported since the propriety conditions rely heavily on properties of smoothing splines.

In Sections 3 and 4 we will therefore extend the more general conditions presented in Sun

et al. (2001) to STAR models.

To rewrite STAR models as mixed models, consider a model term Vjξj with rk(Kj) =

kj < dj = dim(ξj). For model terms with proper priors no reparametrisation is needed

since in this case ξj can be directly interpreted as a (generally correlated) random effect.

Applying a general result for partially improper Gaussian distributions (see Rue & Held

(2005), p. 91), allows to partition ξj into a (dj − kj)-dimensional vector of fixed effects βj
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with improper prior and a kj-dimensional vector of random effects bj with proper prior.

More specifically, ξj is decomposed into two parts as

ξj = X̃jβj + Z̃jbj, (9)

where X̃jβj captures the part of ξj which is unpenalized by Kj and Z̃jbj captures the

orthogonal deviation from the unpenalized part. Correspondingly, the design matrices

X̃j and Z̃j can be constructed from the eigen decomposition of the penalty matrix Kj.

The design matrix of βj consists of the eigen vectors corresponding to the zero eigen

values thereby representing a basis of the null space of Kj. The design matrix of bj can

then be constructed from the remaining eigen vectors corresponding to positive eigen

values, compare Fahrmeir et al. (2004) for details. Choosing appropriate design matrices

in (9) leads to the interpretation of βj as a vector of fixed effects with noninformative

prior p(βj) ∝ const and bj as a vector of i.i.d. random effects with Gaussian prior

bj|τj ∼ N(0, τj). The advantage of partition (9) is the explicit differentiation between an

improper and a proper part which are mixed in a complex manner in the original prior

(4).

Inserting the partition of ξj into the representation of a vector of function evaluations

yields

Vjξj = Vj(X̃jβj + Z̃jbj) = Xjβj + Zjbj.

Collecting the indices of all model terms with partially improper priors in the set J ⊂
{1, . . . , r} and the indices of model terms with proper priors in J̄ = {1, . . . , r} \J finally

allows to rewrite any structured additive predictor as

η = Uγ + V1ξ1 + . . . + Vrξr

= Uγ +
∑

j∈J Xjβj +
∑

j∈J̄ Vjξj +
∑

j∈J Zjbj

= Xβ + Zb,

(10)

where X = (U,Xj, j ∈ J ), β = (γ′, β′j, j ∈ J )′, Z = (Vj, j ∈ J̄ , Zj, j ∈ J ) and

b = (ξj, j ∈ J̄ , b′j, j ∈ J )′.

Remark 1. In order to obtain a full rank design matrix of fixed effects X, superfluous

columns constructed in the reparametrisation have to be deleted from X. These superflu-

ous columns arise from the non-identifiability of the level for some of the functions fj as

discussed in Section 2.1.1. For these functions the design matrix Xj contains a column of

ones modelling the overall level. Deleting this column is an easy and interpretable way to
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include the centering restriction and is equivalent to the assumption that the correspond-

ing regression coefficient in the vector βj is set to zero. Using the one-to-one relationship

in (9), we can also deduce the corresponding linear restriction on the original coefficient

vector ξj. In the following sections we will always assume that the design matrix X

has full rank, i.e. appropriate centering restrictions have been imposed on the regression

coefficients ξj and no overparameterised models are considered.

3 Propriety in Gaussian STAR Models

The basic idea to obtain conditions for the propriety of the posterior distribution in

Gaussian STAR models

y = Uγ + V1ξ1 + . . . + Vrξr + ε, ε ∼ N(0, τ0I) (11)

is to rewrite the original model in mixed model representation (10) with proper priors

for the random effects b. For the variance parameter τ0 we assume an additional inverse

Gamma-type prior with hyperparameters a0 and c0. As discussed in the previous section,

the original matrix of fixed effects U (with full rank p) is augmented to the matrix X in

the mixed model representation. Let q denote the number of linear independent columns

augmented to U after deletion of superfluous columns. Then the resulting matrix X has

full rank p + q.

Define V = (V1, . . . , Vr) and ξ = (ξ′1, . . . , ξ
′
r)
′. Then model (11) can be written as

y = Uγ + V ξ + ε = Wθ + ε

where W = (U, V ) and θ = (γ′, ξ′). Let t be such that

rk(U, V ) = rk(W ) = p + t

and

SSE = y′(I −W (W ′W )−W ′)y

the usual sum of squares for the linear model y = Wθ+ε, where (W ′W )− is a generalized

inverse of W ′W .

The following conditions together with Theorem 1 extend Theorem 2 of Sun et al. (2001)

to Gaussian STAR models with partially improper priors for random effects:
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(a) For j = 1, . . . , r, either

(a1) a < cj = 0, or

(a2) cj > 0 hold.

(b1) kj + 2aj > 0, j = 1, . . . , r.

(b2) kj + 2aj >
r∑

j=1

kj − t + q, j = 1, . . . , r.

(c1) n− p− q + 2a0 + 2(a1 + . . . ar) > 0.

(c2) n− p− q + 2a−0 + 2(a−1 + . . . + a−n ) > 0, where a−j = min(0, aj).

Note that (c1) and (c2) are identical if aj < 0 for j = 0, . . . , r.

Theorem 1. Consider the Gaussian STAR model (11) with rk(U) = p and assume that

SSE + 2c0 > 0.

1. If t = k + q or if r = 1 the conditions (a), (b2), and (c1) are necessary, and

conditions (a), (b2), and (c2) are sufficient for the propriety of the joint posterior.

2. If t < k + q and r > 1, conditions (a), (b1), and (c1) are necessary, and conditions

(a), (b2) and (c2) are sufficient for the propriety of the joint posterior.

Remark 2. The assumption SSE + 2c0 > 0 is obviously always fulfilled for c0 > 0. In

the case of an improper inverse Gamma-type prior with a0 < 0, c0 = 0, we have to assure

that SSE > 0. If the number dim(θ) = dim(γ) + dim(ξ) of parameters is equal or larger

than n, the data y = (y1, . . . , yn)′ can be interpolated by the predictor, so that SSE = 0.

For n > dim(θ), which will hold in many applications, we have SSE > 0 (almost surely)

and we can choose c0 = 0.

Theorem 1 covers some special choices for the Gamma-type priors which are of particular

interest in practical work.

(i) (ε, ε)-priors:

Setting aj = cj = ε for some small ε > 0 leads to the so-called proper inverse

Gamma (ε, ε)-priors. These priors have been quite popular in applied work because

they seem to circumvent well known problems with the limiting case ε = 0, of

Jeffrey’s prior. Note that for this limiting case the necessary condition (a) is not

13



fulfilled. Although these (ε, ε)-priors lead to proper posteriors under the simplified

conditions of Corollary 1, there is some debate in the literature about sensitivity of

posteriors and numerical stability in practical work, see for example Lambert et al.

(2005) and Gelman (2006). We provide some empirical evidence for STAR models

through a simulation study.

(ii) Flat priors for standard deviations
√

τj:

The prior p(τj) ∝ τ
−1/2
j is equivalent to the choice p(

√
τj) ∝ const for standard

deviations and corresponds to an improper Gamma-type prior with hyperparame-

ters aj = −1/2, cj = 0. This prior corresponds to a special case of (aa), and is

recommended as a standard choice in practical work by Gelman (2006).

(iii) Flat priors for variances τj:

A flat prior p(τj) ∝ const is an improper inverse Gamma-type prior with aj = −1,

cj = 0. This prior corresponds to REML estimation of variance parameters τj in an

empirical Bayes approach to STAR models, see Fahrmeir et al. (2004). More exactly,

the REML estimate can be interpreted as a posterior mode estimate for τj, while

full Bayesian inference via MCMC provides the posterior mean estimate. Corollary

1 summarizes propriety conditions for these special cases.

Corollary 1. Consider a Gaussian STAR model (11) with rk(U) = p. The following

conditions are (jointly) sufficient (and partly necessary) for propriety of posteriors in the

cases (i), (ii), and (iii):

(i) (ε, ε) - priors:

n > p + q.

(ii) Flat priors for standard deviations:

SSE > 0,

ki > k + q + 1− t, i = 1, . . . , r, where k = k1 + . . . + kr, and

n > p + q + r + 1.

14



(iii) Flat priors for variances:

SSE > 0,

ki > k + q + 2− t, i = 1, . . . , r, and

n > p + q + r + 2.

Proof of Theorem 1. The proof is basically an application of Theorem 2 in Sun et al.

(2001) to the reparametrized model (10), where X is the design matrix for unpenalized

effects β after deleting superfluous columns constructed in the reparametrization. Then

X has full rank p̃ = p + q. It is easy to see that

rk(U, V ) = rk(X,Z),

implying rk(X, Z) = p + t. Because X has full rank p̃ = p + q, it can be shown that

rk(X, Z) = p + t ⇔ rk(RZ) = t̃ := t− q

where R = I −X(X ′X)−1X ′.

Now Theorem 2 of Sun et al. can be applied to the mixed model (10), replacing p and t

in their conditions through p̃ = p + q and t̃ = t− q, respectively. Note also that SSE > 0

in the original STAR model implies SSEre > 0 in the reparametrized model.

Corollary 1 follows immediately from Theorem 1 as a special case.

O

Remark 3. Propriety in terms of the original (γ, ξ)-parameterisation follows from the

one-to-one relationship (9), including the centering restrictions as explained in Remark 1.

To provide some empirical evidence on the theoretical results derived in Theorem 1, we

conducted some simulation studies investigating different aspects of Theorem 1. First of

all, we focused on the (ε, ε)-type priors. Therefore, we simulated 100 replications of the

Gaussian nonparametric model yi = sin(xi) + εi, i = 1, . . . , 50 with εi i.i.d. N(0, 0.42)

and estimated the model with a cubic P-spline with second order random walk penalty

and 20 inner knots in combination with various specifications for the hyperparameters of

the variances. To be more specific, we considered aj = cj = 0.001, aj = cj = 0.0001,

aj = cj = 0.00001, aj = cj = 0.000001, and aj = cj = 0. For comparison, we also

included the flat priors for variances (aj = −1, cj = 0) as well as the standard deviations

(aj = −0.5, cj = 0). Figure 1 displays the corresponding empirical log-MSEs

log

(
1

50

n∑
i=1

(f(xi)− f̂(xi))

)
.

15



Obviously, the choice of hyperparameters has hardly any influence on the results, in

particular when both hyperparameters are equal and small. To gain more insight into

the impact of hyperparameter settings, Figure 2 shows sampling paths for some of the

hyperparameters combinations and one particular simulation run. To obtain comparable

results, the simulations have been started with the same seed. The sampling paths mostly

confirm results obtained from the consideration of log-MSEs. The differences between

different (ε, ε)-priors are almost invisible. Both types of flat priors yield a somewhat

increased variability in the sampling paths which is more expressed in case of a flat prior

for the variance.

As a key conclusion, it seems to make hardly a difference whatever value is specified for ε.

Even in the case ε = 0, where the posterior is improper according to Theorem 1, results

still coincide with those obtained with, say, ε = 0.001.
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Figure 1: Gaussian nonparametric model: Boxplots of log-MSEs for f̂(x) for various

specifications of hyperparameters a and b.

In a second simulation we aimed at investigating the restriction SSE+2c0 > 0. Therefore,

we set up the geoadditive model yi = sin(xi) + fspat(si) + εi, i = 1, . . . , 124 with εi i.i.d.

N(0, 0.42) and a spatial function fspat(s) defined upon the 124 districts of the southern

part of Germany (Bavaria and Baden-Württemberg). The nonparametric function is

again modelled by cubic P-Spline with 20 inner knots and second order random walk.

The spatial effect is assigned a Markov random field prior. In total, the model contains

more parameters than observations and, as a consequence, it is possible that SSE = 0

due to an interpolating fit. Note however, that the quantity SSE considered in Theorem

1 does not account for the effective dimension reduction introduced by the penalty terms.
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Figure 2: Gaussian nonparametric model: Sampling paths for the variance of the smooth

function f(x) for various specifications of hyperparameters a and b.

Hence, the fitted model itself does not suffer from overfitting due to interpolation.

We simulated 100 replications of the model and estimated them with both types of lat

priors (aj = −1, cj = 0 and aj = −0.5, cj = 0) as well as with versions with a slightly

positive cj = 0.001. While in the former case, the assumption SSE + 2c0 > 0 may be

violated, the latter ensures SSE + 2c0 > 0. Figure 3 display sampling paths for the

variance component of the spatial effect for the different hyperparameter specifications.

Visually there is no difference between the cases with cj = 0 and cj = 0.001. Also,

differences between flat priors for the variances and flat priors for the standard deviations

are only moderate. This is also confirmed by the estimated spatial effects. Figure 4

displays average estimates obtained from the 100 simulation runs. All effects are very
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close to each other as well as to the true underlying function. Similar results are obtained

for the nonparametric effect (results not shown).
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Figure 3: Gaussian geoadditive model: Sampling paths for the variance of the spatial effect

fspat(s) for various specifications of hyperparameters a and b.

4 Propriety in Non-Gaussian STAR Models

4.1 Exponential Family Models

This section deals with STAR models where the (conditional) distribution of the response

is a member of the univariate exponential family. We focus on models without an addi-

tional dispersion parameter, including binary, binomial and Poisson STAR models as the

most important special cases. Extensions to models with additional dispersion parameter

such as negative binomial or gamma models are briefly discussed at the end of the section.

We first consider one-parameter models with densities fi(yi|ηi) for conditionally indepen-

dent observations yi given a predictor ηi, i = 1, . . . , n, and predictors η = (η1, . . . , ηn)
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Figure 4: Gaussian geoadditive model: Average of the estimated spatial effects f̂spat(s) for

various specifications of hyperparameters a and b.

given by

η = Uγ + V1ξ1 + . . . + Vrξr + V0ξ0, (12)

where γ, ξ1, . . . , ξr have the same priors p(γ) ∝ const and (4) as in the Gaussian case.

The additional term V0ξ0 represents a random effect with full rank n× d0 design matrix

V0, i.e. rk(V0) = d0 = dim(ξ0), and a (possibly partially improper) prior of the form (4)

for ξ0, i.e.

p(ξ0) ∝ 1

(τ0)k0/2
exp(− 1

2τ0

ξ′0K0ξ0),

with k0 = rk(K0), such that

d0 ≥ dj, k0 ≥ kj, j = 1, . . . , r.

The variance parameter τ0 is assumed to have a Gamma-type prior (5) with hyperpara-

meters a0, c0.
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Setting V0 = I, ξ0 = ε ∼ N(0, τ0I), the predictor (12) also covers the case of individual-

specific random effects V0ξ0 = ε = (ε1, . . . , εn)′. In geoadditive models, V0ξ0 will usually

represent a spatial effect with a MRF or kriging prior, or an unstructured spatial effect.

In generalized additive models, V0ξ0 will represent the penalized spline with the largest

number of basis functions or knots.

A mixed model representation as in Section 2.3, including the additional term V0ξ0, is

η = Xβ + Zb + Z0b0, b0 ∼ N(0, τ0I) (13)

with dim(b0) = k0. The augmented design matrix X may possibly contain additional

columns constructed from the unpenalized part of ξ0. Again q is the number of additional

columns, augmenting U to X, such that X has full rank p + q.

The basic idea to obtain propriety results is to transform model (13) to a model η̃ =

X̃γ + Z̃b + ε, ε ∼ N(0, τ0I) with reduced dimension dim(η̃) = dim(ε̃) = k0. This model

has random effects b with proper priors and ”individual-specific” effects ε, so that ideas

and results in Sun et al. can be applied.

We make the following Assumptions (i) - (iv): After a reordering of observations

(i)
∫

fi(yi|ηi)dηi < ∞ holds for observations i = 1, . . . , n∗, and

(ii) fi(yi|ηi) ≤ M holds for the remaining observations i = n∗ + 1, . . . , n.

Denoting the submatrices of U,X, V = (V1, . . . , Vr) and V0 corresponding to i = 1, . . . , n∗

by U∗, X∗, V ∗ and V ∗
0 , we assume the rank conditions

(iii) rk(U) = rk(U∗) = p, rk(X) = rk(X∗) = p + q, rk(U, V ) = rk(U∗, V ∗) = p + t, and

rk(V ∗
0 ) ≥ k0.

The rank condition for V ∗
0 allows to select k0 linear independent rows from V ∗

0 , corre-

sponding to a selected set {i1, . . . , ik0} ⊂ {1, . . . , n∗} of observations. We denote the

corresponding submodel by

ηs = Usγ + Vsξ + V0sξ0, (14)

where Us, Xs, Us, Xs and X0s denote corresponding submatrices. We further assume that

(iv) rk(Xs) = rk(X∗) = p + q and rk(Us, Vs) = p + t̃, where t̃ ≤ t.

Remark 4.
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1. The condition rk(V ∗
0 ) ≥ k0 implies that (14) with predictor ηs is a submodel of

the model defined by the observations i = 1, . . . , n∗. This simplifies the proof of

Theorem 2, using arguments from the proof of Theorem 3 in Sun et al. It can be

omitted however, as we outline in a comment after Theorem 2.

2. Conditions (i) and (ii) correspond to conditions (B1), (B2) in Sun et al. (2001), who

assume individual-specific random effects V0ξ0 =: ε ∼ N(0, τ0I) in the predictor η.

In this case, condition (iv) can be omitted.

Theorem 2. Consider an exponential family STAR model with predictor (12). Assume

that conditions (i) to (iv) and conditions (a), (b2) and (c2) in Theorem 1 hold with k0

replacing n and t̃ replacing t. If SSEs + 2c0 > 0, where SSEs is the usual residual sum

of squares of the submodel (14), then the joint posterior is proper.

Proof of Theorem 2. We rewrite the submodel (14) in mixed model representation as

ηs = Xsβ + Zsb + εs (15)

where εs = Z0sb0 ∼ N(0, τ0W ), and W = Z0sZ
′
0s has full rank k0. Multiplication by

W−1/2 from the left leads to the normalized model

v = X̃β + Z̃b + ε, ε ∼ N(0, τ0I). (16)

Because W−1/2 is nonsingular, conditions (iv) for the submodel (14) and (15) also hold

for the normalized model (16).

We show that the posterior p(β, b, b0, τ, τ0|y) of the parameters in mixed model represen-

tation (16) is proper under the conditions of Theorem 2. Obviously, this is equivalent

to prove that the posterior p(β, b, v, τ, τ0|y) is proper. The proof of the latter statement

can be based on ideas and results in the proof for Theorem 3 of Sun et al. (2001). From

Bayes’ Theorem we have

p(β, b, v, τ, τ0|y) ∝
n∏

i=1

f(yi|ηi)p(v|β, b, τ0)p(b|τ)p(τ)p(τ0)

∝
n∏

i=1

f(yi|ηi)
1

τ
k0/2
0

exp

(
− 1

2τ0

(v − X̃β − Z̃b)′(v − X̃β − Z̃b)

)

× 1

|Q|1/2
exp

(
−b′Q−1b

2

)
p(τ)p(τ0),

where Q = cov(b). Defining

G =
1

τ
k0/2
0 |A|1/2

exp

(
− 1

2τ0

(v − X̃β − Z̃b)′(v − X̃β − Z̃b)− b′A−1b

2

)
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we get

p(β, b, v, τ0|y) ∝
n∏

i=1

f(yi|ηi)G.

Assumption (ii) implies

p(β, b, v, τ, τ0|y) ≤ M∗
n∗∏
i=1

f(yi|ηi)G,

where M∗ = Mn−n∗ , and integrating out β, b and τ gives

p(v, τ0|y) ≤ M∗
n∗∏
i=1

f(yi|ηi)

∫
Gdbdβdτ.

The integral corresponds to expression G3 in(A.17) of Sun et al. (2001) (omitting integra-

tion over the additional parameters %1, . . . , %r), and it can be bounded from above as in

their expressions (A.25) and (A.27). Using the assumptions (a), (b2) and (c2), replacing

n by k0 and t by t̃, we get the inequality

p(v, τ0|y) ≤ M̃
n∗∏
i=1

f(yi|ηi)g(τ0),

where M̃ is a generic constant and

g(τ0) = τ
−(k0−p−q)/2−a0−(a−1 +...+a−r )−1
0 exp

{
−SSEs + 2c0

2τ0

}
.

Assumption (c2), with k0 replacing n, and SSEs + c0 > 0 imply
∫

g(τ0)dτ0 < ∞ and

therefore

p(v|y) ≤ C

n∗∏
i=1

f(yi|ηi),

where C is a generic constant. The final step is to show that
∫

p(v|y)dv < ∞.

Using the relation v = W−1/2ηs between v in the normalized model (16) and ηs in the

unnormalized model (15) we have

∫
p(v|y)dv =

∫
p(ηs|y)|W 1/2|dηs ≤ K

∫ n∗∏
i=1

f(yi|ηi)dηs

for some constant K. Assumptions (i) and (ii) now imply
∫

p(v|y)dv < ∞ and thus

proprietry of the posterior p(β, b, b0, τ, τ0|y).

O

Remarks 5.
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1. In condition (iii) we have assumed that rk(V ∗
0) ≥ k0, guaranteeing that k0 linear

independent rows of V ∗
0 can be selected, so that V0s in (14) and Z0s in (14) have

full rank k0. We consider now the more general case, where 0 < rk(V ∗
0) = k∗0 < k0.

Then we can still select k∗0 linear independent rows from V ∗
0 as well from Z∗

0, and

k0 − k∗ rows from the remaining rows of V0 and Z0 corresponding to observations

i = n∗ + 1, . . . , n. Let SSE∗
s denote the k∗0-dimensional submodel which replaces

(14) in this more general situation. A slight extension of the proof of Theorem

2 shows that the posterior is still proper under the remaining conditions, if k0 is

replaced by k∗0 and SSEs by SSE∗
s.

2. Theorem 2 can be extended to exponential family models with additional nuisance

parameter in similar manner as Theorem 4 of Sun et al. We omit the details here.

Similarly as for Gaussian response models, we conducted a simulation study for Bernoulli,

Binomial (with five replications) and Poisson distributed responses to investigate propriety

of posteriors under (ε, ε)-priors. For all response distributions the sample size was given by

n = 50 and the predictor is ηi = sin(xi). We applied models with natural link functions,

i.e. the logit link for Bernoulli and Binomial distributed responses and the log-link for

the Poisson model. Each simulation consisted of 100 replications and the function was

estimated with a cubic P-spline with 20 inner knots and second order random walk prior.

For the hyperparameters we considered the same specifications as for Gaussian responses,

i.e. aj = cj = 0.0001, aj = cj = 0.00001, aj = cj = 0.000001, aj = cj = 0, aj = −1, cj = 0

and aj = −0.5, cj = 0. In the case of exponential family regression, we experienced the

(expected) difficulties for the limiting case aj = cj = 0. As an illustration, Figure 5 shows

a selected sampling path for the variance of the nonparametric effect in case of a Binomial

distributed response. While both specifications with aj < 0 and cj = 0 yield sampling

paths with at least some variability, this variability strongly decreases when considering

(ε, ε)-priors. In the limiting case with ε = 0 the variance remains constantly equal to zero

for a long time, resulting in a full conditional which is no longer of the inverse gamma

type, since c′j = cj + 1/2ξjKjξj = 0 (at least numerically). The same problem occurs for

the two remaining response distributions (results not shown).

Figure 6 displays log-MSEs for the Binomial model and the hyperparameter specifications

that resulted in a proper posterior. The results do not vary that much, but there is a slight

tendency for an increased MSE in case of decreasing hyperparameter values. Both types
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Figure 5: Binomial nonparametric model: Sampling paths for the variance of the smooth

function f(x) for various specifications of hyperparameters a and b.

of flat priors result in similar estimates, comparable to those from the aj = cj = 0.001

prior although the sampling paths in Figure 6 look quite different. Obviously, the function

estimates do not respond very sensibly to the choice of hyperparameters.

In a second simulation, we again considered the question of whether SSEs + 2c0 is really

required to obtain a proper posterior. In case of general exponential family regression

this condition is even more restrictive than in the Gaussian case, since the sample size n

is replaced by the sample size k0 in the submodel. We considered additive models with

ηi = sin(xi1) + x2
i2 where both effects are modelled as cubic P-splines with 20 inner knots

and second order random walk prior. Hence, the sample size in the submodel equals

the number of unknown parameters therefore allowing SSEs = 0 due to interpolation.
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Figure 6: Binomial nonparametric model: Boxplots of log-MSEs for f̂(x) for various

specifications of hyperparameters a and b.

Figure 7 shows sampling paths for the variance component of the sine curve when either

cj = 0 or cj = 0.001 in case of Bernoulli distributed responses. For both types of flat priors,

the sampling paths are visually indistinguishable with increased variability when aj = −1.

Figure 8 visualizes log-MSEs for the sine curve with the same sets of hyperparameters

and an additional, intermediate version. Obviously, the results are again quite insensitive

to the choice of hyperparameters for a fixed value of aj. When comparing results with

aj = −1 and aj = −0.5, there seems to be a slight improvement when considering the

latter, i.e. a flat prior for the standard deviation. Finally, Figure 9 displays estimates for

the quadratic effect averaged over the simulation runs as an exemplary result.

When considering Binomial and Poisson distributed results, the findings of the simulation

study where qualitatively of the same type as for Bernoulli distributed response. We

therefore decided not to present these results in detail.

4.2 Structured Hazard Regression

Propriety of posteriors in structured hazard regression models can be shown in a similar

setup as for exponential family models but in this case the differentiation between ob-

servations in conditions (i) and (ii) in Section 4.1 is induced by the censoring of some of

the observations. Let ηi := ηi(ti) denote the value of the predictor (8) at the observed

lifetime ti, i = 1, . . . , n, and η = (η1, . . . , ηn)′ the predictor vector. Correspondingly,

g0 = (g0(t1), . . . , g0(tn))′ is the vector of evaluations of the log-baseline hazard g0(t), and
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Figure 7: Binomial additive model: Sampling paths for the variance of the nonparametric

effect f2(x2) for various specifications of hyperparameters a and b.

gj = (gj(t1)z1j)
′, j = 1, . . . , l, the vectors of evaluations of the time-varying effect com-

ponents in (8). Because the functions gj(t), j = 0, . . . , l, are modelled through Bayesian

P-splines, the vectors gj can be expressed in the generic form gj = Vjξj, with prior (4) for

ξj, and the predictor η can be written in the form (12). The term V0ξ0 is defined as in

Section 4.1, and will, for example, represent individual specific effects or a spatial effect.

Theorem 3. Consider a hazard rate model with hazard rate λi(t) = exp(ηi(t)) and

structured additive predictor (8). Assume that, after reordering, observations i = 1, . . . , n∗

are uncensored, and observations i = n∗+1, . . . , n are censored. If conditions (iii) and (iv)

of Section 4.1 and the remaining conditions in Theorem 2 hold, then the joint posterior

is proper.

Proof of Theorem 3. We first note that the proof of Theorem 2 does not make use of the

exponential family form of the densities f(yi|ηi) in conditions (i) and (ii). It still holds,

if we replace f(yi|ηi) through the likelihood contribution of (right-censored) observed

lifetimes (ti, δi), i = 1, . . . , n, given by

fi(ti|ηi(ti)) = λi(ti)
δiSi(ti),
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Figure 8: Binomial additive model: Boxplots of log-MSE for the nonparametric effect

f2(x2) and various specifications of hyperparameters a and b.

where

λi(ti) = exp(ηi(ti)), Si(ti) = exp

(
−

∫ ti

0

λi(s)ds

)

Therefore, we only have to show that conditions (i) and (ii) hold for uncensored and cen-

sored lifetimes, respectively. For censored observations (δi = 0), we have fi(ti | ηi(ti)) =

Si(ti) ≤ 1, so that condition (ii) holds.

For uncensored observations (δi = 1) the likelihood contribution is given by

fi(ti | ηi(ti)) = λi(ti)Si(ti).

Setting ηi := ηi(ti), λi := λi(ti), we obtain

∫ ∞

0

fi(ti|ηi)dηi =

∫ ∞

0

λiSi(ti)λ
−1
i dλi =

∫ ∞

0

Si(ti)dλi,

so that condition (i) is equivalent to

∫ ∞

0

Si(ti)dλi < ∞. (17)

We factorize the multiplicative hazard rate λi(t) into

λi(t) = cili(t),

where ci > 0 is the time-constant part. Then

∫ ∞

0

Si(ti)dλi =

∫ ∞

0

exp

{
−ci

∫ ti

0

li(s)ds

}
dλi.
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Figure 9: Binomial additive model: Average of the estimated nonparametric effects f̂2(x2)

for various specifications of hyperparameters a and b. For comparison, the true effect is

included as dashed line.

Consider first the case where all time-varying functions are represented by B-splines of

degree 0, i.e. ηi(t) is piecewise constant on the intervals Ik, k = 1, 2, . . . defined by the

knots of the B-spline. Then

λi(t) = ciλik for t ∈ Ik, k = 1, 2, ...

For ti ∈ Ik, say, we have λi = λi(ti) = ciλik, and

∫ ∞

0

Si(ti)dλi ∝
∫ ∞

0

exp

(
−ci

k−1∑
j=1

∆jλij − ci

∫ ti

ξk−1

λikdλik

)
dλik

∝ Ci

∫ ∞

0

exp(−ci(ti − ξk−1)λik)dλik < ∞,

for ti − ξk−1 > 0, which is valid a.s. for continuous Ti.

Consider now the case, where the time-varying part of ηi(t) is defined by B-splines of

higher degree. Let

λik = mint∈Ik
li(t) > 0, k = 1, 2, ...
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be the minimum of the time-varying part of λi(t) on Ik. Then

∫ ∞

0

exp

{
−ci

∫ ti

0

li(s)ds

}
dλi ≤ Ci

∫ ∞

0

exp

{
−ci

∫ ti

ξk−1

λikdλik

}
dλik

= Ci

∫ ∞

0

exp(−ci(ti − ξk−1)λik)dλik < ∞,

so that assumption (17) is fulfilled.

Note that we have tacitly made the assumption that λi(t) > 0 for any choice of covariates

and parameters. This is valid because of our parametrization λi(t) = exp(ηi(t)).

O

Remark 6. Similarly as for Gaussian and exponential family responses, we investigated

the theoretical results in Theorem 3 through simulation studies. The results were quali-

tatively equivalent to those from Section 4.1.

5 Summary

In this paper, we developed necessary (and partly sufficient) theoretical conditions for pro-

priety of posteriors in a large class of semiparametric regression models and supplemented

these with results from several simulation studies. Based on a mixed model representation,

results developed for mixed models could be applied to models with individual-specific

random effects and Gaussian regression models. A further reparameterisation step al-

lowed to formulate propriety conditions even in models without such individual-specific

effects. We also made some attempts to trace back the porpriety conditions to the original

formulation of STAR models to obtain a more intuitive interpretation. The performed

simulation studies provided some empirical evidence that MCMC algorithms even work

well in situations not covered by the (sufficient) conditions presented in the theorems,

emphasizing the need for further research in the direction of sufficient and necessary con-

ditions for propriety.
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